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Step-level models of reasoning (SLR) proved to be very successful in predicting behavior in the beauty contestgame. Recently, a quantified version of the model was suggested as a more general model of thinking. In
particular, it was found that the distribution of choices could be represented by a Poisson distribution. I test
the model in stylized first- and second-price common-value sealed-bid auctions. Equilibrium, for both auction
types, prescribes that players undercut each other and profits are small. The SLR prediction, on the other hand,
is different for the two auctions. Nash equilibrium predicts the outcomes poorly; the SLR model predicts the
outcomes well in the second-price auction. However, while bids in the first-price auction could be represented
by a Poisson distribution, this could not be attributed to step-level reasoning.

Key words : depth of reasoning; bidding behavior
History : Accepted by Detlof von Winterfeldt, decision analysis; received July 11, 2004. This paper was with the
author 1 month for 1 revision.

1. Introduction
How should—and how do—people bid in auctions?
The normative answer of how people should bid if
everyone else is rational is well developed and under-
stood by economists. The descriptive answer of how
people do bid is far less understood. It is not even
clear if developing a general behavioral theory of auc-
tion bidding is a feasible task.1 Recently, an energetic
attempt to construct a game-theoretic model of behav-
ior in one-shot games was made using a step-level
model of reasoning (SLR). See Stahl (1993), Stahl and
Wilson (1994, 1995), Nagel (1995), Duffy and Nagel
(1997), Ho et al. (1998), Bosch-Domenech et al. (2003),
Sonsino et al. (2000), Costa-Gomes et al. (2001), Costa-
Gomes and Crawford (2004), Haruvy et al. (2001),
and Haruvy (2002). In this paper, I test the predic-
tive power of this model in stylized auctions, with the
aim of using it as a building block for developing a
behavioral model of more complex auction bidding.
In the SLR model, reasoning is characterized by

the number of steps of iterated thinking that play-
ers use. A zero-step player simply chooses a strategy
at random; usually it is assumed that these players
choose all possible strategies with equal probability.
A one-step player best response to zero-step players,
assuming that all other players are zero-step players.
In general terms, a K-level player thinks that all other
players use zero to K− 1 steps.

1 That is not to say that experimental findings on auctions, and
understanding of certain phenomena, do not exist. See, for exam-
ple, the survey and collective work on common-value auctions in
Kagel and Levin (2002).

The SLR model is successful in explaining obser-
vations from a “beauty contest” game (Nagel 1995).
In this game, participants have to choose a number
in �0�100�. The player who chooses the number closest
to a proportion (between 0 and 1, usually 2/3) of the
average of all numbers wins a prize. By iterated elim-
ination of weakly dominated strategies, it is easy to
see that this game has a unique equilibrium in which
everybody chooses 0. A zero-step player in the beauty
contest game simply randomizes between numbers.
A K = 1 best response to this by choosing 50 (the aver-
age of choices by zero-level) times 2/3, i.e., 33.33, etc.
Camerer et al. (2004, 2005) (CHC hereafter) suggest

that the frequency of players using a different number
of steps is Poisson distributed with mean � . Moreover,
for K > 0, players use a normalized Poisson distribu-
tion to model what other players are choosing and
to compute the expected payoff. Using several lab-
oratory experiments with normal-form games, CHC
estimate � to be between 1 and 2. Several authors
(e.g., Bosch-Domenech et al. 2003, Slonim 2005) have
reported results from experiments with the beauty
contest game that were run with various populations
(newspaper readers, students, experienced students,
and game theorists). They found that behavior can
be interpreted as iterative reasoning, with K = 1, 2,
or 3 players with a different � to describe the data,
depending on the subject pool.
In this paper, I use experiments done via e-mail.

