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Does the Early Exercise Premium Contain Information

about Future Underlying Returns?

Abstract

We investigate the information content of the call (put) Early Exercise Premium,
or EEP , defined as the normalized difference in prices between otherwise
comparable American and European call (put) options. The call EEP specifically
captures investors’ expectations about future lump sum dividend payments as
well as other state variables such as conditional volatility and interest rates.
From that perspective, the EEP should also be related to future returns of the
underlying security. Little is known about the EEP , largely because it is usually
unobservable for most underlying securities. The FTSE 100 index is an exception
in that regard, because it has both American and European options contracts
that are traded in large volumes. We use data of the FTSE 100 index, and
its American and European options contracts, from which we compute a time
series of the EEP . Interestingly, we find that the EEP is a good forecaster
of returns at daily horizons. This forecastability is not due to time-variation in
market risk premia or liquidity. Importantly, we find that the predictability stems
primarily from the ability of the EEP to forecast innovations in dividend growth,
rather than other components of unexpected returns. Overall, we use several
empirical and simulation methods to establish predictability of the underlying
with an options market variable, link this predictability to information about
cash flow fundamentals, and thereby provide clear support for Black’s (1975)
conjecture that informed investors prefer to trade on their superior information
about fundamentals in the options market relative to the underlying.



1 Introduction

Black (1975) was one of the first to suggest that informed investors prefer to trade on

their superior information about fundamentals in the options market rather than in the

underlying asset market because they can easily take on more leveraged positions. An

important implication of this argument is that, over short horizons, option prices will reflect

news about fundamentals that is yet to be incorporated into prices of the underlying security.

Since the transmission of information across markets, and particularly between the options

and the underlying market, is of central importance in finance, it is not surprising that

this conjecture has generated a lot of theoretical and empirical interest. On the theoretical

side, Biais and Hillion (1994), Easley, O’Hara, and Srinivas (1998) and others elaborate and

formalize the theoretical conditions under which Black’s (1975) conjecture will hold.

Unfortunately, the empirical literature on this topic has yet to reach a consensus. The

debates revolve around two related points. First, from an empirical perspective, to what

extent do option prices as well as other information in the option market predict movements

in the underlying security? Amin and Lee (1997), Anthony (1988), Chakravarty, Gulen, and

Mayhew (2004), and Pan and Poteshman (2004) find that options market variables (such

as changes in option prices, implied volatility, and option volume) predict returns of the

underlying security at short horizons. In contrast, Stephan and Whaley (1990) and Chan,

Chung, and Johnson (1993) fail to find such predictive relations. Second, if predictability

is observed, is it due to traders’ information about fundamentals? This second point is

particularly important in order to establish whether the predictability supports Black’s

(1975) conjecture or whether it is due to some other deviations from perfect markets.

In this paper, we take an altogether new look at the connection between prices of

options and the underlying security, and its link with information about fundamentals. More

specifically, we focus on the difference in prices between otherwise comparable European

and American call options, which is known as the call early exercise premium, or call EEP .

1



Merton (1973) was the first to show that the call EEP must be zero if the underlying asset

pays no dividends.1 Roll (1977), Geske (1979), and Whaley (1981) prove that in the presence

of a known lump sum dividend, prices of European and American calls are not necessarily

equal, because American option holders might want to exercise the option right before the

ex-dividend date. In the more realistic case of multiple dividends that are not known with

certainty, the EEP will depend on both the expected magnitude and the lumpiness of these

dividends.2 Conditional on dividends being non-zero, the EEP will also depend on other

factors that affect option prices (volatility, interest rates, etc.). Therefore, when dividends

are non-zero and lumpy, changes in expectations about future cash flows and discount rates

of the underlying asset ought to be reflected in a non-zero mean and variations of the early

exercise premium.

We focus on the call EEP rather than on other option market predictors, because of its

close and unambiguous connection with lump sum dividends. The arguments in Roll (1977),

Geske (1979), and Whaley (1981) suggest that the call EEP is very sensitive to changes in

expectations about future lumpy dividends. Furthermore, based on an empirical exercise of

S&P 100 index options, Whaley (1982) and Harvey and Whaley (1992a, 1992b) conclude

that the magnitude and timing of dividends is critically important in determining the early

exercise premium. More specifically, Whaley (1982) remarks that the “magnitude of the

early exercise premium is importantly influenced by the amount of the dividend payment.”

Harvey and Whaley (1992a) provide additional evidence and make this point even more

forcefully by concluding that: “From a practical standpoint of pricing (or trading) S&P 100

index options, knowing the amount and timing of S&P 100 index cash dividends appears

to be critical.” In the context of the FTSE 100 index options, the dependence of dividends

1The intuition is that, in the absence of dividends, the intrinsic value obtained from exercising an American
call option is always less than the value of the option. An investor would therefore rather sell the option in
the open market rather than exercise it early.

2When dividends are lumpy and non-uniform, the probability of early exercise is higher, and the
magnitude of the early exercise premium is dependent not just on the last dividend before option maturity,
but also on the other (lumpy) dividends over the life of the option.
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of the EEP should be even more important since FTSE 100 index dividends have been

clustered once every two weeks, and hence been highly lumpy and non-uniform. In contrast,

predictors such as the change in prices of American options, volume, open interest, and even

the put EEP depend not only on the lumpy dividends but on all the other factors that affect

option prices. For simplicity, by “EEP” we refer to the call EEP unless otherwise specified.

Clearly, analytic arguments and extant empirical findings suggest that the EEP is very

sensitive to fluctuations about future dividend payments.3 We conjecture that, to the extent

that dividend expectations influence returns and to the extent that Black’s (1975) argument

holds, the EEP should also be a particularly good predictor of underlying returns at short

horizons of a few days–horizons that lie within the period that it takes for information to be

impounded into underlying prices. In the context of Black (1975), if informed investors trade

primarily in the options market, their information will be incorporated first in the markets

for European and American options rather than in the market for the underlying. Since

dividend information specifically has a different effect on American relative to European

options, the EEP should capture dividend information faster than the underlying.4

In practice, the EEP is rarely directly observable, because virtually all underlying

assets have either American or European options, but not both.5 One notable exception is

the FTSE 100 index which has both American and European contracts that are traded in

large volumes. Both types of contracts have co-existed on the London International Financial

Futures Exchange (LIFFE) exchange from 1990 until the present and have high liquidity,

very similar maturity, and other characteristics. This presents us a unique opportunity to

directly observe the EEP and to revisit the debate about the information flow between

the options and the underlying security markets, and, more importantly, to associate the

3Even though ex-post dividends tend to be highly persistent, there is a great degree of ex-ante uncertainty
about their innovations, and the importance of these is recognized both by academics and practitioners.

4The private information that can be differentially incorporated into prices is not necessarily market-wide,
but also firm-specific since only a handful of stocks go ex-dividend on any particular ex-dividend date and
the dividend expectations that influence the early exercise premium relate to these firm-specific dividends.

5The S&P 500 index had both American and European contracts from April 2, 1986 through June 20,
1986.
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information flow to information about fundamentals.

In this paper, we investigate the empirical relation between the early exercise premium

of call options and the returns of the FTSE 100 index using daily data from June 1992 to

January 1996. First, we describe the statistical properties of the early exercise premium.

We document that, for calls and puts, the average EEP is non-zero and its magnitude is

economically and statistically significant. The time series of the EEP also exhibits significant

serial correlation at horizons up to one week. This finding suggests that the call EEP might

be related to lumpy dividend payments of the underlying index. We use the Longstaff and

Schwartz (2001) simulation approach to show that, indeed, a simple model which calibrates

the lumpy sum dividends, the conditional volatility, and the interest rate processes has little

trouble to replicate the magnitudes of the average EEP and its serial correlation that are

found in the data.

Second, we investigate the information content in the EEP . We do that by first looking

at whether the EEP can forecast subsequent FTSE 100 returns. This forecasting relation

is motivated by the fact that since FTSE 100 index dividends are paid approximately once

every two weeks in lump sums,6 the call EEP ought to contain information, most importantly

about future dividend yields, but also about future volatility, and future interest rates, all

of which have been used extensively as forecasters of returns (Campbell and Shiller (1988a),

Ghysels, Santa-Clara, and Valkanov (2005b), and Campbell (1991)). Hence, since the EEP

captures fluctuations in these variables, it should arguably be a useful forecaster of FTSE 100

returns. We find that the EEP does actually forecast the index returns at one- and two-day

horizons. This predictive relation is robust to the addition of other control variables such as

dividend yield, short interest rate, implied volatility, and changes in volume. The forecasting

relation also persists in subsamples. The forecastability disappears at longer horizons.

The ability of the EEP to forecast returns is markedly different from that of the

6We will explain the institutional requirements in the data section.
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dividend yield, the volatility, and interest rates in two important aspects. From a statistical

perspective, the EEP contains information about dividend yields, volatility, and interest

rates but does not suffer from the well known-statistical problems (such as extreme

persistence and low volatility) which have rendered forecasting with these predictors quite

problematic (Stambaugh (1999), Ferson, Sarkissian, and Simian (2003), Torous, Valkanov,

and Yan (2005)). The autocorrelation of the EEP , while significantly different from zero,

is not near the boundary of non-stationarity and will not significantly bias the estimates

in forecasting regressions. Also, the volatility of the EEP is actually larger than that of

the FTSE 100 returns. This is in contrast to the volatilities of other predictors, which are

at least an order of magnitude lower than that of the returns. These appealing statistical

properties of the EEP make it a suitable forecaster of returns, especially at short horizons.

