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Abstract

The contingency table literature on tests for dependence among discrete multi-category vari-

ables is extensive. Standard tests assume, however, that draws are independent and only limited

results exist on the e¤ect of serial dependency�a problem that is important in areas such as eco-

nomics, �nance, medical trials and meteorology. This paper proposes new tests of independence

based on canonical correlations from dynamically augmented reduced rank regressions. The tests

allow for an arbitrary number of categories as well as multi-way tables of arbitrary dimension

and are robust in the presence of serial dependencies that take the form of �nite-order Markov

processes. For three-way or higher order tables we propose new tests of joint and marginal in-

dependence. Monte Carlo experiments show that the proposed tests have good �nite sample

properties. An empirical application to microeconomic survey data on �rms�forecasts of changes

to their production and prices demonstrates the importance of correcting for serial dependencies

in predictability tests.
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1 Introduction

Categorized data that are serially dependent are commonplace in many areas of

scienti�c research. In psychological or medical trials repeated measurements of the

condition of an individual give rise to serial dependencies in contingency table data

(Conaway (1989)) as do observations in sociological studies of individuals�decisions

over time (e.g. judges�decisions categorized against the type of case and circuit

(Sunstein et al. (2006)) or selection of jurors serving on grand juries (Miao and

Gastwirth (2004)). In meteorology, forecast accuracy for categorized weather vari-

ables is routinely investigated using contingency tables (Katz and Murphy (1997)

and Stephenson (2000)), although these variables are often highly serially correlated.

Software failure rates also give rise to serial dependencies in categorical data (Ray,

Liu and Ravishanker (2006)). Other types of dependencies have been studied in

the analysis of clusters of binary data (e.g. in chemical repellency trials (Gerard

and Schucany (2007)) and in the analysis of genetic equilibrium in multidimensional

contingency tables (Lazzeroni and Lange (1997)). Finally, in economics and �nance

recession indicators used to track the business cycle and bull and bear market indica-

tors used to characterize stock markets are examples of serially dependent indicator

variables (Harding and Pagan (2006) and Lunde and Timmermann (2004)).

There is a literature in statistics that addresses the e¤ect of serial dependencies

on the chi-squared tests of independence applied to two-way contingency tables,

including the special 2� 2 case common to many applications (Tavare and Altham

(1983)), and other robust procedures such as sign tests (Gastwirth and Rubin (1971,

1975), Wolf et al. (1967) and Ser�ing (1968); see also Portnoy and He (2000) for a

recent review and further references). This literature has established that the e¤ect

of serial persistence on standard tests for dependence between categorized data can

be severe. Assuming that the underlying variables of a two-way contingency table

are draws from stationary and reversible Markov processes, under the null that the
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row and column variables in the contingency table are independent, Tavare (1983)

shows that the asymptotic distribution of the Pearson test for independence is a

mixture of chi-squared variables whose weights depend on the eigenvalues of the

transition matrices. Building on this work, Gleser and Moore (1985) demonstrate

that under positive dependence between successive observations, the Pearson chi-

squared test has a null distribution that is asymptotically larger than that obtained

under serial independence. Porteous (1987) extends Tavare�s results to multi-way

tables and shows that Pearson�s test will be valid when all but one of the variables

under consideration are serially independent.

Tavare�s result can be used to correct the Pearson chi-squared statistic for serial

dependence. However, its implementation faces important di¢ culties, namely the

presence of sampling errors in estimates of the eigenvalues of the transition matri-

ces and the requirement that the Markovian processes are reversible. In practice

this could be unduly restrictive and, as noted by Porteous (1987), a test of the

reversibility assumption might be needed.

To avoid this restrictive assumption and to bypass the need for estimation of

the transition matrices, our paper proposes a new dynamically augmented reduced

rank regression approach that allows great �exibility and generality in how serial

dependence is treated for contingency tables. The approach leads to a test statistic

that is consistent under broad conditions and is very easy to implement.

More speci�cally, in the case of my category realizations (yit, i = 1; 2; :::;my),

and mx � my categories for an associated variable (xjt, j = 1; 2; :::;mx), we cast

the relationship between the my� 1 category realizations, yt = (y1t; y2t; :::; ymy�1;t)
0,

and the mx � 1 category variables, xt = (x1t; x2t; :::; xmy�1;t), as a regression of a
0yt

on b0xt where a and b are viewed as nuisance parameters. For serially independent

outcomes (yt), we show that a test of independence between yt and xt can be based

on the canonical correlation coe¢ cients between yt and xt. We consider both a
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maximum canonical correlation test and a trace test based on the average canonical

correlation which is identical to the standard Pearson chi-square contingency table

test of independence.

In the case of serially dependent outcomes we show that a valid multi-category

dependence test can be constructed using canonical correlations of suitably �ltered

versions of yt and xt after accounting for the e¤ect of lagged values of (y0t;x
0
t)
0. This

gives rise to trace and maximum canonical correlation tests based on a dynamically

augmented reduced rank regression that is very simple to compute. These tests do

not rely on making functional form assumptions regarding the speci�c relationship

between yt and xt and their underlying distributions, nor do they require maintain-

ing assumptions regarding the nature of the time-series dynamics of yt and xt, other

than that they are generated by ergodic, �nite-order Markov processes.

Small sample properties of the maximum and trace canonical correlation tests are

investigated through Monte Carlo experiments. Tests that ignore serial correlation

are generally found to be severely oversized and tend to over-reject when the degree

of serial correlation in the outcome variable is high. In contrast, the canonical

correlation test based on dynamically augmented regressions generally has the right

size unless the number of categories is large relative to the sample size.

We �nally extend our results to three-way contingency tables with serially de-

pendent outcomes, where two di¤erent types of hypotheses are tested, namely tests

of the joint independence of all the three variables, and conditional tests of the

independence of any two of the variables conditional on the third.

The plan of the paper is as follows. Section 2 describes test statistics for the

static case. Section 3 extends the reduced rank regression test to allow for serial de-

pendencies. Section 4 generalizes the results to multi-way contingency tables of third

or higher order. Section 5 presents Monte Carlo simulation results, while Section

6 illustrates the proposed tests through an empirical application to microeconomic



5

data on price and production forecasts. Section 7 concludes. Proofs are given in an

Appendix with additional material provided in a Supplement.