This method is similar to the newspaper experiments
reported by Bosch-Domenech et al. (2003), in which
people have more time to think about the problem
than in a regular laboratory experiment. For exam-
ple, Bosch-Domenech et al. (2003, p. 1694) report that
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39 participants in the newspaper experiment claimed
that they had run an experiment among students,
friends, and relatives, to help them decide what num-
ber to submit. As a result, a higher � may be expected.
In the demonstrations below I will use � = 3, as will
be justified by the data later on.
One test of such a behavioral theory is how well it

can predict behavior in new environments. Moreover,
for such a theory to be interesting for economists,
this new environment should have economic mean-
ing. My goal in this paper is to test the theory in a
different game with economic relevance. To achieve
this goal, I test the SLR model (with the CHC for-
mulation) using auctions. The first set of experiments
involves a first-price sealed-bid auction in which two
players simultaneously choose an integer (a bid) from
the set �1�2� 	 	 	 �N �. The player who chooses the low-
est bid gets a dollar amount times the number (s)he
bids and the other player gets 0. In case of a tie, the
earnings are split amongst both players.
One problem in empirical research on auctions is

that the reservation price of bidders is unknown to
the observer. The advantage of the stylized auction
used in this paper is that it allows us to observe these
reservation prices. This auction can simply be inter-
preted as selling $100 to the highest bidder (i.e., the
person who is willing to accept the lowest amount).
A fundamental difference between this auction game
and the beauty contest game is the fact that equi-
librium prediction (each player chooses 1 or each
player chooses 2) differs sharply from the surplus-
maximizing outcome (each player choosing N ).
Another direction of investigation relates to the

number of reasoning levels leading to equilibrium.
In the beauty contest game studied by Nagel (1995),
a relatively small number of reasoning levels leads
players to equilibrium. This is similar to the first-price
auction with N = 10. However, when increasing N
to 100, the prediction of the SLR model is concen-
trated around the choice of 50 (the K = 1 choice). This
is worrisome, because the generality of the model will
be severely damaged if it is not able to predict behav-
ior in games with a large number of iterations leading
to equilibrium.
The second set of experiments involves second-

price sealed-bid auctions. Bidding in this auction is
done in a similar way to the first-price auction, and
again the bidder who bids the lower number wins.
However, the prize she wins is the bid made by the
other participant. In equilibrium, participants bid 1.
According to the SLR model, zero-level players will
randomize over all bids, just as in the first-price auc-
tion. A level 1 (or higher) player will best respond
to this by bidding 1. Using the same parameters as
before, the prediction is that most players will simply
bid 1, and the rest will be randomly distributed over
the bid interval.

2. The First-Price Sealed-Bid Auction
2.1. Rules and Equilibrium
Each of two players simultaneously chooses an inte-
ger from the set �1�2� 	 	 	 �N �. The player who chooses
the lowest bid gets a dollar amount times the number
(s)he bids and the other player gets 0. In the case of
a tie, the earnings are split between both players.
In this simple auction, the bidder who offers the

lowest bid wins the auction, and is paid according
to her bid. The game may also be interpreted as
a duopoly market with price competition: the play-
ers are firms, the bids are prices, and payoffs are
the firms’ profits.2 There are two Nash equilibria:
�1�1
 and �2�2
, both with negligible profits. Out of
these, �1�1
, is strict and may be viewed as “best”
in terms of various desiderata proposed in the the-
ory of equilibrium selection (see van Damme 1987).
Also, theories of sophisticated reasoning, which do
not presume equilibrium behavior at all, may be
applied to promote a bid of 1 as the unique proce-
dure. The iterated dominance technique eliminates,
in turn, the choice of N (as a dominated choice)
and subsequently N − 1�N − 2� 	 	 	 �3�2 by iterated
eliminations. Finally, one may put forth evolution-
ary arguments, which do not presume any degree of
sophistication whatsoever, to reach an analogous con-
clusion; a bid of 1 is the game’s unique evolutionarily
stable strategy (Maynard Smith and Price 1973). For
experimental results of this game with N = 100 in a
repeated random matching set up, see Dufwenberg
and Gneezy (2000, 2002), and with group competition,
see Bornstein and Gneezy (2002). Isaac and Walker
(1985) study the role of feedback information in a sim-
ilar game of sealed-bid private-value auctions with
four bidders.

