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1 Overview

In this supplemental material, Section 2 provides a proof of the relationship between
Pearson�s Chi-squared test and the static trace test based on canonical correlations.
Section 3 derives the test for independence with ordered alternatives introduced in
Section 3.3 of the paper, while Section 4 introduces an iterated test method which
is an alternative to the dynamically augmented reduced rank regression. Section
5 reports additional simulation results, and Section 6 reports the outcome of an
empirical application to macroeconomic data on forecasts of economic recessions.

2 Relationship to Pearson�s Chi-squared Test

In the special case where the realizations of X and Y are serially independent, the
standard approach to testing independence of categorized variables is to arrange the
outcomes in the form of a contingency table and then compute an appropriate test
statistic from the individual cell frequencies. We show below that there is an exact
relationship between the trace statistic and Pearson�s contingency table �2�test of
independence. To this end we �rst introduce some new notations.
When testing the independence of yit; and xjt for i = 1; 2; :::;my, j = 1; :::;mx

the appropriate contingency table is given by

Y;X 1 2 � � � mx

1 n11 n12 � � � n1mx n1:
2 n21 n22 � � � n2mx n2:
...

...
...

...
...

...
my nmy1 nmy2 � � � nmymx nmy :

n:1 n:2 � � � n:mx n

Here nij is the frequency of the joint occurrence of yit and xjt, namely nij =PT
t=1 yitxjt, and

ni: =

mxX
j=1

nij =

TX
t=1

yit, n:j =
myX
i=1

nij =

TX
t=1

xjt, n =
myX
i=1

ni: =

mxX
j=1

n:j = T:
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The familiar Pearson Chi-square test of independence is given by

�2 = T

 
myX
i=1

mxX
j=1

n2ij
ni:n:j

� 1
!
: (1)

Proposition 1 The Pearson Chi-square test for independence of data arranged in
an mx �my contingency table (mx � my) is identical to a trace test based on the
canonical correlations

myX
i=1

mxX
j=1

n2ij
ni:n:j

� 1 =
mx�1X
i=1

�̂2i ;

where �̂i is the sample estimate of the i
th canonical correlation betweenY = (y1;y2; :::;ymy�1)

and X = (x1;x2; :::;xmx�1); yi = (yi1; yi2; :::; yiT )
0 and xi = (xi1; xi2; :::; xiT )

0. Fur-
thermore,

mx�1X
i=1

�̂2i = Tr
h
(Y0M�Y)

�1
(Y0M�X) (X

0M�X)
�1
(X0M�Y)

i
;

where M� = IT � T�1� T� 0T , � T = (1; 1; :::; 1)0.

Proof. To establish the result we �rst write the various moment matrices in the
trace expression in terms of nij notations. Since the events in the various categories
are mutually exclusive, Y0Y and X0X will be diagonal matrices with their ith diag-
onal elements given by ni: =

PT
t=1 yit and n:j =

PT
t=1 xjt: Also the (i; j) element of

Y0X is nij, and, with �my�1 a (my � 1)� 1 vector of ones

� 0TY = h0y = (n1:; n2:; :::; nmy�1:)
0; � 0TX = h0x = (n:1; n:2; :::; n:mx�1)

0;

(Y0Y)
�1
hy = �my�1; (X

0X)
�1
hx = �mx�1;

hence Y0M�Y = Y0Y�T�1hyh0y; Y0M�X = Y0X�T�1hyh0x:

But (Y0M�Y)
�1
= (Y0Y)

�1
+
T�1 (Y0Y)�1 hyh

0
y (Y

0Y)�1

1� T�1h0y (Y0Y)�1 hy
.

