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data on the target variable, and implement them via tests of inequality constraints in a regression

framework. A new optimal revision test based on a regression of the target variable on the long-
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empirical application to the Federal Reserve�s Greenbook forecasts is presented.
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1 Introduction

Forecasts recorded at multiple horizons, e.g., from one to several quarters into the future, are com-

monly reported in empirical work. For example, the surveys conducted by the Philadelphia Federal

Reserve (Survey of Professional Forecasters), Consensus Economics or Blue Chip and the forecasts

produced by the IMF (World Economic Outlook), the Congressional Budget o¢ ce, the Bank of

England and the Board of the Federal Reserve all cover multiple horizons. Similarly, econometric

models are commonly used to generate multi-horizon forecasts, see, e.g., Clements (1997), Faust

and Wright (2009) and Marcellino, Stock and Watson (2006). With the availability of such multi-

horizon forecasts, there is a growing need for tests of optimality that exploit the information in

the complete �term structure�of forecasts recorded across all horizons. By simultaneously exploit-

ing information across several horizons, rather than focusing separately on individual horizons,

multi-horizon forecast tests o¤er the potential of drawing more powerful conclusions about the

ability of forecasters to produce optimal forecasts. This paper derives a number of novel and sim-

ple implications of forecast rationality and compares tests based on these implications with extant

methods.

A well-known implication of forecast rationality is that, under squared error loss, the mean

squared forecast error should be a weakly increasing function of the forecast horizon, see, e.g.,

Diebold (2001), and Patton and Timmermann (2007a). A similar property holds for the forecasts

themselves: Internal consistency of a sequence of optimal forecasts implies that the variance of the

forecasts should be a weakly decreasing function of the forecast horizon. Intuitively, this property

holds because the variance of the expectation conditional on a large information set (corresponding

to a short forecast horizon) must exceed that of the expectation conditional on a smaller information

set (corresponding to a long horizon). It is also possible to show that optimal updating of forecasts

implies that the variance of the forecast revision should exceed twice the covariance between the

forecast revision and the actual value. It is uncommon to test such variance bounds in empirical

practice, in part due to the di¢ culty in setting up joint tests of these bounds. We suggest and
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illustrate testing these monotonicity properties via tests of inequality contraints using the methods

of Gourieroux et al. (1982) and Wolak (1987, 1989), and the bootstrap methods of White (2000)

and Hansen (2005).

Tests of forecast optimality have conventionally been based on comparing predicted and �re-

alized�values of the outcome variable. This severely constrains inference in some cases since, as

shown by Croushore (2006), Croushore and Stark (2001) and Corradi, Fernandez and Swanson

(2009), revisions to macroeconomic variables can be very considerable and so raises questions that

can be di¢ cult to address such as �what are the forecasters trying to predict?�, i.e. �rst-release

data or �nal revisions. We show that variations on both the new and extant optimality tests can

be applied without the need for observations on the target variable. These tests are particularly

useful in situations where the target variable is not observed (such as for certain types of volatility

forecasts) or is measured with considerable noise (as in the case of output forecasts).

Conventional tests of forecast optimality regress the realized value of the predicted variable on

an intercept and the forecast for a single horizon and test the joint implication that the intercept

and slope coe¢ cient are zero and one, respectively (Mincer and Zarnowitz, 1969). In the presence of

forecasts covering multiple horizons, a complete test that imposes internal consistency restrictions

on the forecast revisions is shown to give rise to a univariate optimal revision regression. Using a

single equation, this test is undertaken by regressing the realized value on an intercept, the long-

horizon forecast and the sequence of intermediate forecast revisions. A set of zero-one equality

restrictions on the intercept and slope coe¢ cients are then tested. A key di¤erence from the

conventional Mincer-Zarnowitz test is that the joint consistency of all forecasts at di¤erent horizons

is tested by this generalized regression. This can substantially increase the power of the test.

Analysis of forecast optimality is usually predicated on covariance stationarity assumptions.

However, we show that the conventional assumption that the target variable and forecast are

(jointly) covariance stationary is not needed for some of our tests and can be relaxed provided that

forecasts for di¤erent horizons are lined up in �event time�, as studied by Nordhaus (1987), Davies
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and Lahiri (1995), Clements (1997), Isiklar et al. (2006), and Patton and Timmermann (2008,

2010b). In particular, we show that the second moment bounds continue to hold in the presence

of structural breaks in the variance of the innovation to the predicted variable and other forms of

data heterogeneity.

To shed light on the statistical properties of the variance bound and regression-based tests of

forecast optimality, we undertake a set of Monte Carlo simulations. These simulations consider var-

ious scenarios with zero, low and high measurement error in the predicted variable and deviations

from forecast optimality in di¤erent directions. We �nd that the covariance bound and the uni-

variate optimal revision test have good power and size properties. Speci�cally, they are generally

better than conventional Mincer-Zarnowitz tests conducted for individual horizons which either

tend to be conservative, if a Bonferroni bound is used to summarize the evidence across multiple

horizons, or su¤er from substantial size distortions, if the multi-horizon regressions are estimated

as a system. Our simulations suggest that the various bounds and regression tests have comple-

mentary properties in the sense that they have power in di¤erent directions and so can identify

di¤erent types of suboptimal behavior among forecasters.

An empirical application to the Federal Reserve�s Greenbook forecasts of GDP growth, changes

to the GDP de�ator and consumer price in�ation con�rms the �ndings from the simulations.

In particular, we �nd that conventional regression tests often fail to reject the null of forecast

optimality. In contrast, the new variance-bounds tests and single equation multi-horizon tests have

better power and are able to identify deviations from forecast optimality.

The outline of the paper is as follows. Section 2 presents some novel variance bound implications

of optimality of forecasts across multiple horizons and the associated tests. Section 3 considers

regression-based tests of forecast optimality and Section 4 presents some extensions of our main

results to cover data heterogeneity and heterogeneity in the forecast horizons. Section 5 presents

results from a Monte Carlo study, while Section 6 provides an empirical application to Federal

Reserve Greenbook forecasts. Section 7 concludes.
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2 Multi-Horizon Bounds and Tests

In this section we derive variance and covariance bounds that can be used to test the optimality

of a sequence of forecasts recorded at di¤erent horizons. These are presented as corollaries to the

well-known theorem that the optimal forecast under quadratic loss is the conditional mean. The

proofs of these corollaries are collected in Appendix A.

2.1 Assumptions and background

Consider a univariate time series, Y � fYt; t = 1; 2; :::g, and suppose that forecasts of this variable

are recorded at di¤erent points in time, t = 1; :::; T and at di¤erent horizons, h = h1; :::; hH . Fore-

casts of Yt made h periods previously will be denoted as Ŷtjt�h; and are assumed to be conditioned

on the information set available at time t�h, Ft�h, which is taken to be the �ltration of �-algebras

generated by
n
~Zt�h�k; k � 0

o
, where ~Zt�h is a vector of predictor variables. This need not (only)

comprise past and current values of Y . Forecast errors are given by etjt�h = Yt � Ŷtjt�h: We con-

sider an (H � 1) vector of multi-horizon forecasts for horizons h1 < h2 < � � � < hH ; with generic

long and short horizons denoted by hL and hS (hL > hS): Note that the forecast horizons, hi; can

be positive, zero or negative, corresponding to forecasting, nowcasting or backcasting, and further

note that we do not require the forecast horizons to be equally spaced.

We will develop a variety of forecast optimality tests based on corollaries to Theorem 1 below.

In so doing, we take the forecasts as primitive, and if the forecasts are generated by particular

econometric models, rather than by a combination of modeling and judgemental information, the

estimation error embedded in those models is ignored. In the presence of estimation error the results

established here need not hold in �nite samples (Schmidt (1974); Clements and Hendry (1998)).

Existing analytical results are very limited, however, as they assume a particular model (e.g.,

an AR(1) speci�cation) and use inadmissable forecasts based on plug-in estimators. In practice

forecasts from surveys and forecasts reported by central banks re�ect considerable judgmental

information which is di¢ cult to handle using the methods developed by West (1996) and West and

5



McCracken (1998).

The �real time�macroeconomics literature has demonstrated the presence of large and prevalent

measurement errors a¤ecting a variety of macroeconomic variables, see Corradi, Fernandez and

Swanson (2009), Croushore (2006), Croushore and Stark (2001), Diebold and Rudebusch (1991),

and Faust, Rogers and Wright (2005). In such situations it is useful to have tests that do not require

data on the target variable and we present such tests below. These tests exploit the fact that, under

the null of forecast optimality, the short-horizon forecast can be taken as a proxy for the target

variable, from the stand-point of longer-horizon forecasts, in the sense that the inequality results

presented above all hold when the short-horizon forecast is used in place of the target variable.

Importantly, unlike standard cases, the proxy in this case is smoother rather than noisier than the

actual variable. This has bene�cial implications for the �nite-sample performance of these tests

when the measurement error is sizeable or the predictive R2 of the forecasting model is low.

Under squared error loss, we have the following well-known theorem (see, e.g., Granger (1969)):

Theorem 1 (Optimal forecast under MSE loss) Assume that the forecaster�s loss function is

quadratic, L (y; ŷ) = (y � ŷ)2, and that the conditional mean of the target variable given the �ltration

Ft�h, E [YtjFt�h] ; is a.s. �nite for all t . Then

Ŷ �tjt�h � argmin
ŷ2Y

E
h
(Yt � ŷ)2 jFt�h

i
= E [YtjFt�h] ; (1)

where Y � R is the set of possible values for the forecast.

Section 4.3 shows that this result can be extended to a broader class of loss functions, but for

now we keep the more familiar assumption of quadratic loss. Some of the results derived below will

make use of a standard covariance stationarity assumption:

Assumption S1: The target variable, Yt; is generated by a covariance stationary process.
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2.2 Monotonicity of mean squared errors and forecast revisions

From forecast optimality under squared-error loss it follows that, for any ~Ytjt�h 2 Ft�h,

Et�h

��
Yt � Ŷ �tjt�h

�2�
� Et�h

��
Yt � ~Ytjt�h

�2�
:

In particular, the optimal forecast at time t�hS must be at least as good as the forecast associated

with a longer horizon:

Et�hS

��
Yt � Ŷ �tjt�hS

�2�
� Et�hS

��
Yt � Ŷ �tjt�hL

�2�
for all hS < hL:

In situations where the predicted variable is not observed (or only observed with error), one can

instead compare medium- and long-horizon forecasts with the short-horizon forecast. De�ne a

forecast revision as

d�tjhS ;hL � Ŷ �tjt�hS � Ŷ
�
tjt�hL for hS < hL:

The corollary below shows that the bounds on mean squared forecast errors that follow immediately

from forecast rationality under squared-error loss also apply to mean squared forecast revisions.