2.2. The Step-Level Reasoning Model Prediction
In this paper, I use two values of N� 10 and 100. When
N = 10, a zero-level player will choose each of the
numbers 1�2� 	 	 	 �10 with probability 0.1. The choice
of a K = 1 player will be the best reply to this behav-
ior, i.e., choosing that integer which maximizes the
following term, where n is the integer chosen:

max
{
n× N −n

N
+ n

2
× 1

N

}
	 (1)

2 The assumptions underlying the game are the same as in the clas-
sical Bertrand price competition model. See the discussion regard-
ing the relation between the game and the model in Baye and
Morgan (2004) who, based on the findings of Dufwenberg and
Gneezy (2000) and Abrams et al. (2000), show that only a little
bounded rationality is needed to rationalize price dispersion in set-
tings that closely approximate textbook Bertrand competition. They
conclude that “bounded rationality based theories of price disper-
sion organize the data remarkably well” (p. 1).
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Figure 1 Prediction of the CHC Model for the N = 10 Game with � = 3
(First-Price Auction)
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With N = 10, the n maximizing this argument is 5.
Given the Poisson distribution suggested by CHC
with � = 3, a K = 2 player will best respond to these
strategies by choosing 4, a K = 3 or more player will
choose 3. Note that the best response may depend on
the value of � . The prediction of the CHC model with
� = 3 is presented in Figure 1.
When N = 100, a zero-level player will choose each

of the numbers 1�2� 	 	 	 �100 with probability 0.01. The
choice of a K = 1 player will be the best reply to this
behavior, i.e., choosing 50. Given the Poisson distri-
bution suggested by CHC, a K = 2 player will best
respond to these strategies by choosing 49; a K = 3
player will choose 48, and so on (depending on �).
The prediction of the CHC model with � = 3 is pre-
sented in Figure 2.

2.3. Altruism, Risk Taking, and Equilibrium
Sometimes we can learn from listening to our sub-
jects! As one of the participants in the treatment with
N = 10 wrote: “If you’re interested in my rationale,
I think the only way I can win is by choosing a very
low number (1 or 2), which wouldn’t be worth play-
ing for (2 ∗ $10 ∗ 0	10 chance of payoff = $2). The
good feeling I get of guaranteeing a win to who-
ever is paired off with me is worth more. And if I’m
matched with another altruist, we’ll each get $50. My
decision would be different if I considered this to be

Figure 2 Prediction of the CHC Model for the N = 100 Game with � = 3
(First-Price Auction)
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a zero-sum game, but I don’t consider the experi-
menter’s payouts as a loss to himself.”
There is a fundamental difference between the

beauty contest game and the price competition game.
The difference is in efficiency; whereas in the beauty
contest the prize is fixed, in the auction games
the prize is endogenously determined by the bids.
A choice of N by both bidders maximizes the total
prize.
Adjusting the model for games with tension be-

tween equilibrium and efficiency seems important.
One way to do this is using altruism. I define altru-
istic preferences by a subject whose utility function is
increasing, not only in her own payoff, but also in the
other player’s payoff (see Palfrey and Prisbrey 1997
for a formal definition). Charness and Rabin (2002)
and Andreoni and Miller (2002) show that people are
motivated to increase the total social payment in a
variety of games.
McKelvey and Palfrey (1992) showed that an in-

complete information game that assumes the exis-
tence of a small proportion of altruists in the pop-
ulation can account for many of the salient features
of their data. They estimated a level of altruism of
about 5%, and then modeled the reaction of other
nonaltruistic players to the existence of the altruistic
players. In line with this approach, one can extend the
SLR model by assuming that a fraction of the players
simply chooses “altruistic” bids. In the auction, this
would mean people choosing a high number, even
though they understand that it does not maximize
their payoffs.3

