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Abstract

We propose a novel approach to optimizing portfolios with large numbers of
assets. We model directly the portfolio weight in each asset as a function of the
asset’s characteristics. The coefficients of this function are found by optimizing
the investor’s average utility of the portfolio’s return over the sample period.
Our approach is computationally simple, easily modified and extended to capture
the effect of transaction costs, for example, produces sensible portfolio weights,
and offers robust performance in and out of sample. In contrast, the traditional
approach of first modeling the joint distribution of returns and then solving for
the corresponding optimal portfolio weights is not only difficult to implement for
a large number of assets but also yields notoriously noisy and unstable results. We
present an empirical implementation for the universe of all stocks in the CRSP-
Compustat dataset, exploiting the size, value, and momentum anomalies.
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1 Introduction

Stock characteristics, such as the firm’s market capitalization, book-to-market ratio, or

lagged return, are related to the stock’s expected return, variance, and covariance with

other stocks.1 However, exploiting this fact in portfolio management has been, up to now,

extremely difficult. The traditional mean-variance approach of Markowitz (1952) requires

modeling the expected returns, variances, and covariances of all stocks as functions of their

characteristics. This is not only a formidable econometric problem given the large number

of moments involved and the need to ensure the positive definiteness of the covariance

matrix, but the results of the procedure are also notoriously noisy and unstable (e.g.,

Michaud, 1989). In practice, the Markowitz approach is therefore implemented along with

a number of different fixes, including shrinkage of the estimates, imposing a factor structure

on the covariance matrix, estimation of expected returns from an asset pricing model, or

constraining the portfolio weights.2 While these fixes generally improve the properties of

the optimized portfolio, they require substantial resources such as the tools developed by

BARRA, Northfield, and other companies. As a result, formal portfolio optimization based

on firm characteristics is seldom implemented by asset managers (with the notable exception

of quant managers which are a small part of the profession), even though it has the potential

to provide large benefits to investors.3

We propose a simple new approach to equity portfolio optimization based on firm

characteristics. We parameterize the portfolio weight of each stock as a function of the

firm’s characteristics and estimate the coefficients of the portfolio policy by maximizing the

average utility that the investor would have been obtained by implementing the policy over

historical the sample period.

Our approach has a number of conceptual advantages. First, we avoid completely

the auxiliary, yet very difficult, step of modeling the joint distribution of returns and

characteristics and instead focus directly on the object of interest — the portfolio

weights. Second, parameterizing the portfolio policy leads to a tremendous reduction in

1Fama and French (1996) find that these three characteristics robustly describe the cross-section of
expected returns. Chan, Karceski, and Lakonishok (1998) show that these characteristics are also related to
the variances and covariances of returns.

2See Black and Litterman (1992a), Chan, Karceski, and Lakonishok (1999), Frost and Savarino (1986,
1988), Jagannathan and Ma (2002), Jobson and Korkie (1980, 1981), Jorion (1986), Ledoit and Wolf (2003a,
2003b), Pastor (2000), and Pastor and Stambaugh (2000, 2002). Brandt (2004) surveys the literature.

3See for instance Chan, Karceski, and Lakonishok (1999) and Jagannathan and Ma (2002).
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dimensionality. For a problem with N stocks, the traditional Markowitz approach requires

modeling N first and (N2 +N)/2 second moments of returns. With preferences other than

the simplistic quadratic utility, the traditional approach involves a practically unmanageable

number of higher moments for even a relatively small number of stocks (e.g., 100 stocks

have over 300,000 third moments). In contrast, our approach involves modeling only N

portfolio weights regardless of the investor’s preferences and the joint distribution of asset

returns. Because of this reduction in dimensionality, our approach escapes the common

statistical problems of imprecise coefficient estimates and overfitting, while allowing us to

solve very large-scale problems with arbitrary preferences. Third, but related, our approach

captures implicitly the relation between the characteristics and expected returns, variances,

covariances, and even higher-order moments of returns, since they affect the distribution of

the optimized portfolio’s returns and therefore the investor’s expected utility. Fourth, by

framing the portfolio optimization as a statistical estimation problem with an expected utility

objective function (a “maximum expected utility” estimator as opposed to the usual least-

squares or maximum likelihood estimators), can easily test individual and joint hypotheses

about the optimal portfolio weights.

From a practical perspective, our approach is simple to implement and produces

robust results in and out of sample. It is also easily modified and extended. We discuss a

number of possible extensions, including the use of different objective functions, the use of

different parameterizations of the portfolio policy to accommodate short-sale constraints, and

conditioning the portfolio policy on macroeconomic predictors. Perhaps most interestingly

from a practical perspective, we show how our approach can be extended to capture the

effect of transaction costs.

Our paper is related to a recent literature on drawing inferences about optimal

portfolio weights without explicitly modeling the underlying return distribution. Brandt

(1999) and Ait-Sahalia and Brandt (2002) model the optimal allocations to stocks, bonds,

and cash as nonparametric functions of variables that predict returns. Nigmatullin (2003)

extends their nonparametric approach to incorporate parameter and model uncertainty in a

Bayesian setting. More closely related to our paper is Brandt and Santa-Clara (2006), who

study a market-timing problem involving stocks, bonds, and cash by modeling the optimal

portfolio weights as functions of the predictors. Specifically, they model the weight in each

asset class as a separate function (with coefficients that are specific to the asset class) of a

common set of macroeconomic variables. Their approach is relevant for problems involving a
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few assets that have fundamentally different characteristics, such as the allocation of capital

across different asset classes. In contrast, our paper models the weight invested in each

asset as the same function (with common coefficients) of asset-specific variables. This is the

relevant problem when choosing among a large number of essentially similar assets, such as

the universe of stocks.

We use our approach to optimize a portfolio of all the stocks in the CRSP/Compustat

dataset from 1974 through 2002, using as characteristics the market capitalization, book-

to-market ratio, and lagged one-year return of each firm. The investor is assumed to have

constant relative risk aversion (CRRA) preferences. Our empirical results document the

importance of the firm characteristics for explaining deviations of the optimal portfolio

weights from observed market capitalization weights. Relative to market cap weights, the

optimal portfolio with and without short-sale constraints allocates considerably more wealth

to stocks of small firms, firms with high book-to-market ratios (value firms), and firms with

high lagged returns (winners). With a relative risk-aversion of five, the certainty equivalent

gain from investing in the optimal portfolio relative to holding the market is an annualized

11.1% in sample and 5.4% out of sample. The benefits are even greater when we allow the

coefficients of the portfolio policy to depend on the slope of the yield curve. We present

results for long-only portfolio policies and find that the constraint has significant costs for

the investor. We examine the impact of increasing the level of risk aversion on the portfolio

policy and find essentially that size and momentum become less appealing while value retains

its importance. Finally, we incorporate transaction costs. We show that, with a simple policy

function that features a no-trade boundary, the portfolio turnover is reduced by up to 50

percent with only marginal deterioration in performance.

The remainder of the paper proceeds as follows. We describe the basic idea and

various extensions of our approach in Section 2. The empirical application is presented in

Section 3. We conclude in Section 4.
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2 Methodology

2.1 Basic Idea

Suppose that at each date t there is a large number, Nt, of stocks in the investable universe.4

Each stock i has a return of ri,t+1 from date t to t + 1 and is associated with a vector of

firm characteristics xi,t observed at date t. For example, the characteristics could be the

market capitalization of the stock, the book-to-market ratio of the stock, and the lagged

twelve-month return on the stock. The investor’s problem is to choose the portfolio weights

wi,t to maximize the conditional expected utility of the portfolio’s return rp,t+1:

max
{wi,t}

Nt
i=1

Et

[
u(rp,t+1)

]
= Et

[
u

(
Nt∑
i=1

wi,tri,t+1

)]
. (1)

We parameterize the optimal portfolio weights as a function of the stocks’ characteristics:

wi,t = f(xi,t; θ). (2)

In a large part of the paper, we concentrate on the following simple linear specification for

the portfolio weight function:

wi,t = w̄i,t +
1

Nt

θ>x̂i,t (3)

where w̄i,t is the weight of stock i at date t in a benchmark portfolio such as the value-weighted

market portfolio, θ is a vector of coefficients to be estimated, and x̂i,t are the characteristics

of stock i, standardized cross-sectionally to have zero mean and unit standard deviation

across all stocks at date t. Note that, rather than estimating one weight for each stock at

each point in time, we estimate weights as a single function of characteristics that applies to

all stocks over time – a portfolio policy.

This particular parameterization captures the idea of active portfolio management

relative to a performance benchmark. The intercept is the weight of the stock in the

benchmark portfolio and the term θ>x̂i,t represents the deviations of the optimal portfolio

weight from this benchmark. The characteristics are standardized for two reasons. First,

the cross-sectional distribution of the standardized x̂i,t is stationary through time, while that

4Our method automatically accommodates the realistic case of a varying number of stocks through time.
This is not trivially done in the traditional approach as discussed by Stambaugh (1997).
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of the raw xi,t may be non-stationary. Second, the standardization implies that the cross-

sectional average of θ>x̂i,t is zero, which means that the deviations of the optimal portfolio

weights from the benchmark weights sum to zero, and therefore that the optimal portfolio

weights always sum to one. Finally, the term 1/Nt is a normalization that allows the portfolio

weight function to be applied to an arbitrary and time-varying number of stocks. Without

this normalization, doubling the number of stocks without otherwise changing the cross-

sectional distribution of the characteristics results in twice as aggressive allocations, even

though the investment opportunities are fundamentally unchanged.

There are a number of alternative ways to normalize the firm characteristics.

One alternative is to subtract the mean characteristic of the industry (at a given level

of aggregation) rather than the mean of the universe. In this way, the standardized

characteristics measure deviations from the industry which may clean out systematic

operational or financial differences across industries. Asness, Porter, and Stevens (2001)

stress the importance of industry normalizations. Besides the impact of purifying the signal

for expected returns, using industry-normalized characteristics is likely to reduce the risk

of the portfolio since there will be lower net exposure to industries. Another alternative

is to run a cross-sectional regression each period of each given characteristic on other firm

variables (possibly including industry dummies) and take the residuals of that regression as

inputs to the portfolio policy. These residuals are the component of the characteristic that is

orthogonal to the regression explanatory variables and will therefore remove all commonality

in the characteristics due to those variables.

The most important aspect of our parameterization is that the coefficients θ are

constant across assets and through time. Constant coefficients across assets implies that the

portfolio weight in each stock depends only on the stock’s characteristics and not on the

stock’s historic returns. Two stocks that are close to each other in characteristics associated

with expected returns and risk should have similar weights in the portfolio even if their

sample returns are very different. The implicit assumption is that the characteristics fully

capture all aspects of the joint distribution of returns that are relevant for forming optimal

portfolios. Constant coefficients through time means that the coefficients that maximize the

investor’s conditional expected utility at a given date are the same for all dates and therefore

also maximize the investor’s unconditional expected utility.