Corollary 1 Under the assumptions of Theorem 1 and S1, it follows that

(a) E
h
e�2tjt�hS

i
� E

h
e�2tjt�hL

i
for hS < hL; (2)

and

(b) E
h
d�2tjhS ;hM

i
� E

h
d�2tjhS ;hL

i
for hS < hM < hL: (3)

The inequalities are strict if more forecast-relevant information becomes available as the forecast

horizon shrinks to zero, see, e.g., Diebold (2001) and Patton and Timmermann (2007a).

2.3 Testing monotonicity in squared forecast errors and forecast revisions

Corollary 1 suggests testing forecast optimality via a test of the weak monotonicity in the �term

structure� of mean squared errors, Eq.(2), to use the terminology of Patton and Timmermann

(2008). This feature of rational forecasts is relatively widely known, but has, with the exception
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of Capistran (2007), generally not been used to test forecast optimality. Capistran�s test is based

on Bonferroni bounds, which are quite conservative in this application. Here we advocate an

alternative procedure for testing non-decreasing MSEs at longer forecast horizons that is based on

the inequalities in Eq. (2).

We consider ranking the MSE-values for a set of forecast horizons h = h1; h2; :::; hH . Denoting

the population value of the MSEs by �e = [�e1; :::; �
e
H ]
0, with �ej � E[e2tjt�hj ], and de�ning the

associated MSE di¤erentials as �e
j � �j � �j�1 = E

h
e2tjt�hj

i
� E

h
e2tjt�hj�1

i
, we can rewrite the

inequalities in (2) as

�e
j � 0; for j = 2; :::;H: (4)

Following earlier work on multivariate inequality tests in regression models by Gourieroux, et

al. (1982), Wolak (1987, 1989) proposed testing (weak) monotonicity through the null hypothesis:

H0 :�
e � 0 vs. H1 :�

e � 0; (5)

where the (H � 1) � 1 vector of MSE-di¤erentials is given by �e � [�e
2; :::;�

e
H ]
0. As in Patton

and Timmermann (2010a), tests can be based on the sample analogs �̂e
j = �̂j � �̂j�1 for �̂j �

1
T

PT
t=1 e

2
tjt�hj . Wolak (1987, 1989) derives a test statistic whose distribution under the null is a

weighted sum of chi-squared variables,
PH�1

i=0 !(H � 1; i)�2(i), where !(H � 1; i) are the weights

and �2(i) is a chi-squared variable with i degrees of freedom. The key computational di¢ culty

in implementing this test is obtaining the weights. These weights equal the probability that the

vector Z s N (0;�) has exactly i positive elements, where � is the long-run covariance matrix

of the estimated parameter vector, �̂e. One straightforward way to estimate these weights is via

simulation, see Wolak (1989, p. 215). An alternative is to compute these weights in closed form,

using the work of Kudo (1963) and Sun (1988), which is faster when the dimension is not too

large (less than 10). (We thank Raymond Kan for suggesting this alternative approach to us, and

for generously providing Matlab code to implement this approach.) When the dimension is large,

one can alternatively use the bootstrap methods in White (2000) and Hansen (2005), which are

explicitly designed to work for high-dimension problems.
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Note that the inequality in Eq. (2) implies a total of H (H � 1) =2 pair-wise inequalities, not

just the H � 1 inequalities obtained by comparing �adjacent� forecast horizons. In a related

testing problem, Patton and Timmermann (2010a) consider tests based both the complete set of

inequalities and the set of inequalities based only on �adjacent�horizons (portfolios, in their case)

and found little di¤erent in size or power of these two approaches. For simplicity, we consider only

inequalities based on �adjacent�horizons.

Wolak�s testing framework can also be applied to the bound on the mean squared forecast

revisions (MSFR). To this end, de�ne the (H � 2) � 1 vector of mean-squared forecast revisions

�d �
�
�d
3; :::;�

d
H

�0
, where �d

j � E
h
d2tjh1;hj

i
�E

h
d2tjh1;hj�1

i
. Then we can test the null hypothesis

that di¤erences in mean-squared forecast revisions are weakly positive for all forecast horizons:

H0 :�
d � 0 vs. H1 :�

d � 0: (6)

2.4 Monotonicity of mean squared forecasts

We now present a novel implication of forecast rationality that can be tested when data on the

target variable are not available or not reliable. Recall that, under rationality, Et�h
h
e�tjt�h

i
= 0,

which implies that Cov
h
Ŷ �tjt�h; e

�
tjt�h

i
= 0. Thus we obtain the following corollary:

Corollary 2 Under the assumptions of Theorem 1 and S1, we have

V
h
Ŷ �tjt�hS

i
� V

h
Ŷ �tjt�hL

i
for any hS < hL:

This result is closely related to Corollary 1 since V [Yt] = V
h
Ŷ �tjt�h

i
+ E

h
e�2tjt�h

i
: A weakly

increasing pattern in MSE directly implies a weakly decreasing pattern in the variance of the

forecasts. Hence, one aspect of forecast optimality can be tested without the need for a measure of

the target variable. Notice again that since E
h
Ŷ �tjt�h

i
= E [Yt] for all h; we obtain the following

inequality on the mean-squared forecasts:

E
h
Ŷ �2tjt�hS

i
� E

h
Ŷ �2tjt�hL

i
for any hS < hL: (7)
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A test of this implication can again be based on Wolak�s (1989) approach by de�ning the vector

�f �
h
�f
2 ; :::;�

f
H

i0
, where �f

j � E
h
Ŷ �2tjt�hj

i
� E

h
Ŷ �2tjt�hj�1

i
and testing the null hypothesis that

di¤erences in mean squared forecasts (MSF) are weakly negative for all forecast horizons:

H0 :�
f � 0 vs. H1 :�

f � 0: (8)

It is worth pointing out a limitation to this type of test. Tests that do not rely on observing

the realized values of the target variable are tests of the internal consistency of the forecasts across

two or more horizons, and not direct tests of forecast rationality, see the discussion in Pesaran and

Weale (2006). For example, forecasts from an arti�cially-generated AR(p) process, independent

of the actual series but constructed in a theoretically optimal fashion, would not be identi�ed as

suboptimal by this test.

2.5 Monotonicity of covariance between the forecast and target variable

An implication of the weakly decreasing forecast variance property established in Corollary 2 is

that the covariance of the forecasts with the target variable should be decreasing in the forecast

horizon. To see this, note that

Cov
h
Ŷ �tjt�h; Yt

i
= Cov

h
Ŷ �tjt�h; Ŷ

�
tjt�h + e

�
tjt�h

i
= V

h
Ŷ �tjt�h

i
:

Similarly, the covariance of the short-term forecast with another forecast should be decreasing in

the other forecast�s horizon:

Cov
h
Ŷ �tjt�hL ; Ŷ

�
tjt�hS

i
= Cov

h
Ŷ �tjt�hL ; Ŷ

�
tjt�hL + d

�
tjhS ;hL

i
= V

h
Ŷ �tjt�hL

i
:

Thus we obtain the following:

Corollary 3 Under the assumptions of Theorem 1 and S1, we have, for any hS < hL;

(a) Cov
h
Ŷ �tjt�hS ; Yt

i
� Cov

h
Ŷ �tjt�hL ; Yt

i
Moreover, for any hS < hM < hL,

(b) Cov
h
Ŷ �tjt�hM ; Ŷ

�
tjt�hS

i
� Cov

h
Ŷ �tjt�hL ; Ŷ

�
tjt�hS

i
:
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Once again, using E
h
Ŷ �tjt�h

i
= E [Yt] ; it follows that we can express the above bounds as simple

expectations of products:

E
h
Ŷ �tjt�hSYt

i
� E

h
Ŷ �tjt�hLYt

i
and E

h
Ŷ �tjt�hM Ŷ

�
tjt�hS

i
� E

h
Ŷ �tjt�hL Ŷ

�
tjt�hS

i
for any hS < hM < hL

As for the above cases, these implications can again be tested by de�ning the vector �c �

[�c
2; :::;�

c
H ]
0, where �c

j � E
h
Ŷ �tjt�hjYt

i
� E

h
Ŷ �tjt�hj�1Yt

i
and testing:

H0 :�
c � 0 vs. H1 :�

c � 0 (9)

using Wolak�s (1989) approach.

2.6 Bounds on covariances of forecast revisions

Combining the inequalities contained in the above corollaries, we can place an upper bound on

the variance of the forecast revision as a function of the covariance of the revision with the target

variable. The intuition behind this bound is simple: if little relevant information arrives between

the updating points, then the variance of the forecast revisions must be low.

Corollary 4 Denote the forecast revision between two dates as d�tjhS ;hL � Ŷ �tjt�hS � Ŷ
�
tjt�hL for any

hS < hL: Under the assumptions of Theorem 1 and S1, we have

(a) V
h
d�tjhS ;hL

i
� 2Cov

h
Yt; d

�
tjhS ;hL

i
for any hS < hL: (10)

Moreover,

(b) V
h
d�tjhM ;hL

i
� 2Cov

h
Ŷ �tjt�hS ; d

�
tjhM ;hL

i
for any hS < hM < hL. (11)

For testing purposes, using E
h
d�tjhS ;hL

i
= 0; we can use the more convenient inequalities:

E
h
d�2tjhS ;hL

i
� 2E

h
Ytd

�
tjhS ;hL

i
, for any hS < hL or (12)

E
h
d�2tjhM ;hL

i
� 2E

h
Ŷ �tjt�hSd

�
tjhM ;hL

i
for any hS < hM < hL:
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Note also that this result implies (as one would expect) that the covariance between the target

variable and the forecast revision must be positive; when forecasts are updated to re�ect new

information, the change in the forecast should be positively correlated with the target variable.

The above bound can be tested by forming the vector �b �
�
�b
2; :::;�

b
H

�0
, where �b

j �

E
h
2Ytdtjhj ;hj�1 � d2tjhj ;hj�1

i
; for j = 2; :::;H and then testing the null hypothesis that this pa-

rameter is weakly positive for all forecast horizons

H0 :�
b � 0 vs. H1 :�b � 0:

2.7 Monotonicity of covariances with the forecast error

We �nally consider bounds on the covariance of the forecast error with the target variable or with

the forecast revision, and corresponding versions of these results that may be implemented when

data on the target variable are not available or not reliable. These bounds are perhaps less intuitive

than the earlier ones and so will not be further pursued, but are included for completeness.