Like in the McKelvey and Palfrey (1992) model, not
all bidders must be altruistic to choose high num-
bers. Some players may simply try to exploit altru-
ism by reacting to the presence of altruistic players.
A related reason might be risk loving: some players
may place a risky bet for potentially high return. See
Baye and Morgan (2004) for a formal treatment of
such behavior.
A potentially more important difference between

the beauty contest game and the first price auction
is that in the auction game, the equilibrium bid will
be played only by level 0 players. Using the CHC
parameters, a fully rational player will bid 3. This dif-
ference implies that only a level 0 bidder may choose
the equilibrium. An alternative Poisson model that is
tested below is that the distribution of bidders in the
game “goes all the way”: level 1 bidders choose 5,
level 2 choose 4, level 3 choose 3, level 2 choose 2, and
level 1 and higher choose equilibrium. The Poisson

3 In the formal test below, I extend the model to games with altruis-
tic motives by simply assuming that 0.05 of the people choose each
of the numbers above 6 to 10, and that the K > 1 players are aware
of that.
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distribution with the parameters of the CHC model
will be tested over this alternative prediction.
While this difference may seem minor, it has a

strong implication regarding the cognitive process
used. While the distribution of choices is a Poisson
distribution, the underlying mechanism is very dif-
ferent: either people do not reason as prescribed by
the SLR model or the players of level 4 and higher
make a mistake in calculating the best response. I will
return to this topic in the conclusion after presenting
the results.

2.4. Procedure
E-mail messages were sent to students at a large uni-
versity in the United States who had previously par-
ticipated in laboratory and Internet experiments and
who had expressed interest in further participation.
All together, 400 potential participants were invited to
bid in this auction, with about 200 students randomly
assigned to potentially participate in each treatment.
Because the vast majority of these students use e-mail,
selection bias from this recruiting method should be
minimal, at least with respect to standard labora-
tory experiments. Altogether, 74 participants replied
in the N = 10 game, and 89 in the N = 100 game.
It was decided to run this experiment using e-mail,
instead of the traditional laboratory environment,
to mimic real first-price sealed-bid auctions on the
Internet.
The payment to the participants was set such that

in the N = 100 case a winning participant received
a dollar amount times the number she chose. How-
ever, only 1 out of 10 participants was paid. In the
N = 10 treatment, payoffs were normalized such that
a winning participant received a dollar amount equal
to 10 times her choice. This normalization was created
to reduce differences between treatments. Instructions
are provided in the appendix.

3. Results of the First-Price Auction
3.1. N = 10
As expected based on the previous studies described
above, the Nash equilibrium predicted the outcomes
poorly: only 15% of the participants chose 1. The dis-
tribution of actual choices and the prediction of the
CHC model with � = 3 are presented in Figure 3 and
Table 1.4 Using a Kruskal-Wallis5 test we can reject
the hypothesis that the predicted outcome (of the SLR

4 I estimate � in §3.4. For conformity, I use � = 3 for the hypothesis
testing; using the estimated � gives similar results here.
5 The Kruskal-Wallis test is a multiple-sample generalization of
the two-sample Wilcoxon rank-sum test. Samples of sizes nj , j =
1� 	 	 	 �m, are combined and ranked in ascending order of magni-
tude. Tied values are assigned the average ranks. Let n denote the
overall sample size and let Rj denote the sum of the ranks for the

Figure 3 The Thicker Line Represents the Prediction of the Model with
the Addition of Altruistic Players (First-Price Auction)
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model suggested by CHC with � = 3) and the actual
results are the same.
The alternative model I proposed, with altruistic

players and Poisson distribution over how close the
bids are to equilibrium, is presented in the thick line
in Figure 3. The statistical comparison of the alter-
native model yields no significant difference between
the distributions (p= 0	04).
3.2. N = 100
The distribution of actual choices and the prediction
of the CHC model with � = 3 are presented in Fig-
ure 4. Unlike the N = 10 case, casual inspection of
the figure shows no resemblance between prediction
and actual results. The statistical test indicates that the
results are significantly different from the prediction
of the CHC prediction with � = 3 (p > 0	1).
Also, unlike the N = 10 treatment, the alternative

model does not result in a better fit.