These two facts imply that we can rewrite the conditional optimization with respect

to the portfolio weights wi,t in equation (1) as the following unconditional optimization with
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respect to the coefficients θ:

max
θ

E
[
u(rp,t+1)

]
= E

[
u

(
Nt∑
i=1

f(xi,t; θ)ri,t+1

)]
. (4)

We can then estimate the coefficients θ by maximizing the corresponding sample analogue:

max
θ

1

T

T−1∑
t=0

u(rp,t+1) =
1

T

T−1∑
t=0

u

(
Nt∑
i=1

f(xi,t; θ)ri,t+1

)
, (5)

for some pre-specified utility function (e.g., quadratic or CRRA). In the linear policy case

(3), the optimization problem is:

max
θ

1

T

T−1∑
t=0

u

(
Nt∑
i=1

(
w̄i,t +

1

Nt

θ>x̂i,t

)
ri,t+1

)
. (6)

Four observations about our approach are worth making at this point. First,

optimizing a portfolio of a very large number of stocks is extremely simple. Given the

relatively low dimensionality of the parameter vector, it is computationally trivial to optimize

the portfolio with nonlinear optimization methods.5 The computational burden of our

approach only grows with the number of characteristics entering the portfolio policy, not

with the number of assets in the portfolio. Second, the formulation is numerically robust.

We optimize the entire portfolio by choosing only a few parameters θ. This parsimony

reduces the risk of in-sample overfitting since the coefficients will only deviate from zero if

the respective characteristics offer an interesting combination of return and risk consistently

across stocks and through time. For the same reason, the optimized portfolio weights tend

not to take extreme values.

Third, the linear policy (3) conveniently nests the long-short portfolios construction

of Fama and French (1993) or its extension in Carhart (1997). To see how this is the case,

assume that the portfolio policy in equation (2) is parameterized in a linear manner as in

(3). Let the benchmark weights be the market-capitalization weights and the characteristics

be defined as 1 if the stock is in a top quantile, -1 if it is in the bottom quantile, and zero for

intermediate quantiles of market capitalization (me), book to market ratio (btm), and past

5For most common utility functions and given the linearity of the portfolio policy (3) in the coefficients
θ, it is easy to derive analytically the gradient and the Hessian of the optimization problem.
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return (mom). Then, the portfolio return is:

rp,t+1 = rm,t+1 + θme

Nt∑
i=1

(
1

Qt

mei,t

)
ri,t+1 + ...

θbtm

Nt∑
i=1

(
1

Qt

btmi,t

)
ri,t+1 + θmom

Nt∑
i=1

(
1

Qt

momi,t

)
ri,t+1 (7)

= rm,t+1 + θme rsmb,t+1 + θbtm rhml,t+1 + θmom rwml,t+1

where rsmb,t+1, rhml,t+1, and rwml,t+1 are the returns to the standard “small-minus-big,”

“high-minus-low,” and “winners-minus-losers” portfolios, and Qt is the number of firms in

the quantile. Under this interpretation, the theta coefficients are the weights put on each

of the factor portfolios. To find the weight of the portfolio in each individual stock, we still

need to multiply the coefficients θ by the respective characteristics.

While our approach nests the problem of optimally investing in factor-mimicking long-

short portfolios, the reverse is only true when the portfolio policy is linear and unconstrained.

In the more general and practically relevant case of constrained portfolio weights, such as

the long-only specification discussed in Section 2.3.2, the optimal portfolio can no longer

be seen as a choice among long-short factor portfolios. The reason is that with long-short

factor portfolios the overall portfolio constraints cannot be imposed on a stock-by-stock

basis. Similarly, the portfolio policy proposed in Section 2.4 to deal with transaction costs

is non-linear and recursive. That policy also cannot be implemented by a static choice of

long-short factor portfolios.

Fourth, the optimization takes into account the relation between the characteristics

and expected returns, variances, covariances, and even higher order moments of returns, to

the extent that they affect the distribution of the optimized portfolio’s returns and therefore

the investor’s expected utility. In the optimization, the degree of cross-sectional predictability

of each component of the joint return distribution is intuitively weighted by its impact on

the overall expected utility of the investor.

To better understand this point, we can approximate the expected utility of the
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investor with a Taylor series expansion around the portfolio’s expected return E[rp,t+1]:

E
[
u(rp,t+1)

]
≈ u(E[rp,t+1]) +

1

2
u′′(E[rp,t+1])E

[
(rp,t+1 − E[rp,t+1])

2
]

+
1

6
u′′′(E[rp,t+1])E

[
(rp,t+1 − E[rp,t+1])

3
]

+ ...
(8)

This expansion shows that, in general, the investor cares about all the moments of the

distribution of the portfolio return.6 Since the portfolio return is given by:

rp,t+1 =
Nt∑
i=1

f(xi,t; θ)ri,t+1 (9)

the moments of its distribution depend implicitly on the joint distribution of the returns and

characteristics of all firms. The coefficients θ affect the distribution of the portfolio’s return

by changing the weights given to the returns of the individual firms in the overall portfolio.

To perform a comparable portfolio optimization using the traditional Markowitz

approach requires modeling the means, variances, and covariances of all the stocks as

functions of their characteristics. This entails estimating for each date t a large number of Nt

conditional expected returns and (N2
t +Nt)/2 conditional variances and covariances. Besides

the fact that the number of these moments grows quickly with the number of stocks, making

robust estimation a real problem, it is extremely challenging to estimate the covariance

matrix as a function of stock characteristics in a way that guarantees its positive definiteness.

Furthermore, extending the traditional approach beyond first and second moments, when

the investor’s utility function is not quadratic, is practically impossible because it requires

modeling not only the conditional skewness and kurtosis of each stock but also the numerous

high-order cross-moments.

Finally, when the benchmark is the value-weighted market, m, the return of the linear

portfolio policy (3) can be written as:

rp,t+1 =
Nt∑
i=1

w̄i,t ri,t+1 +
Nt∑
i=1

(
1

Nt

θ>x̂i,t

)
ri,t+1 = rm,t+1 + rh,t+1 (10)

6This is especially important in dealing with assets with distributions that significantly depart from
normality such as options and credit-sensitive securities. Santa-Clara and Saretto (2006) provide an
application of our approach to option portfolios.
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where h is a long-short hedge fund with weights θ>x̂i,t/Nt that add up to zero. Therefore

problem (8) can be reinterpreted as the problem of a hedge fund that optimizes its portfolio

to maximize the utility of investors who already hold the market (i.e., the market is a

background risk for the investor).

2.2 Statistical Inference

By formulating the portfolio problem as a statistical estimation problem, we can easily obtain

standard errors for the coefficients of the weight function. The “maximum expected utility”

estimate θ̂, defined by the optimization problem (5) with the linear portfolio policy (3),

satisfies the first-order conditions:7

1

T

T−1∑
t=0

h(rt+1, xt; θ) ≡
1

T

T−1∑
t=0

u′(rp,t+1)

(
1

Nt

x̂>t rt+1

)
= 0 (11)

and can therefore be interpreted as a method of moments estimator. From Hansen (1982),

the asymptotic covariance matrix of this estimator is:

Σθ ≡ AsyVar[θ̂] =
1

T
[G>V −1G]−1, (12)

where

G ≡ 1

T

T−1∑
t=0

∂h(rt+1, xt; θ)

∂θ
=

1

T

T−1∑
t=0

u′′(rp,t+1)

(
1

Nt

x̂>t rt+1

)(
1

Nt

x̂>t rt+1

)>
(13)

and V is a consistent estimator of the covariance matrix of h(r, x; θ).

Assuming marginal utilities are uncorrelated, which is true by construction when

the portfolio policy is correctly specified and the optimization is unconstrained, we can

consistently estimate V by:

1

T

T−1∑
t=0

h(rt+1, xt; θ̂)h(rt+1, xt; θ̂)
>. (14)

If we want to allow for the possibility of a misspecified portfolio policy (e.g., for the purpose

7With more general portfolio policies, we also need to differentiate f(xi,t; θ) with respect to θ.
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of specification testing discussed further below) or if constraints are imposed, we may instead

use an autocorrelation-adjusted estimator of V (e.g., Newey and West, 1987).

Alternatively, the covariance matrix of coefficients Σ̂θ can be estimated by bootstrap.

For that, we simply generate a large number of samples of returns and characteristics by

randomly drawing monthly observations from the original data set (with replacement).8 For

each of these bootstrapped samples, we estimate the coefficients of the optimal portfolio

policy and compute the covariance matrix of the coefficients across all the bootstrapped

samples. This approach has the advantage of not relying on asymptotic results and takes

into account potentially non-normal features of the data. We use bootstrapped standard

errors in the empirical analysis below.

The resulting estimate of the covariance matrix of the coefficients Σ̂θ can be used

to test individual and joint hypotheses about the elements of θ. These tests address the

economic question of whether a given characteristic is related to the moments of returns in

such a way that the investor finds it optimal to deviate from the benchmark portfolio weights

according to the realization of the characteristic for each stock. It is important to recognize

that this is not equivalent to testing whether a characteristic is cross-sectionally related to

the conditional moments of stock returns for at least two reasons. First, the benchmark

portfolio weights may already reflect an exposure to the characteristics and it may not be

optimal to change that exposure. Second, a given characteristic may be correlated with

first and second moments in an offsetting way, such that the conditionally optimal portfolio

weights are independent of the characteristic.

The interpretation of our approach as a method of moments estimator suggests a

way of testing the functional specification of the portfolio policy. In going from equation (1)

to equation (4) we assume that the functional form of the portfolio policy is correct, to

replace wi,t with a function of xi,t, and that the coefficients are constant through time, to

condition down the expectation. If either assumption is incorrect, the marginal utilities in

equation (11) will be correlated with variables in the investor’s information set at date t,

which may include missing characteristics or variables that are correlated with the variation

in the coefficients. We can therefore perform specification tests for the portfolio policy using

the standard overidentifying-restrictions test of Hansen (1982).

Finally, note that the method of moments interpretation does not necessarily render

8We also experimented with block bootstrapping techniques that maintain the time-series dependence of
the data (e.g., Politis and Romano (1994)). The resulting inferences are qualitatively the same.
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our approach frequentist and therefore unable to accommodate finite-sample uncertainty

about the parameters and model specification. Nigmatullin (2003) shows how to interpret

first-order conditions similar to equation (11) from a Bayesian perspective using the idea

of an empirical likelihood function and explains how to incorporate parameter and model

uncertainty. While his application deals with the nonparametric approach of Ait-Sahalia

and Brandt (2001), the general idea applies directly to our approach.

2.3 Refinements and Extensions

Besides its effectiveness and simplicity, an important strength of our approach is that the

basic idea is easily refined and extended to suit specific applications. We now discuss some

of the possible refinements and extensions to illustrate the flexibility of our approach.

