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CHAPTER 1

FORECASTING VOLATILITY WITH
MIDAS

Eric Ghysels (University of North Carolina), Rossen Valkanov (University of Cali-1

fornia San Diego)2

3

1.1 INTRODUCTION4

We focus on the issues pertaining to mixed frequencies - that arise typically because5

we would like to consider multi-step volatility forecasts while maintaining informa-6

tion in high frequency data. For example, when we forecast daily volatility we want to7

preserve the information in the intra-daily data without computing daily aggregates8

such as realized volatility. Likewise, when we focus on, say, weekly or monthly9

volatility forecasts we want to use daily returns or daily realized volatility measures.10

The focus on multi-step forecasting is natural even if we do not consider the case11

of using intra-daily returns for the purpose of daily volatility forecasts as it features12

prominently in the context of Value-at-Risk (VaR) within the risk management liter-13

ature. In the context of forecasting the 10-day VaR, required by the Basle accord,14

using daily or even intra-daily information, MIDAS models can be used to produce15

directly multi-step forecasts.16
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2 FORECASTING VOLATILITY WITH MIDAS

Econometric methods involving data sampled at different frequencies have been1

considered in recent work by [65] in a likelihood-based setting and by [64], [66] and2

[11] using regression-based methods. The mixed frequency setting has been labeled3

MIDAS, meaning Mi(xed) Da(ta) S(ampling). The original work on MIDAS focused4

on volatility predictions, see e.g. [4], [13], [28], [52], [25], [30], [29], [37], [39], [59],5

[65], [66], [67], [68], [63], [76], among others.6

[14] provide a user-friendly introduction to MIDAS regressions. A Matlab Tool-7

box for MIDAS regressions is also available, see [85]. A topic not covered, since we8

deal with volatility, but noteworthy is the fact that MIDAS regressions can be related9

to Kalman filters and state space models, see [16].10

In a first section we cover MIDAS regressions in the context of volatility fore-11

casting. The second section covers likelihood-based models, which means we cover12

MIDAS as it relates to ARCH-type models. A final section covers multivariate13

extensions.14

1.2 MIDAS REGRESSION MODELS AND VOLATILITY FORECASTING15

In order to analyze the role of MIDAS in forecasting volatility let us introduce the16

relevant notation. Let Vt+1,t be a measure of volatility in the next period. We focus on17

predicting future conditional variance, measured as increments in quadratic variation18

(or its log transformation), due to the large body of existing recent literature on this19

subject. The increments in the quadratic variation of the return process, Qt+1,t,20

is not observed directly but can be measured with some discretization error. One21

such measure would be the sum of (future) m intra-daily squared returns, namely22 ∑m
j=1[rj,t]2, which we will denote by RVt+1,t. We can also consider multiple periods,23

which will be denoted by RVt+h,t, for horizon h. Note that the case where no intra-24

daily data is available corresponds to m = 1 and RV becomes a daily squared return.25

In a first subsection we cover MIDAS regressions, followed by a subsection26

elaborating on direct versus iterated volatility forecasting. The next subsection27

discusses variations on the theme of MIDAS regressions and a final subsection deals28

with microstructure noise and MIDAS regressions.29

1.2.1 MIDAS Regressions30

We start with MIDAS regressions involving daily regressors for predictions at horizon31

h :32

RVt+h,t = µ + φ

kmax∑

k=0

w(k, θ)Xt−k + εt (1.1)

The volatility specification (1.1) has a number of important features.33

MIDAS regressions typically do not exploit an autoregressive scheme, so that34

Xt−k is not necessarily related to lags of the left hand side variable. Instead, MIDAS35

regressions are first and foremost regressions and therefore the selection of Xt−k36

amounts to choosing the best predictor of future quadratic variation from the set37
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of several possible measures of past fluctuations in returns. Examples of Xt−k1

are past daily squared returns (that correspond to the ARCH-type of models with2

some parameter restrictions, [48] and [23]), absolute daily returns (that relate to3

the specifications of (see e.g. [42]), realized daily volatility (e.g. [7]), realized daily4

power of (see [21] and [20]), and daily range (e.g. [3] and [61]). Since all of the5

regressors are used within a framework with the same number of parameters and the6

same maximum number of lags, the results from MIDAS regressions are directly7

comparable. Moreover, MIDAS regressions can also be extended to study the joint8

forecasting power of the regressors.9

The weight function or the polynomial lag parameters are parameterized via10

Almon, Exponential Almon, Beta, linear step-functions (see below), etc., see [69],11

and they are especially relevant in estimating a persistent process parsimoniously,12

such as volatility, where distant Xt−k are likely to have an impact on current volatility.13

In addition, the parameterization allows us to compare MIDAS regressions at different14

frequencies as the number of parameters to estimate will be the same even though15

the weights on the data and the forecasting capabilities might differ across horizons.16

Most importantly one does not have to adjust measures of fit for the number of17

parameters and in most situations with one predictor one has a MIDAS model with18

either one or two parameters determining the pattern of the weights. Note also that19

in the above equation we specify a slope coefficient as the weights are normalized to20

add up to one. Such a restriction will not always be used in the sequel. The selection21

of kmax can be done conservatively (by taking a large value) and letting the weights22

die out as determined by the parameter estimation. The only cost to taking large23

kmax is the loss of initial data in the sample, which should be inconsequential in24

large samples.25

Related to the MIDAS volatility regression is the Heterogeneous Autoregressive26

Realized Volatility (HAR-RV) regressions proposed by [39]. The HAR-RV model is27

given by:28

RV t+1,t = µ + βDRV D
t + βW RV W

t + βMRV M
t + εt+1, (1.2)

which has a simple linear prediction regression using RV over heterogeneous interval29

sizes, daily (D), weekly (W) and monthly (M). As noted by [10] (footnote 16) and30