Noting that h0y (Y
0Y)�1 hy =

Pmy�1
i=1 ni: = T � nmy : we have

(Y0M�Y)
�1
= (Y0Y)

�1
+
�my�1�

0
my�1

nmy :

; (X0M�X)
�1
= (X0X)

�1
+
�mx�1�

0
mx�1

n:mx

:

Therefore (Y0M�Y)
�1
Y0M�X =

�
(Y0Y)

�1
+
�my�1�

0
my�1

nmy :

� �
Y0X�T�1hyh0x

�
= (Y0Y)

�1
Y
0
X�T�1(Y0Y)

�1
hyh

0
x

+
�my�1�

0
my�1Y

0X

nmy :

� T�1
�my�1�

0
my�1hyh

0
x

nmy :

:
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Using these results, after some algebra we have

(Y0M�Y)
�1
Y0M�X = (Y0Y)

�1
Y
0
X��mx�1q

0
x

nmy :

;

(X0M�X)
�1
X0M�Y = (X0X)

�1
X
0
Y�

�mx�1q
0
y

n:mx

;

where qx = (nmy1; nmy2; :::; nmy ;mx�1)
0 and qy = (n1mx ; n2mx ; :::; nmy�1;mx)

0. Hence

Tr
h
(Y0M�Y)

�1
(Y0M�X) (X

0M�X)
�1
(X0M�Y)

i
= Tr

h
(Y0Y)

�1
(Y0X) (X0X)

�1
(X0Y)

i
�
q0y(Y

0Y)�1Y
0
X�mx�1

n:mx

�
q0x(X

0X)�1X
0
Y�my�1

nmy :

+
(q0x�mx�1)

�
q0y�my�1

�
nmy :n:mx

:

Consider now the various terms in this expression. First, since Y0Y and X0X
are diagonal matrices and the typical element of Y0X is nij, it readily follows that

Tr
h
(Y0Y)

�1
(Y0X) (X0X)

�1
(X0Y)

i
=

my�1X
i=1

mx�1X
j=1

n2ij
ni:n:j

:

Also, Y0X�mx�1 = hy � qy; X0Y�my�1 = hx � qx;

q0y(Y
0Y)

�1
Y
0
X�mx�1 = q0y�my�1 � q0y(Y0Y)

�1
qy

q0x(X
0X)

�1
X
0
Y�my�1 = q0x�mx�1 � q0x(X0X)

�1
qx:

Finally q0x�mx�1 =
mx�1X
j=1

nmyj = nmy : � nmymx ;

q0y�my�1 =

my�1X
i=1

nimx = n:mx � nmymx ;

q0y(Y
0Y)

�1
qy =

my�1X
i=1

n2imx

ni:
, q0x(X

0X)
�1
qx =

mx�1X
j=1

n2myj

n:j
:

It follows that
q0y(Y

0Y)�1Y
0
X�mx�1

n:mx

= 1�
nmymx

n:mx

�
my�1X
i=1

n2imx

ni:n:mx

;

q0x(X
0X)�1X

0
Y�my�1

nmy :

= 1�
nmymx

nmy :

�
mx�1X
j=1

n2myj

nmy :n:j
;
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(q0x�mx�1)
�
q0y�my�1

�
nmy :n:mx

= 1�
nmymx

nmy :

�
nmymx

n:mx

+
n2mymx

nmy :n:mx

:

Hence Tr
h
(Y0M�Y)

�1
(Y0M�X) (X

0M�X)
�1
(X0M�Y)

i
=

my�1X
i=1

mx�1X
j=1

n2ij
ni:n:j

� 1 +
my�1X
i=1

n2imx

ni:n:mx

+
mx�1X
j=1

n2myj

nmy :n:j
+

n2mymx

nmy :n:mx

=

myX
i=1

mxX
j=1

n2ij
ni:n:j

� 1:

as required.

3 Tests of Independence under Ordered Alterna-
tives

This section derives the test of independence under ordered alternatives described
in Section 3.3 of the paper.
Let �ij be the joint probability that y and x fall in the ith and jth categories

respectively, where i = 1; 2; :::;my and j = 1; 2; :::;mx. The y-categories are speci�ed
in terms of the thresholds, a0 < a1 < ::: < amy�1 < amy and the x-categories in terms
of b0 < b1 < ::: < bmx�1 < bmx. In both cases a0 = b0 = �1, and amy = bmx = +1.
The associated observed frequency for the joint occurrence of y and x in their ith

and jth categories is denoted by nij and the relative frequencies by �̂ij = nij=T .
Under joint normality of the underlying latent variables and random draws (se-

rially independent observations) the log-likelihood function of ordinal measure is
given by

