
Long-Horizon Regressions when the Predictor is
Slowly Varying1

Roger Moon
Economics Department

USC2

Antonio Rubia
University of Alicante and

Anderson School
UCLA3

Rossen Valkanov
Anderson School

UCLA4

August 4, 2004

1We thank Alberto Plazzi, Walter Torous, and Pedro Santa-Clara for useful comments.
2Los Angeles, CA 90089, phone: (213) 740-2108, e-mail: moonr@usc.edu.
3Los Angeles, CA 90095-1481, phone: (310) 825-7246, e-mail: antonio.rubia@anderson.ucla.edu.
4Corresponding author. Los Angeles, CA 90095-1481, phone: (310) 825-7246, e-mail:

rossen.valkanov@anderson.ucla.edu.



Abstract

Predictive stock return regressions have two distinctive characteristics: (i) the predictor on the
right-hand side is persistent and its variance is orders of magnitude smaller than the variance
of returns; (ii) the left-hand side variable is a long-horizon return constructed from overlapping
sums of short-horizon returns. We o¤er a new model for the predictor that parsimoniously
captures and links its persistence and small variance. We then use two asymptotic approaches
to analyze the properties of long-horizon regressions. The approaches di¤er in their treatment
of the overlap. One of the asymptotics has previously been analyzed with other data generating
processes, while the second one is novel. We �nd that under both asymptotics, least-squares
estimators may not be consistent, their t-statistics diverge, and the R2 is not an adequate
goodness-of-�t measure. Interestingly, a re-scaled version of the t-statistic is consistent under
both long-horizon approximations and is suitable for testing predictability in long-horizon re-
gressions. A Monte Carlo analysis of the �nite-sample properties of the re-scaled t-statistic
reveals that both approximations are accurate even for small sample sizes. We apply these
results to test for predictability in returns of real estate investment trusts (REITs) which have
come into existence only since the early 1970s and for which a reliable predictability test is
crucial given the small dataset.

JEL Classi�cation: C22, G14, G12.
Keywords: return predictability, long-horizon regressions, near unit root, local-to-zero variance.



1 Introduction

Return predictability has a central place in empirical �nance due to its strong implications

for asset pricing theory and practical portfolio management. Despite the considerable body

of literature on this issue, predictability remains as an open question and is at the forefront

of empirical asset pricing. Campbell (1987), Campbell and Shiller (1988, 1989), Fama and

French (1988), Fama and Schwert (1977), Hodrick (1992) and several others �nd evidence of

predictability, while Ang and Bekaert (2003), Bossaerts and Hillion (1999), Ferson, Sarkissian

and Simin (2003), Goetzmann and Jorion (1993), and Torous, Valkanov and Yan (2005) do not.

Baker and Wurgler (2000), Campbell and Yogo (2003), Lanne (2002), Lettau and Ludvison

(2001), Lewellen (2004), and Valkanov (2003) o¤er new contributions on this topic.1 The

overwhelming majority of these studies are conducted using time-series regressions that have

two distinctive characteristics. First, the forecasting variable is a highly-persistent process with

a variance orders of magnitude smaller than the variance of returns. Second, the dependent

variable is a long-horizon return constructed from overlapping sums of short-horizon returns.

The con�icting �ndings in this literature are mostly due to di¤erences in the approach chosen to

deal with these statistical issues. The divergence of results also suggests that the properties of

long-horizon regressions on persistent, slowly varying predictive variables need further studying.

In this paper, we o¤er new results on the properties of predictive regressions by accounting

for these key statistical features. First, we introduce a new process that explicitly captures

and links the persistence and the small variance of the predictor. Campbell and Yogo (2003),

Lewellen (2004), Stambaugh (1999), and Torous et al. (2005) have demonstrated the important

role played by persistence in this analysis. However, these studies do not incorporate the

remark in Fama and French (1988), Shiller (1981) and Summers (1986), who point out that

predictive variables are characteristically less volatile than returns.2 Furthermore, it is well-

1The literature on return predictability is truly voluminous. Our apologies to everyone whose paper we omit

to cite here or below.
2Ferson et al. (2003) provide summary statistics of the most widely used predictors of returns. Table 1 in

their paper (pp. 1396) illustrates the persistence and small variability of these predictors. Their �rst-order

autocorrelation parameter is close to one and their variance is 50 to 100 times smaller than the variance of
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known that a link ought to exist between the small variability in the conditioning variable and its

persistence. For instance, Campbell, Lo, and MacKinlay (1997) argue that the more persistent

is the forecasting variable, the smaller its variance must be (and vice versa). Otherwise, a

persistent predictor exhibiting a large variance would imply large return predictability even at

short-horizons, which is counter-factual and not economically appealing. The explicit modelling

of the small variability and its link to the persistence of the predictor has been neglected in the

empirical �nance and econometrics literature, because it is often argued that a small-variance

does not a¤ect the asymptotic properties of statistics in the regressions. We show, however,

that the small-sample properties of long-horizon predictive regressions are better approximated

when this feature of the data is captured explicitly and, more importantly, that it accounts for

several empirical �ndings in the predictability literature.

Second, we model the degree of overlap in long-horizon regressions with two alternative

approaches. Lanne (2002), Richardon and Stock (1989), and Valkanov (2003) show that if

the return horizon, denoted by K, is a non-trivial fraction of the sample size T , then the

small-sample properties of the test statistics of interest can accurately be approximated using

asymptotic results that model the ratio K=T as converging to a �xed constant � (0 < � < 1):

We apply this asymptotic approach, which allows the overlap to increase at the same rate as

the sample size, with the new data generating process to derive the properties of long-horizon

forecasting regressions. We also discuss a new asymptotic approach that models the ratio K=T

as converging to zero at various rates, or in other words, the degree of overlap increases at a

rate slower than the sample size. Since both asymptotics are only approximations designed

to understand the small-sample properties of long-horizon predictive regressions, there are no

a priori reasons to believe that one is better than the other. In considering both approaches,

we not only provide an exhaustive analysis on modeling long-horizons regressions, but we also

compare how these two approximations di¤er and if there are obvious advantages of using one

rather than the other.

We �nd that both asymptotic methods yield remarkably similar results regarding the prop-

erties of long-horizon predictive regressions. More speci�cally, under the general setting of both

returns.
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approaches the least-squares estimator is not consistent. Moreover, the OLS t-statistic tends

to increase with the overlap and cannot provide a consistent testing procedure under the null

of no predictability. We show that it converges to a well-de�ned distribution only after it is

rescaled by
p
K. Finally, the regression R2

K is not an adequate goodness-of-�t measure for

small samples under either approximation. For certain values of the nuisance parameters, the

asymptotic distributions are virtually indistinguishable in small samples. Moreover, we use

Monte Carlo simulations to show that the asymptotic approximations are similar to each other

for various values of the nuisance parameters. We also �nd that both asymptotic approxima-

tions are accurate in capturing the small sample properties of long-horizon regressions with

persistent and slowly varying predictors. Even in small samples with signi�cant overlap, we

obtain good results.

Our asymptotic �ndings provide a remarkably clear and uni�ed guidance on how to con-

duct inference in long-horizon regression. Firstly, no matter which theoretic approach we use,

the natural test for long-horizon predictability is a rescaled OLS t-statistic, namely t=
p
K: It

converges to a well-de�ned distribution under both asymptotic approaches. Secondly, the dis-

tribution of the tests will depend on nuisance parameters (including, at least, the correlation

between contemporaneous shocks in returns and predictors) in real applications. Ultimately,

these distributions must be simulated in order to conduct inference. Thirdly, our results imply

that long-horizon regressions do not generally increase the power of predictability tests. All

three of these implications are veri�ed with Monte Carlo simulations.

Using our new results, we investigate whether the returns of real estate investment trusts

(REITs) are predicted by their dividend yields. We focus on REIT companies because there

are reasons to believe that predictability might be more evident for these assets. Indeed, REITs

must by law pay out a large fraction (at least 90%) of their taxable income to shareholders

in the form of dividends. In contrast, common stock dividends are paid at the discretion

of the �rm�s management and there is ample evidence that they are actively smoothed, the

product of managers catering to investors�demand for dividends, or the result of managers�

reaction to perceived mispricings (Shefrin and Statman 1984; Stein 1996; Baker and Wurgler

2004). Thus, it has been argued that common stock dividends may not accurately re�ect
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changing investment opportunities surrounding a �rm. Moreover, the dividends of non-REIT

companies are also subject to long-term trends such as the recent low propensity of �rms to pay

dividends (Fama and French (2001)) which further results in them being even more persistent

and even less variable. Therefore, there are natural advantages in addressing predictability

on REIT dividends. A drawback of using REIT to test for predictability is that they are

relatively new assets. We only have data since the early 1970s and the sector has matured and

changed dramatically over the last �fteen years. Hence, an analysis on the basis of a theory

that provides a robust approach for small samples is especially important. We �nd that while

the dividend yield has some predictive power for the REIT stock returns, the evidence is not

as overwhelming as standard inference suggests. These results con�rm the �ndings in earlier

studies and underline the importance of using accurate inference methods.

Torous and Valkanov (2003) o¤er an alternative model of persistent predictors with small

variance. However, our analysis di¤ers from their in several respects. First, they do not provide

a link between the persistence of the predictor and its variability. Instead, they introduce two

parameters that need to be calibrated. In our model, the persistence and the small variance are

connected and captured by a single parameter. This is appealing from an economic perspective,

as discussed above, and also on the grounds of econometric parsimony. Moreover, Torous and

Valkanov (2003) do not analyze the importance of the small variability assumptions for long

horizon regressions, where predictability is most often tested. They focus exclusively on short-

horizon, one-period regressions and on their in-sample and out-of-sample properties.

The paper is organized as follows. Section two states the data generating process for returns

in our analysis and discusses its implications. In Section three, we derive the main results for

long-horizon regressions. Section four investigates the small-sample properties of the statistics

through Monte Carlo experimentation. Section �ve discusses the predictability of REIT stocks.