[39] (discussion on page 181) the above equation is in a sense a MIDAS regression31

with step-functions (in the terminology of [69]). In this regard the HAR-RV can be32

related to the MIDAS-RV in (1.1) of [66] and [59], using different weight functions33

such as the Beta, exponential Almon or step functions and different regressors not34

just autoregressive with mixed frequencies. Note also that both models exclude the35

jump component of quadratic variation. Simulation results reported in [59] also36

show that the difference between HAR and MIDAS models is very small for RV. For37

other regressors, such as the realized absolute variance, the MIDAS model performs38

slightly better.39

It should also be noted that one can add lagged RV to the above specifications,40

for example for h = 1 and using intra-daily data for day t, denoted Xj,t assuming we41
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pick only one day of lags:1

RVt+1,t = µ + αRVt,t−1 + φ

m∑

k=1

w(k, θ)Xj,t + εt (1.3)

The above equation is reminiscent of the ADL-MIDAS regression models used2

extensively in the context of macro forecasting by [12]. The above equation will also3

relate to the HYBRID GARCH class of models discussed later.4

1.2.2 Direct versus Iterated Volatility Forecasting5

The volatility measure on the left-hand side, and the predictors on the right-hand side6

are sampled at different frequencies. As a result the volatility in equation (1.1), can be7

measured at different horizons (e.g. daily, weekly, and monthly frequencies), whereas8

the forecasting variables Xt−k are available at daily or higher frequencies. Thus, this9

specification allows us not only to forecast volatility with data sampled at different10

frequencies, but also to compare such forecasts and ultimately evaluate empirically11

the continuous asymptotic arguments. In addition, equation (1.1) provides a method12

to investigate whether the use of high-frequency data necessarily leads to better13

volatility forecasts at various horizons.14

The existent literature has placed most of the emphasis on the accuracy of one-15

period-ahead forecasts (see [48], [23], [5], [72]). Long-horizon volatility forecasts16

have received significantly less attention. Yet, financial decisions related to risk17

management, portfolio choice, and regulatory supervision, are often based on multi-18

period-ahead volatility forecasts. The preeminent long-horizon volatility forecasting19

approach is to scale the one-period-ahead forecasts by
√

k where k is the horizon20

of interest. [34] and others have shown that this “scaling” approach leads to poor21

volatility forecasts at horizons as short as ten days. The lack of a comprehensive and22

rigorous treatment of multi-period volatility forecasts is linked to the more general23

theoretical difficulty to characterize the trade-off between bias and estimation that24

exists in multi-period forecasts (see [57], [58], [77], [36], [22], and [32]). The paucity25

of new results on this topic has lead researchers to conclude that, in general, volatility26

is difficult to forecast at long horizons (see [34] and [89]).27

In a recent paper, [63] undertake a comprehensive empirical examination of multi-28

period volatility forecasting approaches, beyond the simple
√

k-scaling rule. They29

consider two alternative approaches –direct and iterative–of forming long-horizon30

forecasts (see [79]). The “direct” forecasting method consists of estimating a horizon-31

specific model of the volatility at, say, monthly or quarterly frequency, which can32

then be used to form direct predictions of volatility over the next month or quarter. An33

“iterative” forecast obtains by estimating a daily autoregressive volatility forecasting34

model and then iterate over the daily forecasts for the necessary number of periods35

to obtain monthly, or quarterly predictions of the volatility. In addition to the direct36

and iterated approaches, [63] consider a third, novel way of long-horizon forecasts,37

which is based on MIDAS regressions. A MIDAS method uses daily data to produce38

directly multi-period volatility forecasts and can thus be viewed as a middle ground39
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between the direct and the iterated approaches. The results of their study suggest1

that long-horizon volatility is much more predictable than previously suggested at2

horizons as long as 60 trading days (about three months).3

The direct and iterated methods [63] use are based on three volatility models:4

GARCH (see [48] and [23]), autoregressive models of realized volatility ([8], [6], and5

[9]), and integrated volatility. [63] point out that a long-horizon forecast is implicitly6

a joint decision of choosing the appropriate volatility model and the appropriate7

forecasting method. A similar distinction between a method and a model has also8

been made implicitly by [9] and, in a different context, by [70]. The three volatility9

models that [63] consider in conjunction with the iterated and direct forecasting10

methods give rise to six different ways to produce long-horizon forecasts. The11

MIDAS approach, which in essence combines the forecasting model and the long-12

horizon method into one step, offers a seventh way of producing multi-period-ahead13

forecasts of volatility.14

To establish the accuracy of the seven long-term forecasts, [63] use a loss function15

that penalizes deviations of predictions from the ex-post realizations of the volatility16

(similar to [60] and [6]) and a test for predictive accuracy that allows them to17

compare the statistical significance of competing forecasts. They use the mean18

square forecasting error (MSFE) as one loss function, because of its consistency19

property, i.e. it delivers the same forecast ranking with the proxy as it would with the20

true volatility (see [82]). They use a Value-at-Risk (VAR) as an alternative metric21

of forecast accuracy. To test the statistical significance in predictive power, [63] use22

two tests. The first one, proposed by [88], takes into account parameter uncertainty,23

which is of particular concern in the volatility forecasting literature. The second24

test, proposed by [70], can be viewed as a generalization or a conditional version25

of the [88] test. Rather than comparing the difference in average performance, [70]26

consider the conditional expectation of the difference across forecasting models. This27

conditioning approach allows not only for parameter uncertainty (as in [88]) but also28

uncertainty in a number of implicit choices made by the researcher when formulating29

a forecast, such as what data to use, the windows of in-sample estimation period, the30

length of the out-of-sample forecast, among others.31

Using the above setup, [63] investigate whether multi-horizon forecasts of the32

volatility of US stock market returns are more accurate than the naive but widely-33

used scaling approach. They consider volatility forecasts of the US market portfolio34

returns as well as of five size, five book-to-market, and ten industry portfolio returns.35