`(a;b;�) =

myX
i=1

mxX
j=1

nij ln(�ij); (2)

where

�ij = �2(ai; bj; �)� �2(ai�1; bj; �)� �2(ai; bj�1; �) + �2(ai�1; bj�1; �); (3)

and �2(a; b; �) is the distribution function of the bivariate standard normal distrib-
ution with � as its correlation coe¢ cient.
As shown in Ronning and Kukuk (1996), under � = 0 the information matrix

of the above (doubly) ordered probit model is block diagonal for �, a and b, and
hence the score (or Lagrangian Multiplier) statistic for testing the null of � = 0 is
given by

S� =

h
@`(�;a;b)

@�
j�=0

i2
E
h
�@2`(�;a;b)

@2�
j�=0

i :
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But it is easily seen that@`(�;a;b)
@�

j�=0, or @`(0;a;b)@�
for short, is given by

@`(a;b;0)

@�
=

myX
i=1

mxX
j=1

nij
�ij(0)

@�ij(0)

@�
;

where �ij(0) stands for �ij evaluated at � = 0: Using equations (14) and (15) in
Ronning and Kukuk, and noting that �2(a; b; 0) = �(a)�(b), where �(a) is the
distribution function of a standard normal variate, we have

�ij(0) = �i:�:j;

�i: = �(ai)� �(ai�1);
�:j = �(bj)� �(bj�1);

where �i:is the marginal probability that y falls in category i, and �:j is the marginal
probability that x falls in category j. Also (see Olsson (1979))

@�2(ai; bj; �)

@�
= �2(u; v; �);

�2(u; v; �) = (2�)
�1(1� �2)�1=2 exp

�
�1

2(1� �2)
�
u2 + v2 � 2�uv

��
then

@�ij(�)

@�
= �2(ai; bj; �)� �2(ai�1; bj; �)� �2(ai; bj�1; �) + �2(ai�1; bj�1; �);

and
@�ij(0)

@�
= [�(ai)� �(ai�1)] [�(bi)� �(bi�1)] :

Hence
@`(a;b;0)

@�
=

myX
i=1

mxX
j=1

nij [�(ai)� �(ai�1)] [�(bj)� �(bj�1)]
[�(ai)� �(ai�1)] [�(bj)� �(bj�1)]

:

For @
2`(�;a;b)
@2�

we note that

@2 ln(�ij)

@2�
=
�1
�2ij

�
@�ij
@�

�2
+
1

�ij

@2�ij
@�2

;

and
@�2(a; b; �)

@�
=
�2(a; b; �)

1� �2
�
ab+ �

�
1 + a2 + b2 � 2�ab)

��
:

Hence
@2 ln(�ij(0))

@2�
=

�1
�2ij(0)

�
@�ij(0)

@�

�2
+

1

�ij(0)

@2�ij(0)

@�2
;
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where
1

�ij(0)

@2�ij(0)

@�2
=
[ai�(ai)� ai�1�(ai�1)] [bj�(bj)� bj�1�(bj�1)]

[�(ai)� �(ai�1)] [�(bj)� �(bj�1)]
:

Putting the various terms together

E

�
�@

2`(a;b;�)

@2�
j�=0

�
=

myX
i=1

mxX
j=1

nij
[�(ai)� �(ai�1)]2 [�(bj)� �(bj�1)]2

[�(ai)� �(ai�1)]2 [�(bj)� �(bj�1)]2
�

myX
i=1

mxX
j=1

nij
[ai�(ai)� ai�1�(ai�1)] [bj�(bj)� bj�1�(bj�1)]

[�(ai)� �(ai�1)] [�(bj)� �(bj�1)]
:

More compactly

E

�
�@

2`(a;b;�)

@2�
j�=0

�
=

myX
i=1

mxX
j=1

nij
[�(ai)� �(ai�1)]2 [�(bj)� �(bj�1)]2

�2i:�
2
:j

�

myX
i=1

mxX
j=1

nij
[ai�(ai)� ai�1�(ai�1)] [bj�(bj)� bj�1�(bj�1)]