Corollary 5 Under the assumptions of Theorem 1 and S1, we have,

(a) for any hS < hL,

Cov
h
e�tjt�hS ; Yt

i
� Cov

h
e�tjt�hL ; Yt

i
:

(b) for any hS < hM < hL,

Cov
h
d�tjhS ;hM ; Ŷ

�
tjt�hS

i
� Cov

h
d�tjhS ;hL ; Ŷ

�
tjt�hS

i
;

and (c)

Cov
h
e�tjt�hM ; d

�
tjhS ;hM

i
� Cov

h
e�tjt�hL ; d

�
tjhS ;hL

i
:

The �rst part follows from the simple intuition that as the forecast horizon grows, the forecast

explains less and less of the target variable, and thus the forecast error becomes more and more like

the target variable. The last inequality links the forecast error made a time t � h to the forecast

revision made between time t � h and some shorter horizon. This result may prove useful where
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the target variable (and thus the forecasts) is very persistent, as the variables in this bound are

di¤erences between actuals and forecasts, or between forecasts, and will be less persistent than the

original variables. In applications where the target variable is not available a corresponding result

involves using the short horizon forecast in place of the target variable. Doing so gives a result for

the variance of the forecast revision, which was already presented above in Corollary 1, and so it

is not repeated here.

2.8 Summary of test methods

The tests presented here are based on statistical properties of either the outcome variable, Yt, the

forecast error, e�tjt�h, the forecast, Ŷ
�
tjt�h, or the forecast revision, d

�
tjhS ;hL . The table below shows

that the tests discussed so far provide an exhaustive list of all possible bounds tests based on these

four variables and their mutual relations. The table lists results as the forecast horizon increases

(h "), and for the forecast revision relations we keep the short horizon (hS) �xed:

Yt e�tjt�h Ŷ �tjt�h d�tjhS ;hL

Yt �2y Cov " Cov # Cov bound

e�tjt�h MSE " Cov=0 Cov "

Ŷ �tjt�h MSF # Cov "

d�tjhS ;hL MSFR "

Almost all existing optimality tests focus on cell (2,3), i.e., that forecast errors are uncorrelated

with the forecast, which is what conventional rationality regressions e¤ectively test as can be seen by

subtracting the forecast from both sides of the regression. Capistran (2007) studies the increasing

MSE property, cell (2,2). Our analysis generalizes extant tests to the remaining elements. We pay

particular attention to cells (3,3) (3,4) and (4,4), which do not require data on the target variable,

and thus may of use when this variable is measured with error or unavailable. Appendix B presents

an analytical illustration of the bounds established in this section for an AR(1) process.
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3 Regression Tests of Forecast Rationality

Conventional Mincer-Zarnowitz (MZ) regression tests form a natural benchmark against which the

performance of our new optimality tests can be compared, both because they are in widespread

use and because they are easy to implement. Such regressions test directly if forecast errors are

orthogonal to variables contained in the forecaster�s information set. For a single forecast horizon,

h, the standard MZ regression takes the form:

Yt = �h + �hŶtjt�h + vtjt�h: (13)

Forecast optimality can be tested through an implication of optimality that we summarize in the

following corollary to Theorem 1:

Corollary 6 Under the assumptions of Theorem 1 and S1, the population values of the parameters

in the Mincer-Zarnowitz regression in Eq. (13) satisfy

Hh
0 : �h = 0 \ �h = 1, for each horizon h.

The MZ regression in Eq. (13) is usually applied separately to each forecast horizon. A simul-

taneous test of optimality across all horizons requires developing a di¤erent approach. We next

present two standard ways of combining these results.

3.1 Bonferroni bounds on MZ regressions

One approach, adopted in Capistrán (2007), is to run MZ regressions (13) for each horizon, h =

h1; :::; hH and obtain the p-value from a chi-squared test with two degrees of freedom. A Bonferroni

bound is then used to obtain a joint test. Forecast optimality is rejected if the minimum p-value

across all H tests is less than the desired size divided by H, �=H: This approach is often quite

conservative.
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3.2 Vector MZ tests

An alternative to the Bonferroni bound approach is to stack the MZ equations for each horizon

and estimate them as a system:2666664
Yt+h1
...

Yt+hH

3777775 =
2666664
�1

...

�H

3777775+
2666664
�1 � � � 0

...
. . .

...

0 � � � �H

3777775

2666664
Ŷt+h1jt
...

Ŷt+hH jt

3777775+
2666664
vt+h1jt
...

vt+hH jt

3777775 : (14)

The relevant hypothesis is now

H0 : �1 = ::: = �H = 0 \ �1 = ::: = �H = 1 (15)

vs. H1 : �1 6= 0 [ ::: [ �H 6= 0 [ �1 6= 1 [ ::: [ �H 6= 1:

For h > 1, the residuals in Eq. (14) will, even under the null, exhibit autocorrelation and will

typically also exhibit cross-autocorrelation, so a HAC estimator of the standard errors is required.

3.3 Univariate Optimal Revision Regression

We next propose a new approach to test optimality that utilizes the complete set of forecasts in

a univariate regression. The approach is to estimate a univariate regression of the target variable on

the longest-horizon forecast, Ŷtjt�hH , and all the intermediate forecast revisions, dtjh1;h2 ; :::; dtjhH�1;hH .

To derive this test, notice that we can represent a short-horizon forecast as a function of a long-

horizon forecast and the intermediate forecast revisions:

Ŷtjt�h1 � Ŷtjt�hH +
H�1X
j=1

dtjhj ;hj+1 : (16)

Rather than regressing the outcome variable on the one-period forecast, we propose the following

�optimal revision�regression:

Yt = �+ �H Ŷtjt�hH +
H�1X
j=1

�jdtjhj ;hj+1 + ut: (17)
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Corollary 7 Under the assumptions of Theorem 1 and S1, the population values of the parameters

in the optimal revision regression in Eq. (17) satisfy

H0 : � = 0 \ �1 = ::: = �H = 1.

Eq. (17) can be re-written as a regression of the target variable on all of the forecasts, from h1

to hH ; and the parameter restrictions given in Corollary 7 are then that the intercept is zero, the

coe¢ cient on the short-horizon forecast is one, and the coe¢ cients on all longer-horizon forecasts

are zero.

This univariate regression tests both that agents optimally and consistently revise their forecasts

at the interim points between the longest and shortest forecast horizons and also that the long-run

forecast is unbiased. Hence it generalizes the conventional single-horizon MZ regression (13).

3.4 Regression tests without the target variable

All three of the above regression-based tests can be applied with the short-horizon forecast used

in place of the target variable. That is, we can undertake a MZ regression of the short-horizon

forecast on a long-horizon forecast

Ŷtjt�h1 = ~�j + ~�j Ŷtjt�hj + vtjt�hj for all hj > h1: (18)

Similarly, we get a vector MZ test that uses the short-horizon forecasts as target variables:2666664
Ŷt+h2jt+h1

...

Ŷt+hH jt+hH�1

3777775 =
2666664
~�2

...

~�H

3777775+
2666664
~�2 � � � 0

...
. . .

...

0 � � � ~�H

3777775

2666664
Ŷt+h2jt
...

Ŷt+hH jt

3777775+
2666664
vt+h2jt
...

vt+hH jt

3777775 : (19)

Finally, we can estimate a version of the optimal revision regression:

Ŷtjt�h1 = ~�+ ~�H Ŷtjt�hH +
H�1X
j=2

~�j�tjhj ;hj+1 + vt; (20)

The parameter restrictions implied by forecast optimality are the same as in the standard cases,

and are presented in the following corollary:
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Corollary 8 Under the assumptions of Theorem 1 and S1, (a) the population values of the para-

meters in the MZ regression in Eq. (18) satisfy

Hh
0 : ~�h = 0 \ ~�h = 1, for each horizon h > h1:

(b) the population values of the parameters in the vector MZ regression in Eq. (19) satisfy

H0 : ~�2 = ::: = ~�H = 0 \ ~�2 = ::: = ~�H = 1:

(c) the population values of the parameters in the optimal revision regression in Eq. (20) satisfy

H0 : ~� = 0 \ ~�2 = ::: = ~�H = 1.

This result exploits the fact that under optimality (and squared error loss) each forecast can

be considered a conditionally unbiased proxy for the (unobservable) target variable, where the

conditioning is on the information set available at the time the forecast is made. That is, if

Ŷtjt�hS = Et�hS [Yt] for all hS , then Et�hL
h
Ŷtjt�hS

i
= Et�hL [Yt] for any hL > hS ; and so the

short-horizon forecast is a conditionally unbiased proxy for the realization. If forecasts from multiple

horizons are available, then we can treat the short-horizon forecast as a proxy for the actual variable,

and use it to �test the optimality� of the long-horizon forecast. In fact, this regression tests the

internal consistency of the two forecasts, and thus tests an implication of the null that both forecasts

are rational.

3.5 Relation between regression and bounds tests

In this section we show that certain forms of sub-optimality will remain undetected by Mincer-

Zarnowitz regressions, even in population, but can be detected using the bounds introduced in the

previous section. Consider the following simple form for a sub-optimal forecast:

~Ytjt�h = 
h + �hŶ
�
tjt�h + ut�h, where ut�h s N

�
0; �2u;h

�
: (21)

An optimal forecast would have
�
�h; 
h; �

2
u;h

�
= (1; 0; 0) : Certain combinations of these parameters

will not lead to a rejection of the MZ null hypothesis, even when they deviate from (1; 0; 0) : Consider
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the MZ regression:

Yt = �h + �h ~Ytjt�h + "t

The population values of these parameters are

�h =
Cov

h
Yt; ~Ytjt�h

i
V
h
~Ytjt�h

i =
�hV

h
Ŷ �tjt�h

i
�2hV

h
Ŷ �tjt�h

i
+ �2u;h

;

so �h = 1 implies �
2
u;h = �h (1� �h)V

h
Ŷ �tjt�h

i
: Moreover,

�h = E [Yt]� �hE
h
~Ytjt�h

i
= E [Yt]� �h (
h + �hE [Yt]) :

Hence, if �h = 1; then �h = 0 provided that 
h = E [Yt] (1� �h) : Thus we can choose any

�h 2 (0; 1) and �nd the parameters
�

h; �

2
u;h

�
that lead to MZ parameters that satisfy the

null of rationality. We now verify that such a parameter vector would violate one of the multi-

horizon bounds. Consider the bound that the variance of the forecast should be decreasing in

the horizon. In this example we have V
h
~Ytjt�h

i
= �2hV

h
Ŷ �tjt�h

i
+ �2u;h = �hV

h
Ŷ �tjt�h

i
, when

�2u;h = �h (1� �h)V
h
Ŷ �tjt�h

i
: We know by rationality that V

h
Ŷ �tjt�h

i
is decreasing in h; but since

�h can take any value in (0; 1), and this value can change across horizons, a violation may be found.

