AL

= acta
?ﬁ% psychologica

ELSEVIER Acta Psychologica 93 (1996) 59-68

Probability judgments in multi-stage problems:
Experimental evidence of systematic biases
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Abstract

We report empirical evidence that in problems of random walk with positive drift, bounded
rationality leads individuals to underestimate the probability of success in the long run. In
particular, individuals who were given the stage-by-stage probability distribution failed to
aggregate this information in a multi-stage case. Estimations of the long-run probability distribu-
tion did not differ much from the given stage-by-stage probability distribution, and were
systematically lower than the accurate one. Applications to risk perception in financial markets are
considered.
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1. Introduction

The standard approach to sequential decision making under uncertainty (i.e. the
Savage (1954) subjective expected utility theory) assumes that people are indifferent to
the way problems are set, and are only interested in the probability distribution over
final outcomes (see Hammond, 1988; Machina, 1989). In particular, people are assumed
to follow the reduction of compound lotteries axiom, stating that a multi-stage lottery is
equally attractive as the one-stage lottery that yields the same prizes with the corre-
sponding multiplied probabilities. For example, consider the following two lotteries: in
the first, a fair coin is tossed twice in a row. If it falls on its head twice or on its tail
twice, the decision maker wins $1; he loses $1 if it falls once on each side. In the second
lottery, two fair coins are tossed at the same time, and the payoffs are the same as in the
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first lottery. The reduction axiom states that the decision maker is indifferent between
the first and the second lottery.

While there exists a literature following Kahneman and Tversky (1979) (see Camerer,
1995, for a short survey) that questions this axiom, a common assumption is that people
are capable of accurately estimating the reduced probabilities of compound lotteries, or
at least that mistakes are not systematic, and estimations are accurate on average. This is
surprising because it is not difficult to construct sequential problems in which, for
bounded rationality reasons, people fail to estimate reduced probabilities (see the book
edited by Kahneman et al., 1982, or the works of Bar-Hillel, 1973, and Wagenaar and
Sagaria, 1975, which are described below).

This paper looks at a different aspect of this problem, namely processes of random
walk with positive drift, which are very important in many real-life economic decisions.
We test whether probability judgment is ‘good’ in this kind of environment, or is it
systematically biased — and if so how. Versions of the following investment game "are
used:

An option on the price of a stock is for sale. Today the price of the stock is $x, and
every day it either goes up or down by $1, with probability p and 1 — p respectively.
The option will be realized and pay $0 if the price of the stock will reach $0, and $n
if the price will reach $n. What is the probability that the realization price will be $r?

Results of three experiments with the game are reported, in which we controlled for
the following three parameters:

1. we changed the starting amount to x = $3, $5, and $7, fixing p=0.6 and n = 10,

2. we changed the size of the interval to n=4, 6, 10, and 14, when x=n/2 and
p=0.6, and

3. for x=5 and n=10, we changed the stage-by-stage probability of success to

p=0.55, 058, 0.6, 0.65, and 0.7.

The results suggest that people use the stage-by-stage probability as an anchor, and
adjust insufficiently. Estimations are biased toward the direction of the stage-by-stage
probability, resulting in underestimation of the overall probability of success. One
consequence is that while individuals do quite well in estimating the probabilities in
‘small’ intervals, in which the compound probability does not differ much from the
stage-by-stage probability, they fail to appreciate the affect of enlarging the interval i.e.,
the fact that the probability of success increases. For that reason, for the values of n
tested, underestimations increased with n. Another consequence is that subjects fail to
fully appreciate increases in the stage-by-stage probability, i.e. the fact that a ‘small’
increase in the stage-by-stage probability implies a ‘large’ increase in the overall
probability of success.