2 Two-Way Static Case

Consider a discrete time series (ordered set) of T observations on some explanatory

or predictive variable, X, that is arranged into mx categories (states), while obser-

vations on the dependent or realized variable, Y , are categorized into my states.

Denote the X-categories by xjt so that xjt = 1 if the jth category occurs at time t

and xjt = 0 otherwise. Similarly, denote the realized outcomes by yit so yit = 1 if

category i occurs at time t and yit = 0 otherwise.

Convert the categorical observations into quantitative measures by assigning the

weights ai to yit for i = 1; 2; :::;my and bj to xjt for j = 1; 2; :::;mx and t = 1; 2; :::; T

as follows

yt =

myX
i=1

aiyit; and xt =
mxX
j=1

bjxjt:

Since the outcome categories are mutually exclusive and
Pmy

i=1 ai =
Pmx

j=1 bj = 1,

regression of yt on an intercept and xt, yt = �+ �xt + ut, can be written as

amy +

my�1X
i=1

�
ai � amy

�
yit = �+ �bmx + �

"
mx�1X
j=1

(bj � bmx)xjt

#
+ ut; or

�0yt = c+ 
 0xt + ut; (1)

where yt= (y1t; y2t; :::; ymy�1;t)
0, xt= (x1t; x2t; :::; xmx�1;t)

0, c = � + �bmx � amy , � =

(a1�amy ; a2�amy ; :::; amy�1�amy)
0, and 
 = [� (b1 � bmx) ; � (b2 � bmx) ; :::; � (bmx�1 � bmx)]

0.

A test of independence can now be carried out by testing 
 = 0 in (1), conditional

on a given value of �. The idea is to construct a quantitative measure by reweighting

the categorical data (i.e. by forming linear combinations) and applying regression-
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based tools to the transformed data. When my = mx = 2, the test reduces to

testing the signi�cance of the slope coe¢ cient in a regression of y1t on x1t. In the

more general case the test of 
 = 0 will depend on the �nuisance�parameters, �.

2.1 Canonical Correlation Tests

We �rst consider testing the null hypothesis, H0 : 
 = 0 conditional on a given value

of � under classical assumptions applied to ut conditional on xt and then examine

the properties of the test for other values of �.

For a given value of � 2 �, where � is a compact set, a standard F�statistic

can be employed to test independence of yt and xt :

F (�) =

�
T �mx

mx � 1

�
�0SyxS

�1
xxSxy�

�0 (Syy�SyxS�1xxSxy)�
; (2)

where Syx = S0xy = T�1Y0M�X, Syy = T�1Y0M�Y, Sxx = T�1X0M�X; and

Y = (y1;y2; :::;yT )
0 and X = (x1;x2; :::;xT )

0 are the T � (my � 1) and T � (mx �

1) observation matrices on the qualitative indicators, respectively. M� = IT �

� T (�
0
T� T )

�1� 0T , where � T is a T � 1 vector of ones. It is not known a priori which

element of � might be non-zero, so we employ the normalization �0Syy� = 1.

Throughout the paper we make the following assumption:

Assumption 1: The sequence of sample averages �xjT = T�1
PT

t=1 1fxt=jg; �yiT =

T�1
PT

t=1 1fyt=ig satisfy the conditions �xjT (1� �xjT ) 6= 0 and �yiT (1� �yiT ) 6= 0 for all

i = 1; 2; :::;my; j = 1; 2; :::;mx; and for all sample sizes, T .

Assumption 1 (uniform representativeness) requires that all categories are repre-

sented in a given sample while categories with zero representation must be dropped.

It follows from this assumption that Sxx and Syy are non-singular matrices. To see

this, note that due to the multinomial nature of the underlying data the limits of

Sxx and Syy exist for all T . Furthermore, since the events in the mx or my cat-
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egories are mutually exclusive, T�1X0X, and T�1Y0Y will be diagonal matrices,

with their ith diagonal element given by �xiT = T�1
PT

t=1 xit and �yiT = T�1
PT

t=1 yit,

respectively. For example, the (i; j) element of Sxx is given by �xiT (1� �xiT ) if i = j

and ��xiT �xjT if i 6= j. To ensure that Sxx and Syy are non-singular we must have

�xjT (1� �xjT ) 6= 0 and �yiT (1� �yiT ) 6= 0 for all i = 1; 2; ::;my and j = 1; 2; :::;mx

which holds by Assumption 1.

2.1.1 Maximum Canonical Correlation Test

A general approach to dealing with the dependence of F (�) on the nuisance para-

meters is to base the test on Fmax = Argmax� [F (�)] subject to the normalizing

restriction that �0Syy� =1. This idea has been used in the literature (e.g. by Davies

(1977)) in cases where certain parameters of the statistical model disappear under

the null hypothesis, and has been applied in econometrics to the analysis of non-

nested models by Pesaran (1981). Notice, however, that in our case the nuisance

parameter, �, does not disappear under the null.

Using (2), the �rst order condition for optimization of F (�) is given by

�
SyxS

�1
xxSxy

�
�̂ =�̂2Syy�̂; (3)

where �̂2=
F
�
�̂
��

mx�1
T�mx

�
1 +

�
mx�1
T�mx

�
F
�
�̂
� : (4)

The value of � that maximizes F (�) is therefore given by the eigenvector associated

with the maximum eigenvalue of

S = S�1yy SyxS
�1
xxSxy: (5)

Denoting the non-zero eigenvalues of S in descending order by �̂21 � �̂22 � ::: � �̂2mx�1,



8

we have (using (4))

Fmax =
(T �mx)�̂

2
1

(mx � 1)
�
1� �̂21

� : (6)