2.3.1 Objective Functions

The most important ingredient of any portfolio choice problem is the investor’s objective

function. In contrast to the traditional Markowitz approach, our specification of the

portfolio choice problem can accommodate any choice of objective function. The only

implicit assumption is that the conditional expected utility maximization problem (1) be

well specified with a unique solution. Besides the standard HARA preferences (which nest

constant relative risk aversion, constant absolute risk aversion, log, and quadratic utility), our

approach can also be applied to behaviorally motivated utility functions, such as loss aversion,

ambiguity aversion, or disappointment aversion, as well as practitioner-oriented objective

functions, including maximizing the Sharpe or information ratios, beating or tracking a

benchmark, controlling draw-downs, or maintaining a certain value-at-risk (VaR).9

In most of the empirical application we use standard constant relative risk aversion

(CRRA) preferences over wealth:

u(rp,t+1) =
(1 + rp,t+1)

1−γ

1− γ
. (15)

9Benartzi and Thaler (1995), Ait-Sahalia and Brandt (2001), Ang, Bekaert, and Liu (2003), Gomes
(2003), among other, examine the role of behaviorally motivated preference in portfolio choice. Practitioner
oriented objective functions are considered, for example, by Roy (1952), Grossman and Vila (1989), Browne
(1999), Tepla (2001), Basak and Shapiro (2001), and Alexander and Baptista (2002).

11



The advantage of CRRA utility is that it incorporates preferences toward higher-order

moments in a parsimonious manner. In addition, the utility function is twice continuously

differentiable, which allows us to use more efficient numerical optimization algorithms that

make use of the analytic gradient and Hessian of the objective function. We also offer results

for the minimum variance and maximum Sharpe ratio portfolios.

2.3.2 Portfolio Weight Constraints

By far the most common departure from the basic portfolio choice problem (1) in practice

are constraints on the optimal portfolio weights. In our approach, these constraints have

to be imposed through the parameterization of the portfolio policy. For example, consider

the case of the no-short-sale constraint in long-only equity portfolios. The simplest way to

impose this constraint through the portfolio policy is to truncate the portfolio weights in

equation (3) at zero. Unfortunately, in doing so the optimal portfolio weights no longer sum

to one (setting the negative weights to zero results in an sum of weights greater than one).

We therefore need to renormalize the portfolio weights as follows:

w+
i,t =

max[0, wi,t]∑Nt

j=1 max[0, wj,t]
. (16)

Besides guaranteeing positivity of the portfolio weights, this specification is also an example

of a nonlinear parameterization of the portfolio weight function (2).

One computational problem with this specification of the portfolio policy function is

its non-differentiability at wi,t = 0. In order to compute the standard errors of the estimated

θ from first-order conditions analogous to equation (11), we require first-order derivatives.

One way to overcome this problem in practice is to approximate the function max[0, y]

between two close points y = 0 and y = α > 0 with either a third or a fifth-order polynomial

with smooth first- or first- and second-order derivatives at the end points, respectively. Using

bootstrapped standard errors is an obvious approach to avoid the problem.

2.3.3 Nonlinearities and Interactions

Although we explicitly specified the portfolio policy (3) as a linear function of the

characteristics, the linearity assumption is actually innocuous because the characteristics
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xi,t can always contain nonlinear transformations of a more basic set of characteristics yi,t.

This means that the linear portfolio weights can be interpreted as a more general portfolio

policy function wi,t = w̄i,t + g(yi,t; θ) for any g(·; ·) that can be spanned by a polynomial

expansion in the more basic state variables yi,t. Our approach therefore accommodates very

general departure of the optimal portfolio weights from the benchmark weights.

Cross-products of the characteristics are an interesting form of non-linearity because

they have the potential to capture interactions between the characteristics. For instance,

there is considerable evidence in the literature that the momentum effect is concentrated

in the group of growth (low book-to-market) firms (e.g., Daniel and Titman, 1999). Our

approach can capture this empirical regularity by including the product of the book-to-

market ratio and the one-year lagged return as an additional characteristic.

In practice, we need to choose a finite set of characteristics as well as possible nonlinear

transformations and interactions of these characteristics to include in the portfolio policy

specification. This variable selection for modeling portfolio weights is no different from

variable selection for modeling expected returns with regressions. The characteristics and

their transformations can be chosen on the basis of individual t tests and joint F tests

computed using the covariance matrix of the coefficient estimates, or on the basis of out-of-

sample performance.

2.3.4 Time-Varying Coefficients

The critical assumption required for conditioning down the expectation to rewrite the

conditional problem (1) as the unconditional problem (4), is that the coefficients of the

portfolio policy are constant through time. While this is a convenient assumption, there

is no obvious economic reason for the relation between firm characteristics and the joint

distribution of returns to be time-invariant. In fact, there is substantial evidence that

economic variables related to the business cycle forecast aggregate stock and bond returns.10

Moreover, the cross-section of expected returns appears to be time-varying as a function of

the same predictors (e.g., Cooper, Gulen, and Vassalou, 2000).

To accommodate possible time-variation in the coefficients of the portfolio policy, we

10For example, Campbell (1991), Campbell and Shiller (1988), Fama (1990), Fama and French (1988,1989),
Hodrick (1992), and Keim and Stambaugh (1986) report evidence that the stock market returns can be
forecasted by the dividend-price ratio, the short-term interest rate, the term spread, and the credit spread.
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can explicitly model the coefficients as functions of the business cycle variables. Given a

vector of predictors observable at date t, denoted by zt, we can extend the portfolio policy

(3) as:

wi,t = w̄i,t +
1

Nt

θ> (zt ⊗ xi,t) (17)

where ⊗ denotes the Kronecker product of two vectors. In this form, the impact of the

characteristics on the portfolio weight varies with the realization of the predictors zt.

2.3.5 Shrinkage

Shrinkage estimation is an effective technique for reducing the effect of estimation error

and in-sample fitting in portfolio optimization. In shrinkage estimation, “shrunk” estimates

are constructed as a convex combination of sample estimates and shrinkage targets. The

shrinkage targets are either of statistical nature, such as the grand mean of all estimates,

or are generated by the predictions of a theoretical model. The efficacy of shrinkage to a

statistical target in portfolio choice problems is demonstrated by Jobson and Korkie (1981),

Frost and Savarino (1988), Jorion (1986), and DeMiguel, Garlappi, and Uppal (2007), among

others. Theoretically motivated shrinkage targets are advocated by Black and Litterman

(1992b), Kandel and Stambaugh (1996), Pastor (2000), and Pastor and Stambaugh (2000).

Shrinkage estimation is traditionally applied to the parameters of the return

generating process. The idea of down-weighting the information contained in a single set

of data in favor of an ex-ante reasonable benchmark is, however, equally applicable to our

method. Recall that the portfolio weight parametrization (3) can be interpreted as a data-

driven tilt away from holding the benchmark portfolio. If this benchmark portfolio is an

ex-ante efficient portfolio according to some theoretical model, such as the market portfolio

for the CAPM, it is natural to consider shrinking the parameterized portfolio weights toward

these benchmark weights. This is mechanically accomplished by simply reducing the absolute

magnitudes of the θ coefficients relative to their in-sample estimates. The extent of shrinkage

depends, as with all shrinkage estimators, on the potential magnitude of the estimation error

in θ as well as on the strength of the investor’s belief in the theoretical model.
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2.4 Transaction Costs

In this section we show how to optimize portfolio policies taking into account transaction

costs. For a given policy such as (3), the turnover each period is the sum of all the absolute

changes in portfolio weights:

Tt =
Nt∑
i=1

|wi,t − wi,t−1|. (18)

Therefore, the return to the portfolio net of trading costs is:

rpt+1 =
Nt∑
i=1

wiri,t+1 − ci,t|wi,t − wi,t−1|, (19)

where ci,t reflects the proportional transaction cost for stock i at time t. These transaction

costs may be estimated directly from market liquidity measures or may be modeled as a

function of the stocks’ characteristics such as their market capitalization. Note that we

should use estimates of one-way trading costs to input in the equation above since our

measure of turnover already includes both the buys and sells (positive and negative changes

in weights). We can then find the optimal values of of the coefficients by optimizing the

average utility of the returns net of trading costs.

The linear linear functional form of policy (3) is clearly not optimal in the presence of

transaction costs. Magill and Constantinides (1976), Taksar, Klass, and Assaf (1988), and

Davis and Norman (1990) study the optimal portfolio choice between a risky and a riskless

asset in the presence of proportional trading costs.11 They show that the optimal policy is

characterized by a boundary around the target weight for the risky asset. When the current

weight is within this boundary, it is optimal not to trade. When the current weight is outside

the boundary, however, it is optimal to trade to the boundary, but not to the target. This

result is intuitive since when the weight is close to the target, there is only a second-order

small gain from rebalancing to the target but a first-order cost from trading. Leland (2000)

studies the optimal portfolio problem with multiple risky assets and proportional transaction

costs. He finds again that the optimal policy has a no-trade zone with partial adjustment of

the portfolio weights to the border when the current holdings are outside the no-trade zone.

Motivated by this theoretical literature, we propose the following functional form of

the portfolio weights in the presence of transaction costs, which also illustrates how easy it is

11See also Dixit (1991), Dumas (1991), Shreve and Soner (1994) and Akian, Menaldi, and Sulem (1996).
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in our approach to deal with nonlinear and recursive portfolio policies. Start with an initial

portfolio, given by our previous optimal policy:

wi,0 = w̄i,0 + θ>xi,0. (20)

Then, each period, define a “target” portfolio that is given by the same policy:

wti,t = w̄i,t + θ>xi,t

Before trading at time t, the portfolio is the same as the portfolio at time t − 1 with the

weights changed by the returns from t− 1 to t. Call this the “hold” portfolio:

whi,t = wi,t−1
1 + ri,t
1 + rp,t

. (21)

If, on one hand, the hold portfolio is sufficiently close to the target portfolio, it is

better not to trade. We define the distance between the portfolios as a sum of squares. It

follows that:

wi,t = whi,t if
1

Nt

Nt∑
i=1

(wti,t − whi,t)2 <= k2. (22)

In this way, the no-trade region is a hyper-sphere of radius k around the target portfolio

weights. This is not necessarily the shape of the optimal trade region and we propose it only

as a simple approximation.

If, on the other hand, the hold portfolio is sufficiently far from the target, the investor

should trade to the frontier of the no-trade region. In that case, the new portfolio is a

weighted average of the hold portfolio and the target portfolio:

wi,t = αtw
h
i,t + (1− αt)wti,t if

1

Nt

Nt∑
i=1

(wti,t − whi,t)2 > k2. (23)

We can pick αt such that the new portfolio wt is exactly at the boundary to capture the
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intuition that the investor should trade to the boundary when outside of the no-trade region:

1

Nt

Nt∑
i=1

(wti,t − wi,t)2 =
1

Nt

Nt∑
i=1

(
wti,t − αtwhi,t − (1− αt)wti,t

)2
= α2

t

1

Nt

Nt∑
i=1

(wti,t − whi,t)2.