�i:�:j
:

Finally, under � = 0, the maximum likelihood estimates of the thresholds can be
obtained from equation (16) and (17) of Ronning and Kukuk (1996) (or equations
(13) and (14) of Olsson (1979)). Under � = 0; equation (16) of Ronning and Kukuk
gives (recall that when � = 0, �kj = �k:�:j)

�(ak)
mxX
j=1

�
nkj
�kj

� nk+1;j
�k+1;j

�
�:j = �(ak)

mxX
j=1

�
nkj
�k:�:j

� nk+1;j
�k+1;:�:j

�
�:j = 0, for k = 1; 2; :::;my � 1

or
mxX
j=1

�
nkj
�k:

� nk+1;j
�k+1;:

�
= 0 which yields

nk:
�k:

=
nk+1;:
�k+1;:

, for k = 1; 2; :::;my � 1:

Similarly, under � = 0, equation (17) of Ronning and Kukuk (1996) yields
n:h
�:h

=
n:;h+1
�:;h+1

, for h = 1; 2:::;mx � 1.

Dividing by T , we have

�̂k:
�k:

=
�̂k+1;:
�k+1;:

�̂:h
�:h

=
�̂:;h+1
�:;h+1

;

and then it is easily seen that under � = 0 these relations yield equations (18) and
(19) of Ronning and Kukuk (1996) - namely

�(âi)� �(âi�1) = �̂i: =

mxX
j=1

nij=T

�(b̂j)� �(b̂j�1) = �̂:j =

myX
i=1

nij=T;
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with �(â0) = �(b̂0) = 0 and �(âmy) = �(b̂mx) = 1. Thus

âi = ��1(�̂1: + �̂2: + :::+ �̂i:), i = 1; 2; :::;my

b̂j = ��1(�̂:1 + �̂:2 + :::+ �̂:j), j = 1; 2; :::;mx

Thus the score test can be computed as

S� =
T
hPmy

i=1

Pmx

j=1

�
�̂ij
�̂i:�̂:j

�
[�(âi)� �(âi�1)]

h
�(b̂j)� �(b̂j�1)

ii2
D

; (4)

where

D =

myX
i=1

mxX
j=1

�̂ij
[�(âi)� �(âi�1)]2

h
�(b̂j)� �(b̂j�1)

i2
�̂2i:�̂

2
:j

� (5)

myX
i=1

mxX
j=1

�
�̂ij
�̂i:�̂:j

�
[âi�(âi)� âi�1�(âi�1)]

h
b̂j�(b̂j)� b̂j�1�(b̂j�1)

i
:

4 Iterated Method

An alternative to dynamically augmenting the reduced rank regression is to adjust
the moment matrices used in calculating the variance matrix of ̂ to account for
heteroskedasticity and autocorrelation in the errors. The F -statistic corresponding
to equation (2) in the paper is then given by

F (�) =

�
T �mx

mx � 1

�
�0SyxH

�1
xx (�)Sxy�

�0 (Syy�SyxH�1
xx (�)Sxy)�

;

where

Hxx(�) = lim
T!1

E

"
1

T

TX
s=1

TX
t=1

(xt � �x) (xs � �x)0 ut(�)us(�)
#
;

�x =(�x1; �x2; :::; �xmx�1)
0, �y =

�
�y1; �y2; :::; �ymy�1

�0
, and under  = 0, ut(�) = �

0(yt� �y):
Hence

Hxx(�) = lim
T!1

E

"
1

T

TX
s=1

TX
t=1

�0(yt � �y) (xt � �x) (xs � �x)0 (ys � �y)0�
#
;

can be viewed as the long run variance of T�1=2
PT

t=1 dt(�), where dt(�) = �
0(yt �

�y) (xt � �x) : Since elements of xt and yt are bounded, Hxx(�) exists under general
assumptions concerning the serial dependence and heteroskedasticity of the error
terms, as set out in Newey and West (1987).
Unlike the serially independent case, the �rst order conditions for maximization

of LM(�) cannot get reduced to solving an eigenvalue problem. An asymptotically
equivalent alternative (under  = 0) is to use a �rst-stage consistent estimate of
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Hxx(�) that abstracts from the serial dependence of the errors. Such an estimator
of � is given by equation (7) in the paper, and the �rst-stage estimate of Hxx(�)
can be obtained by (using a Bartlett window)