Speci�cally, a violation of the decreasing forecast variance bound V
h
~Ytjt�hS

i
< V

h
~Ytjt�hL

i
will be

found if

�hS
�hL

<
V
h
Ŷ �tjt�hL

i
V
h
Ŷ �tjt�hS

i : (22)

It is also possible to construct an example where a MZ test would detect a sub-optimal forecast but a

bounds-based test would not. A simple example of this is any combination where
�
�h; 
h; �

2
u;h

�
6=�

�h; E [Yt] (1� �h) ; �h (1� �h)V
h
Ŷ �tjt�h

i�
; and where V

h
~Ytjt�hS

i
> V

h
~Ytjt�hL

i
: For example,�

�h; 
h; �
2
u;h

�
= (�h; 0; 0) for any �hS = �hL = �h 2 (0; 1) : We summarize these examples in the

following proposition:

Proposition 1 The MZ regression test and variance bound tests do not subsume one another:

Rejection of forecast optimality by one test need not imply rejection by the other.
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4 Extensions and Discussion

This section shows how our tests cover certain forms of non-stationary processes and heterogeneous

forecast horizons and also shows that the results can be extended to a broader class of loss functions

than squared error loss and can be used to detect model misspeci�cation.

4.1 Stationarity and Tests of Forecast Optimality

The literature on forecast evaluation conventionally assumes that the underlying data generating

process is covariance stationary. To see the role played by the covariance stationarity assumption,

recall Ŷ �t+hjt�j = argminŷ Et�j [(Yt+h � ŷ)
2]. By optimality, we must have

Et[(Yt+h � Ŷ �t+hjt�j)
2] � Et[(Yt+h � Ŷ �t+hjt)

2] for j � 1: (23)

Then, by the law of iterated expectations,

E[(Yt+h � Ŷ �t+hjt�j)
2] � E[(Yt+h � Ŷ �t+hjt)

2] for j � 1: (24)

This result compares the variance of the error in predicting the outcome at time t + h given

information at time t against the prediction error given information at an earlier date, t � j, and

does not require covariance stationarity. This uses a so-called ��xed event�set-up, where the target

variable (Yt+h) is kept �xed, and the horizon of the forecast is allowed to vary (from t� j to t).

When the forecast errors are stationary, it follows from Eq. (24) that

E[(Yt+h+j � Ŷ �t+h+jjt)
2] � E[(Yt+h � Ŷ �t+hjt)

2] for j � 1: (25)

Equation (25) does not follow from Eq. (24) under non-stationarity. For example, suppose there is

a deterministic reduction in the variance of Y between periods � + h and � + h+ j, such as:

Yt =

8><>: �+ �"t for t � � + h

�+ �
2 "t for t > � + h

; (26)
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where "t is zero-mean white noise. This could be a stylized example of the �Great Moderation�.

Clearly Eq. (25) is now violated as Ŷ ��+h+jj� = Ŷ ��+hj� = �, and so

E[(Y�+h+j � Ŷ ��+h+jj� )
2] =

�2

4
< �2 = E[(Y�+h � Ŷ ��+hj� )

2] for j � 1: (27)

For example, in the case of the Great Moderation, which is believed to have occurred around 1984,

a one-year-ahead forecast made in 1982 (i.e., for GDP growth in 1983, while volatility was still

high) could well be associated with greater (unconditional expected squared) errors than, say, a

three-year-ahead forecast (i.e. for GDP growth in 1985, after volatility has come down).

One way to deal with non-stationarities such as the break in the variance in Eq. (26) is to hold

the date of the target variable �xed and to vary the forecast horizon as in �xed-event forecasts,

see Clements (1997) and Nordhaus (1987). In this case the forecast optimality test is based on Eq.

(24) rather than Eq. (25). To see how this works, notice that, by forecast optimality and the law

of iterated expectations, for hL > hS

Et�hS [(Yt � Ŷ �tjt�hL)
2] � Et�hS [(Yt � Ŷ �tjt�hS )

2]; and (28)

E[(Yt � Ŷ �tjt�hL)
2] � E[(Yt � Ŷ �tjt�hS )

2].

For the example with a break in the variance in Eq. (26), we have Ŷ �tjt�hL = Ŷ �tjt�hS = �, and

E[(Yt � Ŷ �tjt�hL)
2] = E[(Yt � Ŷ �tjt�hS )

2] =

8><>: �2 for t � � + h

�2=4 for t > � + h

.

Using a �xed-event setup, we next show that the natural extensions of the inequality results

established in Corollaries 1, 2, 3, and 4 also hold for a more general class of stochastic processes

that do not require covariance stationarity but, rather, allows for unconditional heteroskedasticity

such as in Eq. (26) and dependent, heterogeneously distributed data processes.
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Proposition 2 De�ne the following variables

MSET (h) � 1

T

TX
t=1

MSEt (h) , where MSEt (h) � E

��
Yt � Ŷ �tjt�h

�2�

MSF T (h) � 1

T

TX
t=1

MSFt (h) , where MSFt (h) � E
h
Ŷ �2tjt�h

i
;

CT (h) � 1

T

TX
t=1

Ct (h) , where Ct (h) � E
h
Ŷ �tjt�hYt

i
MSFRT (hS ; hL) � 1

T

TX
t=1

MSFRt (hS ; hL) , where MSFRt (hS ; hL) � E
h
d�2tjhS ;hL

i

BT (h) �
1

T

TX
t=1

Bt (h) , where Bt (hS ; hL) � E
h
Ytd

�
tjhS ;hL

i
then, under the assumptions of Theorem 1, the following bounds hold for any hS < hM < hL :

(a) MSET (hS) �MSET (hL)

(b) MSF T (hS) �MSF T (hL)

(c) CT (hS) � CT (hL)

(d) MSFRT (hS ; hM ) �MSFRT (hS ; hL)

(e) MSFRT (hS ; hL) � 2BT (hS ; hL)

Allowing for heterogeneity in the data does not a¤ect the bounds obtained in Section 2 which

were derived under the assumption of stationarity: rather than holding for the (unique) uncondi-

tional expectation, under data heterogeneity they hold for the unconditional expectation at each

point in time, and for the average of these across the sample. The bounds for averages of uncon-

ditional moments presented in Proposition 2 can be tested by drawing on a central limit theorem

for heterogeneous, serially dependent processes, see, e.g., Wooldridge and White (1988) and White

(2001). The following proposition provides conditions under which these quantities can be esti-

mated.
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Proposition 3 De�ne

�MSE
jt �

�
Yt � Ŷ �tjt�hj

�2
�
�
Yt � Ŷ �tjt�hj�1

�2
, for j = 2; :::;H

�MSF
jt � Ŷ �2tjt�hj � Ŷ

�2
tjt�hj�1, for j = 2; :::;H

�Cjt � YtŶ
�
tjt�hj � YtŶ

�
tjt�hj�1, for j = 2; :::;H

�MSFR
jt �

�
d�tjh1;hj

�2
�
�
d�tjh1;hj�1

�2
; for j = 3; :::;H

�Bjt � Ytd
�
tjh1;hj � Ytd

�
tjh1;hj�1 ; for j = 3; :::;H

�kt �
h
�kqt; :::; �

k
Ht

i0
, �̂k

T �
1

T

TX
t=1

�k0t , V k
T � V

"
1p
T

TX
t=1

�k0t

#
;

where k 2 fMSE;MSF;C;MSFR;B) and q = 2 for k 2 fMSE;MSF;Cg and q = 3 for k 2

fMSFR;Bg : Assume: (i) �kt = �k+�kt , for t = 1; 2; :::; � 2 RH�1; (ii) �kt is a uniform mixing

sequence with � of size �r=2 (r � 1), r � 2 or a strong mixing sequence with � of size �r= (r � 2) ;

r > 2; (iii) E
�
�kt
�
= 0 for t = 1; 2; :::T ; (iv) E

����kit��r� < C < 1 for i = 1; 2; :::;H � 1; (v) V k
T is

uniformly positive de�nite; (vi) There exists a V̂ k
T that is symmetric and positive de�nite such that

V̂ k
T � V k

T !p 0: Then:

�
V̂ k
T

��1=2p
T
�
�̂k
T ��k

�
) N (0; I) as T !1:

Thus we can estimate the average of unconditional moments with the usual sample average, with

the estimator of the covariance matrix suitably adjusted, and then conduct the test of inequalities

using Wolak�s (1989) approach.

4.2 Bounds for forecasts with heterogeneous horizons

Some economic data sets contain forecasts that have a wide variety of horizons, which the researcher

may prefer to aggregate into a smaller set of forecasts. For example, the Greenbook forecasts we

study in our empirical application are recorded at irregular times within a given quarter, so that

the forecast labeled as a one-quarter horizon forecast, for example, may actually have a horizon of

one, two or three months. Given limited time series observations it may not be desirable to attempt
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to study all possible horizons, ranging from zero to 15 months. Instead, we may wish to aggregate

these into forecasts of hS 2 f1; 2; 3g ; hL 2 f4; 5; 6g ; etc.

The proposition below shows that the inequality results established in the previous sections also

apply to forecasts with heterogeneous horizons. The key to this proposition is that any �short�

horizon forecast must have a corresponding �long�horizon forecast. With that satis�ed, and ruling

out correlation between the forecast error and whether a particular horizon length was chosen, we

show that the bounds hold for heterogeneous forecast horizons. We state and prove the proposition

below only for MSE; results for the other bounds follow using the same arguments.

Proposition 4 Consider a data set of the form
��

Yt; Ŷ
�
tjt�ht ; Ŷ

�
tjt�ht�kt

�0�T
t=1

; where kt > 0 8 t:

Let the assumptions of Theorem 1 and S1 hold. (a) If (ht; kt) are realizations from some stationary

random variable and e�tjt�hj and e
�
tjt�hj�ki are independent of 1 fht = hjg and 1 fkt = kig, then:

MSES � E

��
Yt � Ŷ �tjt�ht

�2�
� E

��
Yt � Ŷ �tjt�ht�kt

�2�
�MSEL

(b) If fht; ktg is a sequence of pre-determined values, then:

MSES;T �
1

T

TX
t=1

E

��
Yt � Ŷ �tjt�ht

�2�
� 1

T

TX
t=1

E

��
Yt � Ŷ �tjt�ht�kt

�2�
�MSEL;T

The only non-standard assumption here is in part (a), where we assume that process determining

the short and long forecast horizons is independent of the forecast errors at those horizons. This

rules out choosing particular (ht; kt) combinations after having inspected their resulting forecast

errors, which could of course overturn the bounds. Notice that heterogeneity of the short and long

forecast horizon lengths in part (b) induces heterogeneity in the mean squared errors, even when

the data generating process is stationary. The assumption of stationarity of the data generating

process in both parts can be relaxed using similar arguments as in Proposition 2.