(24)

Setting this equal to k2 and solving for α, we obtain:

αt =
k
√
Nt

(
∑Nt

i=1(w
t
i,t − whi,t)2)1/2

(25)

It is worth reiterating that the functional form of the portfolio policy described above

is, as in the base case without transaction costs, only an approximation of the theoretically

optimal, but unfortunately unknown, functional form. The quality of this approximation is

inherently application specific. However, one of the strengths of our approach is the ease

with which different portfolio policy functions can be implemented and compared.

3 Empirical Application

To illustrate the simplicity, the flexibility, and, most importantly, the effectiveness of our

approach, we present an empirical application involving the universe of all listed stocks in

the U.S. from January of 1964 through December of 2002. We first describe the data and

then present results for the base case and various extensions, both in and out of sample.

Unless otherwise stated, we assume an investor with CRRA preference and a relative risk

aversion of five. In the application, the investor is restricted to only invest in stocks. We

do not include the risk-free asset in the investment opportunity set. The reason is that the

first-order effect of allowing investments in the risk-free asset is to vary the leverage of the

portfolio, which only corresponds to a change in the scale of the stock portfolio weights and

is not interesting per se.
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3.1 Data

We use monthly firm-level returns from CRSP as well as firm-level characteristics obtained

from the CRSP-Compustat merged dataset, from January of 1964 through December of

2002. For each firm in the CRSP-Compustat dataset, we construct the following variables at

the end of each fiscal year: the log of the firm’s market equity (me), defined as the log of the

price per share times the number of shares outstanding, and the firm’s log book-to-market

ratio (btm), defined as the log of one plus book equity (total assets minus liabilities, plus

balance-sheet deferred taxes and investment tax credits, minus preferred stock value) divided

by market equity.12 We use the standard timing convention of leaving at least a six-month

lag between the fiscal year-end characteristics and the monthly returns, to ensure that the

information from the annual reports would have been publicly available at the time of the

investment decision. From the CRSP database, we record for each firm the lagged one-year

return (mom) defined as the compounded return between months t− 13 and t− 2. Similar

definitions of the three characteristics are commonly used in the literature (e.g., Fama and

French, 1996). The Appendix provides further details about the firm-level data, including

the exact definitions of the components of each variable. We use size, book-to-market, and

momentum as conditioning characteristics in the portfolio optimization since we want to

compare our results with previous studies and these characteristics are the most widely used

in the literature.

The number of firms in our sample is generally trending upward, with an average

annual growth rate of 4.2%. The average number of firms throughout our sample is 3,680,

with the fewest firms in February of 1964 (1,033 firms) and the most firms in November of

1997 (6,356 firms).

Figure 1 describes the three firm characteristics. The first column plots the cross-

sectional means of the (non-standardized) characteristics at each month in our sample. The

second column shows the corresponding cross-sectional standard deviations. Recall that the

characteristics enter the portfolio policy function in standardized form. The plots in Figure 1

can be used to translate given values of the standardized characteristics at a particular date

in the sample into the original characteristics at the same date.

We use the one-month Treasury bill rate as the riskfree rate. In an extension of our

12Taking logs makes the cross-section distribution of me and btm more symmetric and reduces the effect
of outliers.
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basic approach, we model the coefficients of the portfolio policy as functions of the term

spread (tsp), defined as the difference in the yields to maturity of the 10-year Treasury note

and the one-year Treasury bill. Monthly interest rate data is obtained from the DRI database

for the same sample period as the stock data.

3.2 Base Case

Table 1 presents the results for the base case, in which the over- or under-weighting of

each stock, relative to the value-weighted market portfolio, depends on the firm’s market

capitalization, book-to-market ratio, and lagged one-year return, using the policy function

in equation (3). The table is divided into four sections describing separately the (i) parameter

estimates and standard errors, (ii) distribution of the portfolio weights, (iii) properties of the

optimized portfolio returns, and (iv) average characteristics of the portfolio. This format is

the same for all tables in the paper. The sample goes from January of 1974 to December

of 2002 since we lose the first ten years of data to estimate the initial portfolio for the

out-of-sample experiments.

The first few rows in Table 1 present the estimated coefficients of the portfolio policy

along with their standard errors estimated from 1,000 bootstrapped samples.13 In the third

column, the deviations of the optimal weights from the benchmark weights decrease with the

firms’s market capitalization (size) and increase with both the firm’s book-to-market ratio

(value) and its lagged one-year return (momentum). The signs of the estimates are consistent

with the literature. The investor over-weights small firms, value firms, and past winners

and under-weights large firms, growth firms, and past losers. Since the characteristics are

standardized cross-sectionally, the magnitudes of the coefficients can be compared to each

other. Quantitatively, a high book-to-market ratio leads to the largest over-weighting of a

stock. All three coefficients are highly significant. We also test whether all three coefficients

are jointly equal to zero using a Wald test, and the bootstrapped p-value of this test is

reported in the row labeled “Wald p-value.”14

The next few rows describe the weights of the optimized portfolio (in the second

column) and compare them to the weights of the market portfolio (in the first column)

13We use bootstrapped standard errors since they produce slightly more conservative tests (larger standard
errors) than using estimates of the asymptotic covariance matrix in equation (12).

14When the bootstrapped p-value from the Wald test is less than 0.001, we report it as 0.000.
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and the equal-weighted portfolio (in the second column). The average absolute weight of

the optimal portfolio is about four times that of the market (0.08% versus 0.02%). Not

surprisingly, the active portfolio takes larger positions. However, these positions are not

extreme. The average (over time) maximum and minimum weight of the optimal portfolio

are 3.49% and -0.22%, respectively, while the corresponding extremes for the market portfolio

are 3.68% and 0.00%. The average sum of negative weights in the optimal portfolio is -128%,

which implies that the sum of long positions is on average 228%. Finally, the average fraction

of negative weights (shorted stocks) in the optimal portfolio is 0.47. Overall, the optimal

portfolio does not reflect unreasonably extreme bets on individual stocks and could well be

implemented by a combination of an index fund that reflects the market and a long-short

equity hedge fund. Finally, one might suspect that the optimal portfolio policy requires

unreasonably large trading activity. Fortunately, this is not the case. The average turnover

(measured using equation 18 as the sum of one-way trades) of the optimized portfolio is

99% per year, as compared to a average turnover of 9.7% per year for the market portfolio

(due to new listings, delistings, equity issues, etc) and 14.2% per year for the equal-weighted

portfolio. This further shows that the optimal portfolio is eminently implementable and that

the returns are unlikely to be affected much by trading costs. Of course, the low turnover is

a result of using persistent variables. Using variables that changed more through time would

undoubtedly result in higher turnover.

The following rows characterize the performance of the optimal portfolio relative

to the market and the equal-weighted portfolios. For ease of interpretation, all measures

are annualized. The optimal portfolio has a volatility slightly larger than that of the

market portfolio but lower than the equal-weighted portfolio (18.8%, 16.9%, and 20.5%,

respectively). The optimal portfolio policy has a much higher average return of 26.2% as

opposed to 13.9% for the market and 18.0% for the equal-weighted portfolio. This translates

into a Sharpe ratio that is more than twice the Sharpe ratio of the market or the equal-

weighted portfolio. The certainty equivalent captures the impact of the entire distribution

of returns according to the risk preferences of the investor and is therefore the measure that

best summarizes performance. The optimal portfolio policy offers a certainty equivalent

gain of roughly 11% relative to the market or the equal-weighted portfolios. We can use a

regression of the excess returns of the active portfolio on the excess return of the market

to evaluate the active portfolio’s alpha, market beta, and residual risk, and then use these

statistics to compute the portfolio’s information ratio. The alpha of the portfolio is over

17%, with a low market beta of only 0.31. Dividing the alpha by the residual volatility of
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18.1% produces an information ratio of 0.96. Finally, a world of caution. We should point

out that it is not very surprising that the optimal portfolio outperforms the market because

we are optimizing in sample and have chosen characteristics that are known to be associated

with substantial risk-adjusted returns.

We can decompose of the optimal portfolio returns into the market return and the

return on a long-short equity hedge fund along the lines of equation (10). The average return

of this hedge fund is found to be 12.27% (not shown in the table). We can further decompose

the hedge fund return as rh = q(r+
h − r−h ) where r+

h is the return on the long part of the

hedge fund and r−h is the return on the short part, both normalized such that the sum of

their weights is one. In this way, q captures the leverage of the long-short portfolio. The

average r+
h is 20.79% and the average r−h is 14.01%, so that the return of the hedge fund

without leverage, i.e., with one dollar long and one dollar short positions, is 6.78%. These

returns compare with the market’s return of 11.96% over the same period. We therefore see

that the long side of the hedge outperforms the market whereas the short side has roughly

the same performance as the market. In fact, the short side could be replaced with a short

position in the market portfolio without hurting performance. This is important since it

is obviously easier to short the market using futures than it is to hold a short portfolio of

stocks. The average return of the entire hedge fund of 12.27% and the returns of the scaled

long and short parts imply a leverage q of the long and short positions of the order of 173%.

To describe the composition of the optimized portfolio, we compute for every month

the weighted characteristics of the portfolio as Nt

∑Nt

i=1wi,tx̂i,t. The last three rows of the

table compare the average (through time) weighted characteristics of the optimized portfolio

to those of the market portfolio. The market portfolio has a bias toward very large firms

(due to value weighting) and firms with below-average book-to-market ratios (growth), while

it is neutral with respect to momentum. In contrast, the optimized portfolio has a slight

bias toward small firms and much stronger biases toward high book-to-market ratio (value)

firms and past winners. Specifically, the portfolio’s book-to-market ratio is more than three

standard deviations above the average stock, and the portfolio’s momentum is close to two

standard deviations above the mean.15

Figure 2 plots the time series of the three portfolio characteristics. The characteristics

15In a long-short portfolio, this does not necessarily mean that the typical stock has characteristic values
of this order of magnitude. For instance, a portfolio that is long 200% in stocks with a characteristic value
of 2 and is short 100% of stocks with a characteristic value of 1 has an average characteristic value of 3.
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vary over time, but their variability is relatively small and they appear stationary. Moreover,

the book-to-market characteristic is always larger than the momentum characteristic, which

in turn is larger than the size characteristic, indicating that the optimized portfolio reflects

consistent bets through time. While this ordering is also clearly captured in the averages

reported in the table, it is comforting to note that the results are systematic and not the

product of a few outliers.

While the stellar performance of our approach is unlikely to be due to over-fitting since

we optimize a portfolio with a large number of stocks over a small number of parameters,

the most convincing way to establish its robustness is through an out-of-sample experiment.