Note that �̂2i i = 1; 2; :::;mx � 1 are the squared canonical correlation coe¢ cients

between the indicators, xt, and the realizations, yt. The concept of canonical cor-

relations was proposed by Hotelling (1935, 1936) and considers the degree of linear

dependence between two random vectors. For categorical data this would involve

choosing the weights, ai, i = 1; 2; :::;my � 1 and bj, j = 1; 2; :::;mx � 1 such that

the simple correlation between
Pmy�1

i=1 aiyit; and xt =
Pmx�1

j=1 bjxjt is maximized,

see Anderson (2003, Ch. 12). There are mx � 1 such canonical correlations that

are given by the square roots of the ordered non-zero solutions of the determinantal

equation (recall that mx � my) jSyxS�1xxSxy � �2Syyj = 0: These are the same as the

mx � 1 non-zero eigenvalues of the matrix S de�ned by (5). The estimator of �,

denoted by �̂1, is given by the eigenvector associated with �̂
2
1, which satis�es

�
SyxS

�1
xxSxy � �̂21Syy

�
�̂1= 0: (7)

Since �̂21 < 1 and Fmax is a monotonic function of �̂
2
1, a test of 
 = 0 in (1) is thus

reduced to testing the statistical signi�cance of the largest canonical correlation

between yt and xt. The exact joint probability distribution of the canonical corre-

lations, 1 > �̂21 > �̂22 > ::: > �̂2mx�1; is provided in Anderson (2003, pp. 543-545) for

the case where the distribution of yt conditional on xt is Gaussian. In the present

application where the elements of yt (conditional on xt) can be viewed as indepen-

dent draws from a multinominal distribution, the exact distribution of the canonical

correlations will be less tractable but can readily be simulated.
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2.1.2 Trace Canonical Correlation Test

The null of independence between x and y implies not only that �1 = 0 but that

�1 = �2 = ::: = �mx�1 = 0. An alternative to the maximum canonical cor-

relation test is therefore to base a test of 
 = 0 on an average of the squared

canonical correlations which can also be regarded as an average F�test de�ned

by �F = (mx � 1)�1
Pmx�1

i=1 �̂2i . This test can also be derived in the context of the

reduced rank regression

yt = a+�xt + "t; (8)

where in our application the null hypothesis of interest is rank (�) = 0.

Suppose that (Y;X) are draws from serially independent processes with my and

mx states, respectively, and that Assumption 1 holds for any �nite T and as T !1.

Under the null hypothesis that rank (�) = 0, as T !1,

T � Trace(S�1yy SyxS
�1
xxSxy)

as �2(my�1)(mx�1): (9)

This is a special case of a more general result that is provided in Section 3 and is

proved in the Appendix. When X and Y are serially independent, it is common to

arrange the data in an mx � my contingency table and use a Pearson Chi-square

test for independence (see, e.g., Agresti (2007)). Haberman (1981) and Goodman

(1985, 1986) explore the relation between this type of test, log-linear models and

the canonical correlation test. It can be shown that the Pearson test is identical to

the trace test based on canonical correlations (see the supplement for details).

3 Markov Dependence

We next turn to the two-way case with serial dependence. A signi�cant advantage

of the maximum canonical correlation and reduced rank regression framework is,
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as we shall see, that it allows a natural extension of the test to dynamic contexts

which does not seem possible within the standard contingency table set up. Before

setting out our methods we �rst describe the Tavare (1983) procedure for dealing

with serial dependency in the data generating process.

3.1 The Tavare Test

For two-way mx � my contingency tables generated by stationary and reversible

Markov processes, X and Y , with transition matrices Px and Py, Tavare (1983)

shows that, under the null that the row and column variables in the contingency table

are independent, the asymptotic distribution of the Pearson test for independence

is a mixture of chi-squared variables whose weights depend on the eigenvalues of the

associated transition matrices

my�1X
i=1

mx�1X
j=1

�
1 + �jx�iy
1� �jx�iy

�
Z2ij; Zij � iid N(0; 1); (10)

where �jx and �iy are the (non-unit) eigenvalues of Px and Py, respectively. Al-

though this procedure can handle dynamic dependencies in the underlying data, its

practical implementation is restricted. First, even under the null, the distribution of

the critical values depends on the unknown eigenvalues, �jx; �iy, which are nuisance

parameters that in practice have to be estimated. Second, the requirement that

the Markov process be reversible is very restrictive when mx > 2 or my > 2 and

excludes many situations of practical interest. These di¢ culties become even more

serious when higher dimensional tables are considered (Porteous (1987)).

3.2 Dynamically Augmented Reduced Rank Regression

We next propose a test that allows for serial dependencies of arbitrary (but �nite)

order, does not require reversibility and does not depend on estimates of the transi-
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tion matrices. To this end consider again the regression model (1) and assume that

the errors, ut, could be serially dependent. To simplify the exposition suppose that

ut follows a stationary �rst order autoregressive process

ut = 'ut�1 + "t, j'j < 1; (11)

where "t are serially independent. For this error speci�cation, using (1) we have

�0yt = c (1� ') + 
 0xt � '
 0xt�1 + '�0yt�1 + "t:

As in the previous section, a consistent test of 
 = 0 can be carried out using the

maximum or the average of the canonical correlation coe¢ cients of Y and X after

�ltering both sets of variables for the e¤ects of yt�1 and xt�1. More speci�cally, we

compute the eigenvalues of Sw= S�1yy;wSyx;wS
�1
xx;wSxy;w; where

Syy;w = T�1Y0MwY;Sxx;w = T�1X0MwX;Sxy;w = T�1X0MwY; (12)

Mw = IT �W (W0W)
�1
W0; withW = (� ;X�1;Y�1);

and X�1 and Y�1 are T � (mx � 1) and T � (my � 1) observation matrices on xt�1

and yt�1, respectively.