Ĥxx;h(�̂1) = �̂0 +

hX
j=1

�
1� j

h+ 1

�
(�̂j + �̂

0
j);

�̂j = T
�1

TX
t=j+1

dt(�̂1)d
0
t�j(�̂1); and dt(�̂1) = �̂

0
1(yt � �y) (xt � �x) :

Using this estimator, one can solve the eigenvalue problem�
SyxĤ

�1
xx (�̂1)Sxy � ~�21Syy

�
~�1= 0;

where ~�21 is the largest value of ~�
2 that solves

���SyxĤ�1
xx (�̂1)Sxy � ~�2Syy

��� = 0. Under
the null that  = 0, and conditional on the initial estimator of �, �̂1, the Trace test
is now given by

T � Trace
h
~S(�̂1)

i
as �2

(mx�1)2 ; (6)

where ~S(�̂1) = S
�1
yy SyxĤ

�1
xx (�̂1)Sxy: The estimate of � used for the estimation of

Hxx(�) can be iterated upon as required until convergence is achieved, subject to
the normalization restriction, �0Syy� = 1. It is often found, however, that the
estimate of Hxx(�) can be sensitive to the choice of kernel and estimation window,
while dynamic augmentation methods are generally more robust, see, e.g. Andrews
and Monahan (1992).

5 Additional Simulation Results

In this section we �rst provide critical values for the canonical correlation tests.
These are required for the maximum canonical correlation test and can also be used
in �nite samples for the trace canonical correlation test. We next report simulation
results for the Tavare (1983) test referred to in the paper. Finally, we report simula-
tion results under higher order dynamics in the data generating process (assuming
an AR(2) model) or under heteroskedasticity in the innovations to the model. We
also present results for the iterated method introduced in Section 4 above.

5.1 Simulation of Critical Values

Critical values for the maximum canonical correlation test must be simulated when-
ever the number of categories exceeds two since the ordering of squared canonical
correlations induces a non-standard distribution so the test statistic will not follow
a chi-squared distribution even in large samples. Furthermore, even for the trace
canonical correlation test T �Trace(S�1yy SyxS�1xxSxy) where ranking of the canonical
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correlations is not an issue, the chi-squared distribution is only achieved asymptot-
ically, so the critical values will di¤er in small samples.
To compute critical values for the two-way case, we undertook the following

simulation experiment. Letting mx and my be selected from the set f2; 3; 4; 5g, we
generated random draws from the multinomial distribution with (mx � 1)(my � 1)
equally likely categories. We carried out 100; 000 replications and considered sample
sizes of T = 20; 50; 100; 500 and 1; 000.
For the two-way case Table S1 reports 95% critical values for the maximum

canonical correlation test and the trace canonical correlation test based on the eigen-
values of S = S�1yy SyxS

�1
xxSxy multiplied by the sample size, T . Due to the symmetry

of the setup, we only report results for mx � my. There is no particular pattern in
the critical values although, as the sample size rises, they clearly asymptote to the
associated �2(mx�1)(my�1) distribution.
Turning to the three-way case, �nite sample critical values for the test of con-

ditional independence of Y and X given Z are the same as those in Table S1.
For the joint independence test statistic in Theorem 2, new critical values are
needed and these are provided in Table S2 which reports 95% critical values when
mx = my = mz � m. In most cases the critical values increase towards their
asymptotic values from the �22(m�1)2 distribution as the sample size grows.

5.2 Size and Power of Tavare Test

Table S3 compares the performance of the Tavare test to that of the static and dy-
namically augmented canonical correlation tests. The simulation setup is described
in the main paper, although we here let the serial correlation, as measured by �,
vary from 0.50 to 0.95. In the absence of serial correlation, the Tavare test has the
correct size. However as the serial correlation gets stronger, the Tavare test tends
to get oversized.