Finally, Section six summarizes and concludes.
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2 A Model for Returns and Dividend Yields

The focus of this paper is on the statistical properties of long-horizon predictive regressors:We

start the analysis by specifying the stochastic behavior of the one-period log returns time-series,

denoted by rt; and of the forecasting variable, xt; which we take to be the log of the dividend

yield. This variable has been the most common predictor employed in empirical tests. The

relation between the one period returns and the predictor is speci�ed as

rt+1 = �r + �xt + ut+1 (1)

xt = �xt�1 + "t; t = 1; :::; T: (2)

Campbell (2001), Campbell and Shiller (1988), Cochrane (2001), Mankiw and Shapiro (1986),

Nelson and Kim (1993), Stambaugh (1986, 1999) and many other use this system as a starting

point in their analysis. The null hypothesis of interest is the no-forecastability of returns, or

that the one-period-ahead returns rt+1 cannot be predicted by a de-meaned forecaster xt: In a

more general setting, xt is given by the set of historical information up to time t; sayHt: This set

can include lagged returns and any other (predetermined) variable, such as the term spread, the

default spread, various interest rates, in�ation, and consumption-wealth ratios (Campbell 1987;

Fama and French 1988; Lettau and Ludvigston 2001). With the exception of lagged returns, all

these predictors are persistent and have small variance in comparison with returns. Hence, our

treatment generalizes to these variables. It is argued that under the alternative of predictability,

or E (rt+1jHt) = �r+�xt for � > 0; the most likely source of variability originates from changes

in investors�perception of risk, which are eventually re�ected in a time-varying risk premium.

Thus, the dividend yield is widely considered to be a noisy proxy for time-varying expected

returns (Campbell and Shiller 1988; Fama and French 1988).

Equation (1) is the predictive regression, while equation (2) parsimoniously models the

dynamics of the dividend yield as an AR(1) process. The persistence of the dividend yield is

captured by �; where

� = 1� c=T (3)

In this speci�cation, � is in a 1=T neighborhood to unity and c is a non-centrality parameter.
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This local-to-unity (or near-integrated) speci�cation has been used extensively to model persis-

tent but stationary processes, and it is well-known in the non-stationary literature (Cavanagh,

Elliott and Stock 1998; Elliott 1998; Phillips 1987; Stock 1991). The relevant region for c in

our setup is c > 0; because the presence of an exact unit root or explosive dividend yields (and

expected returns) cannot be justi�ed on theoretical grounds.3 The vector of error terms (ut; "t)
0

is generally assumed to be independent across t but correlated contemporaneously (Campbell

2001; Stambaugh 1999). We shall denote E (u2t ) = �2u; E ("
2
t ) = �2"; and E (ut"t) = 
�u�";

where 
 2 (�1; 1) :

The predictive variable xt is not only characteristically persistent, but its unconditional

variance is small in relation to the variance of unexpected returns, �2u: In other words, while

expected returns might be time-varying, or E (rt+1jHt) = �r + �xt for � > 0, their variability

must be a small fraction of the total variance of rt+1: Otherwise, short-horizon returns would

easily be forecastable. To model the small variability of the predictor, we assume that

"t = �u
p
1� �et (4)

where et is a stationary error process with zero mean and variance one. From this restriction, it

follows that E ("2t ) � �2uc=T and the unconditional variance of each shock to xt is local-to-zero:

Speci�cation (4) captures the fact that in �nite samples the volatility of the predictor is

orders of magnitude smaller than the variability of the returns. The parameterization has

several appealing features. First, it links the persistence and the small-variability of xt: The

more persistent is the conditioning variable, the smaller should be the variance of "t. Otherwise,

�uctuations in xt will have large e¤ects on returns.4 Second, for the large-sample analysis that

will follow, the small variance of "t makes xt to be (asymptotically) of the same stochastic order

3Persistence in the dividend yield has received a considerable attention in the recent forecastability literature;

see, among others, Campbell et al. (1997), Stambaugh (2000), and Ferson et al. (2003). Although dividend

yields are highly persistent, the presence of an exact unit root implies strong statiscal features that are hard to

justi�ed in practice (see a discussion in Lewellen, 2004).
4An intuitive way of viewing this restriction is to consider that the variance of the process is some small

fraction of the return variability. In our approach, this is achieved by scaling the variance with a factor that

depends on the sample size.
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as ut: Third, the small variability of "t is modelled without additional nuisance parameters.

Torous and Valkanov (2003) propose an alternative way of modeling the small variance of "t

based on an additional parameter that controls the rate at which the variance of "t converges

to zero. However, that approach does not link the the persistence of the predictor to its small

variability. Moreover, the practical implementation of their model requires the calibration of an

additional parameter. Finally, the di¤erent rates of convergence add another level of complexity

to the asymptotic results.

We summarize the properties of the predictor in the following two assumptions.

Assumption 1 The dynamics of the predicting variable follow a near-integrated process given

by (2) and (3) for some �xed initial condition x0 = 0:

Assumption 2 The error term �t = (ut; "t)
0 is independent and identically distributed over

time with covariance matrix

�� =

0@ �2u 
�"�u


�"�u �2"

1A (5)

for a �xed correlation parameter �1 < 
 < 1 and �2" follows (4).

To understand the importance of the local-to-zero variance speci�cation, consider the local-

to-unity predictor (2)-(3) without assumption (4) and denote � = (e2rc � 1) : Then, for any

t = [Tr] ; with r 2 (0; 1]; it can be shown that V ar
�
x[Tr]

�
= �2"�=2c: As the process becomes

more persistent we see that limc!0 V ar
�
x[Tr]

�
= �2"r: In contrast, under speci�cation (4),

limc!0 V ar
�
x[Tr]

�
= limc!0 �

2
"�=2 = 0; where, strictly speaking, the variance of �

2
" depends on

T:We omit this additional subscript for the sake of simplicity. Hence, even for highly-persistent

processes, the variance of the predictor will be small, which is the empirical feature largely

observed in practice. Moreover, it is worth noting that this property has further implications

on the predictive regression tests. Under speci�cation (4) ; the signal-to-noise ratio in the

one-period predictive regression is given by,"
�2V ar

�
x[Tr]

�
V ar(ut+1)

#
�
�
e2rc � 1

�
�2c=2 (6)
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which, clearly, vanishes as c! 0 even if � 6= 0: In other words, it is di¢ cult to �nd a predictive

relationship through the regression analysis, because the useful information conveyed by the

signal observable in the predictor is masked by the greater volatility of the unexpected return.

This is largely consistent with the arguments in the predictive literature. In the next section, we

use the predictive process de�ned in Assumptions (1)-(2) to derive the properties of long-horizon

regressions.

3 Inference in Long-Horizon Regressions

An implication of Campbell and Shiller�s (1988) dynamic Gordon growth model is that the

dividend price ratio may forecast long-horizon returns. Following the dynamic Gordon growth

model, it is argued that long-horizon returns are better at proxying for time-varying expected

returns than short-horizon returns and that long-horizon tests have better power at detecting

predictable �uctuations in expected returns. The log-linearized Campbell and Shiller (1988)

framework o¤ers a very convenient linear relation between a state variable xt and future returns,

and since then most of the research on predicting long-horizon returns is conducted with linear

long-horizon regressions.

The long-horizon regression for the K-horizon return, K > 1, is simply given by the linear

regression model,

RK;t+1 = �K + �Kxt + UK;t+1 (7)

where the dependent variable RK;t+1 =
PK�1

j=0 rt+1+j is the long-horizon continuously com-

pounded return. The main hypothesis of interest is that of not predictive relation between

RK;t+1 and xt, that is, H0 : �K = 0. We shall focus carefully on the properties of the rele-

vant statistics from (7) under this hypothesis. Consequently, our interest is to understand the

properties of the estimated OLS slope coe¢ cient �̂K from (7),

�̂K =

PT
t=1RK;t+1 (xt � �x)PT

t=1 (xt � �x)
2

(8)
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and its OLS t-statistic,

t =

PT
t=1RK;t+1 (xt � �x)

�̂K

�PT
t=1 (xt � �x)

2
�1=2 : (9)

We shall also consider the R2
K from the regression,

R2
K = 1�

PT
t=1

�
U2K;t+1 � �U2K;t+1

�PT
t=1

�
RK;t+1 � �RK;t+1

�2 (10)

under the hypothesis of no-predictability, where �̂2K =
1
T

PT
t=1 Û

2
K;t+1; ÛK;t+1 = RK;t+1 � �̂K �

�̂Kxt and �̂K and �̂K are the OLS estimators of �K and �K :

Assessing predictability in multiperiod regressions implies invariably overlapping returns,

owing to the lack of enough independent observations. Since the sample size is �xed, the larger

is the return horizon K, the larger is the relative degree of overlap. This property makes

the return horizon K a key variable when conducting inference in long-horizon regressions, as

the degree of overlap can heavily in�uence the properties and the limiting distributions of the

inference statistics. The analysis of overlapping long-horizon regressions, be in asymptotic or

�nite sample, must invariably consider the overlap K in relation to the sample size T .

We analyze two di¤erent asymptotic approaches to model the properties of long-horizon

regressions with overlapping observations, which di¤er only in their treatment of the overlap

K in relation to the sample size. First, we consider an approximation in which K is allowed

to diverge with the sample size, but at a slower rate. This includes the trivial case in which

K is a �xed value, and the case in which K is bounded by T�; � 2 (0; 1) : Alternatively, we

consider an approximation in which K � �T for � 2 (0; 1), so that the overlap grows linearly

with the sample size. In both theories the overlap is an increasing function of the sample size,

which is a simple and convenient modelling device. The main aim is to prevent the overlap from

decreasing in importance as T ! 1; since, otherwise, there would be no di¤erence between a

long- and a short-horizon regression.

Ultimately, asymptotic analyses are only useful for practical purposes if they help us under-

stand the properties of �̂K ; t; and R2
K and if they successfully approximate the small-sample

distributions of these statistics. Empirical tests of long-horizon predictability with overlapping

observations usually exhibit positive values for �̂K coupled with large t-statistics and impres-
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sive R2
K . Moreover, all these statistics grow with the return horizon K: If taken at face value,

these results suggest strong predictive ability of the dividend yield at long-horizons. Yet, as

discussed previously, long-horizon regressions imply a collection of relevant statistical issues

that cannot be ignored. We use our asymptotic approximations to understand the properties

of these statistics.