We use data the first ten years of data, from January 1964 until December 1973, to estimate

the coefficients of the initial portfolio policy. We then use those parameters to form out-of-

sample monthly portfolios during 1974. At the end of 1974 and of every subsequent year, we

re-estimate the portfolio policy by enlarging the sample and apply it in every month of the

following year. In this way, we estimate the policy with a “telescoping” sample and always

apply it out of sample.16 The standard errors presented are the time-series average of the

standard errors from each estimation of the optimal policy.

The out-of-sample results of our parametric portfolio policy, presented in the last

column of Table 1, are striking. The coefficients on the characteristics are roughly similar

to the in-sample estimates, with only an increase of the importance of momentum. All

coefficients are still statistically significant, both individually and jointly. The in- and out-

of-sample portfolios are also remarkably similar in terms of the distribution of the portfolio

weights. More importantly, there is not a large deterioration in the return statistics. The

certainty equivalent of the portfolio policy is now 11.8%, half way between those of the market

portfolio and of the in-sample policy. The out-of-sample comparison with the equal-weighted

portfolio is of particular interest since DeMiguel, Garlappi, and Uppal (2007) have shown

that the equal-weighted portfolio generally offers a good compromise between efficiency and

robustness out of sample. Our approach substantially improves the efficiency of the portfolio

without a significant loss in terms of out-of-sample robustness. We conclude from these

results that our approach is likely to perform almost as well out of sample or in real time as

our in-sample analysis suggests.

16The results are not totally out of sample to the extent that the stock characeristics used were known
by us to have significant explanatory power for the cross section of stocks during the entire sample period.
Unfortunately, there are no simple ways to correct this snooping bias.
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We showed in equation (10) that the linear portfolio policy is similar to a static choice

between long-short portfolios like those constructed by Fama and French (1993) and Carhart

(1997). We construct size, book-to-market, and momentum factors based on single sorts of

all stocks based on these variables. The factor is then constructed by taking equal-weighted

long positions in the stocks belonging to the top 30% and short positions in the stocks in the

bottom 30%. The definition of the size, book-to-market, and momentum variables used in

the sorts are the same as throughout the rest of the paper. The sample of firms is also the

same. Our approach is a little different from way Fama and French construct these factors

which relies on double sorts on size and book to market. We do not follow their approach

since that would be equivalent to having interaction terms in the linear policy and would

make comparisons more difficult. Then, we simply find the weights on each of the three

long-short portfolios that maximize the CRRA utility.17 Table 2 shows the results. Overall,

and as expected, the results are quite similar to the results in Table 1. The differences

between the two tables are due to the fact that the Fama-French factors put a weight on

each stock proportional to the firms market capitalization whereas our linear policy puts a

weight that is proportional to the firms characteristic. Of course, we could easily construct

long-short portfolios like those of Fama and French where the weights are proportional to

the characteristics. In that case, using our simple linear policy would give exactly the same

results as a choice between the factor portfolios.

Notice that the relative differences between our approach and investing in the Fama-

French portfolios carries over from the in-sample analysis to the out-of-sample results

presented in the last columns of both tables. Weighting stocks by their characteristics, as

opposed to equal weighting the top and bottom one-third, improves the in-sample certainty

equivalent by 36% and the out-of-sample certainty equivalent by 24%.

3.3 Extensions

3.3.1 Portfolio Weight Constraints

A large majority of equity portfolio managers face short-sale constraints. In Table 3, we

present the results from estimating the long-only portfolio policy specified in equation (16),

again both in- and out-of-sample. As in the unconstrained case, the deviation of the optimal

17Pastor (2000), Pastor and Stambaugh (2000), and Lynch (2001), among others, study the optimal
allocation to the Fama-French portfolios.
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weight from the market portfolio weight decreases with the firm’s size, increases with its

book-to-market ratio, and increases with its one-year lagged return. Focusing on the portfolio

involving the entire universe of stocks, a high book-to-market ratio and large positive one-

year lagged return are less desirable characteristics for a long-only investor. The coefficients

associated with both of these characteristics are lower in magnitude than in the unrestricted

case and are only marginally significant, whereas the coefficient associated with the market

capitalization of the firm is not significant. Overall, the significance of the θ coefficients is

substantially diminished compared to the unconstrained base case.

The optimal portfolio still does not involve extreme weights. In fact, the average

maximum weight of the optimal portfolio is only 1.95%, which is actually lower than that

of the market portfolio. On average, the optimal portfolio invests in only 54% of the stocks.

The resulting mean and standard deviation of the portfolio return are 19.1% and 18.3%,

respectively, translating into a certainly equivalent gain of 3.9% relative to holding the

market portfolio. The alpha, beta, and information ratio of the portfolio are 6.2%, 0.86,

and 0.56, respectively. These statistics are quite remarkable, given the long-only constraint.

Out-of-sample, the certainty equivalent is 8.1%, showing some small deterioration relative

to the in-sample optimum.

The average size of the firms in the optimal portfolio is greater than the size of the

average firm but significantly lower than that of the value-weighted market portfolio. The

book-to-market ratio and momentum characteristics are less than one standard deviation

above those of the average stock and are also significantly different from those of the market

portfolio. The results for the optimal long-only portfolio in the universe of the top 500 stocks

are qualitatively similar.

The most interesting comparison is between the long-only portfolio in Table 3 and

the unconstrained base case in Table 1. The difference in performance is due to two related

factors. First, the unconstrained portfolio can exploit both positive and negative forecasts,

while the constrained portfolio can only exploit the positive forecasts. Consistent with this

argument, the fraction of short positions in Table 1 is roughly the same as the fraction of

stocks not held by the long-portfolio in Table 3. Second, the unconstrained portfolio benefits

from using the short positions as leverage to increase the exposure to the long positions.

Interestingly, the tests for joint significance of all three parameters have a p-value

around 5%. We therefore cannot reject that the coefficients are jointly zero and that
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the investor is equally well off holding the market as holding the optimal portfolio. This

rejection is consistent with the increase in the standard errors on the coefficients and the

smaller gain in certainty equivalent of the restricted optimal portfolio relative to the market.

We conclude that short sales constraints have some power in explaining the size, value,

and momentum anomalies. An interesting consequence is that market frictions that have

constrained investors ability to short sell stocks (that were more prevalent in the past but

that still have an impact), may have limited the arbitraging of the anomalies.

3.3.2 Time-Varying Coefficients

In Table 4 we allow the coefficients of the portfolio policy to depend on the slope of the yield

curve. We estimate different coefficients for months when the yield curve at the beginning

of the month is positively sloped (normal) and negatively sloped (inverted). Since inverted

yield curves tend to be associated with recessions, letting the portfolio coefficients vary with

the yield-curve slope allows the effect of the characteristics on the joint distribution of returns

to be different during expansionary and contractionary periods.

We present both in- and out-of-sample results. In both cases, the most dramatic effect

of conditioning on the slope of the yield curve is on the role of the firms’ size. When the

yield curve is upward sloping, the optimal portfolio is tilted toward smaller firms, just as in

the base case. When the yield curve is downward sloping, in contrast, the tilt is exactly the

opposite, with a positive coefficient (although not statistically different from zero). This is

consistent with the common notion that small firms are more affected by economic downturns

than larger and more diversified firms. For book-to-market and momentum, the coefficients

are generally larger in magnitude when the yield curve slopes down.

Conditioning on the slope of the yield curve does not significantly alter the

distribution of the optimal portfolio weights. However, the performance of the portfolio

is improved. Both in and out of sample, the portfolios have higher average returns, certainly

equivalents, alphas, and information ratios than without conditioning.

The average characteristics of the optimal portfolios are the most interesting to

analyze. Consider the in-sample case. As suggested by the coefficient estimates, the optimal

portfolio is tilted toward small stocks when the yield curve is upward sloping. When the

yield curve is downward sloping, the portfolio is tilted toward larger stocks and resembles

closely the composition of the market portfolio. The average book-to-market and momentum
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characteristics are both positive and larger when the yield slope is positive. It is interesting

to note that although the theta coefficient on book to market with an inverted yield curve

is very different from the corresponding coefficient in sample, there is no corresponding

change in the average characteristic of the portfolio. Intuitively, this arises from the joint

distribution of the characteristics conditional on the slope of the yield curve.

3.3.3 Risk Aversion

The optimal portfolio policy depends critically on the investor’s preferences. The results

thus far were obtained assuming CRRA utility with relative risk aversion γ = 5. To get

a better sense for the role of this utility assumption, we present in Table 5 in- and out-of-

sample results for different levels of risk aversion. In addition to γ = 5, which we report in

the table for comparison, we also estimate the optimal portfolio for γ = 1, corresponding to

the popular case of log-utility, and γ = 100, which is extremely high and makes the investor

very sensitive to losses.

For small values of γ, the estimates of the coefficients on the firm’s size, book-to-

market ratio, and one-year lagged return are all large in absolute value and statistically

significant. As the investor becomes more risk averse, the coefficients on size and momentum

approach zero. This suggests that these characteristics are associated with both mean returns

and risk. As risk aversion increases, the investor weighs more the contribution of these

characteristics to risk and loads less heavily on them. In contrast, the exposure to book-

to-market does not change qualitatively as risk aversion increases. This indicates that this

characteristic is more associated with expected return than risk.

The average firm characteristics exhibit the same patterns. For γ = 1, the portfolio

is severely tilted toward firms that are small, value, and winners. As the level of risk

aversion increases, the tilting towards small caps and winners decreases. Actually, for

γ = 100, the portfolio holds companies that are 0.6 standard deviations larger than the

mean. However, the tilt towards value firms is maintained. Although increasing risk aversion

helps in explaining the size and momentum anomalies it does not explain the value anomaly.

The distribution of the optimal portfolio weights also changes with the level of risk

aversion. In particular, an investor with γ = 1 takes on more and larger negative positions,

compared to an investor with γ = 5. The fraction of shorted stocks is only increased by 5%

but the sum of negative weights is almost three times larger, which implies that the less risk
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averse investor takes similar bets but with more leverage. Interestingly, the γ = 100 investor

actually uses higher leverage than the investor with γ = 5. Intuitively, the short positions

help by partially hedging the worst performing stocks in the market’s lowest return months.

Not surprisingly, the differences in the optimal portfolio weights translate into equally

striking differences in the distribution of the optimized portfolio returns. The average return

and volatility are highest for γ = 1 and decrease with the investor’s level of risk aversion.

For high levels of γ, the curvature of the utility function is such that the average utility

across all months is dominated by the utility obtained in the worst month. In this sense,

the γ = 100 preferences correspond closely to a max-min criterion. The portfolio’s minimum

return (not shown in the table) decreases from -55.60% for γ = 1, to -19.50% for γ = 5, and

to -13.07% for γ = 100 (for comparison, the market’s minimum return is -21.49%). The table

also presents certainty equivalents for the different levels of risk aversion but they cannot

be compared with each other. The certainty equivalent for the γ = 100 case is actually

negative, -0.989, but the investor dislikes the market even more, with a certainty equivalent

of -1.976.18

Comparing the in- and out-of-sample results, it appears that our method performs

better out-of-sample for lower levels or risk aversion than for higher levels of risk aversion.