They find that the scaling-up method performs poorly relative to the other methods36

for all portfolios and horizons. This result is consistent with [41] and other papers37

who have documented the poor performance of this approach. More surprisingly,38

however, they find that the direct method does not fair much better. At horizon longer39

than 10 days ahead, the approach of scaling one-period-ahead forecasts performs40

significantly better than the direct method. Hence, if the direct method were the only41

alternative to the scaling approach, and since scaling is a poor forecaster of future42

volatility, one might come to the hasty conclusion that the volatility is hard to forecast43

at long horizons by any model.44
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[63] find that for the volatility of the market portfolio, iterated and MIDAS fore-1

casts perform significantly better than the scaling and the direct approaches. At2

relatively short horizons of 5- to 10-days ahead, the iterated forecasts are quite ac-3

curate. However, at horizons of 10 days ahead and higher, MIDAS forecasts have4

a significantly lower MSFE relative to the other forecasts. At horizons of 30- and5

60-days ahead, the MSFE of MIDAS is more than 20 percent lower than that of the6

next best forecast. These differences are statistically significant at the one percent7

level according to the [88] and [70] tests. Hence, they find that suitable MIDAS mod-8

els produce multi-period volatility forecasts that are significantly better than other9

widely used methods.10

[63] also link predictive accuracy to portfolio characteristics. They note that11

the superior performance of MIDAS in multi-period forecasts is also observed in12

predicting the volatility of the size, book-to-market, and industry portfolios. Similarly13

to the market volatility results, the relative precision of the MIDAS forecasts improves14

with the horizon. At horizons of 10-periods and higher, the MIDAS forecasts of15

eight out of the ten size and book-to-market portfolios dominate the iterated and16

direct approaches. At horizons of 30-periods and higher, the MIDAS has the smallest17

MSFEs amongst all forecasting methods for all ten portfolios. They observe that the18

volatility of the size and book-to-market portfolios is significantly less predictable19

than that of the entire market. Also, the predictability of the volatility increases20

with the size of the portfolio. The volatility of the largest-cap stocks is the most21

predictable, albeit still less forecastable than the market’s. They fail to observe such22

a discernible pattern for the book-to-market portfolios.23

From the MSFE results, it might be tempting to generalize that the MIDAS24

forecasts are more accurate than the iterated forecasts which in turn dominate the25

direct and scaling-rule approaches. However, [63] caution that a general ranking of26

forecast accuracy is difficult, since it is ultimately predicated on the loss function and27

application at hand. As an illustration, they note that when they use the VAR as a28

measure of forecast accuracy, then the direct method not only dominates the iterated29

method, but for most portfolio returns, its coverage is close to that of the MIDAS30

model. Overall, however, they find that MIDAS forecasts strike a good balance31

between bias and estimation efficiency.32

1.2.3 Variations on the Theme of MIDAS Regressions33

The MIDAS approach can also be used to study various other interesting aspects of34

forecasting volatility. [28] provide a novel method to analyze the impact of news on35

forecasting volatility. The following semi-parametric regression model is proposed36

to predict future realized volatility (RV) with past high-frequency returns:37

RVt+1,t = ψ0 +
τ∑

j=1

m∑

i=1

ψi,j(θ)NIC(rj,t) + εt+1 (1.4)
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where ψi,j(θ) is a polynomial lag structure parameterized by θ, NIC(.) is the news1

impact curve and rt/m is the log asset price difference (return) over some short time2

interval i of length m on day t. Note i = 1, . . . , m of intervals on day t.3

The regression model in (1.4) shows that each intra-daily return has an impact on4

future volatility measured by NIC(rID
j,t ) and fading away through time with weights5

characterized by ψi,j(θ). One can consider (1.4) as the semi-parametric (SP) model6

that nests a number of volatility forecasting models and in particular the benchmark7

realized volatility forecasting equation below:8

RVt+1,t = ψ0 +
τ∑

j=0

ψj(θ)RVt−j,t−j−1 + εt+1 (1.5)

The nesting of (1.5) can be seen for k = 1, . . ., when we set ψi,j ≡ ψi ∀ j = 1, . . . ,9

m, and NIC(r) ≡ r2 in equation (1.4). This nesting emphasizes the role played by10

both the news impact curve NIC and the lag polynomial ψi,j .11

The reason it is possible to nest the RV AR structure is due to the multiplicative12

specification for ψi,j(θ) ≡ ψD
j (θ) × ψID

i (θ), with the parameter θ containing sub-13

vectors that determine the two polynomials separately. The polynomial ψD
j (θ) is a14

daily weighting scheme, similar to ψi(θ) in the regression model appearing in (1.5).15

The polynomial ψID
i (θ) relates to the intra-daily pattern. With equal intra-daily16

weights one has the RV measure when NIC is quadratic. [28] adopt the following17

specification for the polynomials:18

ψD
j (θ)ψID

i (θ) = Beta(j, τ, θ1, θ2)×Beta(i, 1/m, θ3, θ4) (1.6)

where τ and 1/m are the daily (D) and intradaily (ID) frequencies. The restric-19

tion is imposed that the intra-daily patterns wash out across the entire day, i.e.20 ∑
i Beta(i, 1/m, θ3, θ4) = 1, and also impose without loss of generality, a similar21

restriction on the daily polynomial, in order to identify a slope coefficient in the22

regressions.23

The multiplicative specification (1.6) has several advantages. First, as noted24

before, it nests the so-called flat aggregation scheme, i.e. all intra-daily weights are25

equal, yields a daily model with RV when the news impact curve is quadratic. Or26

more formally, when θ3 = θ4 = 1, and NIC(r) = r2 one recovers RV -based regression27

appearing in equation (1.5). Second, by estimating Beta(i, 1/m, θ3, θ4) one lets the28

data decide on the proper aggregation scheme which is a generic issue pertaining29

in MIDAS regressions as discussed in [11]. Obviously, the intra-daily part of the30

polynomial will pick up how news fades away throughout the day and this - in part -31

depends on the well known intra-daily seasonal pattern.32

Finally, the MIDAS-NIC model can also nest existing parametric specifications of33

news impact curves adopted in the ARCH literature, namely, the daily symmetric one34

when NIC(r) = br2, the asymmetric GJR model when NIC(r) = br2 + (cr2)1r<035

(see [71]) and the asymmetric GARCH model when NIC(r) = (b(r−c)2) (see [47]).36
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1.2.4 Microstructure Noise and MIDAS Regressions1