From an economic perspective, the source of the EEP predictability also differs from

that of other widely used conditioning variables. Campbell and Shiller (1988b), Fama and

French (1989), Campbell (1991), Ghysels, Santa-Clara, and Valkanov (2005b) and others

argue that the dividend yield, volatility, and interest rates capture the time variation in

expected returns. In support of that assertion, these conditioning variables have been related

to longer horizon returns of monthly, quarterly, or annual frequencies. In contrast, the EEP

forecasts returns at daily horizons when expected returns are unlikely to vary significantly.

Moreover, to the extent that informed investors trade in the options market (Black (1975))

and that information does not diffuse instantaneously across markets (Shiller (2000), Sims

(2001)), the predictability may be due to the EEP containing information about changes in

expectations about future fundamentals rather than time-varying expected returns.

Third, we analyze the source of this forecasting relation using two alternative

approaches. First, we use Campbell’s (1991) VAR framework and decompose realized returns

into expected returns and shocks to dividend growth, excess returns, and interest rates.

We find that the EEP predicts mainly the dividend shock component of the underlying

index return. This result supports the conjecture that the call EEP captures changes
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in expectations about future cash flows of the underlying index. In a second approach,

rather than relying on a return decomposition, we test directly whether the EEP captures

fluctuations in future dividend growth. The results not only collaborate the VAR findings

that the EEP forecasts fluctuations in future dividend growth but they also suggest that the

predictive signal in the EEP is concentrated right before dividends are announced. In sum,

both the VAR and the direct regression approaches link the predictability of the underlying

returns by an option market variable to cash flow news. To our knowledge, this link has not

been previously established.

The last two results lead us to the conclusion that the call EEP is positively related

with subsequent underlying index returns at daily frequency mainly because it contains

information about future cash flows. These findings support Black’s (1975) conjecture that

informed investors prefer to trade in the options market. The fact that we don’t observe

predictability beyond two-day horizons implies that the options and the underlying markets

are reasonably well-integrated. The last two findings are also consistent with the first

empirical and simulations results, which suggested that the EEP is sensitive to changes

in cash flows. Our results support the claims of Kothari and Shanken (1992) and Torous,

Valkanov, and Yan (2005) who argue that the commonly used proxy for expected future

dividends may contain measurement error and are too smooth to forecast future returns at

short horizons. The EEP responds rapidly to changes in cash flows and is thus more suitable

to detect short horizon predictability. In sum, the novel contributions of this paper are to

propose the call EEP as a short horizon predictor of the underlying return, to argue for the

economic reasons behind the predictability, and to provide supporting empirical evidence.

More broadly, we establish predictability of the underlying returns with an options market

variable, and link this predictability to information about cash flows fundamentals, and

thereby provide clear support to the Black (1975) conjecture.

The paper is structured as follows. We describe the dataset in Section 2. In section

3, we present summary statistics of the EEP and use simulations to show that important
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statistical properties of the EEP can be replicated when dividends, volatility, and interest

rates are calibrated to the data. In section 4, we present the predictability results and link

them to the ability of the EEP to forecast changes in future dividend growth. We conduct

a series of robustness checks in Section 5 and conclude in Section 6 with some final remarks.

2 Data

We have three types of time series: values of the FTSE 100 index, prices of European and

American calls and puts on the FTSE 100 index, and other variables, such as short interest

rate, the lumpy dividend stream of the FTSE 100 index and the volume of its shares traded,

and the implied volatility of the index. We describe each time series separately for clarity.

FTSE 100 Index and Index Futures: We compute daily log returns of the FTSE 100

cash index over a four-year period from June 1992 to January 1996. All the stocks are

traded at the London Stock Exchange (LSE). The log returns exclude dividend payments.

The index return in excess of the one-month (riskfee) UK interest rate is denoted by Rt .

We also compute the daily log return of the FTSE 100 index futures,7 which is traded at

the London International Financial Futures Exchange (LIFFE). The index futures return is

denoted by Rfut
t .

FTSE 100 Index Options: We have all the bid-ask quotes recorded for all European and

American FTSE 100 index options traded on the London International Financial Futures

Exchange from June 1992 to January 1996. Since these contracts were heavily traded, there

were no designated market-makers obliged to stand ready to buy and sell. Liquidity in

these markets was generated in a CBOT-style auction hand-signal pit-trading environment

with voluntary dealers and direct interaction of buyer’s and seller’s agents. Nothing in this

process should generate any microstructure-related systematic differences between European

7The returns are computed from the “on-the-run” contracts. We roll over to the next on-the-run contract
one month before the current on-the-run contract expires.
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and American prices. To minimize possible data errors and to make all contracts comparable,

we apply several filters. For instance, we use only synchronous quotes of the European and

American option, or quotes that are posted within 60 seconds of each other. This results in a

sample of 47960 matched quotes for call options and 41270 matched quotes for put options.

We also exclude prices lower than the intrinsic values. Furthermore, if we define moneyness

as the spot price divided by the strike price, S/K , we use only options that are within the

range 0.9 and 1.1. Finally our data includes 41891 matched pairs of calls and 35961 matched

pairs for puts.

The European and American index option contracts have identical exercise dates. At

any time there are five different maturities of both types of options, one month, two months,

three months, four months and a long-dated one. For a given maturity, American option

exercise prices are multiples of 50 while European option exercise prices are multiples of

25 but not 50. In order to directly compare the prices of the American and the European

option, we linearly interpolate the prices of the two adjacent American options whose strike

prices straddle the strike price of the European option that we are trying to estimate. With

this method, we obtain the synchronous prices of American and European contracts with

the same strike price and maturity.

The early exercise premium is computed as the difference in prices between two

otherwise identical American and European options, normalized by the price of the European

contract. We use the normalization mainly because the non-normalized difference is affected

by the index level, the volatility, and other variables that enter the option pricing formula.

Through the normalization, we control for the level of these variables and measure the

premium of the American relative to the European contract. We are careful not to normalize

by the level of the index itself, because doing so would induce an automatic correlation with

next-period index returns.

Instead of tracking every contract every day, it is more appropriate to aggregate the
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information according to the moneyness and maturities. Since no single option has the same

moneyness on every single day, we compute the EEP for standardized at-the-money options,

which is a natural benchmark. For every trading day, we linearly interpolate the EEPs of all

the matched pairs on that day in the moneyness space and use the fitted value of the EEP

at the moneyness equal to 1 as the EEP measure for at-the-money options on that day. In

this way, we construct a time series of 894 daily EEPs, which explicitly use information from

options that are in and out of the money.8 It might also be tempting to interpolate the data

along the maturity space and construct a constant maturity EEP . Unfortunately, this is not

a straightforward exercise, because in the presence of lumpy dividends, the relation between

maturity and the EEP depends crucially (and non-linearly) on the timing of dividends.

Since a simple interpolation procedure cannot take this dependence into account, we present

most of the results without interpolating along the maturity space. Results from a linearly-

interpolated, constant maturity EEP and from an average EEP of all contracts in a day,

presented in the robustness section, produce very similar (and sometimes more significant)

results.

The American index option holders also have a wildcard option. During the sample

period, London option market’s close was 4:10pm and London stock market’s close was

4:30pm. American index option holders have the right to exercise (but not trade) the option

up to 4:31pm at a settlement price based on the index level either at 4:10pm or later.

Dividends and Other Variables:

We have daily data of the one-month stochastically detrended U.K. interest rate (Rft )

(following Campbell (1991)), the dividend yield distributed to index holders (DYt ), the

implied variance of the index portfolio return (Vart), and the changes in volume of FTSE 100

shares traded (∆Vlmt ). The stochastically detrended short rate is obtained by subtracting a

8While this interpolation introduces a bias in the EEP measure (because the EEP is not exactly linear
in the moneyness space), the bias is not large in economic or statistical terms. We also provide further
robustness check for this interpolation method.

9



lagged 3-month moving average from the raw one-month interest rate, similarly to Campbell

(1991). Vart is implied daily from closest to the money European call options.9

To understand the source of the lumpiness and uncertainly in dividends, it is necessary

to understand the LSE regulations. Over our sample period, the LSE synchronized the ex-

dividend dates across all firms to fall on the first trading day of the week. Any company

that planned to go ex-dividend had to declare that via a Regulatory Information Service no

later than four business days before the ex-dividend date, otherwise the ex-dividend date

had to be deferred until the following week. From the dividend stream, we construct one-

month moving average of the dividend and then compute the dividend price ratio. The

lumpiness in the dividends series is due to two factors. First, in our sample, ex-dividend

dates occurred typically every other week. Because of this mandated synchronization, the

dividend price ratio is distributed about once every two weeks rather than uniformly. Second,

U.K. companies typically pay out semi-annually (rather than quarterly, as in the U.S.). This

creates additional lumpiness as well as uncertainty in dividends. Finally, while the dividend

series are ex-post persistent, there is a significant ex-ante uncertainty about their actual

realizations, which is a product of concern for a lot of financial analysts who follow LSE-

listed firms. In that respect, the U.K. and the U.S. stock markets are quite similar.

3 The EEP : Magnitude and Dynamics

3.1 Summary Statistics

In this section, we describe the statistical properties of the early exercise premium. Table 1

presents the summary statistics of the EEP for calls and puts. To facilitate comparison, all

9Easley, O’Hara, and Srinivas (1998) provide a theoretical model and convincing evidence that options
volume is related to future underlying returns. Unfortunately, we do not have historical FTSE 100 option
volume data.
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numbers are expressed in annualized percents except the EEPs and the trading volume.10

We see that the average EEP of calls and puts is very different from zero. For calls, the EEP

is 3.5 percent with a standard deviation of 1.8 percent. The EEP of puts is even higher at

7.6 percent with a standard deviation of 4.3 percent. In comparison, the average annualized

return of the FTSE 100 index is 9.6 percent with a standard deviation of 12.5 percent and

the average annualized dividend yield is 4 percent with a standard deviation of 2.2 percent.

The EEPs are more volatile, very skewed and exhibit significant kurtosis compared to the

returns of the underlying asset. This is due to the convex payoff of options and to their

natural leverage.