The main tool in our analytic work is the Functional Central Limit Theorem (FCLT), which

we will use to analyze the asymptotic behavior of these statistics, their statistical properties

as a function of the overlap, and the e¤ects of nuisance parameters. Note that small-sample

results typically depend on strong (likely unrealistic) assumptions about the distribution of

the data and, furthermore, cannot be universally obtained for complex settings, as the one

addressed here.5 Since the convergence holds very fast under some sample characteristics, the

limit distributions could provide good approximations even for small sample sizes. In what

follows, ) and !p denotes weak convergence in distribution and convergence in probability,

respectively. We use �d=�to denote equality in distribution. The conventional notation o (1)

(op (1)) is used to represent a series of numbers (random numbers) converging to zero (in prob-

ability). O (1) ; (Op (1)) denotes a series of numbers (random numbers) that are bounded (in

probability). The limiting forms of the test statistics are expressed as functionals of Brownian

motion processes. The following Lemma follows from Assumptions (1)-(2) and Herrndorf (1983)

and Phillips (1987).

Lemma 3.1 Denote the demeaned process ~xt = xt�T�1
PT

t=1 xt. Under Assumptions 1-2, the

following result holds as T !1,0@ 1

�u

[Tr]X
t=1

"t;
1

�u
p
T

[Tr]X
t=1

ut;
1

�u
~x[Tr]

1A0

)
�p

cW" (r) ;Wu (r) ;
p
c ~Jc (r)

�0
; r 2 [0; 1]

in D [0; 1]�D [0; 1]�D [0; 1] ; where [W" (r) ;Wu (r)]
0 is a vector of standard Wiener processes

with correlation 
; and ~Jc (r) is a demeaned Ornstein-Uhlenbek di¤usion process on W" (r) :

5Since the predictor is not strictly exogenous �only predetermined�the properties of the statistics can only

be formally addessed under the asymptotic theory.

10



3.1 Asymptotic Properties: K/T! 0

In this asymptotic framework, the overlap K in predictive regressions grows at a rate slower

than the sample size. This assumption allows us to analyze the role played by the signi�cant

overlap even when T !1. The K=T ! 0 condition is quite general. The only case of interest

that is not included is when K grows at the same rate as T , which shall be considered in the

next section.

We state the large-sample properties of long-horizon predictive regressions under theK=T !

0 approach in the following Theorem.

Theorem 3.1 Under Assumptions 1-2, T ! 1, K=T ! 0; and the null of no predictability,

then

(i)
p
T
K

�
�̂K � �K

�
) 1p

c

�R 1
0
~Jc (r)

2 dr
��1 �R 1

0
~Jc (r) dWu (r)

�
:

(ii) �̂2K=K !p �
2
u:

(iii) t=
p
K ) 


�R 1
0
~J2c (r) dr

��1=2 R 1
0
~Jc (r) d ~Jc (r) + (1� 
2)

1=2Z, Z � N (0; 1) ; independent

of ~Jc (r) :

(iv) T
K
R2
K ) F1 (Wu (r) ; Jc (r)) :

where F1 (�) is a known functional of Ornstein-Uhlenbek processes and nuisance parameters.

Proof. See Appendix �:

In Theorem 3.1, the convergence rate of the OLS estimator of �K is a function of the overlap

K. To understand the theorem, suppose that K � T�; � 2 (0; 1). The case of short-horizon

regressions (K = 1) corresponds to �! 0: In this case, T 1=2
�
�̂K � �K

�
= Op (1) and it follows

that the estimator is consistent and converges at the usual rate to a well-de�ned distribution.

For � 2 (0; 0:5); the estimator still retains consistency, but converges to a distribution at a

rate slower than T 1=2: Finally, for � � 0:5; the estimator is not-consistent and diverges with

the sample size. The practical implication for a �nite sample of size T is that, if K is larger
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than T 1=2; then �̂K will not be an appropriate estimator of �K . Moreover, in small samples the

estimates �̂K will tend to increase with K, even under the null of no predictability.

More importantly, the OLS t-statistic in long-horizon regressions diverges with the horizon

K when the dependent variable is overlapped. In other words, as K increases we expect to see

larger t-statistics even under the null of no predictability. This result is reminiscent of a spurious

regression. It is due to the signi�cant overlap and to the fact that the predictive variable is

persistent. We conclude that the OLS t-statistic is not a suitable testing procedure when the

overlap is a signi�cant fraction of the sample size and when the predictor follows Assumptions

(1) and (2). Note that inference in long-horizon regression is sometimes conducted with Newey

and West (1984) standard errors by setting the truncation lag to equal K � 1. We do not

focus on this procedure because the characteristics of long-horizon regression, as well as the

theoretical results obtained above, do not allow us to claim formally that the desired properties

of this procedure holds in this context. The estimator of the long-run covariance matrix is

proven to be consistent under a set of regularity conditions, which are not generally satis�ed

here. Consistency follows if the truncation lag goes to in�nite with T , but more slowly than

T 1=4, which is not generally accomplished when setting h = K � 1. Furthermore, it is required

T 1=2
�
�̂K � �K

�
= Op (1) ; which is not ful�lled from Theorem 3.1 above.6

Part (iii) of Theorem 3.1 proves that the re-scaled t=
p
K-statistic converges to a well-de�ned

distribution. Hence, in regressions with signi�cant overlaps, the t=
p
K-statistic should be used

to test the null of no predictability. From (iii), t=
p
K converges to a mixture of distributions

if 
 6= 0; and to the standard normal distribution otherwise. In the former case, both the non-

centrality parameter c and the correlation 
 have an e¤ect on the distribution. When � ! 0;

the results in Cavanaugh, Elliott, and Stock (1995) obtain. The nuisance parameters need

to be estimated in order to conduct inference. Stock (1991) and Valkanov (2003) discuss two

methods to estimate c; and 
 can be estimated from the sample correlation. When 
 = 0; the

limiting distribution is completely free of nuisance parameters and the relevant percentiles are

well-known. Finally, if there is not predictability in the return series, the R2
K of the regression

converges in probability to zero, but its rate of convergence depends on K: Therefore, in small

6See conditions iii) and v) in Newey and West (1984; Theorem 2, pp. 705)
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samples, small variability of xt may result in large R2
K even under the null hypothesis of no

predictability.

3.2 Asymptotic Properties: K/T! �

Under the parameterization K = [�T ]; 0 < � < 1; the overlap is a �xed fraction of the sample

size. Lanne (2002), Richardon and Stock (1998), and Valkanov (2003) use this alternative way

of modeling the overlap in long horizon regressions. When K=T ! �; K diverges at the same

rate as T , and the relative degree of overlap remains signi�cant, even asymptotically.

The properties of long-horizon regressions under the K=T ! � asymptotics and the as-

sumptions about the predictor xt are stated in the following Theorem.

Theorem 3.2 Under Assumptions 1-2, T ! 1, K=T ! �; and the null of no predictability,

then

(i)
�
�̂K � �K

�
=
p
K )

p
�p
c

�R 1��
0

~Jc (r)
2 dr
��1 R 1��

0
~Jc (r) (�; r) dr:

(ii) �̂2K=K = Op (1) :

(iii) t=
p
K ) G (Wu (r) ; �; Jc (r)) :

(iv) R2
K ) F2 (Wu (r) ; �; Jc (r)) :

where  (�; r) = [Wu (�+ r)�Wu (r)] and G (�) and F2 (�) are known functionals of Ornstein-

Uhlenbek processes and nuisance parameters.

Proof. See Appendix �:

From part (i) in Theorem 3.2, it follows that
�
�̂K � �K

�
=
p
K = Op (1) and hence the OLS

estimator is not consistent for �K . This result di¤ers from Valkanov (2003), who shows with

the same asymptotic approximation that
�
�̂K � �K

�
is Op (1) : The di¤erence in the results is

due to the small variability of the predictor. Indeed, Valkanov (2003) treats �2" as �xed rather

than as local-to-zero as we do in Assumption (2). Part (i) of Theorem 3.2 implies that the
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larger is the overlap, the larger is �̂K likely to be. This property matches very well with the

empirical �ndings that �̂K increases monotonically with the horizon (e.g., see Campbell et al.

1997), which is something the result in Valkanov (2003) has trouble explaining.

The limiting distribution of the normalized estimation bias in part (i) of Theorem 3.2 is a

non-standard distribution that depends on the nuisance parameters (�; c; 
) : Similarly to the

K=T ! 0 asymptotics, even though the slope consistent cannot be consistently estimated, the

estimation bias converges to a well-de�ned distribution as long as it is properly scaled. In

this case, the suitable normalization is K. As in the previous section, the OLS estimator of

the residuals variance diverges and must be normalized by K for convergence. However, when

K=T ! � the normalized estimator of the variance converges weakly to a distribution rather

than to a �xed parameter.

Interestingly, the OLS t-statistic does not converge to a well de�ned distribution, but di-

verges at a rate
p
K (which is equivalent to

p
T ). In other words, we expect the t-statistic

to increase with the overlap, even in the absence of a relation between returns and the condi-

tioning variable. The properly normalized t=
p
K-statistic converges weakly to a non-standard

distribution with a complex representation. This result agrees with the K=T ! 0 asymptotics

in the sense that the limiting distributions are well-de�ned. Therefore, the normalized statistic

t=
p
K emerges as a uni�ed, natural way of conducting inference in long-horizon regressions.

The limiting distributions di¤er depending on the speed of divergence of the overlap K. How

di¤erent they are will be analyzed in the Monte Carlo section.

Finally, theR2
K in regression (7) does not converge in probability to a �xed quantity, but is a

positive random variable. This measure completely loses its natural meaning in this context and

cannot be used as an indicator of the goodness of �t of the model when there is a signi�cant

overlap in the data. It must be noted that the t-statistic and the R2
K , are scale-invariant.

Moreover, the derived results do not hinge on the assumption that the signal from xt is small.

Indeed, similar calculations carry through without that assumption (Valkanov 2003). But since

the estimated bias is a¤ected by the small variability of xt, this feature is expected to a¤ect

the power function of the t-statistic in small samples. This issue will be analyzed in the Monte

Carlo section.
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3.3 Which Asymptotics to Use?

Theorems 3.1 and 3.2 emphasize the strong impact of the overlap on the statistical properties

of long-horizon regressions. Looking at the results in the previous sections, several natural

questions emerge. First, are these approximations more useful than the traditional �xed-K

normal asymptotics in testing for predictability in long-horizon regressions? If they are, which of

the two approximations should we use? Before answering these questions, it must be noted that

the use of asymptotic theory must be measured by whether it approximates the small-sample

properties of the statistics of interest and whether in helps to characterize the distributions in

addition to Monte Carlo experiments.