5.3 Higher order Dynamics and Heteroskedasticity

To supplement the simulation results based on the �rst-order autoregressive process
in the main text, we also provide results for a stationary second-order autoregressive
process of the following form

yt = 1:3yt�1 � 0:4yt�2 + "t; "t � N(0; 1):

Table S4 reports the size of the static, dynamically augmented and iterated tests
under this data generating process. The results show that little is changed by
simulating from an AR(2) process as opposed to an AR(1) process, and that the size
of the dynamically augmented test is again well controlled across di¤erent samples,
although the test is mildly oversized when T is very small andm is large (e.g. T = 20
and m � 3).
Next, we address the e¤ect of heteroskedasticity on the simulation results. We

do so by simulating from a �rst-order autoregressive process with heteroskedastic



10

innovations generated by an autoregressive conditionally heteroskedastic (ARCH)
process of the form

yt = �yt�1 + et; et � N(0; �2t )
�2t = �0 + �1e

2
t�1 + �1�

2
t�1;

where �0 = 1� �1 � �1, �1 = 0:1 and �1 = 0:8: A common measure of persistence
for the conditional variance of this process is �1 + �1 = 0:9, so we have chosen
the parameters to represent quite persistent dynamics in the second moment of the
underlying data.
Table S5 presents the size of the independence tests under this process. The re-

sults show that heteroskedasticity of this form also leaves our conclusions unchanged
with regard to the behavior of the static and dynamically augmented tests.

5.4 Iterated Test

Finally, we investigate the performance of the iterated test described in Section 4 of
the supplement. This method uses a HAC procedure with the number of lags chosen
to be proportional to T 1=3, a procedure shown to be optimal for the Bartlett kernel
by Andrews (1991), whereas for other kernels such as the Parzen or Tukey-Hanning
kernels, the optimal rate is T 1=5.
The Monte Carlo results in Tables S4 and S5 as well as further results not

shown here suggest that the size of the iterated test can be quite sensitive to the
underlying process�in some cases being undersized while in others being oversized.
This is linked to the sensitivity of estimates of the long-run variance matrix Hxx(�)
noted in Section 4. Finite sample size distortions disappear, however, as the sample
grows large.

6 Macroeconomic Application

As an additional empirical application, we make use of the binary recession indica-
tor for the US economy published by the National Bureau of Economic Research
(NBER). This comes close to being an o¢ cial recession indicator for the US econ-
omy. We compare this indicator to the median probability that the economy is in
a recession as reported by the Survey of Professional Forecasters for the current
quarter and one-, two- and three-quarter-ahead horizons. All series are highly seri-
ally correlated. We use data over the sample from 1968q3 to 2007q3 to investigate
whether economists can forecast recessions given the serial persistence in the reces-
sion indicator. Table S6 shows the outcome of our tests. Since m = 2, the trace and
maximum canonical correlation tests are identical in this case.
Unsurprisingly both the static and dynamically augmented canonical correlation

statistics decline as the forecast horizon is expanded. However, while the static
canonical correlation test rejects at all forecast horizons, the dynamically augmented
test only rejects at the current- and one-quarter-ahead horizons and so fails to
indicate predictability at horizons beyond two quarters. The Tavare (1983) test



11

and the test under ordered alternatives fall somewhere in between and indicate
predictability of recessions up to two quarters ahead in time. This again shows
that it is important to account for serial persistence when testing for correlation
between time series of discrete random variables and suggests that conclusions can
be sensitive to whether or not serial dependence is accounted for.
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Table S1. 95% Finite Sample Critical Values for Maximum Canonical Correlation
and Trace Canonical Correlation Tests for Two-Way Tables

Maximum Canonical Corr. Trace Canonical Corr.
T=20
mx /my 2 3 4 5 2 3 4 5

2 4.11 5.94 7.55 8.89 4.11 5.94 7.55 8.89
3 8.21 9.95 11.35 9.18 12.07 14.73
4 11.71 13.22 16.22 20.00
5 14.66 25.19