In Panel B of Table 1, we display the partial autocorrelation functions of the EEPs,

the index return and the index futures return. Column 1 shows the autocorrelations for call

EEP and column 2 shows that of the put EEP . For calls and puts, the EEPs are positively

serially correlated and the correlations are significant at up to 5 daily lags. In contrast,

the FTSE 100 returns are uncorrelated at all but one-day lag, as can be seen from their

autocorrelation which is displayed in the column 3. Finally the last column shows that the

partial autocorrelation of the index futures returns are close to zero at all lags.

The observed serial correlation in the EEPs implies that the difference in European

and American prices is not white noise. Since the EEP will not be zero when the dividends

are non-zero or are paid in lump sums, we conjecture that the persistence might be due to

dividend shocks. Whether the empirically observed serial correlations can be generated by

dividends is an issue that we tackle next.

3.2 Explaining the Magnitude and Dynamics of the EEP

It is interesting to know whether EEPs of such magnitudes and with such statistical

properties can be obtained using calibrated option pricing models. Geske and Johnson

10We multiply the daily returns by the number of trading days, 252.
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(1984), Kim (1990), Carr, Jarrow, and Myneno (1992), Geske and Roll (1984), Barone-

Adesi and Whaley (1987), Gukhal (2001) and several others study the theoretical pricing of

the American call and put options.11 The first three papers mainly focus on the pricing of

American put options and almost all of them assume that the dividend yield is continuous

because this assumption simplifies the modeling of the option prices. Allowing for lump-sum

dividends leads to a problem that generally does not have a closed-form solution. So does

allowing for realistic fluctuations in the conditional variance and risk-free interest rate.

In this paper, we take a different approach. We use the Longstaff and Schwartz (2001)

simulation method to value American and European options, and then compute the EEP .

Besides its simplicity, the Longstaff and Schwartz (2001) approach is appropriate in our

study for two reasons. First, it allows for flexible and realistic calibration of the conditional

variance and dividends of the underlying security as well as the risk-free interest rate. Second,

our goal is to understand how the EEP varies with respect to the underlying parameters

rather than finding the exact solution to the American option pricing problem. Therefore,

calculating the EEP numerically and drawing comparative statistics serve our goal well.

We conduct two simulations. First, we examine how the dividend yield and volatility

affect the EEP in a constant dividend yield Black-Scholes model. The goal of this exercise

is to see whether realistic magnitudes the lumpy dividends and volatility can generate the

empirically observed magnitudes of the average EEP . In this simulation, we assume that

the stock price follows a geometric Brownian motion and the interest rate, the dividend yield

and the volatility are all constant. The underlying stock will pay a lumpy dividend in two

weeks. Under this setting, we calculate the price of a one-month at the money American

option with the Longstaff-Schwartz simulation. Then we compare it with the price of an

European option with the same contract details and obtain the EEP .

Figure 1 plots the magnitude of the EEP for different magnitudes of the dividend yield

11These papers attack the problem by solving a partial differential equation with a moving boundary which
is a problem that generally does not have a closed-form solution.
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and volatility. The top panel shows that the levels of the simulated call EEP are close to

the average EEP that we observe in the data. For instance, when we set the dividend yield

and the volatility to their average values from the data (4% and 12%, respectively), our

simulation generates an EEP of 0.028. Recall that, in Table 1, the mean of the call EEP is

0.035. Similar results obtain for the put EEP , shown in the bottom panel of the figure.

Figure 1 also illustrates the sensitivity of the EEP to changes in the dividend yield

and volatility. In the top panel, the call EEP surface is monotonic in both directions. The

call EEP increases with the dividend yield. This is intuitive because, as the dividend yield

increases, American option holders are more incentivized to exercise before ex-dividend date

in order to profit from the high dividends, which raises the premium. Importantly, when

volatility is in the 0.10 to 0.15 range, the call EEP is more convex in the level of the

dividend yield. Hence, in normal volatility regimes, the EEP is very sensitive to changes in

the dividend yield.

The call EEP is quite flat in the volatility space when the dividend yield is low and

decreases with volatility when the dividend yield is high. This latter effect is due to two

factors. First, volatility boosts the option value when American option holders face the

exercise decision and reduces the chance of exercising early. Second, our EEP measure

scales the absolute premium by the price of the European contract which increases with

volatility. For put options, the EEP is decreasing in the dividend yield as higher dividends

will reduce the incentives for early exercise. The put EEP is also decreasing in volatility for

the same reasons as calls.

In a second simulation, we examine the dynamics of the EEP under the risk-neutral

measure when the interest rate and dividend yield follow an AR(1) process and the volatility

follows a GARCH(1,1) process. More specifically, we investigate whether we can reproduce

the serial correlation in the EEP observed in the data. To do so, we generate the risk-free
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rate, dividend yield, and conditional volatility from

Rft+1 = φRft + vt+1

DYt+1 = ρDYt + ut+1

σ2
t+1 = κ + αε2

t + βσ2
t .

where Rft+1 is the risk-free rate, DYt+1 is the dividend yield, and σ2
t is the variance of

excess returns. α and β are the GARCH(1,1) coefficients for σ2
t , and φ and ρ are the AR(1)

coefficients for the risk-free rate and the dividend yield, respectively. There is no risk premia

for the state variables. Under this dynamic setting, we simulate the underlying asset for

1000 steps, re-price the same American option as above, and calculate the EEP . From the

simulations we obtain a time series of the EEP and calculate the AR(1) coefficients of the

call and the put EEP , respectively.

Table 2 shows the simulation results of the AR(1) coefficients of the call and put EEP

for a set of different parameters of the data generating processes. The first row uses the

parameters that are estimated from our data. The call EEP has an AR(1) coefficient of

0.361 which is remarkably similar to the one from the data (0.377). In the second set of

rows, we vary the persistence of the volatility. The third and fourth set of rows show similar

results for various persistence levels of the risk-free rate and the dividend yield, respectively.

These simulation shows that the more persistent are the volatility, the dividend yield and

the interest rate, the higher is the AR(1) coefficient of the call EEP .

In particular, the serial correlation of the call EEP is very sensitive to the persistence

of the dividend yield process. A change in ρ from 0.906 to 0.800 results in a drastic reduction

of its AR(1) coefficient from 0.361 to 0.084, which represents a decrease of 76.7 percents. The

persistence of the risk-free rate and of the volatility have a more significant impact on the

observed serial correlation of the put EEP than on the call EEP . For instance, a decrease

in the GARCH parameter β from 0.890 to 0.800 results in a reduction of the AR(1) of the
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put EEP of 32.1 percents ((.171 − .252)/.252) and of the AR(1) of the call of 22.1 percents

((.281−.361)/.361). Since the φ and ρ parameters are likely to be downward biased (Andrews

(1993)), using higher values of these parameters results in even higher serial correlation of

both the call and the put EEPs.

These simulations suggest that the call EEP is particularly sensitive to the level and

the serial correlation of the lump sum dividends. In particular, the ability to simulate an

EEP process that, in the presence of lumpy dividends, is very similar to the data leads us

to conjecture that unexpected fluctuations in the dividend yield process might be captured

by the EEP . This is a hypothesis that we investigate in the next section.

4 The Information Content of the EEP

We have so far established the dependence and sensitivity of the EEP to variations in

dividend yield, volatility, and interest rates. In this section, we address two natural questions.

First, does the EEP contain information related to future returns of the underlying asset?

Second, if such a relation exists, what is its provenance?

4.1 Predictive Regressions

4.1.1 Excess Market Returns

To investigate whether the EEP contains information about future stock returns, we run the

daily predictive regression

Rt+1 = α + βEEPt + γXt + εt+1 (1)
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where Rt+1 is the excess return between the FTSE 100 index return and the one-month UK

treasury rate from t to t + 1, EEPt is the daily call EEP and Xt is a vector of additional

predictive variables observable at t , such as the dividend yield (DYt), the risk-free rate

(Rft ), the implied variance of the at-the-money option (Vart), and the changes in its volume

(∆Vlmt ). The dividend yield along with other variables might not act as perfect predictors

especially at short horizon but they help us understand whether the EEP contains additional

information and provide us a yardstick to measure the information content of the EEP .

The results from different specifications of the regressions are shown in Table 3 Panel

A. In column 1, we display the benchmark case of the dividend yield as the only predictor

of returns, because it has been used as a return predictor in numerous studies (e.g.,

Campbell and Shiller (1988b)) with U.S. data. The coefficient on the dividend yield is

positive but not significant and the variable explains little variation in daily excess returns

because the dividend yield is very smooth as discussed in Valkanov (2003). The t-statistics

reported in parentheses below the estimates are computed using Newey and West (1987)

heteroskedasticity and autocorrelation robust standard errors.

In column 2 of Table 3 Panel A, we add the EEP which measures the relative premium

of American relative to European call options. Its coefficient is positive and statistically

significant. This is one of the main results of the paper. Adding EEP also appears to

improve the model fit as the R2 increases to a modest level of 0.7 percent for a daily predictive

regression. The sign is in line with what we expect from economic intuition and from the

simulations displayed in Figure 1 and Table 2. A higher and persistent EEP implies that

investors expect higher lump sum dividend payments and are ready to pay a higher premium

for American relative to European options.