It can be shown that the trace test based on Sw is the same as testing � = 0 in

the dynamically augmented reduced rank regression

Y = X�0 +WB+ E; (13)

where E is a T � (my � 1)matrix of serially uncorrelated errors. We next establish

a formal result that relates the properties of ergodic Markov chains to the indicator

variables used in the above reduced rank regressions.
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Proposition 1: Consider a sequence fYt; t = 0; 1; 2; :::g taking values in

f1; 2; :::;mg, and suppose that Yt follows a Markov chain with transition proba-

bility matrix, P = (pij). Let y0t = (y1t; y2t; :::; ymt)
0 be an m � 1 vector where

yit = 1 if Yt = i and 0 otherwise. Then "0t = ("1t; "2t; :::; "mt)
0, de�ned by "0t =

y0t � P0y0t�1 is a martingale di¤erence process with respect to the information set

Iy;t�1 = (y0t�1;y0t�2; :::):

This result readily extends to higher order Markov chains by appropriately de�n-

ing the state space. See the Appendix for a proof.

The asymptotic distribution of the trace statistic for testing the independence

of two Markov chains can now be stated in the following theorem (proved in the

Appendix).

Theorem 1: Suppose that Assumption 1 applies to two independent Markov

chains fYt; Xt; t = 0; 1; 2; :::g with ergodic transition matrices Py0 and Px0 such that

Rank(�Py0�P0y0 �Py0Py0) = my � 1 and Rank(�Px0�P0x0 �Px0Px0) = mx � 1; where
�Py0 = Diag(p1y; p2y; :::; pmy ;y), and �Px0 = Diag(p1x; p2x; :::; pmx;x). Then as T !1,

T � Trace(S�1yy;wSyx;wS
�1
xx;wSxy;w)

as �2(my�1)(mx�1); (14)

where Syy, Syx;w, and Sxx;w are de�ned by (12).

Again this theorem extends readily to higher order Markov chains. The rank

conditions stated in Theorem 1 ensure that the residuals from the dynamically aug-

mented regressions have non-singular unconditional variance matrices. It is easily

established that the rank condition is always met for two- and three-state ergodic

Markov chains, and it seems reasonable to expect that it is satis�ed more generally.
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3.3 Ordered Alternatives

Our tests are based on canonical correlations and so do not use information on

any potential ordering of the variables. In cases where the variables are ordered,

however, one would expect to get a more powerful test by accounting for ordering

information. To see how important this is in practice, and as a natural benchmark,

we also consider a test that accounts for ordering information but only applies to

the static case.

Building on the work of Olsson (1979) and Ronning and Kukuk (1996), a simple

score test is obtained for testing the dependence of y and x when these variables

are observed as ordinal measures. The y-categories are speci�ed in terms of the

thresholds, a0 < a1 < ::: < amy�1 < amy , while the thresholds of the x-categories are

b0 < b1 < ::: < bmx�1 < bmx. In both cases a0 = b0 = �1, and amy = bmx = +1.

The relative frequencies for the joint occurrence of y and x in their ith and jth

categories are denoted by �̂ij = nij=T , where nij is the frequency. Assuming joint

normality of the underlying latent variables and random draws, the null hypothesis

that x and y are independent can be tested using the score statistic computed as

follows:

S� =
T
hPmy

i=1

Pmx

j=1

�
�̂ij
�̂i:�̂:j

�
[�(âi)� �(âi�1)]

h
�(b̂j)� �(b̂j�1)

ii2
D

; (15)

where �̂i: =
P

j �̂ij; �̂:j =
P

i �̂ij, �(:) is the density of a normal random variable, �

is the associated c.d.f., âi = ��1(�̂1:+ �̂2:+ :::+ �̂i:), i = 1; 2; :::;my, b̂j = ��1(�̂:1+

�̂:2+:::+�̂:j), j = 1; 2; :::;mx; with �(â0) = �(b̂0) = 0 and �(âmy) = �(b̂mx) = 1 and
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the term in the denominator of (15) is given by

D =

myX
i=1

mxX
j=1

�̂ij
[�(âi)� �(âi�1)]

2
h
�(b̂j)� �(b̂j�1)

i2
�̂2i:�̂

2
:j

� (16)

myX
i=1

mxX
j=1

�
�̂ij
�̂i:�̂:j

�
[âi�(âi)� âi�1�(âi�1)]

h
b̂j�(b̂j)� b̂j�1�(b̂j�1)

i
:

This test makes use of distributional assumptions to set the threshold values

and so can be expected to be more powerful when these assumptions are correct or

provide a good approximation. On the other hand, the test assumes that the draws

are serially independent and it is complicated to derive an easily computable test of

this type in the context of general Markov processes.

4 Serially Correlated Multi-Way Tables

The dynamically augmented reduced rank tests developed for the serially correlated

two-way tables can be readily generalized to three-way or higher dimensional tables.

However, to simplify the exposition we focus on a three-way table where we allow

the underlying innovations to be serially correlated. Consider an my � mx � mz

contingency table that cross-classi�es T possibly serially correlated observations.

Denote the tth observation on the ith category of the �rst variable, Y , by yit, on the

jth category of the second variable, X, by xjt, and on the kth category of the third

variable, Z, by zkt. As in the two-way case we suppose that these observations are

categorical with yit taking the value of unity if category i (1 � i � my) of variable

Y occurs at time t and zero otherwise, and similarly for xjt and zkt.

With more than two levels there are a variety of associations that could be

tested. We test for two types of independence, namely (i) joint independence, and

(ii) marginal independence of two of the variables conditional on the third. As in

the two-way set up, let yt =
Pmy

i=1 aiyit; xt =
Pmx

j=1 bjxjt, and zt =
Pmz

k=1 ckzkt and
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consider the following linear regression

yt = �+ �xt + �zt + ut: (17)

Joint independence can be formulated as � = � = 0, and the conditional indepen-

dence hypothesis as � = 0 (or � = 0) allowing for the possibility that � 6= 0 (or

� 6= 0). Clearly, other conditional independence hypotheses can be considered via

regressions of xt (or zt) on yt and zt (or yt and xt).

To deal with the nuisance parameters (ai; bj, and ck), as before we write (17) as

�0yt = c+ 
 0xt + �
0zt + ut; (18)

where yt= (y1t; y2t; :::; ymy�1;t)
0, xt= (x1t; x2t; :::; xmx�1;t)

0, and zt= (z1t; z2t; :::; zmz�1;t)
0.