T=50
mx /my 2 3 4 5 2 3 4 5

2 3.92 6.06 7.81 9.37 3.92 6.06 7.81 9.37
3 8.56 10.51 12.19 9.51 12.48 15.28
4 12.61 14.51 16.68 20.69
5 16.49 25.89

T=100
mx /my 2 3 4 5 2 3 4 5

2 3.96 6.02 7.84 9.46 3.96 6.02 7.84 9.46
3 8.52 10.63 12.54 9.41 12.59 15.50
4 12.88 14.91 16.76 20.90
5 17.03 26.11

T=500
mx /my 2 3 4 5 2 3 4 5

2 3.87 6.05 7.79 9.49 3.87 6.05 7.79 9.49
3 8.54 10.71 12.62 9.44 12.60 15.51
4 13.14 15.17 16.96 21.02
5 17.38 26.21

T=1000
mx /my 2 3 4 5 2 3 4 5

2 3.84 6.03 7.86 9.45 3.84 6.03 7.86 9.45
3 8.61 10.70 12.71 9.55 12.57 15.58
4 13.14 15.19 16.95 20.97
5 17.48 26.34

Note: The table is based on 100,000 simulations under the null of no serial correlation in the data,
mx;my are the number of categories for x and y.
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Table S2. 95% Finite Sample Critical Values for Maximum Canonical Correlation
and Trace Canonical Correlation Tests of Joint Independence in Three-Way Tables

Maximum Canonical Corr. Trace Canonical Corr.
T m = 2 m = 3 m = 4 m = 2 m = 3 m = 4
20 5.98 11.43 15.32 5.98 14.80 27.10
50 6.03 12.28 17.76 6.03 15.34 28.28
100 6.04 12.45 18.53 6.04 15.42 28.70
500 5.97 12.58 19.02 5.97 15.46 28.75
1000 5.97 12.67 18.95 5.97 15.48 28.77

Note: The table is based on 100,000 simulations under the null of no serial correlation in the data.
m = mx = my = mz is the number of categories.
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Table S3. Size and Power Comparisons of Tavare and the Dynamically Augmented
Reduced Rank Regression Tests, Two-Way, Two Category Example

Size (ryx = 0) Power (ryx = 0:80)
T Static Tavare Dyn. Aug. Static Tavare Dyn. Aug.

' = 0:50
20 0.072 0.048 0.059 0.714 0.633 0.621
50 0.059 0.050 0.050 0.985 0.982 0.977
100 0.088 0.043 0.048 1.000 1.000 1.000
500 0.087 0.050 0.042 1.000 1.000 1.000
1000 0.082 0.056 0.047 1.000 1.000 1.000

' = 0:80
20 0.132 0.043 0.066 0.665 0.461 0.486
50 0.197 0.088 0.068 0.955 0.907 0.862
100 0.250 0.081 0.058 1.000 0.994 0.991
500 0.253 0.091 0.059 1.000 1.000 1.000
1000 0.231 0.085 0.061 1.000 1.000 1.000

' = 0:95
20 0.189 0.049 0.070 0.615 0.356 0.394
50 0.366 0.135 0.061 0.884 0.734 0.655
100 0.507 0.184 0.064 0.970 0.887 0.794
500 0.551 0.209 0.043 1.000 1.000 1.000
1000 0.539 0.200 0.045 1.000 1.000 1.000
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Table S4. Size of the Tests for Independence Under Second Order Process