3.3. A Comparison of the Two Treatments:
Grouping the N = 100 Results

On a first pass the results of the N = 10 treatment
and the N = 100 treatment look very different. How-
ever, the proportions of the average from the high-
est bid allowed are similar: the average is 4.3 in
the N = 10 treatment, and 40 in the N = 100 treat-
ment. Hence, the corresponding proportions are 0.43
and 0.4. When grouping the results of the N = 100
treatment in 10 groups �1–10�11–20� 	 	 	 �91–100
, the
two distributions seem very similar; see Figure 5. The
difference between the distributions is not statistically
significant �p= 0	05
.
The two concerns a player has when choosing a

number are the probability of winning and the associ-
ated expected profits. As in the beauty contest game,

jth sample. The Kruskal-Wallis one-way analysis-of-variance test H
is defined as

H = 12
n�n+ 1


m∑
j=1

R2j

nj

− 3�n+ 1
	

The sampling distribution of H is approximately chi-squared with
m− 1 degrees of freedom.
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Table 1 Results of the 1–10 Treatment and the Prediction of the CHC Model with � = 3

Bid 1 2 3 4 5 6 7 8 9 10

Results 1–10 0�15 0�12 0�22 0�14 0�12 0�05 0�04 0�04 0�03 0�09
CHC model with � = 3 0�005 0�005 0�58 0�23 0�15 0�005 0�005 0�005 0�00 0�005
Alternative model with � = 3 0�14 0�12 0�18 0�18 0�10 0�05 0�05 0�05 0�05 0�05

choosing the equilibrium number is not necessarily
the best reply to the actual behavior of the other par-
ticipants. Figure 6 presents the graphs of the proba-
bility of winning and the expected payoff associated
with each choice for the two treatments (the N = 100
results are again pooled in 10 groups).
Given the fact that the distributions are not signif-

icantly different, it is not surprising that the proba-
bility of winning and the expected payoff from each
choice are similar between the treatments. The maxi-
mum expected payoff is 0.18 (when the maximum pie
is normalized to 1), coming from choosing either 3
or 4. The probability of winning is 54% when choos-
ing 3, and 38% when choosing 4 (the expected payoff
is calculated using Equation (1)).
A comparison of the probability of winning with

the prediction of the alternative model with � = 3
is plotted in Figure 7. The similarity between the
graphs is again striking. The difference between the
prediction of probability and expected payoffs and
the actual ones is not statistically significant �p < 0	01
.
Note that very much as in the beauty contest game,

playing the equilibrium results in very low expected
profits relative to the best response to the other
actual bids.

3.4. Empirical Estimation

3.4.1. CHC Model. I estimate the parameters for
the CHC model, both without altruism and with
the addition of altruism. Without altruism, I need to
estimate the underlying � parameter, given the data.

Figure 4 Results of the 1–100 Treatment and the Prediction of the CHC
Model with � = 3 (First-Price Auction)
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If Ki represents the type of the ith player and Xi the
integer chosen, then the distribution of Ki is given by

P�Ki = ki
=
e−��ki

ki!
�

given that the choice of Xi follows the following
process.
• If Ki = 0, the subject chooses each of the options

1� 	 	 	 �10 with equal probability (0.1), i.e., Xi is
randomized.
• If Ki = 1, the subject chooses 5, i.e., Xi = 5

deterministically.
• If Ki = 2, the subject chooses 4, i.e., Xi = 4

deterministically.
	 	 	 	

• If Ki ≥ 5, the subject chooses 1, i.e., Xi = 1
deterministically.
The resulting probability distribution of Xi is

given by

P�Xi = 1
= P�Ki ≥ 5
+ 0	1P�K = 0

= �1− P�K ≤ 5
�+ 0	1P�K = 0


P�Xi = 2
= P�Ki = 4
+ 0	1P�Ki = 0

· · ·
P�Xi = 5
= P�Ki = 1
+ 0	1P�Ki = 0

P�Xi = y
= 0	1P�Ki = 0
 ∀y ∈ �6�7�8�9�10�	

Thus, we can estimate the � parameter using max-
imum likelihood.6 The parameter estimates of the
two auctions with N = 10 and N = 100 are given
in Table 2. Additionally, we also find the estimates
when the N = 100 results are grouped. Because the
parameter estimates themselves do not tell us how
well the estimates fit the data, we compare the pre-
dicted distribution of choices �Xi
 with the empirical
distribution. The comparisons for the three models
are presented in Figures 8 through 10. Table 2 also
has a goodness of fit measure in terms of the mean
absolute percent deviation between the predicted and
empirical distributions.