Joint independence can now be tested through the joint hypothesis on 
 = 0 and

� = 0, taking account of the dependence of the test on the nuisance parameters � in

the same manner as above. Similarly, the conditional independence hypotheses can

be tested through 
 = 0 or � = 0, separately. For the validity of these tests Assump-

tion 1 needs to be extended to cover the observations on the third variable, namely

that �zkT (1� �zkT ) 6= 0, for all k = 1; :::;mz; and all T , where �zkT = T�1
PT

t=1 1fzt=kg.

In the case of serially uncorrelated observations, the maximum eigenvalue or the

trace tests can be applied to the canonical correlations of Y and Q = (X;Z)where

Y andX are as de�ned above and Z is the T�(mz�1)matrix of observations on the

third variable, namely Z = (z1; z2; :::; zT ). To test the conditional independence ofY

and X, the maximum and average canonical correlations of Ŷw and X̂w can be used

where Ŷw =MwY, X̂w =MwX, Mw = IT �W(W0W)�1W0, withW = (� ;Z).

The results for the case of serially correlated observations developed for the two-

way classi�cations also readily extend to this more general setting. For example, the

dynamically augmented version of the test of the joint independence hypothesis is
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de�ned in terms of the maximum and average canonical correlations of Ŷw =MwY

and Q̂w = MwQ where W = (� ;Y�1;X�1;Z�1) for a �rst order Markov process.

Similarly, for the conditional independence test in the presence of �rst order Markov

dependence we need to compute canonical correlations of Ŷw and X̂w where now

W = (� ;Y�1;X�1;Z;Z�1): We state the result below:

Theorem 2: Suppose that Assumption 1 applies to the categorized observa-

tions (yt; xt; zt; t = 0; 1; 2; :::); and assume that fYt; Xt; Zt; t = 0; 1; 2; :::g are three

independent Markov chains with ergodic transition matrices Pa0 for a = y; x; z,

respectively, satisfying the rank conditions

Rank(�Pa0�P0a0 �Pa0Pa0) = ma � 1, for a = y; x; z;

with �Pa0 = Diag(p1a; p2a; :::; pma;a), for a = y; x; z. Then as T !1,

(a) a conditional test of independence of Y and X given Z takes the form

T � Trace(S�1yy;wSyx;wS
�1
xx;wSxy;w)

as �2(my�1)(mx�1); (19)

where Syy;w Sxx;w, and Sxy;w are de�ned as before by ( 12) andW = (� ;Y�1;X�1;Z;Z�1):

(b) a test for joint independence of Y;X and Z takes the form

T � Trace(S�1yy;wSyq;wS
�1
qq;wSqy;w)

as �2(mx+mz�2)(my�1); (20)

where

Syq;w = T�1Y0MwQ; Sqq;w = T�1Q0MwQ; with Q = (X;Z)

Mw = IT �W (W0W)
�1
W0;W = (� ;X�1;Y�1;Z�1):

A proof of this theorem can be established along the same lines advanced for

Theorem 1 in the appendix.
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5 Monte Carlo Simulations

To understand the �nite sample properties of the tests considered so far, we next

undertake some Monte Carlo experiments for the two-way and three-way tables.

5.1 Two-Way Tables

To capture serial dependence, Yt was simulated from a �rst-order autoregressive

process with parameter, ' = 0 or ' = 0:8, and Gaussian increments. To allow

for di¤erent degrees of dependence between Yt and Xt, we considered three values

for the cross-correlation of their increments, ryx = 0:0, 0:2 and 0:8. Finally, the

simulated data were categorized into mx = my � m equally probable bins. Two

thousand replications were carried out for each experiment. We report results for

sample sizes of T = 20; 50; 100; 500 and 1000. More extensive simulation results that

account for the e¤ect of higher order dynamics or heteroskedasticity are reported in

the supplemental material.

In these simulations we �rst consider the Tavare and the dynamically augmented

reduced rank regression tests when m = 2. When m > 2, we focus on the trace

statistics (9), (14) and the corresponding maximum canonical correlation tests. In

each case we assume a critical level of �ve percent, using chi-squared critical values

for the trace test, and simulated critical values for the maximum canonical correla-

tion test (available in the supplemental material.) For the dynamically augmented

reduced rank regression (13) that includes lags of Xt and Yt, we consider up to four

lags, in each case selected using the Akaike Information Criterion.

5.1.1 Comparison with the Tavare Test in the 2x2 Case

We �rst compared the results of our tests for the 2�2 contingency table which is the

most frequently encountered case in practice. Assuming a �rst-order Markov chain,
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we use maximum likelihood estimation to obtain estimates of the eigenvalues, �̂ix and

�̂iy, needed for the computation of the critical values of the mixture �2 distribution

given by (10). The results, available in the supplemental material, showed that the

Tavare test handles serial persistence better than the standard Pearson test, but

also that the Tavare test tends to be over-sized even in large samples. This could

re�ect the di¢ culty of getting precise estimates of the eigenvalues of the transition

probability matrices when they are close to unity. In contrast, the dynamically

augmented reduced rank regression tests control the size of the test well even for

values of ' close to unity and their power is comparable with that of the Tavare test

even when the latter over-rejects.

5.1.2 Size and Power of the Reduced Rank Regression Tests

We next turn to the general case with more than two categories. Table 1 reports the

size of the test statistics under a zero correlation between Yt and Xt (ryx = 0), while

varying the degree of serial dependence in Yt, as measured by '. In the absence of any

serial correlation (' = 0, in Panel A), the static and dynamic canonical correlation

tests generally have the right size as does the test under ordered alternatives.

Turning to the case with serially correlated outcomes (' = 0:8, in Panel B), size

distortions become very serious for the static canonical correlation test and tend to

grow with the sample size. At this level of persistence, rejection rates around 20-30%

are common for the static test. The test under ordered alternatives displays a similar

behavior with overrejection rates that grow as the sample size rises. In contrast, the

dynamically augmented tests that allow for serially correlated outcomes generally

have the right size except for being mildly oversized when T is very small relative

to m, e.g. T = 20 and m = 4. They also appear to converge to the right limits in

the largest sample sizes and hence properly adjust for serial dependencies.