[68] study a regression prediction problem with volatility measures that are con-2

taminated by microstructure noise and examine optimal sampling for the purpose of3

volatility prediction. The analysis is framed in the context of MIDAS regressions4

with regressors affected by microstructure noise. They consider univariate MIDAS5

regressions for the prediction performance evaluation and several realized volatility6

measures. Their general framework also leads us to the study of optimal sampling7

issues in the context of volatility prediction with microstructure noise.8

The topic of their paper has been studied by a variety of authors independently9

and simultaneously. [62] and [67] discussed forecasting volatility and microstructure10

noise. [69] provided further empirical evidence expanding on [67]. [2] consider11

a number of stochastic volatility and jump diffusions, including the Heston and12

log-volatility models, and study the relative performance of the two-scales realized13

(henceforth TSRV) estimator versus RV estimators. They provide simulation evi-14

dence showing that TSRV largely outperforms RV.15

Discussions about the impact of microstructure have mostly focused so far on16

measurement and therefore mean squared error and bias of various adjustments.17

[68] instead focus on prediction in a regression format, and therefore can include18

estimators that are suboptimal in mean square error sense, since covariation with the19

predictor is what matters. Previously, the optimal sampling frequency was studied in20

terms of MSE of estimators in an asymptotic setting (see [90]) and for finite samples21

(see [19]). They derive theoretical results for RV, TSRV, average over subsamples22

and [91] estimators and study theoretically optimal sampling as well.23

[68] also conduct an extensive empirical study of forecasting with microstructure24

noise, using the same data as in [73], namely the thirty Dow Jones Industrial Average25

(DJIA), from January 3, 2000 to December 31, 2004. The purpose of the empirical26

analysis is twofold. First, they verify whether the predictions from the theory hold in27

actual data samples. They find that is indeed the case. Second, they also implement28

optimal sampling schemes empirically and check the relevance of the theoretical29

derivations using real data. They distinguish between “conditional” and “uncondi-30

tional” optimal sampling schemes, as in [18]. They find that “conditional” optimal31

sampling seems to work reasonably well in practice.32

1.3 LIKELIHOOD-BASED METHODS33

The initial work on MIDAS and volatility involved a likelihood-based on risk-return34

trade-offs. In a first subsection we discuss this approach, followed by recent model35

specifications involving mixture of ARCH-type and MIDAS specifications. These36

recent extensions are covered in two subsections.37
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1.3.1 Risk-return Trade-off1

The [80] ICAPM suggests that the conditional expected excess return on the stock2

market should vary positively with the market’s conditional variance:3

Et[rt+1] = µ + γV art[rt+1], (1.7)

where γ is the coefficient of relative risk aversion of the representative agent - which4

should obviously be positive and take plausible values - and, according to the model,5

µ should be equal to zero. The expectation and the variance of the market excess6

return are conditional on the information available at the beginning of the return7

period, time t.8

[17], [60], [33], and [27] do find a positive albeit mostly insignificant relation9

between the conditional variance and the conditional expected return. In contrast, [26]10

and [81] find a significantly negative relation. [71], [74], and [86] find both a positive11

and a negative relation depending on the method used. The main difficulty in testing12

the ICAPM relation is that the conditional variance of the market is not observable13

and must be filtered from past returns. The conflicting findings of the above studies14

are mostly due to differences in the approach to modeling the conditional variance.15

[65] take a different look at the risk-return tradeoff with a MIDAS forecast of the16

monthly variance specified as a weighted average of lagged daily squared returns and17

estimated via a QMLE - similar to the GARCH-in-mean approaches of and [54] and18

[71]. Namely, they estimate the coefficients of the conditional variance process jointly19

with µ and γ from the expected return equation (1.7) with quasi-maximum likelihood.20

Hence, this approach is very different from the MIDAS regressions discussed in the21

previous section. The similarity, however, is that in both MIDAS regressions and in22

the likelihood-based MIDAS one uses the same type of parsimoniously specified lag23

polynomials. In particular, [65] use an exponential Almon lag specification.24

Using monthly and daily market return data from 1928 to 2000 and, with a25

MIDAS specification for the conditional variance, [65] find a positive and statistically26

significant relation between risk and return. The estimate of γ is 2.6, which lines up27

well with economic intuition about a reasonable level of risk aversion. The MIDAS28

volatility estimator explains about 40 percent of the variation of realized variance29

in the subsequent month and its explanatory power compares favorably to that of30

other models of conditional variance such as GARCH. The estimated weights on31

the lagged daily squared returns decay slowly, thus capturing the persistence in the32

conditional variance process. More impressive still is the fact that, in the ICAPM33

risk-return relation, the MIDAS estimator of conditional variance explains about two34

percent of the variation of next month’s stock market returns (and five percent in the35

period since 1964). This is quite substantial given previous results about forecasting36

the stock market return. Finally, the above results are qualitatively similar when one37

splits the sample into two subsamples of approximately equal sizes, 1928-1963 and38