The K=T ! 0 and K=T ! � asymptotics are more appropriate at modelling the properties

of long-horizon regressions, whereas the �xed asymptotics are more suitable to account for

the properties of statistics where the overlap is only a modest part of the sample size. This

point was �rst made by Richardson and Stock (1988) in the case of the variance ratio statistic.

Torous et al. (2005) make a similar observation when they compare the asymptotics of long-

horizon regressions under the �xed-K andK=T ! � asymptotics. They conclude that the latter

asymptotics provide a better approximation of the small-sample distributions when the overlap

is a large fraction of the sample. This is not surprising given that the K=T ! � calculations

emphasize the asymptotic importance of the overlap.

The question of whether to use the K=T ! 0 or K=T ! � asymptotics is di¢ cult to

answer from looking at Theorems 3.1 and 3.2, because the properties of the OLS estimator

�̂K ; its t-statistic, and the R2
K are quite similar under both approximations. For instance,

both Theorems imply that the values of �̂K will tend to increase with the horizon under the

null of no predictability. The t-statistic will also increase with the overlap under the two

approximations even under the null hypothesis. Finally, the rate of convergence ofR2
K under the

two asymptotics will depend on the overlap. Hence, both approximations imply that inference

based on standard methods is not reliable when the overlap is a large fraction of the sample

size. Interestingly, the K=T ! 0 or K=T ! � approximations show that a rescaled t=
p
K

statistic converges to a well-de�ned distribution. However, the limiting distributions under
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the two asymptotic calculations are di¤erent. Which distribution is better at approximating

the small sample properties of the t=
p
K statistic is ultimately an empirical question that we

investigate with Monte Carlo simulations in the next section.

4 Small-Sample Properties: Monte Carlo Analysis

In this section we turn to the small-sample properties of the t=
p
K-statistic analyzed theoreti-

cally in the previous section. Our main goal is to explore whether the asymptotic results accu-

rately characterize its small-sample properties in long-horizon regressions. In the Monte Carlo

simulations, one-period returns (rt) and dividend yields (xt) are generated following equations

(1)-(4). The error terms � = (ut; "t)
0 are generated from a bivariate normal distribution with co-

variance matrix 
 = f!ijg. We take !11 = 1 and !22 = !11c=T and the covariance elements are

given by !ij = 

p
c=T ; where 
 = f0;�0:90g, c = f0:5; 2; 5; 10; 20g and T = f200; 500; 1000g.

We do not consider samples smaller than 200 observations because the overwhelming majority

of the studies on predictability use at least as many observations. A value of 
 = 0 corresponds

to an independent sequence, while 
 = �0:90 allows for a strong degree of negative correlation

between the innovations to the dividend yield and returns (Stambaugh 1999). The grid of c

is chosen to correspond to realistic persistence and variances of the dividend yield, given the

considered sample sizes. As the statistics are shown to be invariant on the mean parameters,

we set (�1; �2) = 0 without loss of generality. To minimize the e¤ects of initial conditions, we

generate 1,000 previous observations in addition to the sample size that are to be removed from

the analysis. Using the simulated data, we de�ne three Monte Carlo experiments.

Experiment I

The �rst experiment explores the speed of convergence of the t=
p
K statistic for di¤erent

degrees of overlapping as the sample size grows. The overlap is de�ned as either K =
�
T �
�

or K = [�T ] for � = f0:25; 0:50; 0:75g and the three sample lengths speci�ed above. In this

experiment, we switch notation from � and � to � to emphasize that both of these parameters

take the same values, and for a given sample size they imply di¤erent horizons K. The K-
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period returns are computed as RK;t+1 =
PK�1

j=0 rt+1+j. The long-horizon regressions are then

estimated 25,000 times for all con�gurations f�; T; c; 
g : Since the estimated �̂K in empirical

tests are always positive and inference is conducted on the upper tail, we focus on the 95

percentile of the empirical distributions.7

[Insert Table 1 about here]

Tables 1 presents the 95 percentile under the K =
�
T �
�
approximation and Table 2 contains

the same results under K = [�T ]. In Table 1, we observe a fast convergence from the small

sample of 200 observations to a large sample of 1000 observation. For di¤erent values of c,


, and �; the 95 percent quantiles of the t=
p
K-statistic are very similar as the sample size

increases. Moreover, as proven in the asymptotic results, when 
 = 0 the distribution is

the standard normal. For non-zero 
 and c; the distribution is leptokurtic and the skewness

depends on the values of the pair (c; 
). A negative correlation skews the distribution to the

right.8 Since the asymptotic distribution relies on K=T ! 0; the approximation is particularly

good in moderately-sized samples when K is not very large. Interestingly, the proximity of c

to zero (� close to one) in�uences the speed of convergence in small samples. The closer is c to

zero, the faster is the convergence, especially for large values of �.

[Insert Table 2 about here]

In Table 2, we observe that for the K = [�T ] approximation, the distribution of t=
p
K

converges rapidly to the asymptotic limit. The di¤erences in the 95 percentiles with 200 and

1; 000 observations are very small, regardless the fraction �. We notice that di¤erent values

of c and � have a more sizeable in�uence on the distributions than in the K=T ! 0 case.

7We concentrate on the 95th percentile for clarity of exposition. Other percentiles yield very similar conclu-

sions. All the results from these simulations are available upon request.
8This result is due to the fact that in the one-period return model the OLS estimaton bias of � is proportional

to both the covariance of the noise terms and to the bias of the OLS estimator of �: A negative correlation in the

error terms induces a positive bias in the slope. The basic feature of the short-horizon regression is reproduced

in the long-horizon regression.
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Interestingly, if � is small (e.g. 0.25) and 
 = 0, the limiting distribution as c ! 0 seems to

be close to the standard normal distribution. This result is di¢ cult to see from the asymptotic

results. However, departures from normality arise fairly quickly as the autoregressive root in

xt decrease (c increases). As � increases, the variance of the distribution decreases and the

kurtosis is higher. Similarly to Table 1, contemporaneous correlation in the shocks skews the

distributions considerably. The results from Tables 1 and 2 suggest that the K =
�
T �
�
and

K = [�T ] approximations are both useful even in samples as small as 200 observations.

Experiment II

The purpose of this experiment is twofold. First, we analyze whether the relevant critical

values implied by the distributions of t=
p
K under the two approximations are di¤erent. Second,

we assess whether the frequencies of rejection (empirical sizes) of t=
p
K in a small sample

correspond to the nominal ones when the critical values are generated from approximating the

asymptotic distribution using a large number of observations, T �. This experiment has clearly

a practical orientation and we set the �driving parameter,�K; to values of empirical relevance.

We focus on K = f12; 24; 48; 60g which correspond to return horizons of 1 to 5 years from a

monthly dataset.

In Table 3, we present the asymptotic critical values of t=
p
K from the distributions in

Theorems 3.1 and 3.2. These values are pseudo-asymptotic, as they are evaluated using a

sample of T � = 5; 000 observations. For the theory K = [�T ], the critical values are obtained

for various values of (�; c; 
). The K = [T�] approximations are simulated for � = 0:1 and

various values (c; 
). Note that under the theoretical results (Theorem 3.1) the asymptotic

distribution does not depend on the particular value of �: Larger values of � yield similar

results. First, it is immediately clear that for a given value of K the asymptotic values under

both approximations are very similar. In fact, for 
 = 0 and c! 0, the distributions are close

to the standard normal for moderate degrees of overlap. But even for non-zero values of 
 and

c; the critical values under the two approximations are not very di¤erent. These similarities in

the distributions suggests that the standardization of the t-statistic by
p
K yields a statistic

that is quite usable in empirical tests. Once the statistic is normalized, the decision of whether
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to use the K=T ! 0 or the K=T ! � theory seems of secondary order of importance.

[Insert Tables 3, 4, and 5 about here]

Tables 4 and 5 display the empirical sizes of t=
p
K using a sample of 500 observations. The

asymptotic critical values are from Table 3. Since T = 500; the overlaps K = f12; 24; 48; 60g

lead to the same ratio K=T for both set of theories, thus implying di¤erent values of � and

�: The data are generated as explained above, the corresponding long-horizon regressions are

estimated 25; 000 times for any con�guration, and the fraction of t=
p
K-statistics that are

beyond the corresponding critical values is reported in the tables. We observe that the empirical

sizes under both approximations are very close to the nominal sizes. We notice increasing size

distortion in Table 4 as c increases. Similar distortions are observed for increasing correlation


. The size distortions in Table 5 are less sensitive to the c and 
 parameters.

The message that emerges from these simulations is that both approximations adequately

capture the small sample distribution of t=
p
K: While there are some size distortions in the

K = [T�] approximation, they are not signi�cant in comparison with the distortions that obtain

when the t-statistic is not standardized by K. The K = [�T ] theory seems to provide more

robust approximation to the small sample distribution especially for large values of c and 
 and

at long horizons.

Experiment III

In the last experiment, we analyze the power properties of the t=
p
K test under the same

set of conditions as described in Experiment II. When the true process is generated under some

non-zero �, we tabulate the probability of rejecting the null using the previously simulated

critical values. We use the power simulations to address two issues.

Firstly, we analyze the impact of c on the power function. Recall that c enters into the

persistence of the predictor and also in its volatility. The smaller is c; the more persistent and

the less volatile is xt. The e¤ect of c on the power are displayed in Figures 1 (K=T ! 0) and 2

(K=T ! �). For clarity of exposition and conciseness, we present only the results for 
 = �0:90

and the sequence c = [1=2; 5; 20] for the 95% con�dence level. We focus on the predictability
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in one- and �ve-years horizons (K = 12; 60) using samples of 500 observations: Other values of

c; 
; and T yield similar results. The estimated power functions in Figures 1 and 2 show that

under both asymptotic approximations the test is consistent about identifying the alternative

for di¤erent values of �. The higher the true value of �; the more likely it is to reject the null

of non-predictability. Whether we are looking at a 12-period or 60-period horizon, a smaller c

results in lower power. In other words, more persistent and more slowly varying processes will

have a lower probability of rejecting the null when it is false. Interestingly, the drop in power

is considerable when c is close to zero. Campbell (2001) and Campbell and Yogo (2003) reach

similar conclusion using di¤erent arguments.