In column 3 to 5, we incrementally add other variables that are known to predict

returns. In column 3, we include the lagged daily index excess return to test whether the

observed predictability is due to a mechanical serial correlation in returns. The coefficient of
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the lagged return is statistically insignificant but it increases the R2 of the regression. More

importantly, its addition does not diminish the predictive power of the EEP , whose point

estimate and statistical significance are almost unchanged. In column 4, we add the at-the-

money European option implied variance and the risk-free rate. We include a measure of

the conditional variance, because Ghysels, Santa-Clara, and Valkanov (2005b) show that it

is positively related to future returns for the US stock market. The implied variance can also

be interpreted as a proxy for the wildcard option that is included in the EEP . Fleming and

Whaley (1994) model this wildcard premium explicitly and find that it is mostly affected by

the volatility of the at-the-money option. Campbell (1991) argues that the risk-free rate is

also a good predictor of excess returns because it is a proxy for variations of the investment

opportunity set. In Table 3, the volatility and the risk-free rate estimated coefficients have

signs that agree with studies for the US stock market, but they are not statistically significant.

The lack of significance at the one-day horizon of these variables and of the dividend yield

is not surprising, because they are persistent and have low variance and are thus better at

predicting returns at monthly, quarterly, or annual horizons.

Finally, in column 5 we control for lagged changes in FTSE 100 share volume over

the previous day as proxy for liquidity in the FTSE 100 market at day t . Amihud and

Mendelson (1986) and Pastor and Stambaugh (2003) show that liquidity has a large impact

on future returns. In Table 3, high liquidity precedes lower future returns, which is consistent

with previous findings. The change in volume is the only significant variable, in addition to

the EEP . However, it must be noted that the inclusion of the change in volume does not

alter the point estimate or the significance of the EEP . Hence, the EEP ought to capture

information about future returns that is orthogonal to that in the other predictors.

Although the coefficient of the EEP is statistically significant, its magnitude might

appear small when compared to the benchmark forecaster, the dividend yield. To understand

the economic magnitude of the predictability, it is helpful to compare the impact of a one-

standard-deviation shock in each one of these variables to excess returns. A one-standard-
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deviation shock to the dividend yield results in 4.9 basis points (0.350 × 0.022√
252

) increase in

next day’s index return. A similar shock to the EEP produces a 6.5 basis points change

(0.036× 0.018) in next period’s returns.12 Hence, at a daily basis, the economic significance

of the EEP is almost 50 percent higher than that of the dividend yield. The coefficient on

the change in volume is difficult to compare to the EEP because it is not in percents.

To summarize the findings in Table 3, all variables enter with the economically expected

sign in predicting the FTSE 100 index return and replicate studies for the US stock market.

However, the only significant predictor at the daily frequency is the EEP and the changes

in trading volume. Whether the forecasting ability of the EEP is spurious or the result of

various microstructure issues is something we investigate extensively below.

4.1.2 Index Futures Returns

We have shown that the EEP predicts the market excess returns at a daily horizon. However,

there are two potential issues with the FTSE 100 stock index results. First, they may be

due to non-synchronous trading. Indeed, some stocks in the index may not trade in the

closing hour of the market and therefore our results from the cash index may be due to stale

quotes. Second, in our sample period, the stock market trading ceases at 4:30pm and the

options market closes at 4:10pm. Although the stock market closes later than the derivative

markets and we are not using any future information when conducting our prediction study,

it is interesting to investigate whether the return predictability we found is caused by the

movement of the stock market between 4:10pm to 4:30pm. Since this 20-minute window is

also the period when the wildcard option can be exercised, investigating the exact timing

provides us one more way to control the effects of the wildcard option.

We address both of these issues by using the returns of the FTSE 100 index futures.

This futures index is not subject to the non-synchronous trading problem. Table 1 Panel

12The standard deviations of the variables are in Table 1.
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B indicates that the index futures returns exhibit little autocorrelation even at one-day lag.

This implies that the returns of index futures do serve our goal well in mitigating the caveat

of stale prices. This is not surprising because the futures contracts are actively traded with

high liquidity. Moreover, the futures market closes at 4:10pm similarly to the options market.

Table 4 Panel A shows the same predictive regressions that are in Table 3 but the

forecasted variable is the FTSE100 futures, instead of the spot, return. In all specifications,

our main predicting variable, the EEP , is economically and statistically significant. The

coefficients of the EEP are all equal to 0.043 across all specifications and they are about

15% higher than those in the market excess return prediction. Economically, the EEP is

more important in predicting the returns of the index futures and the statistical significance

is comparable with the previous case. All other predicting variables remain insignificant

except the changes in trading volume. One thing worth noting is that the point estimate of

the lagged return is negative and very close to zero. In other words, using the index futures

returns does help us eliminate the non-synchronous trading problem. More importantly, we

clearly see that our predictability is not due to the 20-minute return before the stock market

close. Therefore, it precludes the possibility that the documented predictability is due to

the wildcard option.

In summary, the predictability of the EEP is strengthened in forecasting the index

futures returns. This predictive power is not caused by the wildcard option or potential

non-synchronous trading in the cash index.

4.1.3 Returns at Longer Horizons

We have shown that the EEP predicts the market excess returns and the index futures

returns of the following day. Here we investigate longer horizon predictability for two

reasons. First, it is interesting to see how rapidly information diffuses from the options

market to the underlying asset. Second, it is possible that microstructure-related dynamics
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could potentially generate spurious predictability. In this section, we address these issues

by examining whether the EEP predicts the excess market and the index futures returns at

horizons of two days, three days, and up to two weeks.

In Panel B of Tables 3 and 4 we display the results for excess market returns and index

futures returns. Since the two sets of results are virtually the same, we will focus on the

case of index market returns in Panel B of Table 3. Column one in that panel contains the

results from a forecasting regression of two period returns, Rt+1,t+2. The point estimate

of the EEP is 0.035, slightly lower than the estimate of 0.036 obtained in the one period

regressions. The t-statistics and the R2 are also lower. In column 2 to 4, we present the

results where the forecasted variable is Rt+2,t+3, Rt+3,t+4, and Rt+4,t+5, respectively. The

coefficients of EEPs in these regressions are even lower and become statistically insignificant.

The explanatory powers also declines. The forecastability completely disappears at horizons

longer than three days. Finally in column 5, in the forecast of Rt+6,t+10, the coefficient of

the EEP goes down further and the EEP does not carry any predictive power for the next

week’s weekly return. The high R2 is evidently due to the overlapping of the weekly returns.

The longer horizon results suggest that the forecastability of the EEP is mostly

observable at horizons of one and two days. At longer horizons, the magnitude of the EEP

coefficients decreases gradually and becomes insignificant after two days or so. This pattern

suggests that it takes about one to two days for the stock market to digest the information

in the EEP . The fact that our findings are robust even when we include the lagged returns

makes it unlikely that the result is due to market microstructure effects. Given the results

in this section, from now on we concentrate on one-day returns, Rt+1.

4.2 The Provenance of the Predictability

We conjecture that the predictive power of the EEP , documented in the previous sub-section,

is due to its sensitivity to changes in expectations about future lump sum dividend payments.
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We test this conjecture below using two alternative approaches. The approaches differ with

respect to the identification and frequency of the dividend growth shocks. However, the

empirical results are remarkably similar which indicates that our findings are a robust feature

of the data.

4.2.1 The Campbell-Shiller (1988) Decomposition

The EEP predictability of FTSE 100 returns is at short horizons. In order to identify the

source of this predictability, we use the structural VAR approach of Campbell and Shiller

(1988a) and Campbell (1991). More specifically, we specify a vector zt+1 which contains

the (demeaned) excess FTSE 100 returns, the DYt+1, σ2
t+1, rft+1 and ∆Vt+1. Then we

estimate the VAR, zt+1 = A(L)zt + wt+1 where A(L) = A1 + A2L + A3L
2 + ... + ApL

p−1.

The residuals in vector wt+1 are the one-period ahead forecasting errors. More specifically,

the first term in wt+1, w
(R)
t+1 is the difference between the realized and the forecasted return,

or w
(R)
t+1 = Rt+1 − Et (Rt+1), where Et denotes the conditional expectation formed from the

VAR at the end of period t . However, w
(R)
t+1 has no economic interpretation.

The VAR results are shown in Table 5 where p = 1 and the order of the VAR was chosen

with sequential pre-testing. The first column is similar to Table 3 with the exception that

the EEP is omitted from the system. We do not include the EEP in the VAR because our

goal is to understand whether it forecasts Et (Rt+1) or some components of wt+1. Including

the EEP in the VAR would imply that, by construction, it would be uncorrelated with

the residuals wt+1 and it would be correlated with Et(Rt+1). There are also economic

reasons for not including the EEP in the set of conditioning information. First, the EEP

is not directly observable for most assets. Unlike the dividend yield, the short rate or the

conditional variance, it is virtually inaccessible to investors. Second, as argued above, the

EEP is unlikely to be a good proxy for expected returns as are the other variables in the

VAR.
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Following Campbell and Shiller (1988b) and Campbell (1991), we use a linearized

version of the dynamic Gordon growth model to decompose unexpected returns into

innovations due to changes in dividend growth, changes in discount rates, and changes in

interest rates. If rft is the log risk-free rate and d is the log dividend, then we can write

w
(R)
t+1 = Rt+1 − Et (Rt+1)

= (Et+1 − Et )
∞∑

j=0

ρj ∆dt+1+j − (Et+1 − Et )
∞∑

j=0

ρj rft+1+j − (Et+1 − Et )
∞∑

j=0

ρjRt+1+j

= ηd ,t+1 − ηRf ,t+1 − ηR,t+1, (2)

where ∆ denotes a one-period difference, and the linearization parameter ρ is a constant

related to the long-run dividend yield and it is smaller than 1. This equation has the

following economic interpretation. If the unexpected return is positive, then either expected

future dividend growth ηd ,t+1 must be higher than previously expected, or the risk-free rate

ηRf ,t+1 must be lower than expected, or the excess future returns ηR,t+1 must be lower than

expected, or any combination of these three must hold true.