4.3 Bounds under Bregman loss

The bounds in our paper are predicated upon the optimal forecast being the conditional mean. It

is well-known that under squared error loss the optimal forecast is the conditional mean, but this
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result in fact holds for a broader class of loss functions, known as �Bregman�loss, which take the

form:

L
�
Yt+h; Ŷt+hjt

�
= � (Yt+h)� �

�
Ŷt+hjt

�
� �0

�
Ŷt+hjt

��
Yt+h � Ŷt+hjt

�
, (29)

where � is a strictly convex function, so �00 > 0.

It follows from the �rst order condition for an optimal forecast that any loss function in this

class yields the conditional mean as the optimal forecast

0 = E

�
@

@ŷ
L
�
Yt+h; Ŷ

�
t+hjt

�
jFt
�

= E
h
��0

�
Ŷ �t+hjt

�
� �00

�
Ŷ �t+hjt

��
Yt+h � Ŷ �t+hjt

�
+ �0

�
Ŷ �t+hjt

�
jFt
i

= ��00
�
Ŷ �t+hjt

��
E [Yt+hjFt]� Ŷ �t+hjt

�
;

so Ŷ �t+hjt = E [Yt+hjFt] since �00 > 0. This class was proposed by Bregman (1967), re-derived in

Patton (2010) for strictly positive variables, and is discussed in Gneiting (2010). Figure 1 illustrates

some loss functions that are members of this class. These can be asymmetric, convex or concave,

yet all imply that the optimal forecast is the conditional mean, and thus all of the results in this

paper apply to loss functions in this class.

4.4 Multi-horizon bounds and model misspeci�cation

If a forecaster uses an internally-consistent but misspeci�ed model to predict some target variable,

will any of the tests presented above be able to detect it? We study this problem in two cases: one

where the multi-step forecasts are obtained from a suite of horizon-speci�c models (�direct�multi-

step forecasts), and the other where forecasts for all horizons are obtained from a single model (and

multi-step forecasts are obtained by �iterating�on the one-step model). In both cases we show that

model misspeci�cation can indeed be detected using the multi-horizon bounds presented above.

4.4.1 Direct multi-step forecasts

If the forecaster is using di¤erent models for di¤erent forecast horizons it is perhaps not surprising

that the resulting forecasts may violate one or more of the bounds presented in the previous section.
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To illustrate this, consider a target variable that evolves according to a stationary AR(2) process,

Yt = �1Yt�1 + �2Yt�2 + "t, "t s iid N
�
0; �2

�
, (30)

but the forecaster uses a direct projection of Yt onto Yt�h to obtain an h-step forecast:

Yt = �hYt�h + vt, for h = 1; 2; ::: (31)

Note that by the properties of an AR(2) we have:

�1 =
�1

1� �2
, �2 =

�21 � �22 + �2
1� �2

: (32)

For many combinations of (�1; �2) we obtain j�2j > j�1j, e.g., for (�1; �2) = (0:1; 0:8) we �nd

�1 = 0:5 and �2 = 0:85: This directly leads to a violation of the bound in Corollary 2, that the

variance of the forecast should be weakly decreasing in the horizon. Further, it is simple to show

that it also violates the MSE bound in Corollary 1:

MSE1 � E

��
Yt � Ŷtjt�1

�2�
= �2y

�
1� �21

�
= 0:75�2y; (33)

MSE2 � E

��
Yt � Ŷtjt�2

�2�
= �2y

�
1� �22

�
= 0:28�2y:

In a situation such as this, the forecaster should recognize that the two-step forecasting model is

better than the one-step forecasting model, and so simply use the two-step forecast again for the

one-step forecast. (Or better yet, improve the forecasting models being used.)

4.4.2 Iterated multi-step forecasts

If a forecaster uses the same, misspeci�ed, model to generate forecasts for all horizons it may

seem unlikely that the resulting term structure of forecasts will violate one or more of the bounds

presented above. We present here one simple example where this turns out to be true. Consider

again a target variable that evolves according to a stationary AR(2) process as in Eq. (30), but

the forecaster uses an AR(1) model:

Yt = �1Yt�1 + vt (34)

so Ŷtjt�h = �h1Yt�h, for h = 1; 2; :::
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where �1 = �1= (1� �2) is the population value of the AR(1) parameter when the DGP is an AR(2).

(It is possible to show that a simple Mincer-Zarnowitz test, discussed in the next section, will not

detect the use of a misspeci�ed model, as the population parameters of the MZ regression in this

case can be shown to satisfy (�; �) = (0; 1) : However, a simple extension of the MZ regression that

includes a lagged forecast error would be able to detect this model misspeci�cation.) We now verify

that this model misspeci�cation may be detected using the bounds on MSE:

MSE1 � E

��
Yt � Ŷtjt�1

�2�
= �2y

�
1� �21

�
; (35)

MSE2 � E

��
Yt � Ŷtjt�2

�2�
= �2y

�
1� �41 + 2�21

�
�21 � 1

�
�2
�
:

Intuitively, if we are to �nd an AR(2) such that the one-step MSE from a misspeci�ed AR(1)

model is greater than that for a two-step forecast from the AR(1) model, it is likely a case where

the true AR(1) coe¢ cient is small relative to the AR(2) coe¢ cient. Consider again the case that

(�1; �2) = (0:1; 0:8) : The one- and two-step MSEs from the AR(1) model are then

MSE1 = 0:75�
2
y; MSE2 = 0:64�

2
y:

Thus the MSE bound is violated. It is also possible to show that a test based only on the forecasts

can detect model misspeci�cation, despite the fact that the model is used in an internally consistent

fashion across the forecast horizons. Consider the forecast revision, dtjhS ;hL � Ŷtjt�hS � Ŷtjt�hL ,

and the result established in Corollary 1 that the mean squared forecast revision should be weakly

increasing in the forecast horizon. Using the same AR(2) example we obtain:

MSFR1;2 � E
h
d2tj1;2

i
= �21

�
1� �21

�
�2y = 0:19�

2
y;

MSFR1;3 � E
h
d2tj1;3

i
= �21

�
1 + �41 � 2�21�2

�
�2y = 0:16�

2
y:

Hence the MSFR is not increasing from horizon 2 to 3, in violation of forecast optimality. Tests

based on the MSE or MSFR bounds would detect, at least asymptotically, the use of a misspeci�ed

forecasting model, even though the model is being used consistently across horizons.
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These simple examples illustrate that our variance bounds may be used to identify suboptimal

forecasting models, even when being used consistently, and thus may help to spur improvements of

misspeci�ed forecasting models.

5 Monte Carlo Simulations

There is little existing evidence on the �nite sample performance of forecast rationality tests, par-

ticularly when multiple forecast horizons are simultaneously involved. Moreover, our proposed set

of rationality tests take the form of bounds on second moments of the data and can be implemented

using the Wolak (1989) test of inequality constraints, the performance of which in time series appli-

cations such as ours is not well known. For these reasons it is important to shed light on the �nite

sample performance of the various forecast optimality tests. Unfortunately, obtaining analytical

results on the size and power of these tests for realistic sample sizes and types of alternatives is

not possible. To overcome this, we use Monte Carlo simulations of a variety of scenarios. We �rst

describe the simulation design and then present the size and power results.

5.1 Simulation design

To capture persistence in the underlying data, we consider a simple AR(1) model for the data

generating process:

Yt = �y + �
�
Yt�1 � �y

�
+ "t, "t s iid N

�
0; �2"

�
for t = 1; :::; T = 100: (36)

The parameters are calibrated to quarterly US CPI in�ation data: � = 0:5; �2y = 0:5; �y = 0:75:

Optimal forecasts for this process are given by Ŷ �tjt�h = Et�h [Yt] = �y + �h
�
Yt�h � �y

�
: We

consider all horizons between h = 1 and h = H; and set H 2 f 4 ; 8 g.

5.1.1 Measurement error

The performance of rationality tests that rely on the target variable versus tests that only use

forecasts is likely to be heavily in�uenced by measurement errors in the underlying target variable,
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Yt. To study the e¤ect of this, we assume that the target variable, ~Yt, is observed with error,  t

~Yt = Yt +  t;  t s iid N
�
0; �2 

�
:

Three values are considered for the magnitude of the measurement error, � : (i) zero, � = 0 (as

for CPI); (ii) medium, � =
p
0:7�y (similar to GDP growth �rst release data as reported by Faust,

Rogers and Wright (2005)); and (iii) high; � = 2
p
0:7�y, which is chosen as twice the medium

value.

5.1.2 Sub-optimal forecasts

To study the power of the optimality tests, we consider two simple ways in which the forecasts can

be suboptimal. First, forecasts may be contaminated by the same level of noise at all horizons:

Ŷtjt�h = Ŷ �tjt�h + ��;h�t;t�h, �t;t�h s iid N (0; 1) ;

where ��;h =
p
0:7�y for all h and thus has the same magnitude as the medium level measurement

error. Forecasts may alternatively be a¤ected by noise whose standard deviation is increasing in

the horizon, ranging from zero for the short-horizon forecast to 2�
p
0:7�y for the longest forecast

horizon (H = 8):

��;h =
2 (h� 1)

7
�
p
0:7�y, for h = 1; 2; :::;H � 8:

This scenario is designed to mimic the situation where estimation error, or other sources of noise,

are greater at longer horizons.

5.2 Simulation Results

Table 1 reports the size of the various tests for a nominal size of 10%. Results are based on 1,000

Monte Carlo simulations and a sample of 100 observations. The variance bounds tests are clearly

under-sized, particularly for H = 4, where none of the tests have a size above 4%. In contrast,

the MZ Bonferroni bound is over-sized. Conventionally, Bonferroni bounds tests are conservative

and tend to be undersized. Here, the individual MZ regression tests are severely oversized, and
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the use of the Bonferroni bound partially mitigates this feature. The vector MZ test is also hugely

oversized, while the size of the univariate optimal revision regression is close to the nominal value

of 10%. Because of the clear size distortions to the MZ Bonferroni bound and the vector MZ

regression, we do not further consider those tests in the simulation study.