[Insert Figures 1 and 2 about here]

Secondly, we consider the e¤ect of the horizon on the power function. This simulation is

of interest because it is often argued that the power of a test increases with the horizon. In

Figures 3 and 4, we plot the power functions of the t=
p
K-statistic under the K=T ! 0 and

K=T ! � approximations, respectively. We focus again on the results for 
 = �0:90 and take

the extreme values of c = f1=2; 20g from our simulations. Under both theories, the size-adjusted

shape of the power function is similar. When the signal-to-noise ratio is very low (c = 1=2),

there is no noticeable increase in the power function as the horizon K increases. If we allow

a stronger signal (c = 20) through a greater variability in the predictor, the power of the test

increases under both theories. In fact, we observe a small �mechanical�drop in the power as

the forecasting horizon increases, because the longer horizon implies fewer observations (T �K)

available in the test, which ultimately leads to a reduction in power. If we disregard the loss

of observations, an increase in the horizon does not lead to any relevant improvement in the

power of the t=
p
K test.

[Insert Figures 3 and 4 about here]

It is also interesting to compare our power results in Figure 4 to those in Valkanov (2003)

who uses the same K = [�T ] theory, but does not model the small variability of the predictor

(equation 4). For similar values of c, 
; �, and T; we obtain lower power functions, because
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the signal in our predictor is restricted to be weak. Not taking that restriction into account

leads to seemingly higher power functions. We conclude that testing for predictability using

long-horizon overlapping observations is even more di¢ cult than suggested in the previous

literature.

5 Predictability of the REIT Portfolios

We use the results in the previous sections to test whether dividend yields paid out by Real

Estate Investment Trusts (REITs) forecast future REIT returns. Three reasons prompted us

to focus on REITs. First, the REIT market is rather new and unexplored compared to other

sectors. The data on REITs goes back to only 1972, when the �rst REITs started trading on

the open exchanges. More speci�cally, we have monthly data for the period 1972 to 2003 (384

observations) from NAREIT. Moreover, there were some important changes in the structuring of

REITs in the early 1990s (Clayton and MacKinnon 2003; Glascock and Ghosh 2000). If we want

to investigate long-horizon predictability with such small datasets, we want the small sample

properties of our statistics to be accurately captured. This is something our approximations

can deliver, as shown above. Second, REITs are required by law to pay out a large fraction

(currently, at least a 90 percent) of their taxable income in the form of dividends. This features

makes REITs particularly suitable for testing time variation in expected returns. Predictability,

if any, should be easier to detect in these assets as changes in the payout ratio are more likely

to contain information about future returns. Third, the interest in REITs is likely to grow as

these assets become more widely traded. While there are several studies on REITs (among

others, Karolyi and Sanders 1998; Ling, Naranjo and Ryngaert 2000; Liu and Mei 1992; Nelling

and Gyourko 1998) a consensus on their predictability is yet to emerge.

The entire NAREIT index includes currently about 180 publicly traded companies which

can be divided into three portfolios: Equity-REITs (�rms that invest in actual properties or

other assets), Mortgage-REITs (corporations that loan money to real estate owners or invest

in mortgage-backed securities), and Hybrid-REITs (�rms that both own properties and make

loans to real estate owners). We denote the entire index, Equity-REITs, Mortgage-REITs,
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and Hybrid-REITs by AREIT, EREIT, MREIT, and HREIT, respectively. Table 6 provides

some descriptive statistics for both the monthly log returns and dividend yields of these REIT

portfolios over the period 1972-2003, and the sub-periods 1972-1989 and 1990-2003. The REIT

sector has experienced a dramatic growth and some transformations since the early 1990s,

with deep changes a¤ecting the behavior of returns. We therefore split the sample into these

sub-periods to take into account the structural break.9

[Insert Table 6 about here]

Since dividends are known to be highly seasonal, we �lter them through a 12-month moving

average, as in Fama and French (1988). The point estimates of the �rst-order autocorrelation

parameter � yield values between 0.994 and 0.998 in all cases. The augmented Dickey-Fuller

test is unable to reject the null of a unit root, but it is well-known that unit-root tests have

low power against local�to�unity alternatives in �nite samples. Returns series are serially

uncorrelated in most cases, although some positive �rst-order correlation is evident for EREITs,

and for two portfolios in the sub-period 1990-2003. While the dividend yields time-series are

very persistent over the sample period, their annualized volatility are much smaller than the

volatility of returns. Loosely speaking, their annualized standard deviation during the whole

period is around 20-100 times smaller than that of returns. The persistence and small variability

of the dividend yield �ts squarely with our Assumptions (1) and (2).

It is interesting to note in Table 6 that the dividend yield of Mortgage-REITs is signi�cantly

more volatile than the AREIT and the other portfolios. Therefore, if some of that variability

contains information about future returns, we expect a priori MREITs to be more predictable

9Glascock and Ghosh (2000) report that, while only 13 �rms existed prior to 1972, from 1990 to 1997 over 114

new REITS were created. Values incresed from about $6 billion in 1990 to over $300 billion by the end of 1998. In

addition, the sector has experimented several regulatory changes during the 1990s. Glascock, Lu and So (2000)

analyze the e¤ect of the 1993 Tax Act (e¤ective on January 1, 1994), which favored institutional investment

in the sector, reporting evidence of structural changes in the behavour of returns. The REIT Modernization

Act of 1999 (e¤ective since January 1, 2001) stipulated, among others, a reduction in the mandatory payout

requirement and changes in other regulatory requirements. Howe and Jain (2004) �nd structural changes in the

pattern of the systematic risk of REITs.
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than the entire index and the other REITs, everything else being equal.

[Insert Table 7 about here]

Table 7 presents the predictability results for horizons of 1 month to 5 years (K = 1; 6; 12; 36; 60)

using the log of the dividend yield as a predictor. The columns in the table display the estimates

�̂K of the slope coe¢ cient, the t-statistic (OLS and Newey-West [NW] with truncation lag set

to be equal to max f1; K � 1g), the normalized t-statistic t=
p
K, and the R2

K of the regression.

It is immediately clear that the result based on the standard regression statistics suggest strong

predictability. As the return horizon increases, so does the estimated OLS coe¢ cient �K , the

OLS and NW t-statistics, and the coe¢ cient of determination R2
K . Similar results are reported

in Campbell et al. (1997) and Fama and French (1988) for the value-weighted market portfolio.

The estimates �̂K increase with the horizon K for most portfolios and periods. This patter

is typically observed in long-horizon regressions and some researchers present this �nding as

evidence that predictability is easier to detect at long horizons. However, as we showed in

Theorems 3.1 and 3.2, larger observations of �̂K are likely to be observed in regressions with

signi�cant overlap even under the null of no predictability. Hence, the large estimates of �̂K at

longer horizons do not necessarily imply that returns are predictable.

Similar observations apply to the OLS and NW t-statistics, which are increasing with the

horizon for most portfolios and periods. If we rely on these two statistics and asymptotic

normal critical values, the null of no predictability will easily be rejected. However, we proved

in Theorems 3.1 and 3.2 that the OLS t-statistic will increase with the overlap even under the

null of no predictability. Moreover, the NW t-statistic does not converges to a standard normal

distribution (Torous et al. 2005) and may not be able to correct for the extreme dependence in

the series in the context of long-horizon regressions. Also, since the R2
K is a transformation of

the OLS t-statistic, the same considerations apply. Hence, the increasing t-statistics and R2
K

cannot be taken as formal evidence for or against predictability in long-horizon regressions.

Interestingly, the t=
p
K-statistic does not exhibit nearly as much drift with the horizon. This

is expected as Theorems 3.1 and 3.2 both show that this statistic converges to a well-de�ned
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distribution. Moreover, in the Monte Carlo simulations we showed that the convergence was

quite fast. The critical values of the t=
p
K-statistic are obtained as in the simulations under

the approximation K = [�T ] because of its overall small-sample properties. In simulating the

critical values, we use the sample estimate of 
 and a calibration of c as in Valkanov (2003). A

median unbiased estimator of c (Stock 1991) produced very similar critical values. The evidence

is also robust to changes in the length of the sub-samples. The same qualitative pattern arises

when we considered, for instance, two sub-periods of equal length.10

The evidence that emerges from the t=
p
K-statistic is that the dividend yield predicts future

REIT returns. This is true in our sample and the subsamples for most portfolios. However,

the evidence for the predictability is not nearly as overwhelming as one would believe if only

considering the non-rescaled t-statistics. In fact, the null of predictability is rejected at the 5%

level, but in many instances it cannot be rejected at the 1% level. Interestingly, for MREITs, the

evidence of predictability is stronger at short horizons. Ang and Bekaert (2003) have a similar

�nding for the returns of the aggregate stock market. In general, our results are consistent with

previous �ndings about the existence of predictability in REIT returns.

Another important �nding from the t=
p
K-statistics in Table 7 is that the predictability

results at short- and long-horizons are not very di¤erent. In particular, we do not observe the

increase in power that previous papers have reported. This is mainly due to the fact that we are

explicitly modelling the small signal in the predictor. Ignoring the small variability of xt in the

Theorems and in the applications produces more powerful tests. As argued from theoretical and

empirical perspectives (Table 6), this assumption seems crucial in providing correct inference

in long-horizon predictability tests.

6 Conclusion

We propose a parsimonious way of capturing the persistence and small variability of conditioning

variables, such as the dividend yield, that are often used in forecasting market returns. The

predictor in forecasting regressions is modelled as having a highest autoregressive root close to

10These results are not presented for saving space, but available from authors upon request.
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unity and a small variance. We use this new process to derive the asymptotic properties of long-

horizon predictive regressions with overlapping observations. In modelling the overlap K as a

signi�cant fraction of the sample size T , we consider asymptotic results under the assumptions

K=T ! 0 and K=T ! �, as T ! 1. These two cases, corresponding to K increasing at a

rate slower than and equal to the sample size, cover all reasonable asymptotic treatments of

the overlap.

We derive the properties of long-horizon regressions under the K=T ! 0 and K=T ! �

assumptions. We show that in both cases, the OLS estimator �̂K of the predictive coe¢ cient

is not adequately estimated. Rather we are likely to observe larger estimates of �̂K even under

the null of no predictability. More importantly, we prove that the t-statistic under the null

�K = 0 also diverges under the null of no predictability, which can lead to spurious results

and incorrect inference. Hence, the usual t-statistic cannot be used to test for predictability in

long-horizon regressions with overlapping observations. Finally, we also derive the properties

of the R2
K in these predictability regressions.