After estimating the VAR, the ex-post return is Rt+1 = Êt (Rt+1) + η̂d ,t+1 − η̂Rf ,t+1 −

η̂R,t+1 where “ˆ” denotes the estimated values. Since Rt+1 is forecastable by the EEP , it

is interesting to investigate where the forecastability is coming from. We note that while

Êt (Rt+1) is uncorrelated by construction with η̂d ,t+1, η̂Rf ,t+1, and η̂R,t+1, the latter three

shocks to returns are correlated.

To disentangle the source of the predictability, we regress the four components of

realized return, Êt(Rt+1), η̂d ,t+1, η̂Rf ,t+1, and η̂R,t+1 on the previous day EEP . The results

from these regressions are reported in Table 6. The EEP forecasts changes in the dividend

growth process. The coefficient in front of η̂d ,t+1 is positive and significant. These results

are in agreement with economic intuition and the simulation results in section 3. Higher

unexpected lump sum dividends lead to a larger American option premium and larger EEP ,
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as the American contract is more likely to be exercised prior to the ex-dividend date in order

to take advantage of the larger dividend payout. As we will see below, this result is a robust

feature of the data. This finding is also consistent with the findings in Amin and Lee (1997),

who document that option traders initiate a greater proportion of long (short) positions a

few days before good (bad) earning news.

The EEP does not forecast changes in expected excess returns. The coefficient on

η̂R,t+1 in Table 6 has a positive but insignificant sign. The sign of the coefficient in front

of η̂Rf ,t+1 is negative but also insignificant, which implies that an increase in the EEP

leads to an (insignificant) increase in future returns through an unexpected lowering of the

interest rates.13 Finally, the EEP is negatively correlated with forecasted next day returns,

Êt (Rt+1). The coefficient is negative and is only significant at the ten percent level. The

negative estimate is probably due to the fact that the forecasted daily returns are a noisy

proxy of expected returns, which are better estimated at longer horizons. The sub-sample

findings presented in Table 6 will be discussed in the robustness section.

If we take the results from Table 6 at face value, the forecasting ability of the EEP is

due to its significant correlation with future changes in dividend growth. To understand the

economic significance of this correlation, we compute the effect of a one standard deviation

shock of EEP on subsequent returns. For the dividend growth, this is 7.2 basis points

(0.040 × 0.018). The standard deviation of η̂d ,t+1 in the VAR is 97 basis points. In other

words, a one standard deviation shock of EEP leads to an almost 10% change of the volatility

of η̂d ,t+1.

4.2.2 An Alternative Method

We have thus far showed that the EEP forecasts future changes in the dividend growth

process, where the innovations in dividend growth were obtained using the Campbell and

13Lower unexpected interest rates lead to higher returns. Note that η̂Rf ,t+1 enters with a negative sign in
equation (2).
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Shiller (1988a) VAR decomposition. It is reasonable to ask whether this decomposition

accurately identifies the dividend growth innovations in returns. To answer this question, we

take a more direct empirical approach at isolating dividend growth shocks. Using the FTSE

100 dividends, Dt , we construct a series of dividend growth rate, DGt = log(Dt)− log(Dt−1).

The dividends are available on the ex-dividend date for the FTSE 100 index. If the hypothesis

that the EEP contains information about future dividend growth rates is correct, then the

daily EEP series must forecast fluctuations in the DGt series. The advantage of this approach

is that the DGt series is directly observable and does not have to be identified from the returns

series.

Two obstacles stand in our way of investigating more directly whether the EEP

forecasts fluctuations in dividend growth rates. First, as mentioned above, the lumpy DGt

series are available at bi-weekly frequency, whereas the EEP series are daily. Aggregating

the EEP to a bi-weekly horizon is not suitable in this case, because as shown in Table 3, the

forecasting relation occurs at frequencies of no more than a couple of days. In other words,

running the forecasting regressions at bi-weekly frequency would obfuscate the daily lead-lag

effect. Second, there are seasonalities in the dividends and dividend growth processes, which

might produce spurious correlation in a forecasting relation.

To address both of these concerns, we use the following mixed data sampling (MIDAS)

regressions (Ghysels, Santa-Clara, and Valkanov (2005b)).

DGHt = α + φ(L)DGH (t−1) + γ

K∑

k=1

β(k , θ)EEPt−k + et (3)

where φ(L) = 1 + φ1L + φ2L
2 + . . . φpL

p is a polynomial in L of order p. The subscript of

DGHt reflects the fact that the dividend growth rate is available only once every H periods.

In our case, H = 10 or the dividend growth rate is observable once every two weeks. The

AR(p) component captures seasonal components in DGHt . The second part of the regression,

γ
∑K

k=1 β(i , θ)EEPt−k , is the MIDAS term. In that expression, we use lagged daily EEPs
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to forecast the bi-weekly dividend growth rates. In other words, the dividend growth rate

of, say, July 1st, 1995 will be regressed on p own lags as well as on lagged daily EEP rates

starting June 30th and going back K days.

Since the number of lagged daily EEPs needed to capture the dynamics of the dividend

growth rate might be large, the unrestricted specification of the weights results in a lot

of parameters to estimate. The cost of parameter proliferation is that the estimates will

be estimated imprecisely and the regression will produce poor out-of-sample forecasts. To

reduce the number of coefficients to estimate, we follow the MIDAS regression approach and

parameterize the lags in front of the EEPt−k using a function β(k , θ). The lag function is

parsimoniously parameterized and its parameters are collected in a vector θ. Ghysels, Santa-

Clara, and Valkanov (2005a) show that a suitable parameterization β(k , θ) circumvents

the problem of parameter proliferation and of choosing the truncation point K . We also

normalize the weights β(k , θ) to add up to one, which allows us to estimate a scale parameter

γ. The normalization is useful because γ captures the overall predictive power of lagged

EEPs, while the dynamics of the EEPs is captured by the weights.

In general, there are many ways of parameterizing β(k , θ). We focus on the Beta

function specification (also used by Ghysels, Santa-Clara, and Valkanov (2005a)), which

has only two parameters, or θ = [θ1; θ2]:

β(k , θ) =
f ( k

K , θ1; θ2)∑K
j=1 f ( j

K , θ1; θ2)
(4)

where f (z , a, b) = z a−1(1 − z )b−1/β(a, b) and β(a, b) is based on the Gamma function,

or β(a, b) = Γ(a)Γ(b)/Γ(a + b). The flexibility of the Beta function is well known. The

function is often used in Bayesian econometrics to impose flexible, yet parsimonious prior

distributions. It can take many shapes, including flat weights, gradually declining weights as

well as hump-shaped patterns. While MIDAS regressions are not limited to Beta distributed

lag schemes, for our purpose we focus our attention on this specification. We refer to Ghysels,
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Santa-Clara, and Valkanov (2004, 2005b) for alternative weight specifications.

The predictive MIDAS regression (3) and (4) is estimated by quasi maximum likelihood

and the results are reported in Table 7. In the first column, we report the baseline case of

regressing the dividend growth rate on three of its lags with no lagged EEPs (no MIDAS

terms). The order of the lags was selected by sequential pre-testing. The estimated lag

coefficients are all significant which confirms our assertion that the dividend series contain

seasonal components. The R2 of this regression is 0.297.

In the second column of Table 7, we add the lagged daily EEPs, where K is set to

45 days, or two months’ worth of daily returns.14 If the conjecture that the early exercise

premium contains information about future dividend growth is correct, then we expect the γ

coefficient to be positive and statistically different from zero. Consistent with this conjecture,

we obtain a γ estimate of 3.093. This estimate is statistically significant at the 1 percent

level. A joint F-test of the significance of all the MIDAS parameters (γ, θ1, and θ2) being

equal to zero is also statistically significant at the 1 percent level. Since the β(k , θ) function

is normalized to sum to one, we can interpret the coefficient estimates of γ as the total

impact of the lagged EEPs on future dividend growth.

The parameter estimates θ1, and θ2 are difficult to interpret because they have no

economic meaning. In contrast, the shape of the polynomial β(k , θ) has a clear economic

interpretation. It captures the rate at which information is incorporated from the EEPs into

the dividend growth component. The shape can be interpreted as the impulse response of

the dividend growth rate to EEP fluctuations. The estimated β(k , θ) plotted as a function

of the daily lags is displayed in Figure 2 using estimates of θ1, and θ2 from Table 7. A few

interesting findings emerge.

First, most of the mass is concentrated on only four to five daily EEPs, which suggests

that the predictability is at short horizons. Otherwise, we would expect to see more weight

14We experimented with K as large as 130 days (about 6 months) and the results were almost identical.
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on a larger fraction of lagged EEPs. Second, the location of the mass is on EEPs between

15 and 18 days before the ex-dividend date. Dividend payments for the FTSE 100 index

stocks are announced between 10 to 15 days before the ex-dividend date. That period is

represented in shaded pattern on the figure. The shape of the estimated weights clearly

shows that most of the predictability occurs right before the announcement period, which

suggests that our MIDAS procedure accurately captures the timing of when information is

incorporated into prices. To summarize the findings in the figure, the concentration of the

mass and the location of the weights corroborate the evidence from the previous section that

the predictability is at short horizons and it is due to news about dividend growth rates.

4.3 Discussion and Related Literature

The EEP forecasts the underlying returns at short horizons. Moreover, its predictive ability

is related mostly to innovations to the dividend growth component of returns rather than

discount rates or expected returns. Both of these findings are consistent with the view that

information about future cash flows is first revealed in option prices rather than in the price

of the underlying security. This result is consistent with Black’s (1975) view that informed

investors prefer to trade in the options market. Moreover, the very short horizon nature

of the predictability indicates that while information does not flow instantaneously between

the options and the underlying markets, it is incorporated quite efficiently.

Informed trading might be even more prominent in individual stocks than in the stock

index. However, on any ex-dividend date, at most a fraction of the companies go ex-dividend.