In the paper we try to get some insight into the relevance of this to ‘real-life’
problems, such as the equity premium puzzle. It may be that the failure of traditional

"A similar game, known as ‘“The gambler’s ruin problem’, is a classical problem in the random walk
literature. Early solutions by Bernoulli and De Moivre are described in Thatcher (1957). For detailed solutions
see Ross (1989). This literature was not concerned with the bounded rationality aspects of this problem.
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risk measures to explain behavior in many cases is not a case of a bad theory of risk
behavior, as much as a simple misjudgment of the objective probabilities by people. See
Arrow (1982).

2. Computing the compound probability of success

Let p () be the probability of getting n after ¢ stages for a player who starts with x.
Denote the infinite case by p_, i.e. p, =1lim,_ . p (¢). The probabilities p, satisfy the
following system of equations:

p,=1
pe=(1=p)xp _ +p*p. for0<x<n,
Po=0

Proposition 2.1.  The explicit solution of the system, for p # 0.5 is:

_ [(1=p)p7'] -1
[G-pp]" -1

Proof This is a system of n + | linear equations in n + 1 unknowns (p,,....p,). Itis
easily seen that the determinant of the system is non-zero, hence, the system has at most
one solution. Direct verification shows that the equation in the proposition is a solution
to the system. Hence it must be the unique solution. O

p(x)

In Table 1 are the p,’s for a few different x’s and p’s. n = 10.

Table 1

Values of p, are the probabilities of reaching n= 10, starting with x, when p is the stage-by-stage probability
p=05 p =055 p=0.58 p=0.6 p=10.65 p=07

Pio 1 1 1 1 1 1

Do 0.9 0.96 0.98 0.99 0.998 0.9997

Ps 0.8 0.91 0.96 0.98 0.995 0.9990

Pq 0.7 0.86 0.93 0.96 0.989 0.9976

Do 0.6 0.79 0.89 0.93 0.978 0.9940

Ps 0.5 0.71 0.83 0.88 0.957 0.9857

Pa 0.4 0.62 0.75 0.82 0918 0.967

P 03 0.51 0.65 0.72 0.85 0.92

Pa 02 0.37 0.5 0.57 0.71 0.82

P 0.1 0.2 0.29 0.34 0.46 0.57

Po 0 0 0 0 0 0
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3. Method and results

In this section, experimental results from three experiments are presented, showing
underestimation.

3.1. Experiment 1: Changing the starting amount with experienced subjects

We wanted to check whether having some ‘experience’ with the game will make the
estimates more accurate. First year students in economics at Tilburg University partici-
pated in the experiment. The students played a version of the game (see Appendix A) for
real money. * Each student played privately and independently of the others. In total 28
subjects participated; 10 students started with $3, 10 with $5 and 8 students with $7. The
probability used was p = 0.58, and n = 10. Each session took at most 30 minutes. After
playing, subjects were asked indirectly (see Appendix B) about their estimations. This
was done in order to check whether the mistakes resulted from confusion created by
terms like ‘probability’ and ‘chance’. Their responses are presented in Table 2.

Twenty-four out of the 28 subjects underestimated p,. This first experiment shows
that underestimation exists, even after some experience in playing. An interesting
observation is that, on average, playing more stages (more ‘experience’) did not result in
more accurate estimations.

Another experiment, not incentive motivated, used 16 seminar participants (profes-
sors and Ph.D students in economics) from Tilburg University as subjects. Each subject
was asked to estimate p_ for 4 different x’s. Although these subjects are not ‘normal

Table 2
The right column in each starting amount gives the estimated p, for subjects who first played the game for
real money. p =0.58 and » = 10. For each x, subjects are ordered by their estimation

Subject Start with $3 Subject Start with $5 Subject Start with $7
1 0.85 11 0.95 21 0.85
2 0.75 12 0.80 22 0.83
3 0.70 13 0.70 23 0.80
4 0.62 14 0.70 24 0.75
5 0.58 15 0.58 25 0.58
6 0.58 16 0.58 26 0.58
7 0.58 17 0.58 27 0.58
8 0.40 18 0.58 28 0.44
9 0.25 19 0.37