Trace Canonical Corr. Maximum Canonical Corr. Ordered
m T Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated Alternatives
2 20 0.194 0.053 0.025 0.194 0.053 0.025 0.222
2 50 0.302 0.070 0.108 0.302 0.070 0.108 0.271
2 100 0.359 0.057 0.101 0.359 0.057 0.101 0.281
2 500 0.334 0.051 0.090 0.334 0.051 0.090 0.300
2 1000 0.335 0.043 0.072 0.335 0.043 0.072 0.340
3 20 0.196 0.109 0.043 0.189 0.096 0.039 0.312
3 50 0.404 0.068 0.023 0.400 0.066 0.011 0.356
3 100 0.450 0.061 0.033 0.459 0.061 0.028 0.372
3 500 0.500 0.052 0.057 0.501 0.052 0.062 0.377
3 1000 0.507 0.051 0.058 0.502 0.052 0.063 0.387
4 20 0.056 0.122 0.207 0.017 0.063 0.232 0.278
4 50 0.411 0.086 0.102 0.381 0.070 0.097 0.368
4 100 0.506 0.064 0.049 0.489 0.065 0.036 0.395
4 500 0.572 0.058 0.043 0.549 0.055 0.032 0.408
4 1000 0.601 0.046 0.048 0.575 0.052 0.045 0.409
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Table S5. Size of the Independence Tests with Heteroskedastic Innovations
A. No Serial Correlation (' = 0)

Trace Canonical Corr. Maximum Canonical Corr. Ordered
m T Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated Alternatives
2 20 0.041 0.055 0.005 0.041 0.055 0.005 0.033
2 50 0.033 0.047 0.028 0.033 0.047 0.028 0.029
2 100 0.070 0.060 0.051 0.070 0.060 0.051 0.042
2 500 0.059 0.055 0.053 0.059 0.055 0.053 0.043
2 1000 0.040 0.041 0.038 0.040 0.041 0.038 0.044
3 20 0.018 0.062 0.016 0.020 0.053 0.013 0.040
3 50 0.039 0.055 0.007 0.042 0.053 0.003 0.049
3 100 0.043 0.050 0.013 0.048 0.055 0.010 0.046
3 500 0.052 0.053 0.036 0.053 0.053 0.039 0.056
3 1000 0.057 0.056 0.047 0.059 0.061 0.048 0.059
4 20 0.007 0.094 0.109 0.002 0.040 0.116 0.041
4 50 0.024 0.060 0.029 0.023 0.046 0.025 0.049
4 100 0.042 0.063 0.022 0.042 0.056 0.010 0.051
4 500 0.050 0.051 0.033 0.052 0.053 0.021 0.050
4 1000 0.050 0.051 0.033 0.058 0.057 0.034 0.044
B. Serial Correlation (' = 0:8)

Trace Canonical Corr. Maximum Canonical Corr. Ordered
m T Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated Alternatives
2 20 0.144 0.059 0.011 0.144 0.059 0.011 0.161
2 50 0.210 0.059 0.090 0.210 0.059 0.090 0.181
2 100 0.247 0.056 0.089 0.247 0.056 0.089 0.188
2 500 0.239 0.053 0.076 0.239 0.053 0.076 0.209
2 1000 0.217 0.055 0.063 0.217 0.055 0.063 0.218
3 20 0.092 0.082 0.028 0.083 0.075 0.021 0.215
3 50 0.213 0.059 0.016 0.219 0.060 0.0079 0.246
3 100 0.274 0.056 0.030 0.274 0.055 0.020 0.254
3 500 0.317 0.052 0.045 0.324 0.054 0.048 0.292
3 1000 0.340 0.063 0.056 0.348 0.059 0.057 0.311
4 20 0.028 0.122 0.163 0.006 0.059 0.179 0.204
4 50 0.192 0.067 0.073 0.181 0.059 0.067 0.272
4 100 0.252 0.070 0.037 0.254 0.060 0.028 0.271
4 500 0.344 0.047 0.037 0.340 0.053 0.032 0.316
4 1000 0.331 0.050 0.051 0.324 0.051 0.044 0.313
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Table S6. Independence Tests Applied to Survey Forecasts of Economic Recessions

Forecast Horizon Tavare Static Dyn. Augm.
Ordered

Alternatives
Current quarter 21.74 61.76 20.73 22.46

(0.000) (0.000) (0.000) (0.000)
1 quarter ahead 17.61 49.03 9.26 19.01

(0.000) (0.000) (0.002) (0.000)
2 quarters ahead 9.67 20.91 0.47 8.85

(0.002) (0.000) (0.493) (0.003)
3 quarters ahead 2.27 5.43 0.17 2.70

(0.132) (0.020) (0.680) (0.100)
Notes: p-values are provided in brackets underneath the test statistics.