A rescaled version of the t-statistic, t=
p
K, converges to a well de�ned distribution under

the K=T ! 0 and K=T ! � asymptotics. Interestingly, Monte Carlo simulations suggest

that the approximate distributions of the t=
p
K-statistic under the two approximations are

quite similar for various reasonable values of the nuisance parameters. More importantly, both

theories approximate well the small sample properties of the t=
p
K-statistic for large overlaps,

with perhaps a slight edge for the K=T ! � calculations at very large values of K and for some

values of the nuisance parameters. At long horizons, we do not detect an increase in power in

the t=
p
K-statistic once the large overlap and the small variability of the predictor are taken

into account.

We use the t=
p
K-statistic to test for long-horizon predictability in REITs. While we �nd

that the dividend yield forecasts future REIT returns, the results are not nearly as strong

as traditional inference approaches would suggest. The di¤erence in the results is due to the

failure of previous approaches to take into account the e¤ect of the persistent and slowly-varying

predictor, as well as the signi�cant overlap on the small-sample properties of long-horizon

regressions.
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Appendix: Mathematical Proofs

To prove Theorem 3.1 we �rstly state an useful Lemma.

Lemma 6.2 Under Assumptions 1-2 the following results hold

(i)
PT

t=1

PK�1
j=0 ut+1+jxt = K

PT
t=1 xtut+1 +Op

�
K
p
K
�
+Op

�
K2
p
T

�
:

(ii)
PT

t=1

PK�1
j=0 ut+1+j = K

PT
t=1 ut+1 +Op

�
K
p
K
�
:

(iii) 1
TK

PT
t=1 U

2
K;t+1 !p �

2
u.

Proof

(i) Using the Beveridge-Nelson (BN) decomposition of UK;t+1;

UK;t+1 = Kut+1 +
K�2X
j=0

(K � 1� j) (ut+j+2 � ut+j+1) ;

we write

TX
t=1

K�1X
j=0

ut+1+jxt = K
TX
t=1

xtut+1 +

K�2X
j=0

(K � 1� j)

TX
t=1

xt (ut+j+2 � ut+j+1) : (11)

Now we can rearrange the second term of this expression as,

K�2X
j=0

(K � 1� j)
TX
t=1

xt (ut+j+2 � ut+j+1) = Ia1 � Ia2 � Ia3;

with

Ia1 =

K�2X
j=0

(K � 1� j)xTuT+j+2; Ia2 =

K�2X
j=0

(K � 1� j)x1uj+2:

Ia3 =
K�2X
j=0

(K � 1� j)
T�1X
t=1

(xt+1 � xt)ut+j+2:

Note that,

E
�
I2a1
�
�
�
E
�
x2T
��
�2u

K�2X
j=0

(K � 1� j)2 = O
�
K3
�
;

so it follows from Chebyshev�s inequality that Ia1 = Op

�
K
p
K
�
. Similarly, it can be

shown that Ia2 = Op

�
K
p
K
�
:
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From xt+1 � xt = � c
T
xt + �u

p
c
T
et+1 and Assumption 2 we have:

Ia3 =
K�2X
j=0

(K � 1� j)
T�1X
t=1

(xt+1 � xt)ut+j+2;

= � c

T

"
T�1X
t=1

xt

 
K�2X
j=0

(K � 1� j)ut+j+2

!#
+
�u
p
cp

T

T�1X
t=1

et+1

 
K�2X
j=0

(K � 1� j)ut+j+2

!
;

= �Ia31 + Ia32; say.

By the Cauchy-Schwarz inequality,

Ia31 =
c

T

K�2X
j=0

(K � 1� j)

 
T�1X
t=1

xtut+j+2

!

� cp
T

vuutK�2X
j=0

(K � 1� j)2

vuutK�2X
j=0

 
1p
T

T�1X
t=1

xtut+j+2

!2
:

so, by noting
PK�2

j=0 (K � 1� j)2 = O (K3) and
PK�2

j=0 E
�

1p
T

PT�1
t=1 xtut+j+2

�2
= O (K) ;

it follows that Ia31 = Op

�
K2
p
T

�
: Since,

E
�
I2a32
�
= c�3u

K�2X
j=0

(K � 1� j)2 = O
�
K3
�
;

we have Ia32 = Op

�
K
p
K
�
: Therefore, Ia3 = Op

�
K
p
K
�
+Op

�
K2
p
T

�
:

Combining Ia1; Ia2; and Ia3; we have

K
K�2X
j=0

�
K � 1� j

K

� TX
t=1

xt (ut+j+2 � ut+j+1) = Op

�
K
p
K
�
+Op

�
K2

p
T

�
;

and in consequence, in view of (11) ; we have the required result,
TX
t=1

K�1X
j=0

ut+1+jxt = K

TX
t=1

xtut+1 +Op

�
K
p
K
�
+Op

�
K2

p
T

�
:

�

(ii) Replacing xt = 1 in (11) and proceeding as in Ia1 and Is2; we may have
TX
t=1

K�1X
j=0

ut+1+j = K

TX
t=1

ut+1 +

K�2X
j=0

(K � 1� j)

TX
t=1

(ut+j+2 � ut+j+1)

= K
TX
t=1

ut+1 +
K�2X
j=0

(K � 1� j) (uT+j+2 � uj+2) = K
TX
t=1

ut+1 +Op

�
K
p
K
�
:

as required. That completes the proof. �
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(iii) Apply the BN decomposition of Phillips and Solo (1992) to UK;t+1 and write

U2K;t+1 = Ku2t+K +
�
~UaK;t�1 � ~UaK;t

�
+2ut+K

 
K�1X
j=1

(K � j)ut+K�j

!
+ 2

�
~UbK;t�1 � ~UbK;t

�
;

where

~UaK;t =
K�2X
j=0

(K � 1� j)ut+K�j

~UbK;t =
K�2X
j=1

K�2�jX
l=0

(K � 1� j � l)ut+K�lut+K�j�l:

Using this, we express

1

TK

TX
t=1

U2K;t+1 =
1

T

TX
t=1

u2t+K + 2
1

T

TX
t=1

 
ut+K

 
K�1X
j=1

�
K � j

K

�
ut+K�j

!!

+
1

TK

�
~UaK;0 � ~UaK;T

�
+ 2

1

TK

�
~UbK;0 � ~UbK;T

�
= Ic + 2IIc + IIIc + 2IVc; say.

Notice by the SLLN, we have

Ic !a:s: �
2
u:

The required result follows if we show IIc; IIIc; IVc !p 0 when K=T ! 0: For IIc, notice

that

E
�
II2c
�
� 2

T 2K2
E
�
~U2aK;0 + ~U2aK;T

�
:

A direct calculation shows that

1

T 2K2
E ~U2aK;0 =

1

T 2K2
E

 
K�2X
j=0

(K � 1� j)ut+K�j

!2
= �2u

1

T 2K2

K�2X
j=0

(K � 1� j)2

= O

�
K

T 2

�
= o (1) :

So, ~UaK;0=TK = op (1) : Similarly, we can show that ~UaK;T=TK = op (1) ; and we have the
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required result for IIc: For IIIc; notice by the Cauchy-Schwarz inequality that

E (IIIc)
2 =

K

T

 
1p
T

TX
t=1

ut+K

 
1

K

K�1X
j=1

�
K � j

K

�
ut+K�j

!!2

=
K

T

0@ 1
T

TX
t=1

E
�
u2t+K

�
E

 
1

K

K�1X
j=1

�
K � j

K

�
ut+K�j

!21A
=

K

T
O (1) = o (1) ; as

K

T
! 0:

Therefore,

IIIc = Op

 r
K

T

!
= op (1) ;

as required. For IVc; we have

1

T 2K2
E ~U2bK;0 =

1

T 2K2
E

 
K�2X
j=1

K�2�jX
l=0

(K � 1� j � l)ut+K�lut+K�j�l

!2

=
1

T 2K2

K�2X
j=1

K�2X
i=1

K�2�jX
l=0

K�2�jX
m=0

(K � 1� j � l) (K � 1� i�m)

�E (ut+K�lut+K�mut+K�j�lut+K�i�m)

= �4u
1

T 2K2

K�2X
j=1

K�2�jX
l=0

(K � 1� j � l)2 = O

�
K2

T 2

�
= o (1) :

Similarly, we can show that 1
T 2K2E ~U

2
bK;T = o (1) : So, as for IIc; we can deduce that

IVc = op (1) :

as required, and we complete the proof. �
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Proof of Theorem 3.1

(i) Note that

p
T

K

�
�̂K � �K

�
=

1
K
p
T

PT
t=1

�PK�1
j=0 ut+1+j

�
(xt � �x)

1
T

PT
t=1 (xt � �x)

2
=
AT;K
BT

:

From Lemma 3.1. and the continuous mapping theorem if follows easily that

BT ) �2uc

Z 1

0

�
Jc (r)�

Z 1

0

Jc (r) dr

�2
dr

let
= �2uc

Z 1

0

~J2c (r) dr:

Next, from Lemma 6.2(i) and (ii) and by K=T ! 0, we have

AT;K =
1p
T

TX
t=1

(xt � �x)ut+1 +Op

 r
K

T

!
+Op

�
K

T

�

=
1p
T

TX
t=1

(xt � �x)ut+1 + op (1) :

Using similar arguments in the proof of Lemma 1(d) of Phillips (1987), we can derive

1p
T

PT
t=1 (xt � �x)ut+1 ) �2u

p
c
R 1
0
~Jc (r) dWu (r) ; from which we have

AT;K ) �2u
p
c

Z 1

0

~Jc (r) dWu (r) :

Finally, from applying the continuous mapping theorem, we have the required result. �

(ii) Denote

�T =
TX
t=1

[UK;t+1; xtUK;t+1]
0 ; 	T =

TX
t=1

[1; xt]
0 [1; xt] : (12)

Notice by de�nition and under no-predictability that,

1

K
�̂2K =

1

TK

TX
t=1

�
RK;t+1 � �̂K � �̂Kxt

�2
=

1

TK

TX
t=1

U2K;t+1 �
1

TK

�
�0T	

�1
T �T

�
:

Denote ~�T =
1

K
p
T
�T and ~	T =

1
T
	T the corresponding renormalized terms. By Lemma

6.2(i) - (iii),
1

TK

�
�0T	

�1
T �T

�
=
K

T
~�
0

T
~	�1T

~�T = Op

�
K

T

�
;