10 0.05 20 0.30

Mean 0.536 Mean 0.614 Mean 0.676
Actual p, 0.646 Actual p, 0.834 Actual p, 0.933

% We used Dutch guilders, scaling the game such that the change in prize in every stage was f 2.5 instead
of $1, e.g. when we say that the game started with $5 it actually started with f 12.5 (at the time f2.5=$1.6).
To reduce confusion, we continue presenting the results in dollars.
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Table 3
The probabilities of reaching different values of n, when p = 0.6, and starting at n /2
n 2 4 6 8 10 12 14 16 18 20 50

Puy2 060 069 077 0.84 0.88 0.92 0.94 0.96 0.97 098  0.99996

people’, in the sense that they know more about probability theory than most people, 54
out of the 64 responses underestimated p_.

3.2. Experiment 2: Changing the size of the interval

Most of the literature on sequential decision problems uses two stage lotteries as a
sole representation of dynamics. This is done under the assumption that moving from
one-stage to two-stage lotteries captures the essential aspects of dynamics, and moving
from two-stage to multi-stage lotteries is trivial. We show that in our random walk
example, there is no ‘irrationality’ in a two-stage set-up, but subjects become ‘more
irrational’ with every stage added.

To do this, different sizes of intervals were used, keeping the rest of the rules the
same. In Table 3 are the reduced probabilities for different values of n, when starting
with x = n/2 (calculated using Proposition 2.1).

As one can see, the reduced probabilities converge to 1 very rapidly. The question
raised now is, would subjects, although underestimating the reduced probabilities,
understand that they converge to 1?7

We used undergraduate students in economics, and gave them monetary incentives to
find the accurate probabilities. We had 4 groups of subjects, one with 4 subjects, one
with 5, and 2 with 6 subjects each. Appendix C is an example of a questionnaire for
n = 4. The results are presented in Table 4.

The underestimates are robust even under this treatment (16 out of 21 subjects, but 9
out of 11 for n =10 and n = 14), and the size and frequency of underestimations
increase with n. Another observation is that the mean of the observations, within the
range of 4 < n < 14, did not converge to 1, i.e. the expectations are not monotonic and
do not differ much from each other.

Table 4
Estimations of p, ,, for different values of n
Subject n=4 Subject n=6 Subject n=10 Subject n=14
1 0.8 1 0.8 1 1 1 0.94
2 0.7 2 0.67 2 0.8 2 08
3 0.6 3 0.6 3 0.65 3 0.6
4 0.5 4 0.6 4 0.6 4 0.6

5 0.6 5 0.35 5 0.6

6 0.36 6 0.6
Mean 0.65 Mean 0.605 Mean 0.68 Mean 0.69

Actual p, 0.69 Actual p, 0.77 Actual p, 0.88 Actual p, 0.94
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Table 5
Estimations of p, for different values of p, x=15 and n=10

Subject Prob 0.55 Subject Prob 0.6 Subject Prob 0.65 Subject Prob 0.7

1 0.9 16 0.99 31 0.9 46 0.99
2 0.68 17 0.8 32 0.85 47 0.83
3 0.59 18 0.77 33 0.82 48 0.82
4 0.59 19 0.73 34 0.8 49 0.7
5 0.57 20 0.7 35 0.74 50 0.7
6 0.55 21 0.69 36 0.7 51 0.7
7 0.55 22 0.65 37 0.65 52 0.7
8 0.55 23 0.64 38 0.65 53 0.7
9 0.55 24 0.6 39 0.65 54 0.7
10 0.55 25 0.6 40 0.65 55 0.65
11 0.55 26 0.6 41 0.6 56 0.6
12 0.55 27 0.52 42 0.58 57 0.58
13 0.55 28 0.5 43 0.5 58 0.3
14 0.45 29 0.2 44 0.5 59 0.17
15 . 30 " 45 0.35 60 -
Mean 0.58 Mean 0.64 Mean 0.66 Mean 0.65
Actual 0.73 Actual 0.88 Actual 0.96 Actual 0.99

* Observations that did not add up to one.