This can be seen equivalently from the differences in the policy coefficients, in the

performance measures, or in the portfolio characteristics. For example, with γ = 1, the in-

sample average portfolio characteristics are me = −6.234, btm = 9.060, and mom = 6.016.

the corresponding out-of-sample average portfolio characteristics are −7.328, 9.633, and

11.621. In contrast, with γ = 100, the relative differences between the in- and out-of-sample

characteristics are much greater: me of 0.633 versus 1.763, btm of 4.761 versus 3.105, and

mom of 0.391 versus -0.233. Apparently, risk-minimizing portfolios are less stable than

expected return maximizing portfolios.

3.4 Transaction Costs

In this section we examine the impact of transaction costs on optimal trading policies. As

a first approach, we take one-way transaction costs to be constant through time and in the

18The certainty equivalents can take values less than minus one because we are taking the monthly certainty
equivalents and multiplying them by 12 to express them in annual terms. Of course, the monthly certainty
equivalents cannot be less that -1 no matter the degree of risk aversion.
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cross section at 0.5%. However, it is well known that transaction costs vary considerably

across stocks, being larger for small caps than for large caps, and have been gradually

decreasing over time. This has been noted by Keim and Madhavan (1997), Domowitz, Glen,

and Madhavan (2001), and Hasbrouck (2006). To accommodate these empirical facts, we

use a second specification for transaction costs, which allows for cross-sectional variation

and captures the declining costs over time. The one-way cost of company i at time t is

ci,t = zi,t ∗Tt. The variable zi,t = 0.006−0.0025×mei,t captures the cross-sectional variation

in transaction costs with the market cap of the firms. In this specification, mei,t measures

the relative size of company i at time t, normalized to be between 0 and 1. In other words,

the smallest company has a transaction cost of 0.6 percent whereas the largest one has a cost

of 0.35 percent. This is again consistent with previous estimates (e.g, Keim and Madhavan

(1997) and Hasbrouck (2006)). We capture the declining transaction costs over the sample

by assuming a trend Tt such that costs in 1974 are four times larger than those in 2002. This

again is consistent with the Domowitz, Glen, and Madhavan (2001) and Hasbrouck (2006)

papers. The average ci,t at the end of the sample is 0.5 percent, which is directly comparable

to the constant cost case. Figure 3 displays the median, minimum, and maximum trading

costs over time.

Table 6 presents the results for the simple linear policy (3) optimized with the two

transaction cost scenarios described above. For comparison, we also include the case with

no transaction costs from Table 1. We see that transaction costs lead to a slight decrease in

the absolute value of the optimal thetas, reflecting the overall higher cost of trading. Note

that in the limit, with zero thetas, the policy would be equal to the market portfolio and

there would be substantial less trading. Indeed, we see that turnover goes down with the

increasing levels of trading costs. The effect is not very pronounced because the variables

we are using in the portfolio policy are very persistent and induce relatively low levels of

turnover compared to the high expected returns they generate. With turnover of 100% per

year, average costs of 0.5% generate a trading cost of only 0.5%.

Table 7 shows the results obtained by applying the policy with a no-trade boundary

developed in section 2.4. This policy leads to roughly 30% less turnover than the simple linear

policy with a substantial increase in certainty equivalent. This is especially remarkable out

of sample, where there is virtually no loss in performance. Intuitively, this is due to the

smoothing features of the auto-regressive policy. By making weights less volatile through

time, this policy essentially becomes more robust out of sample. Note that the weight put
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on the portfolio from the previous month (αt) is on average slightly above 50%, reflecting

the substantial inertia in the optimal portfolio policy.

Comparing the in-sample results in the first few columns of tables 6 and 7 to their

respective out-of-sample counterparts in the last three columns of each table, we observe

that the effect of incorporating transaction costs is roughly equivalent in- and out-of-sample.

The underlying reason is that the in- and out-of-sample policies are very similar in the base

case. Therefore, the turnover is very similar in the base case, and the effect of incorporating

this turnover and the resulting transaction costs is also very similar.

4 Conclusion

We proposed a novel approach to optimizing large-scale equity portfolios. The portfolio

weight in each stock is modeled as a function of the firm’s characteristics, such as its market

capitalization, book-to-market ratio, and lagged return. The coefficients of this function

are found by optimizing the investor’s average utility of the portfolio’s return over a given

sample period. We argued that our approach is computationally simple, easily modified

and extended, produces sensible portfolio weights, and offers robust performance in- and

out-of-sample.

We illustrated the many features of our approach through an empirical application to

the universe of stocks in the CRSP-Compustat dataset. Our empirical results document

the importance of the firm’s market capitalization, book-to-market ratio, and one-year

lagged return for explaining deviations of the optimal portfolio for a CRRA investor from

the market. Relative to market capitalization weights, the optimal portfolio (with and

without short-sale constraints) allocates considerably more wealth to stocks of small firms,

firms with high book-to-market ratios (value firms), and firms with large positive lagged

returns (past winners). With a relative risk aversion of five, the certainty equivalent gain

from incorporating the firm characteristics, relative to holding the market portfolio, is an

annualized 11%. We showed that these results are robust out of sample. Finally, we

incorporated transaction costs. We showed that, with a simple policy function that features a

no-trade boundary, the portfolio turnover is reduced by up to 50 percent with only marginal

deterioration in performance.

Our idea can easily be applied to other asset classes. We could use a similar approach
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to form bond portfolios based on bond characteristics (e.g., duration, convexity, coupon rate,

credit rating, leverage) or to form currency portfolios based on the characteristics of each

country pair (e.g., interest rate and inflation differentials, trade balance).
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Appendix: Data

For each firm in the CRSP-Compustat dataset, we construct several variables at the end

of fiscal years 1964 to 2002. The first full year of data, 1963, is used to construct lagged

values. The exact fiscal year end dates are from CRSP. We use the following quantities

in the definition of the variables (Compustat data item numbers are in parenthesis): total

assets (6); liabilities (181); preferred stock value (10, 56, or 130, in that order, or, otherwise,

zero); balance sheet deferred taxes and investment tax credits (35, otherwise zero); price per

share (from CRSP); and shares outstanding (25, otherwise taken from CRSP). If total assets,

liabilities, price, and shares outstanding are missing, the observation is not included in the

dataset. Then, we define book equity (BE) as equal to total assets minus liabilities plus

balance sheet deferred taxes and investment tax credits minus preferred stock value; market

equity (ME) as equal to price per share times shares outstanding; book-to-market (btm)

as equal to the log of one plus book equity divided by market equity. We omit firms with

negative book-to-market ratio. Log market equity (me) is computed as the log of market

equity.

The monthly firm returns are obtained from CRSP. We allow a minimum of six month

lag between the fiscal year end of the above accounting variables and the returns to ensure

that the information from the firms’ annual reports would have been publicly available at the

time of portfolio formation. From CRSP, we also compute the trailing twelve-month return

(mom), defined as the monthly compounded return between months t− 13 and t− 2. After

all variables have been created, we eliminate the smallest 20 percent of firms (i.e., firms in

the lowest 20th percentile of me).
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Table 1: Simple Linear Portfolio Policy

This table shows estimates of the portfolio policy with three characteristics: size (me), book-to-market ratio (btm), and momentum (mom), specified

in equation (3) and optimized for a power utility function with relative risk aversion of 5. We use data from the merged CRSP-Compustat database

from January 1964 through December 2002. In the “Out-of-Sample” results, we use data until December 1973 to estimate the coefficients of the

portfolio policy and then form out-of-sample monthly portfolios using those coefficients in the next year. Every subsequent year, we re-estimate the

portfolio policy by enlarging the sample. All statistics are reported for the period January, 1974 to December, 2002. The columns labeled “VW,”

“EW,” and “PPP” display statistics of the market-capitalization weighted portfolio, the equally weighted portfolio, and the optimal parametric

portfolio policy, respectively. The first set of rows shows the estimated coefficients of the portfolio policy with bootstrapped standard errors in

parentheses. The bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly equal to zero is also

displayed. The “Out-of-Sample” results display time-series averages of coefficients, standard errors, and p-value. The second set of rows shows

statistics of the portfolio weights, averaged across time. These statistics include the average absolute portfolio weight, the average minimum and

maximum portfolio weights, the average sum of negative weights in the portfolio, the average fraction of negative weights in the portfolio, and the

turnover in the portfolio. The third set of rows displays average portfolio return statistics: certainty equivalent return, average return, standard

deviation, and Sharpe ratio of returns, the alpha, beta, and volatility of idiosyncratic shocks of a market model regression, and the information

ratio. The final set of rows displays the average normalized characteristics of the portfolio. The average risk-free rate in the sample is 0.061

(annualized).

In-Sample Out-of-Sample
Variable VW EW PPP PPP

θme — — -1.451 -1.124
Std.Err. — — (0.548) (0.709)
θbtm — — 3.606 3.611
Std.Err. — — (0.921) (1.110)
θmom — — 1.772 3.057
Std.Err. — — (0.743) (0.914)
LRT p-value — — 0.000 0.005

|wi| × 100 0.023 0.023 0.083 0.133
max wi × 100 3.678 0.023 3.485 4.391
min wi × 100 0.000 0.023 -0.216 -0.386∑

wiI(wi < 0) 0.000 0.000 -1.279 -1.447∑
I(wi ≤ 0)/Nt 0.000 0.000 0.472 0.472∑ |wi,t − wi,t−1| 0.097 0.142 0.990 1.341

CE 0.064 0.069 0.175 0.118
r̄ 0.139 0.180 0.262 0.262
σ(r) 0.169 0.205 0.188 0.223
SR 0.438 0.564 1.048 0.941
α — — 0.174 0.177
β — — 0.311 0.411
σ(ε) — — 0.181 0.214
IR — — 0.960 0.829

me 2.118 -0.504 -0.337 -0.029
btm -0.418 0.607 3.553 3.355
mom 0.016 0.479 1.623 2.924



Table 2: Fama-French Portfolios

This table shows results for combinations of the market and three long-short portfolios constructed along the lines of Fama and French, sorted

according to size, book-to-market, and momentum, optimized for a power utility function with relative risk aversion of 5. We use data from the

merged CRSP-Compustat database from January 1964 through December 2002. In the “Out-of-Sample” results, we use data until December 1973

to estimate the coefficients of the portfolio policy and then form out-of-sample monthly portfolios using those coefficients in the next year. Every

subsequent year, we re-estimate the portfolio policy by enlarging the sample. All statistics are reported for the period January, 1974 to December,

2002. The columns labeled “VW” and “FF” display statistics of the market-capitalization weighted portfolio and the optimal combination of the

market with the long-short portfolios, respectively. The first set of rows shows the estimated coefficients of the portfolio policy with bootstrapped

standard errors in parentheses. The bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly equal

to zero is also displayed. The “Out-of-Sample” results display time-series averages of coefficients, standard errors, and p-value. The second set

of rows shows statistics of the portfolio weights, averaged across time. These statistics include the average absolute portfolio weight, the average

minimum and maximum portfolio weights, the average sum of negative weights in the portfolio, the average fraction of negative weights in the

portfolio, and the turnover in the portfolio. The third set of rows displays average portfolio return statistics: certainty equivalent return, average

return, standard deviation, and Sharpe ratio of returns, the alpha, beta, and volatility of idiosyncratic shocks of a market model regression, and

the information ratio. The final set of rows displays the average normalized characteristics of the portfolio. The average risk-free rate in the sample

is 0.061 (annualized).