From that perspective, trading in the index is a close but not perfect substitute to trading

in the individual stock with a lower price impact. Also, the predictability that we observe

at the index level is likely to be an attenuated version of the information diffusion we would

observe if we had data for individual stock options. Unfortunately, as mentioned above, the

FTSE 100 index is the only asset with comparable European and American option contracts.
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The daily lag in the information flow is consistent with Sims (2001) and Shiller (2000)

who explore the implications of limited information-processing capacity for asset prices.

These authors argue that investors, rather than possessing unlimited-processing capacity,

are better characterized as being only boundedly rational. The inability of investors to

immediately incorporate all relevant information into prices gives rise to short horizon

predictability across markets. Hong, Torous, and Valkanov (2004) make a similar point

by linking the slow diffusion of cash flow information across industries to short horizon

cross asset return predictability. We are the first to document a similar phenomenon in

the options market, by linking the underlying return predictability to the EEP ’s ability to

forecast mainly innovations to dividend growth.

Our paper is related to several others that use option market information to forecast

underlying returns. Manaster and Rendleman (1982) show that if we take the volatility as

given and impute the implied stock prices from the options, this implied stock price will

predict future stock return by one day. Anthony (1988) shows that shocks to option trading

volume leads shocks to stock trading volume by one day. However, Stephan and Whaley

(1990), Chan, Chung, and Johnson (1993) and others find no evidence that price changes

in option markets lead price changes in the underlying. Easley, O’Hara, and Srinivas (1998)

find that option market volume predict underlying returns which is consistent with the view

that informed investors trade in the options market. Pan and Poteshman (2004) also find

that option trading volume contains information about future stock price movements and

argue that the source of the predictability is non-public information possessed by option

traders. In relation to previous work, the novel contributions of this paper are: (i) the

introduction of the call EEP as a short horizon predictor of the underlying return; (ii) to

argue for the economic reasons behind the predictability; and (iii) to provide supporting

empirical evidence that link the predictability to news about future cash flows.

The presented evidence may also be used to sharpen theoretical discussions that have

followed Black (1975). For instance, Biais and Hillion (1994) show that theoretically the
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option market can be more or less informative about the underlying asset’s payoff depending

on the modeling assumptions. Moreover, Easley, O’Hara, and Srinivas (1998) show that,

under certain conditions a pooling equilibrium exists where some informed traders choose

to trade in both the options market and the underlying market. Their theoretical results

in general support Black’s intuition that the options market might convey some distinctive

information. However, as Back (1993) pointed out, if the options market as well as the

underlying market both work as in Kyle (1984), trades in the options will move the underlying

market as well. However, our specific trading strategy has the property that it is neutral in

the option market. It is long an American call and short an European call. If the American

and European contracts have similar price impacts on the underlying market, then the long

and short position will have virtually no price impact on the underlying index. Therefore

the underlying market will not react immediately, which induces the lead lag relationship.

An alternative explanation for our findings might be that the early exercise premium is

purely driven by irrational financial market behavior which also has an impact on underlying

returns. While there is some evidence that individual customers engage in irrational

exercising of options, Poteshman and Serbin (2003) show that larger traders exhibit no

irrational exercise behavior. Hence, this is not a compelling explanation for the FTSE

100 index options which are widely held and traded by both individuals and institutional

investors.

5 Robustness

In this section, we provide several robustness checks of the main results in Tables 3 and

6. Some of these tests are motivated by economic theory, while others address statistical

concerns.
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5.1 Subsamples: Pre- and Post-1994

To investigate the stability of our predictability results, we break the 1992-1996 sample

into two sub-samples: June, 1992 to July 18, 1994 and July 19, 1994 to January 12, 1996.

The July 19, 1994 break date was chosen for two reasons. First, the exchange changed its

settlement system on that date and this resulted in a substantial change in the effect of short-

selling restrictions. This change might affect the hedging and therefore the trading behavior

of options.15 Second, this date splits our sample into sub-samples with approximately equal

number of observations.

Table 8 presents the predictive regression results in the two sub-sample periods. The

entire sample results (from Table 3) are also displayed in the first column for convenience.

We observe that the EEP predicts future FTSE 100 returns in both sub-samples even after

controlling for all other commonly used predictors. Interestingly, the point estimates of the

EEP coefficient in the sub-samples, 0.038 and 0.048, are very similar to that of the entire

sample, 0.036. Importantly, the estimates remain statistically significant despite the short

sub-samples. The slight reduction in the t-statistics is undoubtedly due to the fact that we

have fewer observations in the two sub-periods, which decreases the power of our tests.

The stability of the forecasting relation that we document is quite remarkable,

especially at short horizons. For instance, we notice that none of the other variables predict

the FTSE 100 in both sub-samples. The coefficient on change in volume which was significant

in the entire sample is also significant in the first subsample, but not in the second one.

To investigate whether the predictability in sub-samples is due to unexpected

fluctuations in dividend growth, we re-do the VAR decompositions and present the results

15Prior to July 18, 1994, the LSE followed a fixed date (rather than fixed period) settlement regulation,
in which all transactions within a two or three week “account settlement period” were settled on the second
Monday of the following account settlement period, making ex-dividend dates two or three weeks apart.
After July 18, 1994, even though the settlement system changed to settle 5 trading days after a transaction,
ex-dividend dates have largely continued the historical practice of being only on the first day of the week,
and typically every two weeks.
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in the bottom two rows of Table 6. The results for the sub-periods are that higher EEP

predicts higher future dividends. The EEP does not predict any of the other components in

both sub-samples. These results are is in agreement with the findings from the whole sample

and also with economic intuition. Remarkably, the point estimates in the sub-samples, 0.058

and 0.058, respectively, are identical to each other (to the third digit) and are also similar to

the estimate from the entire sample, 0.040. In the first sub-sample, the coefficient on η̂d ,t+1

is significant only at the 10 percent, probably because of the lack of power of the test in the

short sample.

The sub-sample results in Tables 6 and 8 lead us to conclude that the predictive ability

of the EEP is a robust feature of the data.

5.2 Put EEP Results

Thus far, our focus has mainly been on the call EEP , even though the dividend yield also

has an impact on the EEP of put options. The concentration on the call EEP was guided

by two main reasons. First, the EEP of put options are positive even when the underlying

security does not pay dividends or when the dividend stream is continuous. In contrast, a

positive call EEP can arise only when dividends are paid in lump sums. To put it differently,

American put options can be optimally exercised earlier than maturity for reasons other than

lumpy dividends. Therefore, the put EEP is not as sensitive and unambiguous an indicator

of expected future dividends as is the call EEP . The second reason for not including put

EEP in our main analysis is that higher dividend yields increase the cost of early exercising

put options, all else equal. Indeed, we have seen in Figure 1 that the dividend yield impacts

the EEP of call and put options in opposite directions.

With these arguments in mind, we expect that the predictive ability of the put EEP

will be lower than that of the call EEP and the sign on the predictor will be reversed. In

Table 9, we use the put EEP to run the same predictive regression as we did with the call
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EEP (Table 3). As expected, the coefficient on the put EEP is negative, because higher

put EEP indicates lower expected future dividends, everything else equal. Also expected

is the fact that the put EEP coefficient is not statistically significant. While the point

estimates are stable in the sample and across sub-samples, the t-statistics are never above

one. As anticipated, the put EEP is a much noisier predictor of the underlying stock’s

returns, because it is a function of many other variables in addition to dividends.

The put EEP results serve as an additional robustness check that our findings are not

spurious. Indeed, it may be argued that the predictability is due to market micro-structure

differences between the options and the underlying market. The fact that we don’t observe

the predictability with put EEP is a clear demonstration that our results are not due to such

automatic correlations and indirectly supports our main premise.

5.3 Alternative EEP Aggregation Methods

In the construction of our EEP variable, we do not control for the time-to-maturity of each

contract. While the EEP certainly depends on the time span of the options, this dependence

is complicated by the timing and lumpiness of the dividend payments and is therefore highly

non-linear.

As an attempt to investigate the impact of the time-to-maturity on our results, we

provide the following simple, albeit not fully satisfactory, robustness check. For every trading

day, we linearly interpolate the EEPs of all the matched pairs on that day in the moneyness

and time-to-maturity space and use the fitted value of the EEP at the moneyness equal to

1 and time-to-maturity equal to 1-month as the EEP measure for at-the-money constant

maturity option on that day. With this new interpolation, we construct a time series of 894

daily EEPs. The daily interpolated, constant-maturity EEPs are denoted by EEPMat
t . As an

alternative measure of the daily EEPs, we construct a daily EEP measure by averaging the

EEP of all contracts every day. This daily averaged EEP serves as yet another robustness
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check. The daily averaged EEP is denoted by EEPAvg
t .

Panels A and Panel B in Table 10 contain the results from the predictive regressions

with these two new EEP forecasters. The predictive regressions also include the other

forecasting variables. We provide the results for the entire sample as well as for the two

sub-samples. The results in Table 10 are very similar to those of the previous tables in terms

of magnitudes of the estimates as well as statistical significance. These additional robustness

checks are reassuring that our results are not driven by the particular construction of the

EEP .

6 Conclusion

In this paper, we use the call EEP to examine the information flow between the stock market

and the derivative market. We first show that the empirically observed level and serial

correlation of the EEP can be reproduced when the dividend yield process is lumpy and

persistent. Therefore, it is reasonable to suspect that the observed EEP reflects the market

participants’ expectation about future dividends. We explore the information content of

the EEP by asking whether the EEP forecasts the FTSE 100 index return. Based on the

estimation results of time-series regression models, we further identify the source of this

predictability.

Our results show that in a time-series regression the EEP predicts the underlying

FTSE 100 index at daily horizon. Economically this forecasting relationship is about 50%

higher than the widely used benchmark, the dividend yield. The economical and statistical

significance is robust to the addition of other control variables. We conjecture that the

EEP predicts the underlying asset’s return because it is a forward-looking variable that

contains the information about expected future dividends. We verify this hypothesis by

decomposing the realized returns into expected returns and three different components of
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unexpected returns and find that the EEP indeed predicts the dividend shock component

of the index return. This result confirms our hypothesis that the EEP reflects the option

market’s expectation about future fundamentals.