3.3. Experiment 3: Changing the stage-by-stage probability

In this experiment we fixed x =15 and n = 10, and varied p. We used 60 first year
economics students, in four groups of 15 subjects. Each group was asked about one p.
Instructions were similar to those of Experiment 2, but a different reward scheme was
used (see Appendix D). The results are presented in Table 5.

Again we see underestimations of p, (54 out of 57 subjects), and we see that
changing p did not change the mean of the estimations which, apart from the case of
p = 0.55, are almost identical. This implies that subjects were not sensitive to changes in

p.

4. Discussion: Anchoring and adjustment heuristic

The evidence indicates that when estimating the compound probability of success
(p,), subjects use the stage-by-stage probability of success ( p) as an anchor. Appar-
ently, subjects ‘start’ with p, anchor to that, and either do not adjust at all, or adjust
insufficiently to changes in the parameters. In total, 40 out of the 106 estimations were
p = p,. Moreover, if we look at a comparison of the distance {( p, — mean) /(p — mean)|,
as done in Table 6, we see that the mean of estimates was at least 2.5 times closer to p
than to p, for all but the n = 4 case in Experiment 2.

The consequence of changing the starting amount was tested in Experiment 1, where
it was shown that there is some adjustment, always in the correct direction, but the
adjustment is insufficient. In Experiment 2 we changed the size of the interval, and
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Table 6

Comparison of the distance [( p, — mean)/(p—mean)| using the mean of estimations, p, and p, from all the
experiments

p Ds mean I( p, — mean) /( p — mean)|

Experiment |

1 0.58 0.646 0.536 2.5

2 0.58 0.834 0.614 6.5

3 0.58 0.933 0.676 2.7
Experiment 2

1 0.6 0.69 0.65 0.08

2 0.6 0.77 0.605 33

3 6 0.88 0.68 25

4 0.6 0.94 0.69 2.8
Experiment 3

1 0.55 0.73 0.58 5

2 0.6 0.88 0.64 6

3 0.65 0.96 0.66 30

4 0.7 0.99 0.65 6.8

found no sign of adjustment. Experiment 3 shows that estimations are not sensitive to
changes in the stage-by-stage probability.

This is not the first attempt to look at estimations of compound probabilities.
Bar-Hillel (1973) investigated the hypothesis that the subjective probability of com-
pound events are systematically biased in the direction of their components, resulting in
overestimation of the likelihoods of conjunctive events and underestimation of the
likelihood of disjunctive events, e.g. a probability of a conjunctive event may be the
probability of winning 5 times in a row, and the probability of a disjunctive event is the
stage-by-stage probability. Bar-Hillel concluded that ‘... The probability of the
individual stage in a chain of events thus appears to have greater influence on the
evaluation of the whole chain’s probability than the number of stages in question”” (p.
405). This is similar to our result in the sense that people anchor to the probability of the
individual stage, and fail to fully appreciate the affect of enlarging the number of stages.
However, this work focuses on the probability of a certain path, and not on the
probability of outcomes. Note also that increasing the number of stages has an opposite
effect as compared to our story, i.e. it reduces the compound probability.

Other studies that report underestimation in multi-stage problems are Wagenaar and
Sagaria (1975), and Wagenaar and Timmers (1979). These studies consider a different
type of problem, namely estimations of exponential growth. They show that exponential
growth is considerably underestimated; people tend to extrapolate exponentially, that is
with a constant multiplier for successive steps, but with an exponent that is too small.