1964-2000. These results are obtained when extreme outliers are winsorized.39

It should be noted that the ICAPM risk-return relation has also been tested using40

several variations of GARCH-in-mean models. However, the evidence from that41

literature is inconclusive and sometimes conflicting. Using simple GARCH models,42
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[65] confirm the findings of [60] and [71], among others, of a positive but insignificant1

γ coefficient in the risk-return tradeoff. The absence of statistical significance comes2

both from GARCH’s use of monthly returns in estimating the conditional variance3

process. The use of daily data and the flexibility of the MIDAS estimator provides4

the power needed to find statistical significance in the risk-return tradeoff.5

A comparison of the time series of conditional variance estimated according to6

MIDAS, GARCH, and rolling windows reveals that while the three estimators are7

correlated, there are some differences that affect their ability to forecast returns in the8

ICAPM relation. [65] find that the MIDAS variance process is more highly correlated9

with both the GARCH and the rolling windows estimates than these last two are with10

each other. This suggests that MIDAS combines some of the unique information11

contained in the other two estimators. They also find that MIDAS is particularly12

successful at forecasting realized variance both in high and low volatility regimes.13

These features explain the superior performance of MIDAS in finding a positive and14

significant risk-return relation.15

It has long been recognized that volatility tends to react more to negative returns16

than to positive returns. [81] and [56] show that GARCH models that incorporate17

this asymmetry perform better in forecasting the market variance. However, [71]18

show that when such asymmetric GARCH models are used in testing the risk-19

return tradeoff, the γ coefficient is estimated to be negative (sometimes significantly20

so). This stands in sharp contrast with the positive and insignificant γ obtained21

with symmetric GARCH models and remains a puzzle in empirical finance. To22

investigate this issue, [65] also extend the MIDAS approach to capture asymmetries23

in the dynamics of conditional variance by allowing lagged positive and negative daily24

squared returns to have different weights in the estimator. Contrary to the asymmetric25

GARCH results, they still find a large positive estimate of γ that is statistically26

significant. In particular, they find that what matters for the tests of the risk-return27

tradeoff is not so much the asymmetry in the conditional variance process but rather28

its persistence. In this respect, asymmetric GARCH and asymmetric MIDAS models29

prove to be very different. Consistent with the GARCH literature, negative shocks30

have a larger immediate impact on the MIDAS conditional variance estimator than31

do positive shocks. However, [65] find that the impact of negative returns on variance32

is only temporary and lasts no more than one month. Positive returns, on the other33

hand, have an extremely persistent impact on the variance process. In other words,34

while short-term fluctuations in the conditional variance are mostly due to negative35

shocks, the persistence of the variance process is primarily driven by positive shocks.36

This is an intriguing finding about the dynamics of the variance process. Although37

asymmetric GARCH models allow for a different response of the conditional variance38

to positive and negative shocks, they constrain the persistence of both types of shocks39

to be the same. Since the asymmetric GARCH models “load” heavily on negative40

shocks and these have little persistence, the estimated conditional variance process41

shows little to no persistence.42



LIKELIHOOD-BASED METHODS 11

1.3.2 HYBRID GARCH Models1

The volatility specification in [65] involves a single polynomial applied to daily2

data. Similar to the specification of the MIDAS regression (1.3) one could think3

of introducing lagged volatilities. We do not operate in a regression format, so this4

approach would be similar to the specification of a GARCH model.5

This insight has recently been pursued by [29] and [30]. A key ingredient of6

conditional volatility models is that more weight is attached to the most recent7

returns (i.e. information). In the case of the original ARCH model (see e.g. [48])8

that means the most recent (daily) squared returns have more weight when predicting9

future (daily) conditional volatility. While intra-daily data are used to construct RV,10

prediction models put more weights on recent (daily) RV, but despite the use of intra-11

daily data - do not differentiate among intra-daily returns. If volatility is a persistent12

process, it would be natural to weight intra-daily data differently, as pointed out13

recently by [78]. This is one example of the class of models [30] so called HYBRID14

GARCH models. They are a unifying framework, based on a generic GARCH-type15

model, that addresses the issue of volatility forecasting involving forecast horizons of16

a different frequency than the information set. Hence, [30] propose a class of GARCH17

models that can handle volatility forecasts over the next five business days and use18

past daily data, or tomorrow’s expected volatility while using intra-daily returns. The19

models are called HYBRID GARCH, which stands for High FrequencY Data-Based20

PRojectIon-Driven GARCH models as the GARCH dynamics are driven by what21

[30] call HYBRID processes.22

Compared to [78], they go beyond linear projections - albeit in a discrete time23

setting. The HYBRID GARCH models do have a connecting with continuous time24

models as well when one restricts attention to linear projections. [30] study three25

broad classes of HYBRID processes: (1) parameter-free processes that are purely26

data-driven, (2) structural HYBRIDs where one assumes an underlying DGP for the27

high frequency data and finally (3) HYBRID filter processes. HYBRID-GARCH28

models. In case (1) the HYBRID process Hτ does not depend on parameters. The29

obvious case would be a simple return process such that Vτ+1|τ is the conditional30

volatility of the next period. More recently, however, other purely data-driven exam-31

ples of what we call generic HYBRID processes have been suggested. For example32

[51], [40], [87], [84] suggest the use of (daily) realized volatilities, high-low range33

or realized kernels or generic realized measures as they are called by [84]. Structural34

HYBRID processes appear in the context of temporal aggregation - a topic discussed35

extensively in the (weak) GARCH literature, see e.g. [44], [45], among others. Fi-36

nally, the HYBRID process H(φ,~rτ ) can involve parameters that are not explicitly37

related to ã, b̃ and γ appearing in (1.8). There is no underlying high frequency data38