Traditional literature has studied the information flow between the options market

and underlying asset market through option prices, volume and signed volume. Our study

introduces the EEP as a short-horizon predictor of underlying returns, and links this

forecastability to the fundamentals of the underlying market. This link provides a clear

support for the Black (1975) conjecture that informed investors prefer to trade on their

information about fundamentals in the options market rather than the underlying market.
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Table 1: Summary Statistics

Panel A reports the summary statistics for all the variables. EEPCall and EEPPut represent the EEP of call
and put options. Rt is the FTSE 100 index return. Rfut

t is the FTSE 100 index futures return. DYt is the
one-month moving average of the dividend yield. Rft is the one-month stochastic detrended risk free rate.
Vart is the implied variance of the closest to the money European call option. ∆Vlmt is the change in share
volume in million. All variables except ∆Vlm are annualized. Panel B shows the partial autocorrelations
of the call EEP , the put EEP , the index return, and the index futures return. The t-statistics are in the
parentheses.

Panel A: Summary Statistics

Mean Std Skewness Kurtosis Observations
EEPCall 0.035 0.018 2.052 9.120 894
EEPPut 0.076 0.043 2.384 10.491 894
Rt 0.096 0.125 0.210 2.663 916
Rfut

t 0.055 0.146 -3.082 3.892 916
DYt 0.040 0.022 0.806 0.401 916
Rft -0.001 0.004 -1.818 4.108 916
Vart 0.025 0.011 1.442 5.911 894
∆Vlmt 0.030 0.248 3.852 22.219 916

Panel B: Partial Autocorrelations of EEPs and Returns

Lag EEPCall EEPPut Rt Rfut
t

1 0.377 0.250 0.059 -0.018
(3.840) (4.213) (1.889) (-0.540)

2 0.184 0.223 0.045 -0.007
(3.232) (4.825) (0.964) (-0.198)

3 0.128 0.089 -0.022 -0.034
(3.905) (4.100) (-1.073) (-1.000)

4 0.009 0.165 0.032 0.005
(0.152) (4.633) (0.628) (0.135)

5 0.006 0.096 0.021 0.023
(0.482) (3.569) (0.542) (0.695)

10 0.074 0.043 0.004 -0.005
(3.512) (1.000) (0.033) (-0.159)

20 -0.020 0.025 0.017 0.023
(-0.494) (0.747) (0.555) (0.676)
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Table 2: Simulating the Dynamics of the EEP

This table reports the dynamics of the EEP for calls and puts when the options are priced using numerical
valuation. Its purpose is to illustrate the serial correlation in the EEP for various persistence levels of
the underlying dividend yield, interest rate, and volatility processes. The parameters α and β are the
GARCH(1,1) coefficients for the underlying asset’s volatility. φ and ρ are the AR(1) coefficients for the
risk-free rate and the dividend yield, respectively. Each sample simulates 1000 steps of the underlying asset.
The EEPs for calls and puts are calculated and the AR(1) coefficients are obtained from the calculated
results.

σ2
t Rft DYt EEPCall EEPPut

α β φ ρ AR(1) AR(1)
0.104 0.890 0.992 0.906 0.361 0.252

0.104 0.800 0.992 0.906 0.281 0.171
0.104 0.700 0.992 0.906 0.240 0.070

0.104 0.890 0.900 0.906 0.117 0.020
0.104 0.890 0.800 0.906 0.095 0.016

0.104 0.890 0.992 0.800 0.084 0.099
0.104 0.890 0.992 0.700 0.073 0.036
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Table 3: Predictive Regressions of Index Excess Returns

This table reports predictive regressions of excess returns by the early exercise premium and other forecasters
for different horizons. The dependent variables are the excess return of the FTSE 100 index. DYt is the
one-month moving average of the dividend yield. EEPCall

t is the early exercise premium of call options.
Rt is the FTSE 100 index excess return (lagged). Vart is the implied variance of the closest to the money
European call option. Rft is the one-month stochastically detrended risk free rate. ∆Vlm is the change
in share volume (in million shares). The t-statistics in parentheses are corrected for hetroskedasticity and
autocorrelation. Panel A compares the predictive regression of the next day’s index excess returns under
different specifications. Panel B examines the return predictability at longer horizons of up to two weeks
using all the predictors (most exhaustive specification from Panel A). The numbers in the square brackets
indicate the number of days the returns leading all the explanatory variables. For example, the column
labeled [2, 3] shows the regression of Rt+2,t+3 on all the explanatory variables at time t .

Panel A: Index Excess Returns

DYt 0.511 0.350 0.492 0.313 0.490
(0.162) (0.111) (0.165) (0.104) (0.163)

EEPCall
t 0.036 0.038 0.039 0.036

(2.623) (2.783) (2.872) (2.890)
Rt 0.074 0.071 0.078

(1.432) (1.345) (1.476)
Vart 5.717 5.716

(0.830) (0.827)
Rft -5.076 -3.630

(-0.321) (-0.229)
∆Vlmt -0.512

(-2.239)
R2 0.000 0.007 0.012 0.014 0.018

Panel B: Longer Horizons

[1, 2] [2, 3] [3, 4] [4, 5] [6, 10]
DYt 0.917 0.249 -3.234 -2.075 1.437

(0.300) (0.079) (-0.993) (-0.702) (0.743)
EEPCall

t 0.035 0.021 0.011 0.028 0.011
(2.623) (1.528) (0.826) (1.740) (1.224)

Rt 0.043 -0.023 0.019 0.014 -0.035
(1.208) (-0.616) (0.519) (0.388) (-1.950)

Vart -1.219 4.780 6.527 16.699 7.847
(-0.140) (0.553) (0.753) (1.724) (1.112)

Rft -15.267 -5.602 -3.371 8.125 -5.128
(-0.947) (-0.350) (-0.203) 0.489 (-0.476)

∆Vlmt 0.275 0.119 0.348 0.015 -0.103
(0.959) (0.598) (1.680) (0.064) (-1.182)

R2 0.010 0.004 0.006 0.012 0.020
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Table 4: Predictive Regressions of Index Futures Returns

This table reports predictive regressions of excess futures returns by the early exercise premium and other
forecasters for different horizons. This table is similar to Table 3 above with the exception that the dependent
variable is the return of FTSE 100 futures contracts rather than the index itself. DYt is the one-month moving
average of the dividend yield. EEPCall

t is the early exercise premium of call options. Rfut
t is the FTSE 100

return of the futures contract (lagged). Vart is the implied variance of the closest to the money European call
option. Rft is the one-month stochastically detrended risk free rate. ∆Vlm is the change in share volume (in
million shares). The t-statistics in parentheses are corrected for hetroskedasticity and autocorrelation. Panel
A compares the predictive regression of the next day’s index excess returns under different specifications.
Panel B examines the return predictability at longer horizons of up to two weeks using all the predictors
(most exhaustive specification from Panel A). The numbers in the square brackets indicate the number of
days the returns leading all the explanatory variables. For example, the column labeled [2, 3] shows the
regression of Rt+2,t+3 on all the explanatory variables at time t .

Panel A: Returns of the Index Futures

DYt 1.972 1.777 1.768 1.819 2.032
(0.543) (0.493) (0.488) (0.504) (0.563)

EEPCall
t 0.043 0.043 0.043 0.043

(2.659) (2.623) (2.663) (2.679)
Rfut

t -0.013 -0.012 -0.005
(-0.363) (-0.331) (-0.129)

Vart -2.135 -2.205
(-0.277) (-0.286)

Rft -10.175 -8.431
(-0.550) (-0.455)

∆Vlmt -0.644
(-2.385)

R2 0.000 0.008 0.008 0.008 0.013

Panel B: Longer Horizons

[1, 2] [2, 3] [3, 4] [4, 5] [6, 10]
DYt 1.701 1.274 -3.080 -1.989 0.910

(0.490) (0.354) (-0.853) (-0.583) (0.450)
EEPCall

t 0.036 0.017 0.010 0.025 0.009
(2.379) (1.099) (0.585) (1.516) (1.050)

Rfut
t -0.016 -0.035 -0.005 0.024 -0.038

(-0.429) (-0.965) (-0.140) (0.676) (-2.474)
Vart -2.025 1.377 5.480 10.206 4.901

(-0.215) (0.156) (0.624) (1.097) (0.811)
Rft -14.135 -5.043 -1.478 7.417 -6.021

(-0.781) (-0.288) (-0.081) (0.412) (-0.549)
∆Vlmt 0.329 0.260 0.391 -0.021 -0.111

(0.950) (1.018) (1.661) (-0.074) (-1.156)
R2 0.008 0.003 0.004 0.005 0.015
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Table 5: VAR Results

The table contains the vector autoregression (VAR) estimates of A in zt+1 = Azt + wt+1 where the vector
zt is demeaned and is defined as zt = [Rt ,DYt ,Vart ,Rft , ∆Vlmt ]′. Rt is the FTSE 100 index excess return.
DYt is the one-month moving average of the dividend yield. Vart is the implied variance of the closest to
the money European call option. Rft is the one-month stochastically detrended risk free rate. ∆Vlmt is
the change in share volume in million. The order of the VAR was chosen with sequential pretesting. The
t-statistics in parentheses are corrected for hetroskedasticity and autocorrelation.