5. Application to financial markets

We showed that in a bounded random walk set-up, with positive drift, most subjects
underestimate the reduced probabilities of reaching the upper bound. Why should this
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result interest economists? For example, the traditional finance literature assumes that
asset prices in an efficient capital market follow a random walk with positive drift, i.e.
that capital markets ‘‘have no memory” (Brealey and Myers, 1988, p. 289). > Our
findings suggest that investors will fail to appreciate the difference in the returns
between the short and the long run. For example, a stock that is traded daily, and whose
price follows a random walk with a known ‘very small’ daily positive expected return,
may do ‘very well’ in the long run, much better than people expect it to do on the basis
of its daily performance. This implies that investors’ perceived risk of that kind of asset
is systematically higher than the objective risk and, as a result, assets are undervalued.
Another difficulty investors may have is underestimating the chance that a slightly better
asset (higher p) will accumulate much larger wealth in the long run.

For example the equity premium puzzle, which is the empirical fact that stocks have
outperformed bonds over the last century in a way that is hard to explain with plausible
levels of investor risk aversion (Mehra and Prescott, 1985), may partly be the result of
investors’ misjudgment of risk.

One obvious question is whether markets would ‘fix’ these underestimations. The
problem is that, since the ‘objective probabilities’ in the stock market are unknown,
there cannot be any empirical proof of the kind given in this paper. It may be that the
price in a market will reflect the accurate probabilities even if (most) participants are not
able to correctly estimate these probabilities. On the other hand, there is evidence that
markets are not always efficient (e.g. De Bondt and Thaler, 1994). For an elaborated
discussion about the role of risk perception in financial markets see Arrow (1982).

In future research, we would like to address this question, with the aim of tackling
Camerer’s challenge ‘‘Whether judgment and choice violations matter in markets is a
question that begs for empirical analysis’’ (Camerer, 1987, p. 981).
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Appendix A
A.1. Instructions for subjects who played the game for real money

In a few minutes we will give you $5 and ask if you want to participate in a game in
which at every step you can either win or lose $1. The chance of winning $1 is 58% and

the chance of losing $1 is 42%. If you choose to leave the game, you can stop and take
the $5. If you decide to play, you will either have $4 or $6 after the first stage. Then,

* This approach is controversial nowadays (e.g. Fama, 1991, or De Bondt and Thaler, 1994). Yet as a first
approximation it is still accepted, and that is enough for our case.
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you can leave the game with your money, or participate in the next stage, in which,
again, you can either win or lose $1 with the same chances as before. The game goes on
until either you choose to stop, or your money reaches {0 or $10}, or after 100 stages. *

Appendix B

B.1. Indirect method for finding estimations (note that the question is phrased such that
it is equivalent to the initial problem)

Say that we take 100 students and let them play the game, with one difference: they
will have to play till $0 or $10. Can you guess how many of them will end up with $0
and how many with $10?

Appendix C
C.1. Estimations for different sizes of intervals with monetary incentives (for n=4)

Please answer the following question, which is also given to other students in the
room. After all of you have finished answering, we will collect and check the answers.
We will find the best answer and give $10 to the student who gave it. If more than one
student gives the best answer, we will split the money between the students who gave
this answer.

The game: Mr. X is given $2 and then a series of lotteries take place. In each lottery he
either wins or loses $1. The chance of winning $1 is 60% and the chance of losing $1 is
40%. So, after the first lottery, Mr. X will either have $3 (with 60% chance) or $1 (with
40% chance), and so on. The lotteries will be conducted till Mr. X will either have $0 or
$4.

The problem: What do you think is the chance that Mr. X will:
(@) finish with $4?
(b) finish with $0?

Appendix D

D.1. You will be paid according to the following rule

You will start with $15, and for every 1% of ‘mistake’ $1 will be deduced from your
payoff. The mistake is the absolute value of [your guess (in percentages) minus the

* The probability that the game will not end within 100 stages is less than 0.001, hence p, is relevant even
for + =100. For a discussion of the use of this restriction see Gneezy (1995).
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actual chance]. For example, if you guess accurately, you get $15. If you make a 10%
mistake (either overestimate or underestimate), you get $5. If your mistake is bigger or
equal to 15% you will not be paid at all.
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