Turning to the power of the various forecast optimality tests, Table 2 reports the results of our

simulations across the two scenarios. In the �rst scenario with equal noise across di¤erent horizons

(Panel A), neither the MSE, MSF, MSFR or decreasing covariance bounds have much power to

detect deviations from forecast optimality. This holds across all three levels of measurement error.

In contrast, the covariance bound on forecast revisions has very good power to detect this type

of deviation from optimality, around 70-99%, particularly when the short-horizon forecast, Ŷtjt�1,

which is not a¤ected by noise, is used as the dependent variable. The covariance bound in Corollary

4 works so well because noise in the forecast increases E[d2tjhS ;hL ] without a¤ecting E[YtdtjhS ;hL ],

thereby making it less likely that E[2YtdtjhS ;hL�d2tjhS ;hL ] � 0 holds. The univariate optimal revision

regression in Eq. (17) also has excellent power properties, notably when the dependent variable is

the short-horizon forecast.

The scenario with additive measurement noise that increases in the horizon, h, is ideal for the

decreasing MSF test since now the variance of the long-horizon forecast is arti�cially in�ated in

contradiction of Eq. (7). Thus, as expected, Panel B of Table 2 shows that this test has very good

power under this scenario: 45% in the case with four forecast horizons, rising to 100% in the case

with eight forecast horizons. The MSE and MSFR bounds have essentially zero power for this type

of deviation from forecast optimality. The covariance bound based on the predicted variable has

power around 15% when H = 4, which increases to a power of around 90% when H = 8. The

covariance bound with the actual value replaced by the short-run forecast in Eq. (12), performs

best among all tests, with power of 72% when H = 4 and power of 100% when H = 8. This is

substantially higher than the power of the univariate optimal revision regression test in Eq. (17)

which has power around 9-11% when conducted on the actual values and power of 53-66% when
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the short-run forecast is used as the dependent variable. For this case, Ŷtjt�hH is very poor, but

also very noisy, and so deviations from rationality can be relatively di¢ cult to detect.

We also consider using a Bonferroni bound to combine various tests based on actual values,

forecasts only, or all tests. Results for these tests are shown at the bottom of Tables 1 and 2. In all

cases we �nd that the size of the tests falls below the nominal size, as expected for a Bonferroni-

based test. However the power of the Bonferroni tests is high, and is comparable to the best of the

individual tests. This suggests that it is possible and useful to combine the results of the various

bounds-based tests via a simple Bonferroni test.

It is also possible to combine these tests into a single omnibus test by stacking the various

inequalities into a single large vector and testing whether the weak inequality holds for all elements

of this vector. We leave this approach aside for two reasons: The �rst relates to concerns about the

�nite-sample properties of a test with such a large number of inequalities relative to the number of

available time series observations. The second relates to the interpretability of the omnibus test:

by running each of the bounds tests separately we can gain valuable information into the sources

of forecast sub-optimality, if present. An omnibus bounds test would, at most, allow us to state

that a given sequence of forecasts is not optimal; it would not provide information on the direction

of the sub-optimality.

We also used the bootstrap approaches of White (2000) and Hansen (2005) to implement the

tests of forecast rationality based on multi-horizon bounds in our simulations and found that the

�nite-sample size and power from those approaches are very similar to those presented in Tables 1

and 2, and so we do not discuss them separately here.

In conclusion, the covariance bound test performs best among all the second-moment bounds.

Interestingly, it generally performs much better than the MSE bound which is the most commonly

known variance bound. Among the regression tests, excellent performance is found for the uni-

variate optimal revision regression, particularly when the test uses the short-run forecast as the

dependent variable. This test has good size and power properties and performs well across both
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deviations from forecast e¢ ciency. Across all tests, the covariance bound and the univariate op-

timal revision regression tests are the best individual tests. Our study also �nds that Bonferroni

bounds that combine the tests have good size and power properties.

6 Empirical Application

As an empirical illustration of the forecast optimality tests, we next evaluate the Federal Reserve

�Greenbook�forecasts of quarter-over-quarter rates of change in GDP, the GDP de�ator and CPI.

Data are from Faust and Wright (2009), who extracted the Greenbook forecasts and actual values

from real-time Fed publications. We use quarterly observations of the target variable over the

period from 1981Q2 to 2000Q4, and the three series are plotted in Figure 2. The forecast series

begin with the current quarter and run up to �ve quarters ahead in time, i.e., h = 0; 1; 2; 3; 4; 5.

All series are reported in in annualized percentage points. If more than one Greenbook forecast is

available within a given quarter, we use the earlier forecast. A few quarters have no forecasts at

all, leaving a total of 89 periods with at least one forecast available. If we start the sample when a

full set of six forecasts is available, and end it when the last full set of six forecasts is available, we

are left with 79 observations. This latter approach is particularly useful for comparing the impact

of the early part of our sample period, when in�ation volatility was high.

The results of our tests of forecast rationality are reported in Table 3. Panel A shows the

results for the sample that uses 79 observations, and represents our main empirical results. For

GDP growth we observe a strong rejection of internal consistency via the univariate optimal revision

regression using the short-run forecast as the target variable, Eq. (20), and a milder violation of the

increasing mean-squared forecast revision test in Eq. (3). For the GDP de�ator, several tests reject

forecast optimality. In particular, the tests for decreasing covariance between the forecast and the

actual, the covariance bound on forecast revisions, a decreasing mean squared forecast, and the

univariate optimal revision regression all lead to rejections. Finally, for the CPI in�ation rate we

�nd a violation of the covariance bound, Eq. (12), and a rejection through the univariate optimal
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revision regression. For all three variables, the Bonferroni combination test rejects multi-horizon

forecast optimality at the 5% level.

Faust and Wright (2008) point out that forecasts from central banks are often based on an

assumed path for the policy interest rate, and forecasts constructed using this assumption may

di¤er from the central bank�s best forecast of the target variable. In particular, they note that

ignoring this conditioning can lead standard tests to over- or under-reject the null of forecast

rationality. We leave the extension of our bounds-based tests to conditional forecasts for future

work.

The sources of some of the rejections of forecast optimality are illustrated in Figures 3 and

4. For each of the series, Figure 3 plots the mean squared errors and variance of the forecasts.

Under the null of forecast optimality, the forecast and forecast error should be orthogonal and the

sum of these two components should be constant across horizons. Clearly, this does not hold here,

particularly for the GDP de�ator and CPI in�ation series. In fact, the variance of the forecast

increases in the horizon for the GDP de�ator, and it follows an inverse U�shaped pattern for CPI

in�ation, both in apparent contradiction of the decreasing forecast variance property established

earlier.

Figure 4 plots mean squared forecast revisions and the covariance between the forecast and

the actual against the forecast horizon. Whereas the mean squared forecast revisions are mostly

increasing as a function of the forecast horizon for the two in�ation series, for GDP growth we

observe the opposite pattern, namely a very high mean squared forecast revision at the one-quarter

horizon, followed by lower values at longer horizons. This is the opposite of what we would expect

and so explains the rejection of forecast optimality for this case. In the right panel we see that while

the covariance between the forecast and the actual is decreasing in the horizon for GDP growth

and CPI, for the GDP de�ator it is mostly �at, a contradiction of forecast rationality.

The Monte Carlo simulations are closely in line with our empirical �ndings. Rejections of

forecast optimality come mostly from the covariance bound in Eq. (12) and the univariate optimal
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revision regressions in Eq. (17) and Eq. (20). Moreover, for GDP growth, a series with greater

measurement errors and data revisions, rejections tend to be stronger when only the forecasts are

used.

In Panel B of Table 3 we present the results using the full sample of 89 observations, which gives

us more short-horizon forecasts from the beginning of the sample period and more long-horizon

forecasts from the end of the sample period. Changing the sample period does not greatly a¤ect

the results for GDP growth, although the rejection of rationality arising from the bound on mean-

squared forecast revisions goes from being borderline signi�cant to being borderline insigni�cant.

The strong rejection of internal consistency via the univariate optimal revision regression using the

short-run forecast as the target variable remains, as does the rejection using the Bonferroni bound

to combine all tests. The results for the GDP de�ator forecasts change, with three out of the �ve

rejections using bounds tests vanishing, while the simple MZ test on the shortest horizon goes from

not signi�cant to strongly signi�cant. The results for CPI in�ation forecasts also change, with the

bound on mean squared errors being signi�cantly violated in this di¤erent sample period. Overall,

this change in sample period does change the results of some of the individual tests, but the broader

conclusions remain: for all three series, we �nd signi�cant evidence against forecast rationality.

7 Conclusion

This paper proposes several new tests of forecast optimality that exploit information from multi-

horizon forecasts. Our new tests are based on monotonicity properties of second moment bounds

that must hold across forecast horizons and so are joint tests of optimality across several hori-

zons. We show that monotonicity tests, whether conducted on the squared forecast errors, squared

forecasts, squared forecast revisions or the covariance between the target variable and the fore-

cast revision can be restated as inequality constraints on regression models and that econometric

methods proposed by Gourieroux et al. (1982) and Wolak (1987, 1989) can be adopted. Suitably

modi�ed versions of these tests conducted on the sequence of forecasts or forecast revisions recorded
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at di¤erent horizons can be used to test the internal consistency properties of an optimal forecast,

thereby side-stepping the issues that arise for conventional tests when the target variable is either

missing or observed with measurement error.

Simulations suggest that the new tests are more powerful than extant ones and also have better

�nite sample size. In particular, a new covariance bound test that constrains the variance of forecast

revisions by their covariance with the outcome variable and a univariate joint regression test that

includes the long-horizon forecast and all interim forecast revisions generally have good power to

detect deviations from forecast optimality. These results show the importance of testing the joint

implications of forecast rationality across multiple horizons when data is available. An empirical

analysis of the Fed�s Greenbook forecasts of in�ation and output growth corroborates the ability

of the new tests to detect evidence of deviations from forecast optimality.

Our bounds hold whenever the optimal forecast is the conditional mean of the target vari-

able. Beyond this case, the MSE bound is readily generalized to a bound based on non-decreasing

expected loss as the horizon grows, see Patton and Timmermann (2007a). Similarly, the orthog-

onality regressions can be extended to use the generalized forecast error, which is essentially the

score associated with the forecaster�s �rst order condition, see Granger (1999). The estimation

of loss function parameters via moment (equality) conditions, as in Elliott, et al. (2005), may be

combined with the multi-horizon inequality conditions presented above using recent work by Moon

and Schorfheide (2009). Establishing results on multi-horizon forecasts when the loss function is

unknown, as in Patton and Timmermann (2007b), may also be possible. We leave these extensions

for future work.