DGP that is being assumed, unlike in the structural HYBRID case. One can view39

this as a GARCH model driven by a filtered high frequency process - where the40

filter weights - (hyper-)parameterized by φ are estimated jointly with the volatility41

dynamics parameters.42

A generic HYBRID GARCH model has the following dynamics for volatility:43

Vt+1|t = α + βVt|t−1 + γHt (1.8)
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where Ht will be called a HYBRID process. When Ht is simply a daily squared return1

we have the volatility dynamics of a standard daily GARCH(1,1), or Ht a weekly2

squared return those of a standard weekly GARCH(1,1). However, what would3

happen if we want to attribute an individual weight to each of the five days in a week?4

In this case we might consider a process Ht ≡
∑4

j=0 ωjr
2
t−j/5, where we use the5

notation rt−j/5 to indicate intra-period returns - in the this case daily observations6

of week t (when days spill over into the previous week, we assume rt−j/m ≡7

rt−1−(j−5)/m). This is an example of a parameter-driven HYBRID process Ht ≡8

H(φ,~rt) where ~rt = (rt−1+1/m, rt−1+2/m, . . . , rt−1/m, rt)T is Rm−valued random9

vector (in this case and m = 5). In addition, the weights (ωj(φ), j = 0, . . . ,m− 1)10

are governed by a low-dimensional parameter vector φ. One can think of at least two11

possibilities: (1) the weights are treated as additional parameters and estimated as12

such (with m small this is possible, but not as m gets large), or (2) anchor the weights13

ωj to an underlying daily GARCH(1,1) in which case the parameters α, β and γ and14

the weights in φ are jointly related to the assumed daily DGP. The discussion so far15

implicitly relates to many issues we elaborate on next.16

The HYBRID process Ht may be purely data-driven and not depend on parameters.17

The obvious case would be a simple return process such that Vt+1|t has the typical18

GARCH(1,1) dynamics. More recently, however, other purely data-driven examples19

of what we call generic HYBRID processes have been suggested. For example20

[51], [40], [87], [84], [?] suggest the use of (daily) realized volatilities, high-low21

range or realized kernels or generic realized measures. It is important to note that22

typically parameter-free HYBRID processes do not differentiate intra-period returns,23

i.e. an equal weighting scheme is supposed - although some kernel-weighting or24

pre-averaging may take place to eliminate micro-structure noise.25

To study structural HYBRIDs consider a daily weak GARCH(1,1), as defined by26

[44], then the implied weekly prediction, using past daily returns is:27

Vt+1|t = αm + βmVt|t−1 + γm

m−1∑

j=0

βj/m
m r2

t−j/m, t ∈ Z (1.9)

with m = 5, and where αm, βm and γm depend on the daily GARCH(1,1) parameters28

α1, β1 and γ1. Note that all the parameters are driven by the daily parameters.29

Therefore, while the HYBRID process is parameter-driven it is in principle an integral30

part of the volatility dynamics and H(φ,~rt) in (1.8) does not involve stand-alone31

parameters φ. This will have consequences when we elaborate on the estimation of32

HYBRID GARCH models. Indeed, the context of temporal aggregation precludes33

us from using, say standard QMLE methods, a topic that will be discussed later.34

Finally, consider a HYBRID filtering process. Here the HYBRID process H(φ,~rt)35

in (1.8) involves parameters that are not explicitly related to α, β and γ appearing in36

(1.8). There is no underlying high frequency data DGP that is being assumed, unlike37

in the structural HYBRID case. One can view this as a GARCH model driven by38

a filtered high frequency process - where the filter weights - (hyper-)parameterized39

by φ are estimated jointly with the volatility dynamics parameters. The choice of40

the parameterizations of is inspired by [28]. The commonly used specifications are41
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exponential, beta, linear, hyperbolic, and geometric weights. This approach has1

implications too as far as estimation is concerned. Unlike the structural HYBRID2

case, we now can consider likelihood-based methods, although the regularity condi-3

tions required are novel and more involved as those of the usual QMLE approach to4

GARCH estimation for instance in [24].5

So far we have done the same as [78] in terms of the formulation of HYBRID6

processes in the context of discrete time GARCH dynamics. At this stage, we start7

to deviate from the linear projection paradigm and continue the logic of GARCH8

modeling. In light of these finding we consider HYBRID GARCH models that9

feature intra-daily news impact curves - similar to the framework of [28], except10

that the latter use a MIDAS regression format. The HYBRID processes are of the11

following type:12

Ht(φ) =
m−1∑

j=0

Ψj(φ1)NIC(φ2, rt−j/m),
m−1∑

j=0

Ψj(φ1) = 1 (1.10)

where NIC(φ2, ·) stands for a high frequency data news impact curve discussed13

earlier.14

Various estimation procedures can be considered - some tailored to specific cases15

of HYBRID processes. Let us first collect all the parameters of the model appearing16

in (1.8) in a parameter vector called θ ∈ Θ, with the (pseudo-) true parameter being17

denoted θ0. One has to keep in mind that specific cases - notably involving structural18

HYBRID processes - may involve constraints across the parameters in (1.8) or the19

filtering weights of the HYBRID process may also be hyper-parameterized, so that20

the dimension of θ (denoted as d) depends on the specific circumstances considered.21

For this generic setting we have the following estimators:22

θ̂mdrv
T = arg min

θ∈C
1
T

T∑
t=1

(RVt − Vt|t−1(θ))2

where C is a convex compact subset of Θ such that θ0 is in the interior of C. This23

minimum distance estimator involves observations about RV, realized volatility or24

possibly a realized measure that corrects for microstructure effects etc. This estimator25

applies to volatility models involving all possible HYBRID processes, including26

structural ones for which a weak GARCH assumption is required. Note that this27

means that Vt|t−1(θ) in the above estimator is based on a best linear predictor, not28

the conditional variance - a technical issue that will be discussed in the next section.29