6 � has to be reparametrized during the estimation so that it is con-
strained to be a positive number. However, the parameter estimates
are for the true � parameter (with the standard errors appropriately
computed using the delta method).
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Figure 5 A Comparison of the Results from the N = 10 Treatment with
the Results of the N = 100 Treatment Grouped in 10 Different
Subgroups (First-Price Auction)
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3.4.2. Alternative Model. Next, we estimate the
parameters of the alternative model. To model
altruism, the choice of outcomes is modeled as a mix-
ture of the underlying process described earlier and
an altruism process, by which one of the higher out-
comes is chosen (with equal probability for each of
these higher choices). Let � be the proportion of peo-
ple who are altruistic. They are assumed to choose the
higher outcomes (6 to 10 in the N = 10 condition) with
equal probability. The �1−�
 proportion of people are
assumed to follow the earlier process.
Thus, we can derive the modified probability dis-

tribution of choices Xi as the following:

P�Xi = 1
 = �P�Ki ≥ 5
+ 0	1P�K = 0

= �1− P�K ≤ 5
�+ 0	1P�K = 0

 ∗ �1−�


P�Xi = 2
 = �P�Ki = 4
+ 0	1P�Ki = 0

 ∗ �1−�


· · ·
P�Xi = 5
 = �P�Ki = 1
+ 0	1P�Ki = 0

 ∗ �1−�


P�Xi = y
 = �0	1P�Ki = 0

 ∗ �1−�
+ 0	2 ∗�
∀y ∈ �6�7�8�9�10�	

Figure 6 A Comparison of the Probability of Winning with Each
Number Chosen Between the Two Treatments (First-Price
Auction)
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Note. The N = 100 results are pooled in 10 groups.

Figure 7 A Comparison of the Probability of Winning with Each
Number Chosen Between the N = 10 and the Prediction of
the Alternative Model with � = 3 (First-Price Auction)
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We again estimated the model using maximum like-
lihood.7 These results are reported in Table 3. In this
case, the model with N = 100 did not converge. How-
ever, it converged with the grouped N = 100 data.
Figures 11 and 12 depict the predicted and empirical
distribution of choices Xi.
Comparing the goodness-of-fit measures in Tables 2

and 3 (the mean absolute percentage deviation), we
find that in both the N = 10 and grouped N = 100
cases, the model with altruism has a better fit. Further,
for model selection, we compute the Akaike Informa-
tion Criterion (AIC) and Bayesian Information Crite-
rion (BIC). Both these criteria are based on the log
likelihood at the estimated parameter values. Both of
them select the model with a higher likelihood. How-
ever, the BIC additionally penalizes a model with a
higher number of parameters. With both these crite-
ria, the model with a lower value is selected. The AIC
and BIC for the two models (the CHC model and
the CHC model with altruism) under the two condi-
tions (N = 10 and grouped N = 100) are presented in
Table 4. As we can see, the model with altruism out-
performs the simple CHC model whether we use the
AIC or the BIC.