In-Sample Out-of-Sample
Variable VW FF FF

θme — -0.310 -0.102
Std.Err. — (0.211) (0.228)
θbtm — 0.667 1.190
Std.Err. — (0.319) (0.331)
θmom — 0.506 0.849
Std.Err. — (0.186) (0.194)
LRT p-value — 0.002 0.006

|wi| × 100 0.023 0.030 0.049
max wi × 100 3.678 4.596 6.694
min wi × 100 0.000 -0.517 -2.167∑

wiI(wi < 0) 0.000 -0.146 -0.204∑
I(wi ≤ 0)/Nt 0.000 0.403 0.388∑ |wi,t − wi,t−1| 0.097 0.328 0.484

CE 0.064 0.129 0.095
r̄ 0.139 0.216 0.240
σ(r) 0.169 0.178 0.222
SR 0.438 0.847 0.805
α — 0.104 0.148
β — 0.627 0.524
σ(ε) — 0.143 0.206
IR — 0.729 0.721

me 2.118 2.311 1.935
btm -0.418 -0.063 0.286
mom 0.016 0.243 0.398



Table 3: Long-Only Portfolio Policy

This table shows estimates of the portfolio policy with long-only weights in equation (16) with three characteristics: size (me), book-to-market

ratio (btm), and momentum (mom), optimized for a power utility function with relative risk aversion of 5. We use data from the merged CRSP-

Compustat database from January 1964 through December 2002. In the “Out-of-Sample” results, we use data until December 1973 to estimate

the coefficients of the portfolio policy and then form out-of-sample monthly portfolios using those coefficients in the next year. Every subsequent

year, we re-estimate the portfolio policy by enlarging the sample. All statistics are reported for the period January, 1974 to December, 2002.

The columns labeled “VW” and “PPP” display statistics of the market-capitalization weighted portfolio and the optimal parametric portfolio

policy, respectively. The first set of rows shows the estimated coefficients of the portfolio policy with bootstrapped standard errors in parentheses.

The bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly equal to zero is also displayed.

The “Out-of-Sample” results display time-series averages of coefficients, standard errors, and p-value. The second set of rows shows statistics of

the portfolio weights, averaged across time. These statistics include the average absolute portfolio weight, the average minimum and maximum

portfolio weights, the average sum of negative weights in the portfolio, the average fraction of negative weights in the portfolio, and the turnover

in the portfolio. The third set of rows displays average portfolio return statistics: certainty equivalent return, average return, standard deviation,

and Sharpe ratio of returns, the alpha, beta, and volatility of idiosyncratic shocks of a market model regression, and the information ratio. The

final set of rows displays the average normalized characteristics of the portfolio. The average risk-free rate in the sample is 0.061 (annualized).

In-Sample Out-of-Sample
Variable VW PPP PPP

θme — -1.277 0.651
Std.Err. — (1.217) (1.510)
θbtm — 3.215 2.679
Std.Err. — (1.131) (1.417)
θmom — 1.416 3.780
Std.Err. — (1.213) (1.505)
LRT p-value — 0.045 0.062

|wi| × 100 0.023 0.023 0.035
max wi × 100 3.678 1.674 1.952
min wi × 1000 0.000 0.000 0.000∑

wiI(wi < 0) 0.000 0.000 0.000∑
I(wi ≤ 0)/Nt 0.000 0.464 0.464∑ |wi,t − wi,t−1| 0.097 0.241 0.324

CE 0.064 0.103 0.081
r̄ 0.139 0.191 0.177
σ(r) 0.169 0.183 0.187
SR 0.438 0.690 0.618
α — 0.062 0.057
β — 0.862 0.943
σ(ε) — 0.111 0.094
IR — 0.561 0.601

me 2.118 0.070 0.634
btm -0.418 0.985 0.345
mom 0.016 0.396 1.106



Table 4: Conditioning on the Slope of the Yield Curve

This table shows estimates of the portfolio policy with the product of three characteristics, size (me), book-to-market ratio (btm), and momentum

(mom), and an indicator function of the sign of the slope of the yield curve, optimized for a power utility function with relative risk aversion of 5.

We use data from the merged CRSP-Compustat database from January 1964 through December 2002. In the “Out-of-Sample” results, we use data

until December 1973 to estimate the coefficients of the portfolio policy and then form out-of-sample monthly portfolios using those coefficients

in the next year. Every subsequent year, we re-estimate the portfolio policy by enlarging the sample. All statistics are reported for the period

January, 1974 to December, 2002. The columns labeled “VW” and “PPP” display statistics of the market-capitalization weighted portfolio and the

optimal parametric portfolio policy, respectively. The first set of rows shows the estimated coefficients of the portfolio policy with bootstrapped

standard errors in parentheses. The bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly equal

to zero is also displayed. The “Out-of-Sample” results display time-series averages of coefficients, standard errors, and p-value. The second set

of rows shows statistics of the portfolio weights, averaged across time. These statistics include the average absolute portfolio weight, the average

minimum and maximum portfolio weights, the average sum of negative weights in the portfolio, the average fraction of negative weights in the

portfolio, and the turnover in the portfolio. The third set of rows displays average portfolio return statistics: certainty equivalent return, average

return, standard deviation, and Sharpe ratio of returns, the alpha, beta, and volatility of idiosyncratic shocks of a market model regression, and

the information ratio. The final set of rows displays the average normalized characteristics of the portfolio. The average risk-free rate in the sample

is 0.061 (annualized).

In-Sample Out-of-Sample
Variable VW PPP PPP

θme×I(tsp>0) — -2.168 -1.844
Std.Err. — (0.706) (0.745)
θme×I(tsp≤0) — 1.684 3.186
Std.Err. — (1.196) (1.207)
θbtm×I(tsp>0) — 3.197 3.146
Std.Err. — (1.102) (1.121)
θbtm×I(tsp≤0) — 5.830 0.037
Std.Err. — (2.061) (0.879)
θmom×I(tsp>0) — 2.023 4.489
Std.Err. — (0.909) (1.597)
θmom×I(tsp≤0) — 3.705 3.598
Std.Err. — (1.611) (1.108)
LRT p-value — 0.000 0.000

|wi| × 100 0.023 0.091 0.136
max wi × 100 3.678 3.489 4.392
min wi × 1000 0.000 -2.619 -0.398∑

wiI(wi < 0) 0.000 -1.428 -1.526∑
I(wi ≤ 0)/Nt 0.000 0.476 0.476∑ |wi,t − wi,t−1| 0.097 1.295 1.510

CE 0.064 0.194 0.120
r̄ 0.139 0.293 0.277
σ(r) 0.169 0.205 0.236
SR 0.438 1.114 0.932
α — 0.209 0.197
β — 0.252 0.319
σ(ε) — 0.201 0.231
IR — 1.042 0.851

me × I(tsp > 0) 1.748 -0.744 -0.430
me × I(tsp ≤ 0) 0.370 0.351 0.129
btm I(tsp > 0) -0.342 2.782 2.544
btm × I(tsp ≤ 0) -0.076 0.789 0.880
mom I(tsp > 0) 0.031 1.583 2.381
mom × I(tsp ≤ 0) -0.015 0.529 0.740



Table 5: Varying Risk Aversion

This table shows estimates of the linear portfolio policy (3) with three characteristics, size (me), book-to-market ratio (btm), and momentum

(mom) optimized for different power utility functions with relative risk aversion of 1, 5 (as in previous tables), and 100. We use data from the

merged CRSP-Compustat database from January 1964 through December 2002. In the “Out-of-Sample” results, we use data until December 1973

to estimate the coefficients of the portfolio policy and then form out-of-sample monthly portfolios using those coefficients in the next year. Every

subsequent year, we re-estimate the portfolio policy by enlarging the sample. All statistics are reported for the period January, 1974 to December,

2002. The columns labeled “VW” and “PPP” display statistics of the market-capitalization weighted portfolio and the optimal parametric portfolio

policy, respectively. The first set of rows shows the estimated coefficients of the portfolio policy with bootstrapped standard errors in parentheses.

The bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly equal to zero is also displayed.

The “Out-of-Sample” results display time-series averages of coefficients, standard errors, and p-value. The second set of rows shows statistics of

the portfolio weights, averaged across time. These statistics include the average absolute portfolio weight, the average minimum and maximum

portfolio weights, the average sum of negative weights in the portfolio, the average fraction of negative weights in the portfolio, and the turnover

in the portfolio. The third set of rows displays average portfolio return statistics: certainty equivalent return, average return, standard deviation,

and Sharpe ratio of returns, the alpha, beta, and volatility of idiosyncratic shocks of a market model regression, and the information ratio. The

final set of rows displays the average normalized characteristics of the portfolio. The average risk-free rate in the sample is 0.061 (annualized).

The certainty equivalent returns of the market portfolio for γ=1, γ=5 and γ = 100 are 0.107, 0.052 and -1.976 (annualized), respectively.