Rt+1 DYt+1 Vart+1 Rft+1 ∆Vlmt+1

Rt 0.071 -0.0001 4.832× 10−5 -3.805× 10−6 0.003
(1.341) (-0.316) (0.167) (-0.102) (0.688)

DYt 0.536 0.907 0.007 -0.001 0.713
(0.176) (51.877) (0.681) (-0.172) (2.041)

Vart 5.512 0.035 0.708 -0.012 -1.989
(0.781) (0.892) (14.852) (-1.477) (-2.812)

Rft -1.306 0.061 -0.206 0.965 -0.089
(-0.082) (0.823) (-1.522) (48.303) (-0.073)

∆Vlmt -0.506 -0.001 -0.002 -0.0003 -0.102
(-2.210) (-1.482) (-2.791) -0.897 (-3.683)

R2 0.010 0.824 0.555 0.877 0.020
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Table 6: Identifying the Source of the Forecastability

This table reports the regressions of different components of returns on the EEP . Êt (Rt+1) is the fitted
value from the VAR regression. η̂R,t+1 represents news about future excess returns. η̂d,t+1 represents news
about cash flow. η̂Rf ,t+1 represents news about risk-free rate. All these four components are regressed on
the call option EEP at time t . The t-statistics in parentheses are corrected for hetroskedasticity and serial
correlation.

Sample Period ŵR
t+1 Êt (Rt+1)

η̂d,t+1 η̂R,t+1 η̂Rf ,t+1

6/1/92 to 1/12/96 0.040 -0.000 0.001 -0.003
(2.642) (-0.394) (0.460) (-1.714)

R2 0.007 0.000 0.000 0.005

6/1/92 to 7/18/94 0.058 0.001 0.02 -0.004
(1.752) (0.730) (0.879) (-1.232)

R2 0.005 0.000 0.001 0.004

7/19/94 to 1/12/96 0.058 -0.000 0.012 -0.001
(2.376) (-1.564) (1.793) (-0.734)

R2 0.016 0.005 0.004 0.002
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Table 7: Dividend Growth Forecast: MIDAS Regression

This table shows results for the following mixed-data sampling (MIDAS) of the bi-weekly dividend growth
rate (DGt ) on its own lags and lags of daily call EEPs. DGt = α+φ(L)DGt−1+γ

∑K
k=1 β(k , θ)EEPt−k/14+et .

Details about the MIDAS regression are in the text. The t-statistics are in parentheses. The F -statistic
tests the MIDAS model against the benchmark model in column 1 under the null hypothesis that lagged call
EEPs do not forecast the dividend growth rate. The F -statistic is shown and its p-value is in parentheses.

DGt−1 -0.286 -0.289
(-3.019) (-3.056)

DGt−2 -0.534 -0.540
(-4.886) (-4.942)

DGt−3 -0.606 -0.617
(-6.877) (-6.995)

γ 3.093
(21.525)

θ1 289.014
(1.385)

θ2 500.000
(1.406)

R2 0.297 0.326
F 4.766

(0.004)
Sample Size 116 116
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Table 8: Predictive Regression in Subsamples

This table reports predictive regressions of excess futures returns by the early exercise premium and other
forecasters for different sub-sample periods. In Panel A, the forecasted variable is the index excess return,
whereas in Panel B, it is the index futures contract return. DYt is the one-month moving average of the
dividend yield. EEPCall

t is the early exercise premium of call options. Vart is the implied variance of the
closest to the money European call option. Rft is the one-month stochastic detrended risk free rate. ∆Vlm
is the change in share volume in million. The first column shows the whole sample period and the next two
columns display the result for the two sub-samples. The choice of the sub-samples is explained in the text.
The t-statistics in parentheses are corrected for hetroskedasticity and autocorrelation.

Panel A: Index Excess Return

Sample period 6/1/92 to 1/12/96 6/1/92 to 7/18/94 7/19/94 to 1/12/96
DYt 0.490 -1.350 1.480

(0.163) (-0.294) (0.349)
EEPCall

t 0.036 0.038 0.048
(2.890) (2.117) (2.118)

Rt 0.078 0.107 0.020
(1.476) (1.489) (0.359)

Vart 5.716 6.646 11.849
(0.827) (0.742) (0.892)

Rft -3.630 5.273 -32.259
(-0.229) (0.221) (-0.703)

∆Vlmt -0.512 -0.898 -0.042
(-2.239) (-3.085) (-0.130)

R2 0.018 0.022 0.016
Sample Size 894 528 376

Panel B: Index Futures Return

Sample period 6/1/92 to 1/12/96 6/1/92 to 7/18/94 7/19/94 to 1/12/96
DYt 2.032 1.336 2.924

(0.563) (0.245) (0.574)
EEPCall

t 0.043 0.041 0.056
(2.679) (2.026) (1.903)

Rfut
t -0.005 0.028 -0.059

(-0.129) (0.582) (-1.039)
Vart -2.205 -3.866 4.643

(-0.286) (-0.415) (0.288)

Rft -8.431 -7.553 -9.087
(-0.455) (-0.293) (-0.161)

∆Vlmt -0.644 -1.051 -0.0148
(-2.385) (-3.158) (-0.364)

R2 0.013 0.017 0.016
Sample Size 894 528 376
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Table 9: Robustness Check: Put Results

This table reports the predictive regression of return using the put EEP (instead of call EEP). The dependent
variable is the excess return of the FTSE 100 index. DYt is the one-month moving average of the dividend
yield. EEPPut

t is the early exercise premium of put options. Rt is the (lagged) FTSE 100 index excess
return. Vart is the implied variance of the closest to the money European call option. Rft is the one-
month stochastically detrended risk free rate. ∆Vlm is the change in share volume in million. The first
column shows the whole sample period and the next two columns show the result for two sub-samples. The
t-statistics in parentheses are corrected for hetroskedasticity and autocorrelation.

Sample period 6/1/92 to 1/12/96 6/1/92 to 7/18/94 7/19/94 to 1/12/96
DYt 1.813 0.452 1.668

(0.614) (0.102) (0.400)
EEPPut

t -0.007 -0.008 -0.006
(-0.926) (-0.939) (-0.440)

Rt 0.063 0.085 0.020
(1.276) (1.285) (0.365)

Vart 10.870 12.771 12.301
(0.949) (1.020) (0.411)

Rft -2.312 -0.008 -33.606
(-0.120) (0.000) (-0.722)

∆Vlmt -0.474 -0.798 -0.069
(-2.081) (-2.751) (-0.216)

R2 0.012 0.020 0.004
Sample Size 894 528 376
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Table 10: Predictive Regression under Alternative EEP Aggregation

This table presents the predictive regression of the future return under alternative EEP aggregation methods.
The dependent variables are the excess return of the FTSE 100 index. DYt is the one-month moving average
of dividend yield. EEPMat

t is the early exercise premium of call options aggregated daily by interpolating
both moneyness and time to maturity. EEPAvg

t is the early exercise premium of call options aggregated daily
by averaging the EEP of all contracts. Rt is the FTSE 100 index excess return. Vart is the implied variance
of the closest to the money European call option. Rft is the one-month stochastic detrended risk free rate.
∆Vlm is the change in share volume in million. The first column shows the whole sample period and the
next two columns show the result for the two halves of the sample. The t-statistics in the parentheses are
corrected for hetroskedasticity and autocorrelations.

Panel A: EEP Controlled for Maturity

Sample period 6/1/92 to 1/12/96 6/1/92 to 7/18/94 7/19/94 to 1/12/96
DYt 0.877 -0.945 1.761

(0.291) (-0.204) (0.410)
EEPMat

t 0.026 0.029 0.036
(2.529) (2.300) (2.008)

Rt 0.079 0.109 0.017
(1.485) (1.515) (0.325)

Vart 4.767 6.374 11.322
(0.687) (0.703) (0.967)

Rft -4.717 5.150 -25.770
(-0.262) (0.216) (-0.553)

∆Vlmt -0.508 -0.916 -0.161
(-2.198) (-3.148) (-0.457)

R2 0.015 0.026 0.014
Sample Size 894 528 376

Panel B: Average EEP

Sample period 6/1/92 to 1/12/96 6/1/92 to 7/18/94 7/19/94 to 1/12/96
DYt -0.327 -1.463 -0.189

(-0.109) (-0.319) (-0.044)
EEPAvg

t 0.042 0.046 0.045
(3.115) (2.469) (1.976)

Rt 0.087 0.122 0.024
(1.638) (1.668) (0.422)

Vart 5.183 5.495 10.323
(0.752) (0.621) (0.784)

Rft -4.405 4.925 -31.313
(-0.279) (0.208) (-0.684)

∆Vlmt -0.505 -0.904 -0.023
(-2.187) (-3.078) (-0.072)

R2 0.019 0.029 0.014
Sample Size 894 528 376
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Figure 1: Variation in the level of the EEP

The two graphs display the magnitudes of the call and put EEPs computed using numerical valuations of
an at-the-money, one-month American option contracts. The risk free rate is 8%. The top (bottom) graph
displays for the call (put) EEP for various levels of the dividend yield and volatility.

0.1
0.15

0.2
0.25

0.3
0.35

0

0.02

0.04

0.06

0.08
0

0.02

0.04

0.06

0.08

0.1

Volatility

Call EEP

Dividend Yield

EE
P

0.1
0.15

0.2
0.25

0.3
0.35

0

0.02

0.04

0.06

0.08
0

0.02

0.04

0.06

0.08

0.1

0.12

Volatility

Put EEP

Dividend Yield

EE
P

50



Figure 2: MIDAS Weights

This graph pictures the shape of the β coefficients against the lagged days in the following mixed-data
sampling (MIDAS) regression, DGt = α + φ(L)DGt−1 + γ

∑K
k=1 β(k , θ)EEPt−k/14 + et . Dividend payments

for the FTSE 100 index stocks are announced between 10 to 15 days before the ex-dividend date. The shaded
pattern denotes that period. The daily EEPs contain information about future dividends 2 to 3 weeks before
the ex-dividend date, right before the announcement of the dividend payments.
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