4. The Second-Price Sealed-Bid
Auction

4.1. Rules and Equilibrium
Each of two players simultaneously chooses an inte-
ger from the set �1�2� 	 	 	 �N �. The player who chooses
the lowest bid gets a dollar amount times the number
the other player bid, and the other player gets 0. In case
of a tie the earnings are split between both players.
The rules of this auction are similar to those of the

first-price auction, but here the winner is paid the

7 Again, � needs to be constrained to be positive. Additionally, in
the model with altruism, � (which is a probability) needs to be
constrained between 0 and 1.
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Table 2 Parameter Estimates and Goodness-of-Fit Measures:
CHC Model

Parameter (standard errors
are in parentheses)

N = 100
N = 10 N = 100 (grouped)

� 2�0886∗∗ 0�0834∗∗ 2�1910∗∗

(0.0079) (0.0372) (0.2126)
Log-likelihood −182�08 −402�68 −219�74
Mean absolute percent 65�60 45�58 63�25
deviation (%)

∗∗Significant at the 95% level.

loser’s bid. This auction has a unique Nash equilib-
rium in which each player chooses 1, resulting in neg-
ligible profits. The second-price auction was studied
by Vickrey (1961). See Lucking-Reiley (2000) for the
history and use of this type of auction.

4.2. The Step-Level Reasoning Prediction
I again tested the game for N = 10 and N = 100.
When N = 10 (100), a zero-level player will choose
each of the numbers 1�2� 	 	 	 �10 (100) with probabil-
ity 0.1 (0.01). The choice of a K = 1 player will be the
best response to this behavior. Unlike the first-price
auction, this choice is already the equilibrium choice!
That is, the only players who will not choose the equi-
librium choice of 1 are the zero-level players!

4.3. Procedure
E-mail messages were sent to about 200 students at
the Technion, Israel. I received 132 students replies
(59 in the N = 10 treatment, and 73 in the N = 100
treatment). Payments were set such that in the
N = 100 treatment, a winning participant received a
dollar amount times the number the losing participant
chose. However, only one out of 10 participants was

Figure 8 Empirical and Predicted Probability Distributions: N = 10
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Figure 9 Empirical and Predicted Probability Distributions: N = 100

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.10

0.12
Empirical distribution
Fitted distribution

paid. As in the first-price auction, the N = 10 treat-
ment payoffs were normalized such that a winning
participant received a dollar amount equal to 10 times
her choice.

5. Results of the Second-Price Auction
5.1. N = 10
The distribution of actual choices and the prediction
of the model with the parameters used in the first-
price auction are presented in Figure 13; 66% of the
participants chose 1, and another 14% chose 2. In the
equivalent first-price auction, 74% of the participants
had k > 0 (i.e., chose 5 or less).

5.2. N = 100
The distribution of actual choices and the predic-
tion of the model with the parameters used in the

Figure 10 Empirical and Predicted Probability Distributions: N = 100
and Grouped
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Table 3 Parameter Estimates and Goodness-of-Fit Measures: CHC
Model with Altruism

Parameter (standard errors
in parentheses)

N = 10 N = 100 (grouped)

� (Poisson mean) 3�0546∗∗ 3�1373∗∗

(0.2937) (0.7002)
� (Proportion of altruistic people) 0.2388 0.2305

(0.1819) (0.1908)
Log-likelihood −160�54 −193�85
Mean absolute percent 25�87 55�16

deviation (%)

∗∗Significant at the 95% level.

first-price auction are presented in Figure 14. Unlike
the first-price auction, casual inspection of the fig-
ure does show resemblances between prediction and
actual results; 63% of the participants chose 1, and
74% chose 5 or less. This value is not statistically dif-
ferent than the 75% of the participants with k > 0 (i.e.,
who chose 50 or less) in the first-price auction. Unlike
the first-price auction, k > 0 suffices to bid the equi-
librium price.

5.3. A Comparison of the Two Treatments:
Grouping the N = 100 Results

For completeness of the comparison with the first-
price auction, grouping the results of the N = 100
treatment in 10 groups �1–10�11–20� 	 	 	 �91–100
 and
comparing them to the N = 10 treatment revealed no
statistically significant difference �p < 0	01
.