Figures 1 and 2 plot power curves as a function of the cross-sectional correlation
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between innovations to X and Y under no persistence (' = 0; in Figure 1) and

persistence (' = 0:8, in Figure 2). The �gures assume m = 3 and T = 100. In the

absence of serial persistence, the static and dynamic canonical correlation tests have

nearly identical power, whereas the test under ordered alternatives provides power

gains as is to be expected since the setup replicates the conditions under which this

test was derived. Figure 2 again shows that the static canonical correlation test and

the test under ordered alternatives are severely oversized whereas the dynamically

augmented test is much better behaved in the presence of serial correlation.

5.2 Three-Way Tables

To investigate the performance of the tests for multi-way tables, we present simula-

tion results for the three-way case with variables X; Y and Z generated as follows.

Let Z �MN(m) follow an IID multinomial process withm categories Z = 1; 2; ::;m

each of which has probability 1=m so E(Z) = (m+ 1)=2, V ar(Z) = (m2 � 1)=12:

Values of Y and X are generated according to the equations

Yt = �yZt + uyt; and Xt = �xZt + uxt; where

�y =

 r
12

m2 � 1

! s
R2y

1�R2y

!
; and �x =

 r
12

m2 � 1

! s
R2x

1�R2x

!
:

Dynamics is introduced through uxt and uyt :

uyt = �yuy;t�1 +
q
1� �2y"yt ; and uxt = �xux;t�1 +

q
1� �2x"xt ;

where "yt = �"xt +
p
1� �2vt; so that "yt and "xt can be correlated. We generate

"xt and vt from iidN(0; 1) draws. Using these series and the m discrete values of

Zt we can then generate Yt and Xt and categorize these into m = my = mx = mz

equiprobable cells.
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This setup has a number of convenient features. In particular, Corr(Yt; Xt) =

RyRx + �
p
1�R2y

p
1�R2x, where Ry = Corr(Yt; Zt); and Rx = Corr(Xt; Zt).

When � = 0, any correlation between Y and X come from Z; and is controlled by

the parameters Ry and Rx. When � 6= 0, correlation between Y and X can come

either from Z or from the innovation terms "yt and "xt, the dependence on the latter

source being controlled by �.

All simulations assume that �x = �y = � and Rx = Ry. The conditional tests

marginalize y and x with respect to the e¤ect of z and are thus conducted on the

residuals ûytjz = yt � �̂
0
yz~zt and ûxtjz = xt � �̂

0
xz~zt, where ~zt = (1; z1t; :::; zm�1t)

0. All

tests are then based on the m� 1 column vectors ûytjz and ûxtjz.

Size and power of the conditional tests are summarized in part I of Table 2.

When data is generated under the null, i.e. Ry = Rx = 0 and � = 0, the static

and augmented tests have approximately the correct size in the absence of serial

correlation (� = 0). Introducing serial correlation by increasing � to 0.8, the static

tests systematically over-reject with rejection rates of 20-30%. In contrast, the

dynamically augmented test continues to perform well and there is no commensurate

increase in the rejection rates for this test.

Setting � = 0:1 and Ry = 0:2; the conditional test should reject the null of

independence between X and Y , and this is what we �nd, with increasing power as

the sample expands. The higher rejection rates associated with the static test in the

presence of serial correlation re�ects the tendency of this test to over-reject under this

scenario. The power of the dynamically augmented test is reduced somewhat when

the serial persistence rises. This is a result of having fewer independent observations

available when conducting this test.

Results for the joint independence tests are summarized in Panel II of Table 2.

When data is generated under the null, once again the static tests overreject in the

presence of serial correlation (� = 0:8), whereas the dynamically augmented tests
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continue to have the right size. When � = 0:1 and Ry = 0:2, the joint test should

reject since Y is now dependent on X through Z. Again this is what we �nd as the

power rises from around 30% when T = 100, to close to 100% when T =1,000.

6 Empirical Application

We �nally present an application to microeconomic data on price and production

forecasts and actual outcomes for German manufacturing �rms collected by the

Institute for Economic Research (Ifo). Each month �rms are asked to forecast

whether their prices and production will decline, stay the same or increase. The

following month it is recorded which of these three categories prices or production

actually fell into. Since it is much easier for �rms to predict outcomes for these three

categories than it is to produce a precise number for the magnitude of the change,

this data is naturally categorical. More details on the data are provided by Becker

and Wohlrabe (2008).

Using a sample of observations from 1995-2004 (T =120 months), we obtained

a sample of 521 and 448 �rms with complete records of answers to the price and

production surveys, respectively. For illustrative purposes we present individual test

statistics and p-values for 10 anonymous �rms in Table 3. We also present rejection

rates and average test statistics for the full set of �rms.

The theoretical analysis and Monte Carlo simulations suggest that the canon-

ical correlation tests behave quite di¤erently in the presence of serial correlation

in the data. It is therefore important to �rst test if the underlying data is se-

rially correlated. Using our setup, a test for �rst-order serial correlation can be

carried out by applying either equation (6) or (9) to current and lagged values of

the dependent variable, namely by computing the canonical correlations between

Y = (y1;y2;y3; ::::;yT ) and Y�1 = (y0;y1; ::::;yT�1). Tests for higher-order serial
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dependencies follow as simple extensions of this.

We would expect the data to be serially correlated both because production and

in�ation are known to be persistent processes and also because survey participants

are asked to predict these variables for the next quarter, thus creating an overlap in

the data which is recorded at the monthly frequency. Table 3 shows that this is what

we �nd as there is evidence of signi�cant serial dependence for the vast majority of

�rms.

As a consequence, the static test of independence which ignores serial correlation

in the data rejects much more frequently than the tests that account for serial

correlation, in the case of the dynamically augmented test by selecting the number

of lags by means of the AIC. For example, for �rm four�s data on prices, the static

trace test is 16.6 (p-value of 0.002) and the test under ordered alternatives is 15.7

(0.000), while the dynamically augmented test is 3.1 (0.54). These di¤erences can

be attributed to the strong serial correlation in this �rm�s prices, as shown in the

last two columns. In the aggregate, the static tests �nd evidence of predictability in

the price data for 89% of the �rms and for 72% of the �rms in the production data.