8 Appendix A: Proofs

Proof of Corollary 1. (a) By the optimality of Ŷ �tjt�hS ; and since Ŷ
�
tjt�hL 2 Ft�hS for any

hS < hL; we have Et�hS

��
Yt � Ŷ �tjt�hS

�2�
� Et�h

��
Yt � Ŷ �tjt�hL

�2�
, which implies E

h
e�2tjt�hS

i
�

E
h
e�2tjt�hL

i
by the law of iterated expectations (LIE). (b) Let d�tjhS ;hL � Ŷ �tjt�hS � Ŷ �tjt�hL =
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�
Ŷ �tjt�hS � Ŷ

�
tjt�hM

�
+
�
Ŷ �tjt�hM � Ŷ

�
tjt�hL

�
= d�tjhS ;hM + d�tjhM ;hL

: Under the assumption that hS <

hM < hL note that Et�hM
h
d�tjhS ;hM

i
= Et�hM

h
Ŷ �tjt�hS � Ŷ

�
tjt�hM

i
= 0 by the LIE. Thus

Cov
h
d�tjhS ;hM ; d

�
tjhM ;hL

i
= 0 and so V

h
d�tjhS ;hL

i
= V

h
d�tjhS ;hM

i
+ V

h
d�tjhM ;hL

i
� V

h
d�tjhS ;hM

i
:

Further, since Et�h
h
d�tjh;k

i
= 0 for any h < k we then have E

h
d�2tjhS ;hL

i
� E

h
d�2tjhS ;hM

i
:

Proof of Corollary 2. Forecast optimality under MSE loss implies Ŷ �tjt�h = Et�h [Yt].

Thus Et�h
h
e�tjt�h

i
� Et�h

h
Yt � Ŷ �tjt�h

i
= 0, so E

h
e�tjt�h

i
= 0 and Cov

h
Ŷ �tjt�h; e

�
tjt�h

i
= 0, and

V [Yt] = V
h
Ŷ �tjt�h

i
+ E

h
e�2tjt�h

i
; or V

h
Ŷ �tjt�h

i
= V [Yt] � E

h
e�2tjt�h

i
: Corollary 1 showed that

E
h
e�2tjt�h

i
is weakly increasing in h; which implies that V

h
Ŷ �tjt�h

i
must be weakly decreasing in h.

Proof of Corollary 3. As used in the above proofs, forecast optimality implies Cov
h
Ŷ �tjt�h; e

�
tjt�h

i
=

0 and thus Cov
h
Ŷ �tjt�h; Yt

i
= Cov

h
Ŷ �tjt�h; Ŷ

�
tjt�h + e

�
tjt�h

i
= V

h
Ŷ �tjt�h

i
: Corollary 2 showed that

V
h
Ŷ �tjt�h

i
is weakly decreasing in h; and thus we have that Cov

h
Ŷ �tjt�h; Yt

i
is also weakly de-

creasing in h. For part (b), Cov
h
Ŷ �tjt�hL ; Ŷ

�
tjt�hS

i
= Cov

h
Ŷ �tjt�hL ; Ŷ

�
tjt�hL + d

�
tjhS ;hL

i
= V

h
Ŷ �tjt�hL

i
;

since Cov
h
Ŷ �tjt�hL ; d

�
tjhS ;hL

i
= 0: Similarly Cov

h
Ŷ �tjt�hM ; Ŷ

�
tjt�hS

i
= V

h
Ŷ �tjt�hM

i
; and the bound on

covariances follows from the bound on V
h
Ŷ �tjt�h

i
established in Corollary 2.

Proof of Corollary 4. For any hS < hL; Corollary 1 showed V
h
Yt � Ŷ �tjt�hL

i
� V

h
Yt � Ŷ �tjt�hS

i
;

so V [Yt] + V
h
Ŷ �tjt�hL

i
� 2Cov

h
Yt; Ŷ

�
tjt�hL

i
� V [Yt] + V

h
Ŷ �tjt�hS

i
� 2Cov

h
Yt; Ŷ

�
tjt�hS

i
and

V
h
Ŷ �tjt�hL

i
� 2Cov

h
Yt; Ŷ

�
tjt�hL

i
� V

h
Ŷ �tjt�hS

i
� 2Cov

h
Yt; Ŷ

�
tjt�hS

i
= V

h
Ŷ �tjt�hL + d

�
tjhS ;hL

i
� 2Cov

h
Yt; Ŷ

�
tjt�hL + d

�
tjhS ;hL

i
= V

h
Ŷ �tjt�hL

i
+ V

h
d�tjhS ;hL

i
� 2Cov

h
Yt; Ŷ

�
tjt�hL

i
� 2Cov

h
Yt; d

�
tjhS ;hL

i
:

Thus V
h
d�tjhS ;hL

i
� 2Cov

h
Yt; d

�
tjhS ;hL

i
.

For the second part, V
h
d�tjhM ;hL

i
� 2Cov

h
Yt; d

�
tjhM ;hL

i
=

2Cov
h
Ŷ �tjt�hS + e

�
tjt�hS ; d

�
tjhM ;hL

i
= 2Cov

h
Ŷ �tjt�hS ; d

�
tjhM ;hL

i
since Cov

h
e�tjt�hS ; d

�
tjhM ;hL

i
= 0:

Proof of Corollary 5. (a) Note that Cov
h
e�tjt�h; Yt

i
= Cov

h
e�tjt�h; Ŷ

�
tjt�h + e

�
tjt�h

i
=

V
h
e�tjt�h

i
; since Cov

h
e�tjt�h; Ŷ

�
tjt�h

i
= 0 by forecast optimality. Corollary 1 established that MSE
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is increasing in the forecast horizon, and thus we have that Cov
h
e�tjt�h; Yt

i
is increasing in the fore-

cast horizon. (b) Cov
h
d�tjhS ;hL ; Ŷ

�
tjt�hS

i
= Cov

h
d�tjhS ;hL ; Ŷ

�
tjt�hL + d

�
tjhS ;hL

i
= V

h
d�tjhS ;hL

i
, since

Cov
h
d�tjhS ;hL ; Ŷ

�
tjt�hL

i
= 0: Corollary 1 established that the mean squared forecast error is in-

creasing in the long forecast horizon, and thus we have that Cov
h
d�tjhS ;hL ; Ŷ

�
tjt�hS

i
is increasing

in the long forecast horizon. (c) Cov
h
e�tjt�hL ; d

�
tjhS ;hL

i
� Cov

h
Yt � Ŷ �tjt�hL ; Ŷ

�
tjt�hS � Ŷ

�
tjt�hL

i
=

Cov
h
Yt; Ŷ

�
tjt�hS � Ŷ

�
tjt�hL

i
; since Cov

h
Ŷ �tjt�hL ; d

�
tjhS ;hL

i
= 0: Corollary 3 showed that Cov

h
Yt; Ŷ

�
tjt�h

i
is decreasing in the forecast horizon, thus, keeping hS �xed, we �nd that Cov

h
Yt; Ŷ

�
tjt�hS � Ŷ

�
tjt�hL

i
=

Cov
h
Yt; Ŷ

�
tjt�hS

i
� Cov

h
Yt; Ŷ

�
tjt�hL

i
is increasing in the long forecast horizon, as claimed.

Proof of Corollary 6. The population value of �h is Cov
h
Ŷtjt�h; Yt

i
=V
h
Ŷtjt�h

i
, which under

optimality equals �h = Cov
h
Ŷ �tjt�h; Yt

i
=V
h
Ŷ �tjt�h

i
= Cov

h
Ŷ �tjt�h; Ŷ

�
tjt�h + e

�
tjt�h

i
=V
h
Ŷ �tjt�h

i
=

V
h
Ŷ �tjt�h

i
=V
h
Ŷ �tjt�h

i
= 1: The population value of �h under optimality equals �h = E [Yt] �

�hE
h
Ŷ �tjt�h

i
= E [Yt]� E

h
Ŷ �tjt�h

i
= 0 by the LIE since Ŷ �tjt�h = Et�h [Yt] :

Proof of Corollary 7. Let the parameters in the regression

Yt = �+ �H Ŷtjt�hH +
H�1X
j=1

�jdtjhj ;hj+1 + ut;

be denoted � =
�
�; �H ; �1; :::; �H�1

�0
:The result follows from the fact that the probability limit of

the OLS estimator of � is:0BBBBBBBBBBBBBBBB@

�Y 2hH=�
2
ŶhH

+ 1 � �YhH=�2ŶhH
0 � � � 0

� �YhH=�2ŶhH
��2
ŶhH

0 � � � 0

0 0 ��2�h1;h2
0 0

...
... 0

. . .
...

... 0

0 0 0 � � � ��2�hH�2;hH�1

1CCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBB@

�YhH

�Y 2hH + �
2
ŶhH

�2�h1;h2

0

...

�2�hH�2;hH�1

1CCCCCCCCCCCCCCCCA
=

0BBBBBBBBBBBB@

0

1

...

1

1CCCCCCCCCCCCA
;

where �YhH = E[Ŷtjt�hH ]; �
2
ŶhH

= V
h
Ŷtjt�hH

i
and we used properties of the partitioned inverse.

Proof of Corollary 8. (a) Under optimality, ~�h = Cov
h
Ŷ �tjt�h1 ; Ŷ

�
tjt�hj

i
=V
h
Ŷ �tjt�hj

i
=

Cov
h
Ŷ �tjt�hj + d

�
tjh1;hj ; Ŷ

�
tjt�hj

i
=V
h
Ŷ �tjt�hj

i
= V

h
Ŷ �tjt�hj

i
=V
h
Ŷ �tjt�hj

i
= 1, and ~�h = E

h
Ŷ �tjt�h1

i
�
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~�hE
h
Ŷ �tjt�hj

i
= E [Yt] � E [Yt] = 0. (b) Follows using the same steps as the proof of part

(b) of Corollary 7, noting that Ŷ �tjt�h2 = Et�h2 [Yt] = Et�h2

h
Ŷ �tjt�h1

i
by the LIE, and that

Et�h2

h
Ŷ �tjt�h1 � Ŷ

�
tjt�h2

i
� Et�h2

h
d�tjh1;h2

i
= 0:

Proof of Proposition 2. (a) By forecast optimality we have Et�hS

��
Yt � Ŷ �tjt�hS

�2�
�

Et�hS

��
Yt � Ŷ �tjt�hL

�2�
for all hS < hL; which implies E

��
Yt � Ŷ �tjt�hS

�2�
� E

��
Yt � Ŷ �tjt�hL

�2�
by the LIE. Thus T�1

TX
t=1

E

��
Yt � Ŷ �tjt�hS

�2�
� T�1

TX
t=1

E

��
Yt � Ŷ �tjt�hL

�2�
as claimed.