6. Discussion
This paper challenges the step-level model of reason-
ing. The data presented regarding bidding in first-
price auctions suggest that while the Poisson type of

Figure 11 Empirical and Predicted Probability Distributions: N = 10
Alternative Model

1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
Empirical distribution
Fitted distribution

0.06

Figure 12 Empirical and Predicted Probability Distributions: N = 100
and Grouped Alternative Model
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response observed by CHC is replicated, it cannot
directly be attributed to the quantified version of the
SLR model.
This result has a strong implication regarding the

cognitive process used by people in these games.
While the distribution of choices is a Poisson distri-
bution, the underlying mechanism is very different.
Two types of reasons may cause this. First, the SLR
type does not describe behavior well, and the Poisson
distribution observed is due to some other cognitive
processes. Alternatively, it might be that, while rea-
soning according to the SLR model, the level 4 and
higher players make a mistake in calculating the best
response. That is, they estimate correctly what other
players will do, but miscalculate the best response to
this behavior and replace it with equilibrium.
In the second-price auction, the SLR model with

CHC quantification has a sharply different prediction
than in the first-price auction; most people (those with
K > 0) are predicted to be at equilibrium. In this case,
the model with the CHC parameters predicted the
results well. The interesting questions we are left with
are—why do we observe this Poisson type of response
in a variety of games, and why is it in line with the
SLR model only in part of the games?

Table 4 Model Comparisons Using Akaike Information Criterion (AIC)
and Bayesian (Schwarz) Information Criterion (BIC)

Criterion value

Criterion Model N = 10 N = 100 (grouped)

AIC CHC model 366.16 441.48
Alternative model 325.08 391.70

BIC CHC model 368.65 443.97
Alternative model 329.69 396.68
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Figure 13 Prediction and Results of the 1–10 Treatment (Second-Price
Auction)
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The games tested in this paper have economic
importance. Internet auctions capture a large and
growing part of today’s economy (Vulkan 2003). The
advantage of the stylized auction is that it allows
us to observe the reservation price of the bidders;
it is symmetric, with common value and complete
information. However, this is also a disadvantage.
For example, in real auctions bidders seldom pos-
sess information about the reservation price of the
other side (in many cases they do not even know
their own reservation price). So, while the results of
this paper might serve to increase optimism regarding
the chances of understanding and modeling behav-
ior in auctions, the goal is still distant. A behavioral
economic model that can be used by bidders to pre-
dict outcomes of auctions, and to calculate probabil-
ities of success and expected payoff, may be of great
importance and usefulness. The goal of constructing
such a model should proceed along the lines of the
research presented in Kagel and Levin (2002), by try-
ing to adapt the model to empirical evidence from
more and more complex environments.
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Figure 14 Prediction and Results of the 1–100 Treatment (Second-
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Appendix. Instructions (First-Price Auction)

Dear Participant,
We would like to invite you to participate in a short exper-
iment conducted by researchers from the University of
Chicago Graduate School of Business.
All you have to do in order to participate is to read the
instructions below and reply with your choice.
This task should not take more than 5 minutes, and we are
going to randomly choose two people out of every 20 par-
ticipants and pay them according to the instructions.
Please send your reply before December 14. We will notify
the winners and inform participants of the results on
December 15.
Thank you for your cooperation!

Instructions (for the 1 to 100 interval)
In the following game you are asked to choose an integer
between 1 and 100. We will compare your choice to the
choice of another participant chosen randomly.
If one of you chooses a lower number than the other, then
he/she will win a dollar amount equal to the number
he/she chose. The student who chose the higher number
will not earn money.
If the two numbers chosen are equal, then each of you will
get a dollar amount equal to half the number chosen.
The number I choose is: .
We are going to choose one pair of participants at random,
and these two participants will be paid according to the
above instructions.

Instructions (for the 1 to 10 interval)
In the following game you are asked to choose an inte-
ger between 1 and 10. We will compare your choice to the
choice of another participant chosen randomly.
If one of you chooses a lower number than the other, then
he/she will win a dollar amount equal to 10 times the num-
ber he/she chose. The student who chose the higher num-
ber will not earn money.
If the two numbers chosen are equal, then each of you will
get a dollar amount equal to 5 times the number chosen.
The number I choose is: .
We are going to choose one pair of participants at random,
and these two participants will be paid according to the
above instructions.
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