In-Sample Out-of-Sample
Variable VW PPP PPP

γ=1 γ=5 γ=100 γ=1 γ=5 γ=100

θme — -6.242 -1.124 0.026 -7.178 0.651 0.824
Std.Err. — (2.882) (0.548) (0.223) (4.579) (0.709) (0.212)
θbtm — 7.864 3.611 5.207 8.450 2.679 3.834
Std.Err. — (3.546) (0.921) (0.314) (3.435) (1.110) (0.346)
θmom — 6.452 3.057 0.548 11.991 3.780 -0.105
Std.Err. — (2.915) (0.743) (0.483) (2.971) (0.914) (0.205)
LRT p-value — 0.000 0.000 0.000 0.000 0.000 0.000

|wi| × 100 0.023 0.217 0.133 0.102 0.422 0.035 0.114
max wi × 100 3.678 3.623 4.391 3.585 6.106 1.952 4.621
min wi × 100 0.000 -0.646 -0.386 -0.238 -1.309 0.000 -0.327∑

wiI(wi < 0) 0.000 -4.122 -1.447 -1.670 -5.582 0.000 -1.201∑
I(wi ≤ 0)/Nt 0.000 0.522 0.472 0.477 0.529 0.464 0.460∑ |wi,t − wi,t−1| 0.097 3.010 1.341 0.883 4.797 0.324 0.608

CE 0.064 0.360 0.118 -0.989 0.297 0.081 -1.408
r̄ 0.139 0.534 0.262 0.223 0.673 0.177 0.147
σ(r) 0.169 0.589 0.223 0.199 0.847 0.187 0.170
SR 0.438 0.796 0.941 0.796 0.726 0.618 0.557
α — 0.529 0.177 0.141 0.647 0.057 0.058
β — -0.817 0.411 0.229 -0.602 0.943 0.465
σ(ε) — 0.573 0.214 0.195 0.842 0.094 0.153
IR — 0.924 0.829 0.723 0.768 0.601 0.380

me 2.118 -6.234 -0.029 0.633 -7.328 0.634 1.763
btm -0.418 9.060 3.355 4.761 9.633 0.345 3.105
mom 0.016 6.016 2.924 0.391 11.621 1.106 -0.233



Table 6: Simple Portfolio Policy with Transactions Costs

This table shows estimates of the portfolio policy with three characteristics: size (me), book-to-market ratio (btm), and momentum (mom),

specified in equation (3) and optimized for a power utility function with relative risk aversion of 5. The utility function is maximized for returns

after transaction costs. In the first specification, the proportional transactions costs are 0.5%, constant across stocks and over time. In the second

specification, transaction costs vary across stocks and over time as shown in Figure 3. For comparison, we also present results with zero transaction

costs. We use data from the merged CRSP-Compustat database from January 1964 through December 2002. In the “Out-of-Sample” results, we use

data until December 1973 to estimate the coefficients of the portfolio policy and then form out-of-sample monthly portfolios using those coefficients

in the next year. Every subsequent year, we re-estimate the portfolio policy by enlarging the sample. All statistics are reported for the period

January, 1974 to December, 2002. The first set of rows shows the estimated coefficients of the portfolio policy with bootstrapped standard errors

in parentheses. The bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly equal to zero is also

displayed. The “Out-of-Sample” results display time-series averages of coefficients, standard errors, and p-value. The second set of rows shows

statistics of the portfolio weights, averaged across time. These statistics include the average absolute portfolio weight, the average minimum and

maximum portfolio weights, the average sum of negative weights in the portfolio, the average fraction of negative weights in the portfolio, and the

turnover in the portfolio. The third set of rows displays average portfolio return statistics: certainty equivalent returns, average return, standard

deviation, and Sharpe ratio of returns, the alpha, beta, and volatility of idiosyncratic shocks of a market model regression, and the information

ratio. We compute the certainty equivalent return for the policy with and without adjustment for transaction costs. The final set of rows displays

the average normalized characteristics of the portfolio. The average risk-free rate in the sample is 0.061 (annualized).

In-Sample PPP Out-of-Sample PPP
Variable VW ci,t = ci,t =

0.000 0.005 f(mei,t, t) 0.000 0.005 f(mei,t, t)

θme — -1.451 -1.391 -1.167 -1.124 -1.105 -0.925
Std.Err. — (0.548) (0.547) (0.550) (0.709) (0.849) (0.780)
θbtm — 3.606 3.557 3.160 3.611 3.618 3.468
Std.Err. — (0.921) (0.922) (0.924) (1.110) (1.125) (1.305)
θmom — 1.772 1.651 1.307 3.057 3.028 2.497
Std.Err. — (0.743) (0.741) (0.745) (0.914) (0.952) (0.961)
LRT p-value — 0.000 0.000 0.000 0.005 0.006 0.008

|wi| × 100 0.023 0.083 0.082 0.074 0.133 0.133 0.084
max wi × 100 3.678 3.485 3.491 3.508 4.391 4.392 3.535
min wi × 100 0.000 -0.216 -0.208 -0.183 -0.386 -0.385 -0.233∑

wiI(wi < 0) 0.000 -1.279 -1.240 -1.074 -1.447 -1.444 -1.301∑
I(wi ≤ 0)/Nt 0.000 0.472 0.471 0.463 0.472 0.472 0.464∑ |wi − wh

i | 0.097 0.990 0.942 0.788 1.341 1.333 1.087

CE|ci,t = 0.000 0.064 0.175 0.175 0.173 0.118 0.123 0.122
CE|ci,t = 0.005 — 0.169 0.170 0.168 0.115 0.117 0.118
CE|ci,t = f(mei,t, t) — 0.162 0.162 0.167 0.119 0.120 0.125
r̄ 0.139 0.262 0.252 0.243 0.262 0.248 0.244
σ(r) 0.169 0.188 0.183 0.179 0.223 0.220 0.217
SR 0.438 1.048 1.021 0.978 0.941 0.889 0.880
α — 0.174 0.162 0.151 0.177 0.163 0.152
β — 0.311 0.328 0.354 0.411 0.416 0.421
σ(ε) — 0.181 0.175 0.171 0.214 0.210 0.206
IR — 0.960 0.929 0.887 0.829 0.774 0.764

me 2.118 -0.337 -0.267 -0.033 -0.029 -0.018 0.252
btm -0.418 3.553 3.492 3.066 3.355 3.362 3.237
mom 0.016 1.623 1.477 1.279 2.924 2.896 2.369



Table 7: Boundary Portfolio Policy with Transactions Costs

This table shows estimates of the portfolio policy with three characteristics: size (me), book-to-market ratio (btm), and momentum (mom),

specified in section 2.4 and optimized for a power utility function with relative risk aversion of 5. The utility function is maximized for returns

after transaction costs. In the first specification, the proportional transactions costs are 0.5%, constant across stocks and over time. In the second

specification, transaction costs vary across stocks and over time as shown in Figure 3. For comparison, we also present results with zero transaction

costs. We use data from the merged CRSP-Compustat database from January 1964 through December 2002. In the “Out-of-Sample” results, we use

data until December 1973 to estimate the coefficients of the portfolio policy and then form out-of-sample monthly portfolios using those coefficients

in the next year. Every subsequent year, we re-estimate the portfolio policy by enlarging the sample. All statistics are reported for the period

January, 1974 to December, 2002. The first set of rows shows the estimated coefficients of the portfolio policy with bootstrapped standard errors

in parentheses. The bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly equal to zero is also

displayed. The “Out-of-Sample” results display time-series averages of coefficients, standard errors, and p-value. The second set of rows shows

statistics of the portfolio weights, averaged across time. These statistics include the average absolute portfolio weight, the average minimum and

maximum portfolio weights, the average sum of negative weights in the portfolio, the average fraction of negative weights in the portfolio, and the

turnover in the portfolio. The third set of rows displays average portfolio return statistics: certainty equivalent returns, average return, standard

deviation, and Sharpe ratio of returns, the alpha, beta, and volatility of idiosyncratic shocks of a market model regression, and the information

ratio. We compute the certainty equivalent return for the policy with and without adjustment for transaction costs. The final set of rows displays

the average normalized characteristics of the portfolio. The average risk-free rate in the sample is 0.061 (annualized).

In-Sample PPP Out-of-Sample PPP
Variable VW ci,t = ci,t =

0.000 0.005 f(mei,t, t) 0.000 0.005 f(mei,t, t)

θme — -1.147 -1.133 -0.947 -0.979 -0.946 -0.845
Std.Err. — (0.561) (0.537) (0.523) (0.577) (0.571) (0.568)
θbtm — 4.432 4.405 4.194 4.264 4.150 4.021
Std.Err. — (1.137) (1.124) (1.077) (1.153) (1.232) (1.247)
θmom — 2.366 2.344 2.205 3.587 3.498 3.154
Std.Err. — (0.964) (0.846) (0.824) (1.007) (0.943) (0.948)
κ ∗ 103 — 0.273 0.282 0.301 0.289 0.294 0.307
Std.Err. — (0.078) (0.087) (0.091) (0.084) (0.094) (0.098)
LRT p-value — 0.000 0.000 0.000 0.000 0.000 0.000

|wi| × 100 0.023 0.095 0.094 0.089 0.100 0.098 0.097
max wi × 100 3.678 3.481 3.481 3.495 3.503 3.505 3.504
min wi × 100 0.000 -0.362 -0.363 -0.356 -0.401 -0.395 -0.398∑

wiI(wi < 0) 0.000 -1.516 -1.499 -1.388 -1.636 -1.581 -1.566∑
I(wi ≤ 0)/Nt 0.000 0.478 0.477 0.474 0.476 0.474 0.474∑ |wi − wh

i | 0.098 0.697 0.676 0.591 0.934 0.888 0.795

CE|ci,t = 0.000 0.064 0.187 0.187 0.187 0.169 0.172 0.176
CE|ci,t = 0.005 — 0.183 0.184 0.183 0.158 0.161 0.159
CE|ci,t = f(mei,t, t) — 0.177 0.178 0.181 0.160 0.164 0.167
r̄ 0.139 0.280 0.275 0.266 0.293 0.289 0.284
σ(r) 0.169 0.195 0.193 0.189 0.223 0.217 0.212
SR 0.438 1.105 1.088 1.065 1.021 1.028 1.032
α — 0.196 0.190 0.180 0.208 0.202 0.198
β — 0.266 0.275 0.292 0.272 0.295 0.299
σ(ε) — 0.190 0.188 0.183 0.219 0.212 0.206
IR — 1.028 1.010 0.982 0.950 0.952 0.961

me 2.118 -0.189 -0.164 0.085 0.057 0.123 0.257
btm -0.418 4.015 3.970 3.670 3.777 3.648 3.469
mom 0.016 1.959 1.927 1.768 3.098 3.002 2.645

avg α — 0.556 0.572 0.620 0.497 0.514 0.563
min α — 0.260 0.269 0.300 0.247 0.267 0.294
max α — 0.828 0.842 0.882 0.740 0.758 0.811



Figure 1: Summary Statistics of Characteristics

The figure displays cross-sectional means and standard deviations of the firm characteristics me, btm, and
mom in every month from January 1974 to December 2002. For each month and firm, the characteristics are
me, defined as the log of market equity, btm, defined as the log of one plus the ratio of book equity divided
by market equity, and mom, defined as the lagged 12 month return. The reported means and standard
deviations are computed across firms at each point in time.
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Figure 2: Portfolio Characteristics over Time

The figure displays the portfolio characteristics of policy function (3) using size, book-to-market and
momentum as firm-specific characteristics. The estimates of θ are obtained using all available CRSP-
Compustat stocks from January 1974 to December 2002. The utility function is specified with γ = 5.
The average values of these characteristics are reported in the last three lines of Table 1.
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Figure 3: Varying Transaction Costs

The figure displays the transactions costs described in section 2.4. The transaction costs are assumed to
decline uniformly over time and to decrease with the relative size of the firms. The solid line is the median
transaction cost across all stocks over time. The dashed lines are the minimum and maximum transaction
costs over time.
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