(b) By forecast optimality we have Et�h
h
e�tjt�h

i
= 0 so Et�h

h
e�tjt�hŶ

�
tjt�h

i
= 0) E

h
e�tjt�hŶ

�
tjt�h
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=

0 by the LIE. This implies that E
�
Y 2t
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= E

��
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�
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= E

h
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+ E
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e�2tjt�h

i
�

MSFt (h) + MSEt (h) ; so MSFt (h) = E
�
Y 2t
�
� MSEt (h) : We established in part (a) that

MSEt (hS) � MSEt (hL) for all hS < hL and for each t; and since E
�
Y 2t
�
is not a function of h;

this implies that MSFt (hS) � MSFt (hL) for all hS < hL: Averaging over t = 1; 2; ::; T leads to

MSF T (hS) �MSF T (hL) :

(c) Et�h
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= 0 by optimality. We showed that MSFt (h) is decreasing in h in part (b),

thus Ct (h) � Et�h
h
YtŶ

�
tjt�h

i
is also decreasing in h:

(d) By the fact that Ŷ �tjt�h = Et�h [Yt] we have Et�hL
h
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� Et�hL
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= Et�hM

h
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i
by the LIE. ThusMSFRt (hS ; hL) �

MSFRt (hS ; hM ) for all hS < hM < hL for each t: Averaging over t = 1; 2; ::; T leads to

MSFRT (hS ; hM ) �MSFRT (hS ; hL) as claimed.

(e) From (a) we have

Et�hS
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�2�
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So Et�hS
h
d�2tjhS ;hL

i
� 2Et�hS

h
Ytd

�
tjhS ;hL

i
) E

h
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i
� 2E

h
Ytd

�
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i
by the LIE. Averaging

over t = 1; 2; ::; T leads to MSFRT (hS ; hL) � 2BT (hS ; hL) as claimed.

Proof of Proposition 3. Follows from Exercise 5.21 of White (2001).

Proof of Proposition 4. (a) Let ht; kt be integer-valued random variables with support

H � K. Let Pr [ht = hj ] = pj and let Pr [kt = kijht = hj ] = qij : First, note that e�tjt�ht � Yt �
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Yt � Ŷ �tjt�hj

�
� 1 fht = hjg and e�2tjt�ht =

X
hj2H

�
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Yt � Ŷ �tjt�hj�ki

�2�
The di¤erence between these is

MSES �MSEL =
X
hj2H

pj
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(b) Let the short horizon lengths, ht; and long horizon lengths, ht + kt; be given by some

pre-determined sequence fht; ktg1t=�1 : Note that this introduces heterogeneity into the problem,
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even when the underlying data generating process is stationary. Nevertheless, the bounds estab-

lished in Section 2 continue to hold: By forecast optimality we have Et�ht

��
Yt � Ŷ �tjt�ht

�2�
�

Et�ht

��
Yt � Ŷ �tjt�ht�kt

�2�
for each t; which implies E

��
Yt � Ŷ �tjt�ht

�2�
� E

��
Yt � Ŷ �tjt�ht�kt

�2�
by the LIE. Averaging over t = 1; 2; ::; T leads to a bound on the average MSE over the sample

period MSET (hS) �MSET (hL) : Corresponding results can be obtain for the remaining bounds

using the same arguments.

9 Appendix B: Illustration of bounds for an AR(1) process

This Appendix illustrates the moment bounds for an AR(1) process. Let:

Yt = �Yt�1 + "t; j�j < 1; (37)

where "t �WN(0; �2"), so �
2
y = �2"=(1� �2). Rewriting this as

Yt = �hYt�h +
h�1X
i=0

�i"t�i;

we have Ŷ �tjt�h = �hYt�h, and so e�tjt�h =
Ph�1

i=0 �
i"t�i. From this it follows that, consistent with

Corollary 1,
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!
� �2"
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i
:

Moreover, consistent with Corollary 2 the variance of the forecast is increasing in h :

V
h
Ŷ �tjt�h

i
= �2h�2y � �2(h+1)�2y = V

h
Ŷ �tjt�h�1

i
:

The covariance between the outcome and the h�period forecast is
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h
Yt; Ŷ

�
tjt�h

i
= Cov

"
�hYt�h +
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�i"t�i; �
hYt�h

#
= �2h�2y;

which is decreasing in h, consistent with Corollary 3. Also, noting that Ŷ �tjt�hS = Ŷ �tjt�hL +PhL�1
i=hS

�i"t�i, the forecast revision can be written as d�tjhS ;hL =
PhL�1

i=hS
�i"t�i, and so
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which is increasing in hL�hS , consistent with Corollary 1. Consistent with Corollary 4, the variance

of the revision is bounded by twice the covariance of the actual value and the revision:

2Cov
h
Yt; d

�
tjhS ;hL

i
= 2V

24hL�1X
i=hS

�i"t�i

35 > V

24hL�1X
i=hS

�i"t�i

35 = d�tjhS ;hL :

The implications of forecast rationality presented in Corollary 4 based on the predicted as opposed

to realized value for Y for this AR(1) example are:
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Table 1: Monte Carlo simulation of size of the inequality tests
and regression-based tests of forecast optimality

H = 4 H = 8

Meas. error variance: High Med Zero High Med Zero

Inc MSE 3.0 1.5 1.0 6.3 5.2 5.2
Dec COV 1.1 0.9 0.8 5.0 4.7 4.4
COV bound 1.8 1.4 1.2 0.0 0.0 0.0
Dec MSF 2.0 2.0 2.0 0.7 0.7 0.7
Inc MSFR 0.1 0.1 0.1 4.4 4.4 4.4
Dec COV, with proxy 1.2 1.2 1.2 6.0 6.0 6.0
COV bound, with proxy 3.8 3.8 3.8 0.0 0.0 0.0
MZ on short horizon 10.8 11.9 13.6 10.8 11.9 13.6
Univar opt. revision regr. 10.2 9.7 9.8 11.5 10.2 9.4
Univar opt. revision regr., with proxy 10.8 10.8 10.8 9.5 9.5 9.5
Univar MZ, Bonferroni 12.5 12.9 18.2 18.4 19.1 22.4
Univar MZ, Bonferroni, with proxy 17.8 17.8 17.8 20.8 20.8 20.8
Vector MZ 33.2 31.5 28.9 92.2 89.9 83.5
Vector MZ, with proxy 20.7 20.7 20.7 68.6 68.6 68.6
Bonf, using actuals 3.0 2.7 2.5 8.0 7.5 8.5
Bonf, using forecasts only 3.0 3.0 3.0 7.0 7.0 7.0
Bonf, all tests 3.7 3.2 2.3 8.1 7.2 6.1

Notes: This table presents the outcome of 1,000 Monte Carlo simulations of the size of various
forecast optimality tests. Data is generated by a �rst-order autoregressive process with parameters
calibrated to quarterly US CPI in�ation data, i.e. � = 0:5; �2y = 0:5 and �y = 0:75: We consider
three levels of error in the measured value of the target variable (high, median and zero). Optimal
forecasts are generated under the assumption that this process (and its parameter values) are known
to forecasters. The simulations assume a sample of 100 observations and a nominal size of 10%.
The inequality tests are based on the Wolak (1989) test and use simulated critical values based on
a mixture of chi-squared variables. Tests labeled �with proxy�refer to cases where the one-period
forecast is used in place of the predicted variable.
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Table 3: Forecast rationality tests for Greenbook forecasts

Observations lined up All available
in event time (T=79) observations (T=89)

Series: Growth De�ator CPI Growth De�ator CPI

Inc MSE 0.591 0.966 0.639 0.423 0.922 0.000�

Dec COV 0.879 0.057� 0.991 0.838 0.670 0.896
COV bound 0.560 0.000� 0.009� 0.715 0.000� 0.036�

Dec MSF 0.916 0.026� 0.719 0.973 0.554 0.699
Inc MSFR 0.089� 0.938 0.620 0.123 0.938 0.340
Dec COV, with proxy 0.807 0.075� 0.772 0.811 0.375 0.632
COV bound, with proxy 0.206 0.010� 0.656 0.218 0.039� 0.671
MZ on short horizon 0.245 0.313 0.699 0.121 0.012� 0.037�

Opt. revision regr. 0.709 0.000� 0.001� 0.709 0.000� 0.001�

Opt. revision regr., with proxy 0.000� 0.009� 0.022� 0.000� 0.009� 0.022�

Bonf, using actuals 1.000 0.000� 0.005� 0.605 0.000� 0.000�

Bonf, using forecasts only 0.000� 0.047� 0.108 0.000� 0.047� 0.108
Bonf, all tests 0.000� 0.001� 0.011� 0.000� 0.000� 0.000�

Note: This table presents p-values from inequality- and regression tests of forecast rationality
applied to quarterly Greenbook forecasts of GDP growth, the GDP de�ator and CPI In�ation. The
sample covers the period 1982Q1-2000Q4. Six forecast horizons are considered, h = 0, 1, 2, 3, 4,
5 and the forecasts are aligned in event time. The inequality tests are based on the Wolak (1989)
test and use critical values based on a mixture of chi-squared variables. Tests labeled �with proxy�
refer to cases where the shortest-horizon forecast forecast is used in place of the target variable in
the test. P-values less than 0.10 are marked with an asterisk.
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Figure 1: Examples of Bregman loss functions for ŷ 2 [�3; 3] when y = �1: The left panel
presents examples of �homogeneous Bregman� loss functions of the form L (y; ŷ) = jyja �
jŷja�sgn(ŷ) a jŷja�1 (y � ŷ) ; for a > 1. The right panel presents examples of �exponential Breg-
man� loss functions of the form L (y; ŷ) = 2a�2 (exp fayg � exp faŷg)� 2a�1 exp faŷg (y � ŷ), for
a 6= 0: Both of these families nest MSE ( k = 2 in the former case and a! 0 in the latter).
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Figure 2: Time series of annualized quarterly GDP growth, GDP de�ator, and CPI in�ation, over
the period 1981Q2 to 2000Q4.
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Figure 3: Mean squared errors and forecast variances, for US GDP de�ator, CPI in�ation and
GDP growth.
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Figure 4: Mean squared forecast revisions (left panel) and the covariance between forecasts and
actuals, for US GDP de�ator, CPI in�ation and GDP growth.
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