30



and therefore
1

TK

TX
t=1

U2K;t+1 !p �
2
u:

Since K=T ! 0; we have the required result that

1

K
�̂2K !p �

2
u:

That completes the proof. �

(iii) Notice that

1p
K
t =

�
�̂2K
K

��1=2 PT
t=1 (xt � �x)

2

T

!1=2 p
T

K
�̂K :

Then, under the null of �K = 0; by Theorem 3.1(i) and (ii) and the continuos mapping

theorem, it follows easily
tp
K
)
R 1
0
~Jc (r) dWu (r)�R 1
0
~J2c (r) dr

�1=2 :
which can be rewritten alternatively as

tp
K
) 


�Z 1

0

~J2c (r) dr

��1=2 Z 1

0

~Jc (r) dJc (r) +
�
1� 
2

�1=2Z:
That completes the proof.�

(iv) By de�nitions of R2
K ,

R2
K = 1�

PT
t=1 U

2
K;t+1 �

�
�0T	

�1
T �T

�PT
t=1

�
RK;t+1 � �RK

�2 ;

where �T and 	T are de�ned in (12) : Under the no-preditacbility assumption if follows

that

1

TK

TX
t=1

�
RK;t+1 � �RK

�2
=

1

TK

TX
t=1

�
UK;t+1 � �UK

�2
=

1

TK

TX
t=1

U2K;t+1 �
1

K
�U2K

=
1

TK

TX
t=1

U2K;t+1 (1�mK;T ) ;
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where

mK;T =

 
1

TK

TX
t=1

U2K;t+1

!�1
1

K
�U2K =

K

T

 
1

TK

TX
t=1

U2K;t+1

!�1 
1

K
p
T

TX
t=1

UK;t+1

!2
:

Denote

lK;T =

 
1

TK

TX
t=1

U2K;t+1

!�1
1

TK

�
�0T	

�1
T �T

�
;

Then,

R2
K =

�
1� 1� lK;T

1�mK;T

�
=
lK;T �mK;T

1�mK;T

: (13)

Notice that

T

K
(lK;T � hK;T ) =

 
1

TK

TX
t=1

U2K;t+1

!�10@ 1

K2

�
�0T	

�1
T �T

�
�
 

1

K
p
T

TX
t=1

UK;t+1

!21A
) �0

�
	�1 � E11

�
�;

where

� =

�Z 1

0

dWu (r) ;

Z 1

0

Jc (r) dWu (r)

�0
;

	 =

 
1

R 1
0
Jc (r) drR 1

0
Jc (r) dr

R 1
0
Jc (r)

2 dr

!
; E11 =

�
1 0
0 0

�
:

Also, it is easy to �nd that

mK;T = Op

�
K

T

�
= op (1) :

Therefore, in view of (13) and by Slutzky theorem, we have the required result.�

Proof of Theorem 3.2

(i) Note that

1p
T

�
�̂K � �K

�
=

1
T

PT�K
t=1

�
1p
T

PK�1
j=0 ut+1+j

�
(xt � �x)

1
T

PT�K
t=1 (xt � �x)2

=
CT;K
DT

:

From the continuous mapping theorem, and similar to CT , it follows easily fromK=T ! �

that

DT ) c�2u

Z 1��

0

~J2c (r) dr:
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Observe that CT;K can be rewritten as

CT;K =
1

T

T�KX
t=1

(xt � �x)

240@ 1p
T

[�T ]+[rT ]X
s=1

us

1A�
0@ 1p

T

[rT ]X
s=1

us

1A35 :
Denote  (�; r) = (Wu (�+ r)�Wu (r)). From the continuous mapping theorem it follows

that

CT;K )
p
c�2u

Z 1��

0

~Jc (r) (�; r) dr;

and hence
1p
T

�
�̂K � �K

�
) 1p

c

R 1��
0

~Jc (r) (�; r) drR 1��
0

~J2c (r) dr
:

and clearly
�
�̂K � �K

�
= Op

�p
T
�
under the null of non-predictability. Equivalently,

1p
K

�
�̂K � �K

�
d
=
p
�

�
1p
T

�
�̂K � �K

��
:

�

(ii) Consider the OLS estimator �̂2K ;

1

T
�̂2K =

1

T 2

TX
t=1

�
RK;t+1 � �̂K � �̂Kxt

�2
=
1

T 2

TX
t=1

Û2K;t+1:

Now recall the de�nitions �T =
PT

t=1 [UK;t+1; xtUK;t+1]
0 and 	T =

PT
t=1 [1; xt]

0 [1; xt] in

(12) : Under no-predictability we can rewrite

1

T
�̂2K =

1

T 2

T�KX
t=1

U2K;t+1 �
1

T 2
�
�0T	

�1
T �T

�
:

From the continuous mapping theorem and similar to Theorem 3.1. it follows that

1

T 2

T�KX
t=1

 
K�1X
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ut+1+j

!2
) �2u

Z 1��

0
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T�3=2�T )
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Z 1��
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�2u
p
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�0
� �u�

0
2;
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and �nally,

T�1	T )
 

1 �u
p
c
R 1��
0

Jc (r) dr

�u
p
c
R 1��
0

Jc (r) dr �2uc
R 1��
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!
� 	:

Therefore,
�̂2K
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) �2u
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�
�
0

2	
�1�2

�i
:

so clearly �̂2K = Op (T ). Alternatively,

�̂2K
K

d
=
p
�

�
�̂2K
T

�
:

�

(iii) Consider the OLS t-statistic. From the above results, we can show that

t =

�PT�K
t=1 (xt � �x)2

�1=2 �
�̂K � �K

�
�̂K

= Op

�p
T
�
:

and hence the statistic diverges with the sample size. Under a suitable normalizing,

1p
K
t)

p
�
�
�1 �

�
�
0

2	
�1�2

���1=2�Z 1��

0

~Jc (r) (�; r) dr
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0

~J2c (r) dr

��1=2
:

That completes the proof.�

(iv) From the de�nition of R2
K and under the no-predictability assumption we can write,

R2
K = 1�

T�2
PT�K

t=1 U2K;t+1 � T�2
�
�0T	

�1
T �T

�
T�2

PT�K
t=1

�
UK;t+1 � �UK

�2 :

for �T and 	T de�ned above. Clearly, the numerator of this expression will converge to

the same limit distribution as �̂2K=T in part (ii) of this Theorem. Finally, note that

1

T 2

T�KX
t=1

�
UK;t+1 � �UK
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=

1

T 2
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:

and hence R2
K = Op (1) as T !1: That completes the proof. �
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Table 1: Empirical Percentile K =
�
T �
�

Pr
�
t=
p
K � �

�
= 0:95

Correlation 
 = 0

� = 0:25 � = 0:50 � = 0:75
c T=200 T=500 T=1000 T=200 T=500 T=1000 T=200 T=500 T=1000

1/2 1.651 1.646 1.649 1.672 1.669 1.664 1.615 1.666 1.686
2 1.635 1.632 1.669 1.640 1.637 1.671 1.533 1.591 1.624
5 1.602 1.642 1.667 1.623 1.636 1.638 1.375 1.474 1.506
10 1.625 1.653 1.629 1.581 1.582 1.597 1.175 1.264 1.330
20 1.559 1.595 1.629 1.362 1.454 1.514 0.910 1.004 1.083

Correlation 
 = �0:90

� = 0:25 � = 0:50 � = 0:75
c T=200 T=500 T=1000 T=200 T=500 T=1000 T=200 T=500 T=1000

1/2 2.723 2.698 2.720 2.915 2.861 2.796 3.234 3.183 3.105
2 2.554 2.530 2.517 2.657 2.599 2.599 2.754 2.734 2.746
5 2.333 2.326 2.337 2.344 2.339 2.338 2.206 2.269 2.286
10 2.129 2.157 2.168 2.045 2.103 2.119 1.745 1.862 1.888
20 1.982 1.986 2.031 1.751 1.821 1.901 1.304 1.425 1.478

The table displays the 95 percentile from the empirical distribution of the statistic t=
p
K when

K =
�
T �
�
. The values of the non-centrality parameter c are displayed in the �rst column. The

forecasting horizon is determined as K =
�
T �
�
; for the values fT; �g in the table. The simulations

are based on 25,000 replications from the data generating process as described in the text.
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Table 2: Empirical Percentile K = [�T ]

Pr
�
t=
p
K � �

�
= 0:95

Correlation 
 = 0

� = 0:25 � = 0:50 � = 0:75
c T=200 T=500 T=1000 T=200 T=500 T=1000 T=200 T=500 T=1000

1/2 1.662 1.653 1.647 1.170 1.181 1.190 0.673 0.688 0.703
2 1.543 1.581 1.558 1.097 1.100 1.115 0.660 0.664 0.672
5 1.395 1.390 1.413 0.987 0.997 0.998 0.611 0.629 0.648
10 1.218 1.196 1.216 0.827 0.830 0.848 0.563 0.566 0.562
20 0.946 0.955 0.930 0.646 0.661 0.650 0.478 0.490 0.484

Correlation 
 = �0:90

� = 0:25 � = 0:50 � = 0:75
c T=200 T=500 T=1000 T=200 T=500 T=1000 T=200 T=500 T=1000

1/2 3.252 3.237 3.223 2.917 2.984 2.948 1.714 1.705 1.719
2 2.737 2.774 2.796 2.595 2.619 2.642 1.626 1.628 1.623
5 2.214 2.233 2.258 2.096 2.124 2.124 1.424 1.456 1.444
10 1.767 1.803 1.794 1.614 1.644 1.616 1.188 1.225 1.217
20 1.337 1.356 1.361 1.133 1.155 1.167 0.906 0.930 0.929

The table displays the 95 percentile from the empirical distribution of the statistic t=
p
K when

K = [�T ] : The values of the non-centrality parameter c are displayed in the �rst column. The
forecasting horizon is determined as K = [�T ] ; for the values fT; �g in the table. Simulation is based
on 25,000 replications from the data generating process as described in the text.
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Table 3: Simulated Asymptotic 95 Percentiles of t=
p
K (5% Critical Values)