The dynamically augmented tests �nd evidence of predictability for 63% and 43% of

the �rms for prices and production, respectively�25-30% lower than for the static

tests. In view of the strong evidence of serial correlation in the data, this suggests

that the static tests clearly overstate the extent to which �rms can predict changes

in their prices or production levels.

7 Conclusion

This paper proposed new canonical correlation test statistics that can be used for

robust inference concerning the relationship between multicategory variables in the

presence of serial dependencies. The dynamically augmented reduced rank regres-
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sion approach developed here is extremely easy to implement and only requires

computing a multivariate regression of a set of categorized variables on an intercept

and another set of explanatory variables. The need for such tests arises in a variety

of applications in areas such as meteorology, psychology, business cycle research,

market timing analysis and in the analysis of survey data. One additional advan-

tage of the proposed tests lies in the fact that they can be applied irrespective of

whether Y or X or both represent categorical or continuous measurements.

Our Monte Carlo simulations and empirical application demonstrate that stan-

dard test statistics that are based on a multinomial setup with draws that are

assumed to be independent over time can be severely over-sized in the presence of

serial dependencies in the underlying data. In contrast, the dynamically augmented

maximum and trace canonical correlation statistics control size well and appear to

have good power properties. It is our hope that applied researchers will use the

proposed test statistics in the analysis of serially dependent multicategory data.

Appendix

Proof of Proposition 1: Suppose that yit is the realization of a stationary, �rst-

order,m-state Markov process at time t, which takes the value of unity if the ith state

is realized and is zero otherwise. The states are mutually exclusive and exhaustive

and so
mX
i=1

yit = 1. Denote the m�m transition matrix of this process by P = (pij)

such that pij = Pr(yjt = 1 jyi;t�1 = 1). De�ne y0t = (y1t; y2t; ::::ymt)
0 = (y0t; ymt)

0,

and set

"0t = y
0
t �P0y0t�1;

where "0t = ("1t; "2t; :::; "mt)
0. Denote the ith column of the m�m identity matrix by

ei, and note that y0t and y
0
t�1 can only take the vector values ei for i = 1; 2; :::;m.

Accordingly, "0t can take the m
2 values ej � P0ei for i and j = 1; 2; :::;m, with
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E j"jtj < 1 + maxi(pij). Also,

E("0t jyk;t�1 = 1) = E("0t
��y0t�1 = ek ) = E(y0t

��y0t�1 = ek )�P0ek:
But E(y0t

��y0t�1 = ek ) = (E(y1t jyk;t�1 = 1); ::::; E(ymt jyk;t�1 = 1))0; and
E(yjt jyk;t�1 = 1) = 1� Pr(yjt = 1 jyk;t�1 = 1) + 0� Pr(yjt = 0 jyk;t�1 = 1) = pkj:

Hence

E(y0t
��y0t�1 = ek ) = (pk1; pk2; :::; pkm)0 = P0ek; and so

E("0t
��y0t�1 = ek ) = 0, for all k, or

E("0t
��y0t�1 ) = 0:

Following the same line of reasoning but taking expectations with respect to It�1 =

(y0t�1;y
0
t�2; :::) it follows that E("

0
t jIt�1 ) = 0, and "0t is a martingale di¤erence

process with respect to It�1. Hence, E("0t ) = 0. Also,

E("0t"
00
t jIt�1 ) = E

�
y0ty

00
t jIt�1

�
� E

�
y0t jIt�1

�
y00t�1P

�P0y0t�1E
�
y00t jIt�1

�
+P0y0t�1y

00
t�1P;

and given the Markov property

E("0t"
00
t jIt�1 ) = E("0t"

00
t

��y0t�1 = ek ), for k = 1; 2; :::;m:
= E

�
y0ty

00
t

��y0t�1 = ek �� E
�
y0t
��y0t�1 = ek � e0kP

�P0ekE
�
y00t
��y0t�1 = ek �+P0eke0kP;

ButE
�
y0t
��y0t�1 = ek � = P0ek = pk = (pk1; pk2; ::::; pkm)0, andE �y0ty00t ��y0t�1 = ek � =

�Pk, where �Pk is anm�m diagonal matrix with pki on its ith diagonal element. Using
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these results

E("0t"
00
t jIt�1 ) = E("0t"

00
t

��y0t�1 = ek ) = �Pk � pkp0k; k = 1; 2; ::;m;

which establishes that E("0t"
00
t jIt�1 ) is conditionally heteroskedastic and takes the

m di¤erent values �0
"";k =

�Pk � pkp0k, k = 1; 2; :::;m, depending on the particular

state realized in the previous period (step). But in the case of ergodic Markov chains

the unconditional variance matrix of "0t is time-invariant and is given by

V ("0t ) = �
0
"" = E("0t"

00
t ) =

mX
k=1

pk

�
�Pk � pkp0k

�
;

where pk = Pr(ykt = 1), k = 1; 2; :::;m is the equilibrium probability distribu-

tion associated with P, de�ned by (Im �P0)p = 0, where p = (p1; p2; :::; pm)0, withPm
i=1 pi = 1. �

0
"" can be equivalently written more compactly as �

0
"" = �P�P0�PP,

where �P is a diagonal m � m matrix with pi as its ith diagonal element. Since

P�m= �m, where �m is an m � 1 unit vector, then �0""�m = 0, and �0"" can have

at most rank m� 1. In fact it is easily seen that � 0m"0t = 0.

Consider now the �rstm�1 equations of "0t = y0t�P0y0t�1, and using
Pm

i=1 yit = 1

note that we also have

yt = a+	yt�1 + "t; (21)

where yt = (y1t; y2t; :::; ym�1;t)
0, ai = pmi and 	 = ( ij) with  ij = pji � pmi; for

i and j = 1; 2; :::;m � 1: Since "0t = ("0t; "mt)
0, it also follows that "t in the above

equation is a martingale di¤erence process with respect to It�1: Clearly, a and 	

are uniquely determined in terms of the parameters of the transition matrix of the

underlying Markov process.