A companion estimation procedure involves a single squared return process,30

namely:31

θ̂mdr2
T = arg min

θ∈C
1
T

T∑
t=1

(R2
t − Vt|t−1(θ))2

The above estimator has a likelihood-based version, namely:32

θ̂lhr2
T = arg min

θ∈C
1
T

T∑
t=1

(
log Vt|t−1(θ) +

R2
t

Vt|t−1(θ)

)
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requiring far more stringent in terms of regularity conditions, notably because1

Vt|t−1(θ) is a conditional variance, and in fact does not apply to all types of HY-2

BRID processes - in particular structural ones. The estimator θ̂mdr2
T is reminiscent of3

QMLE estimators for semi-strong GARCH models - yet the mixed data frequencies4

add an extra layer of complexity discussed later in the paper. One can again replace5

daily squared returns by, say RV and consider the following estimator:6

θ̂lhrv
T = arg min

θ∈C
1
T

T∑
t=1

(
log Vt|t−1(θ) +

RVt

Vt|t−1(θ)

)

The choice of R2 versus RV in θ̂mdr2
T versus θ̂mdrv

T and θ̂lhr2
T versus θ̂lhrv

T has7

efficiency implications that will be discussed as well.8

Inspired by the Multiplicative Error Model (MEM) of [46] and the subsequent9

work by [51], [75], [35] also consider the following model10

RVt+1 = σ2
t+1|tηt+1 (1.11)

where conditional on Ft, ηt+1 is independent and identically distributed with mean11

1. Suppose the cumulative distribution function of η is F . The choice of F could12

be a unit exponential (see [46]), or a Gamma distribution as suggested in [51], or a13

mixture of two gamma distributions of [75]. The resulting class of estimators will be14

denoted by θ̃mem
T .15

[30] provide further detail regarding the theoretical properties of the various esti-16

mators and various HYBRID processes. They also conduct a Monte Carlo simulation17

study which shows that the estimator that appears to have the best finite sample prop-18

erties is θ̂lhrv
T . It is typically vastly better than the estimators based on R2, either19

minimum distance or likelihood-based. It should also be noted that the MEM-type20

estimator - which is asymptotically equivalent to θ̂lhrv
T - is occasionally in small21

samples the most efficient for one parameter in particular, namely α. This means that22

the most efficient estimation of the unconditional mean of the volatility dynamic pro-23

cess can be achieved with the MEM principle which estimates directly the volatility24

process.25

As far as empirical specification goes, the jury is still out. At the time this chap-26

ter was being written a thorough empirical investigation was still being conducted27

looking at the various types of HYBRID processes and their forecast performance at28

different horizons. [29] used the HYBRID GARCH class of models to predict volatil-29

ity at daily horizons using intra-daily returns. The use of such returns forces one30

to think about how to treat intra-daily seasonality. [29] considered four approaches31

which we called: (1) (Unconstrained) HYBRID GARCH, (2) Periodic HYBRID32

GARCH, (3) (Unconstrained) SA HYBRID GARCH and (4) Constrained SA HY-33

BRID GARCH. The former two apply to raw returns, the latter two to re-scaled34

returns using intra-daily unconditional volatility patterns. Overall they find that35

the use of seasonally adjusted returns is inferior both in-sample and out-of-sample.36

This means that we have essentially a relatively simple class of models that handle37

intra-day seasonality well.38
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1.3.3 GARCH-MIDAS Models1

So far we did not cover component models of volatility. Empirical evidence suggests2

that volatility dynamics is better described by component models. [53] introduced3

a GARCH model with a long and short run component.1 The volatility component4

model of Engle and Lee decomposed the equity conditional variance as the sum of5

the short-run (transitory) and long-run (trend) components.6

So far we considered MIDAS filters that applied to high frequency data. Here we7

use the same type of filters to extract low frequency components. Hence, it is again8

a MIDAS setting, using different frequencies, but this time we use the polynomial9

specifications to extract low frequency movements in volatility.10

In anticipation of the material in the next section, we consider multiple returns,11

although we study here still one single return series at the time. Namely, we consider12

a set of n assets and let the vector of returns be denoted as rt = [r1,t, . . . , rn,t]
′
.13

The new class of models is called GARCH-MIDAS, since it uses a mean reverting14

unit daily GARCH process, similar to [55], and a MIDAS polynomial which applies15

to monthly, quarterly, or bi-annual macroeconomic or financial variables. In what16

follows we will refer to gi and mi as the short and long run variance components17

respectively for asset i. [52] consider various specifications for gi and we select only18

a specific one where the long run component is held constant across the days of19

the month, quarter or half-year. Alternatively, one can specify mi based on rolling20

samples that change from day to day. The findings in [52] show that they yield very21

similar empirical fits - so we opted for the simplest to implement which involves22

locally constant long run components. We will denote by N i
v the number of days23

that mi is held fixed. The superscript i indicates that this may be asset-specific. The24

subscript v differentiates it from a similar scheme that will be introduced later for25

correlations. It will be convenient to introduce two time scales t and τ. In particular,26

while gi,t moves daily, mi,τ changes only once every N i
v days.27

More specifically we assume that for each asset i = 1, . . . , n, univariate returns28

follow the GARCH-MIDAS process:29

ri,t = µi +
√

mi,τ · gi,tξi,t, ∀t = τN i
v, . . . , (τ + 1)N i

v (1.12)

where gi,t follows a GARCH(1,1) process:30

gi,t = (1− αi − βi) + αi
(ri,t−1 − µi)2

mi,τ
+ βigi,t−1 (1.13)

while the MIDAS component mi,τ is a weighted sum of Ki
v lags of realized variances31

(RV ) over a long horizon:32

mi,τ = mi + θi

Ki
v∑

l=1

ϕl(ωi
v)RVi,τ−l (1.14)

1Several others have proposed related two-factor volatility models, see e.g. [43], [61], [?], [31] and [1]
among many others.
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where the realized variances involve N i
v daily squared returns, namely:1

RVi,τ =
τNi

v∑

j=(τ−1)Ni
v+1

(ri,j)2.