Correlation 
 = 0
c=1/2 c=5 c=20

Percentile 10% 5% 2.5% 1% 10% 5% 2.5% 1% 10% 5% 2.5% 1%
[�T ]
K=12 1.286 1.659 1.969 2.337 1.260 1.609 1.951 2.324 1.205 1.546 1.866 2.233
K=24 1.280 1.666 1.993 2.380 1.254 1.636 1.968 2.376 1.131 1.467 1.754 2.095
K=48 1.304 1.695 2.029 2.522 1.226 1.597 1.921 2.291 0.996 1.295 1.557 1.883
K=60 1.295 1.711 2.061 2.458 1.205 1.574 1.925 2.351 0.946 1.237 1.492 1.778

[T�] 1.282 1.645 1.960 2.326 1.282 1.645 1.960 2.326 1.282 1.645 1.960 2.326

Correlation 
 = �0:90
c=1/2 c=5 c=20

Percentile 10% 5% 2.5% 1% 10% 5% 2.5% 1% 10% 5% 2.5% 1%
[�T ]
K=12 2.455 2.786 3.072 3.411 1.992 2.325 2.637 3.004 1.592 1.920 2.212 2.564
K=24 2.492 2.855 3.180 3.530 1.995 2.347 2.667 3.069 1.528 1.853 2.156 2.502
K=48 2.600 2.988 3.318 3.753 1.967 2.336 2.659 3.042 1.416 1.700 1.968 2.271
K=60 2.650 3.050 3.400 3.894 1.977 2.348 2.667 3.103 1.362 1.633 1.870 2.148

[T�] 2.405 2.702 2.998 3.311 1.999 2.350 2.647 2.991 1.689 2.061 2.353 2.719

The table shows the asymptotic percentiles used to compute the empirical sizes in Tables 4 and 5
for both K = [�T ] and K = [T�] ; where the values of (�; �) are implied for the values of K in the
table.
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Table 4: Empirical Sizes of t=
p
K; K = [T�]

Correlation 
 = 0 Correlation 
 = �0:90
K=12 Nom. Size c 1/2 2 5 10 20 c 1/2 2 5 10 20

0.100 0.101 0.100 0.096 0.092 0.084 0.107 0.100 0.100 0.090 0.084
0.050 0.050 0.052 0.048 0.046 0.040 0.058 0.520 0.050 0.042 0.038
0.025 0.026 0.026 0.023 0.023 0.018 0.030 0.029 0.025 0.021 0.019
0.010 0.011 0.011 0.010 0.009 0.007 0.014 0.013 0.010 0.008 0.007

K=24
0.100 0.100 0.099 0.095 0.086 0.074 0.116 0.102 0.097 0.087 0.069
0.050 0.051 0.049 0.047 0.040 0.032 0.067 0.056 0.050 0.040 0.028
0.025 0.027 0.026 0.025 0.019 0.013 0.035 0.033 0.027 0.020 0.014
0.010 0.013 0.011 0.011 0.007 0.004 0.018 0.016 0.012 0.008 0.005

K=48
0.100 0.100 0.095 0.089 0.072 0.049 0.134 0.111 0.097 0.077 0.047
0.050 0.052 0.051 0.045 0.032 0.020 0.082 0.064 0.050 0.033 0.017
0.025 0.028 0.027 0.022 0.015 0.007 0.049 0.039 0.027 0.016 0.007
0.010 0.013 0.012 0.009 0.006 0.002 0.027 0.019 0.013 0.007 0.002

K=60
0.100 0.103 0.093 0.088 0.072 0.042 0.140 0.116 0.096 0.069 0.040
0.050 0.055 0.050 0.044 0.033 0.015 0.087 0.068 0.049 0.028 0.013
0.025 0.029 0.027 0.023 0.017 0.005 0.052 0.040 0.025 0.013 0.005
0.010 0.014 0.013 0.010 0.006 0.001 0.030 0.021 0.012 0.005 0.001

The table displays the empirical sizes at the nominal levels in the �rst column when using as-
ymptotic critical values of t=

p
K for a sample of 500 observations.The values of the non-centrality

parameter c are displayed in the �rst column. The forecasting horizon is determined as K = [T�]
for the values of K in the table. Simulation is based on 25,000 replications from the data generating
process as described in the text.
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Table 5: Empirical Sizes of t=
p
K; K = [�T ]

Correlation 
 = 0 Correlation 
 = �0:90
K=12 Nom. Size c 1/2 2 5 10 20 c 1/2 2 5 10 20

0.100 0.100 0.102 0.103 0.095 0.098 0.097 0.099 0.100 0.103 0.097
0.050 0.052 0.049 0.053 0.048 0.049 0.048 0.050 0.049 0.050 0.051
0.025 0.026 0.025 0.025 0.024 0.023 0.024 0.027 0.023 0.026 0.027
0.010 0.011 0.010 0.011 0.009 0.009 0.010 0.011 0.009 0.011 0.011

K=24
0.100 0.097 0.103 0.101 0.098 0.100 0.099 0.098 0.098 0.096 0.095
0.050 0.050 0.054 0.050 0.050 0.049 0.050 0.049 0.050 0.048 0.046
0.025 0.025 0.027 0.026 0.025 0.026 0.024 0.024 0.026 0.025 0.021
0.010 0.010 0.010 0.010 0.011 0.011 0.010 0.011 0.010 0.009 0.009

K=48
0.100 0.097 0.099 0.010 0.097 0.101 0.098 0.097 0.102 0.096 0.094
0.050 0.050 0.049 0.049 0.050 0.050 0.049 0.048 0.050 0.048 0.047
0.025 0.026 0.025 0.024 0.023 0.025 0.026 0.023 0.025 0.023 0.022
0.010 0.010 0.010 0.011 0.008 0.008 0.011 0.010 0.010 0.009 0.009

K=60
0.100 0.097 0.097 0.101 0.098 0.099 0.093 0.098 0.100 0.099 0.091
0.050 0.049 0.048 0.049 0.048 0.049 0.046 0.048 0.048 0.049 0.045
0.025 0.023 0.025 0.023 0.024 0.025 0.024 0.024 0.025 0.025 0.022
0.010 0.017 0.011 0.008 0.009 0.010 0.010 0.011 0.010 0.010 0.009

The table displays the empirical sizes at the nominal levels in the �rst column when using as-
ymptotic critical values of t=

p
K for a sample of 500 observations.The values of the non-centrality

parameter c are displayed in the �rst column. The forecasting horizon is determined as K = [�T ]
for the values of K in the table. Simulation is based on 25,000 replications from the data generating
process as described in the text.
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Table 6: Descriptive Statistics of REIT Data

1972-2003 1972-1989 1990-2003
Mean S.D. �̂ ADF Mean S.D �̂ ADF Mean S.D. �̂ ADF

Returns

AREIT 10.80 15.17 0.08 -13.69 9.95 17.25 0.05 -10.88 11.91 11.98 0.16b -7.74
EREIT 13.10 13.46 0.11b -13.65 13.53 14.28 0.12b -10.82 12.55 12.36 0.10 -8.07
MREIT 9.22 19.93 0.04 -12.78 6.12 20.47 0.00 -11.06 13.25 19.22 0.10 -6.93
HREIT 10.14 19.32 0.01 -13.32 9.88 21.59 -0.07 -10.81 10.50 15.96 0.24a -7.59

Dividend-Price Ratios

AREIT 1.36 0.19 0.996 -2.68 1.53 0.23 0.995 -2.46 1.14 0.10 0.996 -2.31
EREIT 0.66 0.13 0.998 -2.00 0.87 0.14 0.998 -2.05 0.39 0.03 0.993 -2.44
MREIT 4.91 0.85 0.997 -1.96 2.89 0.35 0.994 -2.73 7.53 0.70 0.993 -1.65
HREIT 1.84 0.33 0.997 -2.12 1.44 0.24 0.996 -2.05 2.35 0.38 0.996 -1.67

Obs. 384 217 167

All variables are available at monthly frequency and are displayed in annualized percentage points
(mean and standard deviation). Returns and dividend-price ratios are presented for four portfolios:
(1) AREIT�all REITs in the NAREIT index; (2) EREIT�Equity REITs only; (3) MREIT�Mortgage
REITs only; (4) HREIT�Hybrid REITs only. The dividend-price ratios are smoothed with a 12-month
moving average, as in Fama and French (1988), to decrease any seasonal e¤ects in the series. The
column �̂ denotes the autoregressive coe¢ cient of the series, and ADF is the Augmented Dickey-Fuller
test for the null of unit root, where the auxiliary regression includes a constant. The ADF test is
speci�ed with 1 lag for returns and with 12 lags for dividend-price ratios. The asymptotic critical
values at the [1%, 5%, 10%] level are respectively [-3.45, -2.87,-2.57]. The dividend-price ratios are
very serially correlated and the ADF test cannot reject the null of unit root for most of the portfolios
in the samples. For returns, signi�cance in the autocorrelation coe¢ cient is denoted as a (1%), b (5%)
and c (10%).
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Figure 1: Power of t=
p
K for Various Values of c; K = [T�]
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The �gure shows the power of the t=
p
K-statistic as a function of the parameter c = f1=2; 5; 20g

for a nominal size of 5%. The sample size is 500 and the data generating process is simulated for various
values of �; and for 
 = �0:90; K = 12; and K = 60. The asymptotic critical values are obtained
from the theory K = [T�] :
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Figure 2: Power of t=
p
K for Various Values of c; K = [�T ]
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The �gure shows the power of the t=
p
K-statistic as a function of the parameter c = f1=2; 5; 20g

for a nominal size of 5%. The sample size is 500 and the data generating process is simulated for various
values of �; and for 
 = �0:90; K = 12; and K = 60 as described in the text. The asymptotic
critical values are obtained from the theory K = [�T ] :
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Figure 3: Power of t=
p
K at Various Horizons; K = [T�]
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The �gure shows the power of the t=
p
K-statistic as a function of the horizon K for a nominal

size of 5%. The sample size is 500 and the data generating process is simulated for various values of �;
and for 
 = �0:90; c = f1=2; 20g ; K = f12; 24; 48; 60g as described in the text. The asymptotic
critical values are obtained from the theory K = [T�] :
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Figure 4: Power of t=
p
K at Various Horizons; K = [�T ]
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The �gure shows the power of the t=
p
K-statistic as a function of the horizon K for a nominal

size of 5%. The sample size is 500 and the data generating process is simulated for various values of �;
and for 
 = �0:90; c = f1=2; 20g ; K = f12; 24; 48; 60g as described in the text. The asymptotic
critical values are obtained from the theory K = [�T ] :
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