Note that N i
v could for example be a quarter or a month. The above specification2

corresponds to the block sampling scheme as defined in [52], involving so called3

Beta weights defined as:4

ϕl(ωi
v) =

(1− l
Ki

v
)ωi

v−1

∑Ki
v

j=1(1− j
Ki

v
)ωi

v−1
(1.15)

In practice we will consider cases where the parameters N i
v and Ki

v are independent5

of i, i.e. the same across all series. Similarly, we can also allow for different decay6

patterns ωi
v across various series, but once again we will focus on cases with common7

ωv (see the next subsection for further discussion). Obviously, despite the common8

parameter specification, we expect that the mi,τ substantially differ across series, as9

they are data-driven.10

[52] study long historical data series of aggregate stock market volatility, starting11

in the 19th century, as in [83]. Their empirical findings show that for the full sample12

the long run component accounts for roughly 50 % of predicted volatility. During13

the Great Depression era even 60 % of expected volatility is due to the long run14

component. For the most recent period the results show roughly a 40 % contribution.15

Finally, they also introduce refinements of the GARCH-MIDAS model where the16

long run component is driven by macroeconomic series.17

1.4 MULTIVARIATE MODELS18

The estimation of multivariate volatility models with mixed sampling frequencies is a19

relatively unexplored area. In this final section we present one approach that appears20

promising. It was proposed by [38] and also applied by [15] to the determinants of21

stock and bond return co-movements.22

[38] address the specification, estimation and interpretation of correlation models23

that distinguish short and long run components. They show that the changes in24

correlations are indeed very different. Dynamic correlations are a natural extension25

of the GARCH-MIDAS model to [49] DCC model. The idea captured by the DCC-26

MIDAS model is similar to that underlying GARCH-MIDAS. In the latter case,27

two components of volatility are extracted, one pertaining to short term fluctuations,28

the other pertaining to a secular component. In the GARCH-MIDAS the short29

run component is a GARCH component, based on daily (squared) returns, that30

moves around a long-run component driven by realized volatilities computed over31

a monthly, quarterly or bi-annual basis. The MIDAS weighting scheme helps to32

extract the slowly moving secular component around which daily volatility moves.33
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[52] explicitly link the extracted MIDAS component to macroeconomic sources. It1

is the same logic that is applied here to correlations. Namely, the daily dynamics2

obey a DCC scheme, with the correlations moving around a long run component.3

Short-lived effects to correlations will be captured by the autoregressive dynamic4

structure of DCC, with the intercept of the latter being a slowly moving process that5

reflects the fundamental or long-run causes of time variation in correlation.6

To estimate the parameters of the DCC-MIDAS model [38] follow the two-step7

procedure of [49]. They start by estimating the parameters of the univariate condi-8

tional volatility models. The second step consists of estimating the DCC-MIDAS9

parameters with the standardized residuals. Moreover, they also discuss the regularity10

conditions we need to impose on the MIDAS-filtered long run correlation component11

as models of correlations are required to yield positive definite matrices.12

Using the standardized residuals ξi,t of the previous section it is possible to obtain13

a matrix Qt whose elements are:14

qi,j,t = ρi,j,t (1− a− b) + aξi,t−1ξj,t−1 + bqi,j,t−1 (1.16)

ρi,j,t =
Kij

c∑

l=1

ϕl

(
ωij

r

)
ci,j,t−l

ci,j,t =

∑t
k=t−Nij

c
ξi,kξj,k√∑t

k=t−Nij
c

ξ2
i,k

√∑t
k=t−Nij

c
ξ2
j,k

where the weighting scheme is similar to that appearing in (1.14). Note that in the15

above formulation of ci,j,t one could have used simple cross-products of ξi,t. One16

can regard qi,j,t as the short run correlation between assets i and j, whereas ρi,j,t is a17

slowly moving long run correlation. Rewriting the first equation of system (1.16) as18

qi,j,t − ρi,j,t = a
(
ξi,t−1ξj,t−1 − ρi,j,t

)
+ b

(
qi,j,t−1 − ρi,j,t

)
(1.17)

conveys the idea of short run fluctuations around a time varying long run relation-19

ship. The idea captured by the DCC-MIDAS model is similar to that underlying20

GARCH-MIDAS. In the latter case, two components of volatility are extracted, one21

pertaining to short term fluctuations, the other pertaining to a secular component.22

In the GARCH-MIDAS the short run component is a GARCH component, based23

on daily (squared) returns, that moves around a long-run component driven by real-24

ized volatilities computed over a monthly, quarterly or bi-annual basis. The MIDAS25

weighting scheme helps one to extract the slowly moving secular component around26

which daily volatility moves. It is the same logic that is applied here to correlations.27

Namely, the daily dynamics obey a DCC scheme, with the correlations moving28

around a long run component. Short-lived effects on correlations will be captured29

by the autoregressive dynamic structure of DCC, with the intercept of the latter be-30

ing a slowly moving process that reflects the fundamental or secular causes of time31

variation in correlation.32

In terms of empirical implementation [38] and [15] consider examples involving33

stocks and bonds. Both papers show the usefulness of the component specification34
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in correlations and in particular the appeal of using MIDAS filters to specify long1

run component of correlations. Formal testing reported in both papers show that2

the DCC-MIDAS models outperform standard DCC models. [38] also study asset3

allocation with multiple international equities (five international stock markets) and a4

single MIDAS filter. Using the methodology proposed by [50] pertaining to minimum5

variance portfolio management they document the economic significance of using6

the DCC-MIDAS specification as well.7
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