Extension of the above results to higher order Markov chains is straightforward

because higher order Markov chains can be reduced to �rst order Markov chains by
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appropriately de�ning the state space, see Cox and Miller (1965, pp. 132-133).

Proof of Theorem 1: Under the null hypothesis yt and xt follow independent,

ergodic Markov chains. From Proposition 1 we have

yt = ay +	yyt�1 + "t; (22)

xt = ax +	xxt�1 + ut; (23)

where "t and ut are independent martingale di¤erence processes with respect to

the information set It�1 = (yt�1;xt�1;yt�2;xt�2; ::::). For the sample observations

t = 0; 1; 2; :::; T , the above relations can be written as

Y =WBy+E; and X =WBx+U; (24)

where Y0= (y1;y2; :::;yT ), X
0= (x1;x2; :::;xT ), are T � (my � 1) and T � (mx� 1),

observation matrices on yt and xt, E0= ("1; "2; :::; "T ), and U
0= (u1;u2; :::;uT ), are

the associated error matrices,W = (� ;Y�1;X�1); andY�1 andX�1 are T�(my�1)

and T�(mx�1) observation matrices on xt�1 and yt�1, respectively. By and Bx are

�xed parameter matrices that, as in Proposition 1, are uniquely determined from

the transition probabilities of the underlying Markov processes.

Consider the matrix associated with the canonical correlation test statistics

S = S�1yy;wSyx;wS
�1
xx;wSxy;w

Under the null hypothesis, using (24), we can write,

Syy;w = T�1E0MwE =

�
E0E

T

�
�
�
E0W

T

��
W0W

T

��1�
W0E

T

�
;

Sxx;w = T�1U0MwU =

�
U0U

T

�
�
�
U0W

T

��
W0W

T

��1�
W0U

T

�
:
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Note that

T�1E0E = T�1
TX
t=1

"t"
0
t, T

�1E0W = T�1
TX
t=1

"tw
0
t,

where wt = (1; yt�1; xt�1)0. From Proposition 1, "t is a martingale di¤erence process

and all moments of yt�r and xt�s, for all r and s exist. Then by standard central

limit theorems for martingale di¤erence processes (for example, given in proposition

7.9 in Hamilton (1994, p.194)), it readily follows that

p lim
T!1

T�1E0E = �""; p lim
T!1

T�1E0W = 0, p lim
T!1

T�1W0W = �ww;

where �"" = V ar("t) and

�ww =

0BBBB@
1 p0y p0x

py �Py 0

px 0 �Px

1CCCCA ;

with p0y = (py1; py2; :::; py;my�1), p
0
x = (px1; px2; :::; px;mx�1), and �Py and �Px be-

ing diagonal matrices with pyi and pxj as their ith, i = 1; 2; :::;my � 1 and jth,

j = 1; 2; :::;mx � 1 diagonal elements, respectively. Note that since the underly-

ing Markov chains are assumed to be ergodic then pyi = Pr(yit = 1) > 0 and

pxj = Pr(xjt = 1) > 0, for i = 1; 2; ::;my � 1; and j = 1; 2; :::;mx � 1. Hence �ww

will be a non-singular matrix. Also �""; which is given by the �rst my� 1 rows and

columns of �Py0�P0y0 �Py0Py0, is non-singular by assumption. Similarly,

p lim
T!1

T�1U0U = �uu; and p lim
T!1

T�1U0W = 0;

where� uu = V ar(ut), given by the �rstmx�1 rows and columns of �Px0�P0x0 �Px0Px0,
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is a non-singular matrix by assumption. Consider now the cross terms

p
TSyx;w = T�1=2E0MwU =

�
E0Up
T

�
�T�1=2

�
E0Wp
T

��
W0W

T

��1�
W0Up
T

�
:

Again, due to the martingale di¤erence properties of "t and ut it readily follows that

T�1=2E0W and T�1=2U0W are both Op(1); and hence

p
TSyx;w =

�
E0Up
T

�
+Op(T

�1=2):

Using these results the trace statistic can be written as

ST = T � Trace
�
S�1=2yy;w Syx;wS

�1=2
xx;wS

�1=2
xx;wSxy;wS

�1=2
yy;w

�
= Trace

 
~E0 ~Up
T

~U0~Ep
T

!
+Op(T

�1=2); where

~E0 = ��1=2"" E0 and ~U0 = ��1=2uu U0:

Denote GT = T�1=2~E0 ~U and note that

ST =

my�1X
i=1

mx�1X
j=1

g2ij;T +Op(T
�1=2):

where gij is the (i; j)th element of GT . Also

gij;T =
1p
T

TX
t=1

~"it~ujt;

where ~"it and ~ujt are independent martingale di¤erence processes with zero means

and unit variances. Hence for each i and j, gij;T !d N(0; 1) as T ! 1. It is also

easily veri�ed that gij;T and grs;T for i 6= r or j 6= s are independently distributed

as T !1. Therefore, g2ij;T are independent �2 variates with one degree of freedom
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each, which establishes that for �nite my and mx and as T !1 we have

ST !d �
2
(my�1)(mx�1):

The extension of the proof to higher order Markov processes is again straightfor-

ward and can be carried out by re-de�ningW to include higher order lagged values

of the observation matrices on yt and xt. Note also that the results from Section 2

(static process) follow as a special case of the proofs here, when Px = Py = 0.

Finally, the results also establish that the distribution of the maximum canonical

correlation statistic is asymptotically equivalent to the distribution of the maximum

eigenvalue of T�1~E0 ~U~U
0~E (or T�1 ~U0~E~E

0 ~U) which is free of nuisance parameters and

whose critical values can be computed by stochastic simulations. Since T�1~E0 ~U~U
0~E

and T�1 ~U0~E~E
0 ~U have the same maximum eigenvalue, one could use T�1~E0 ~U~U

0~E

if mx < my or else use T�1~E0 ~U~U
0~E if my < mx. However, in general the critical

values of the Max eigenvalue test will depend on both mx � 1 and my � 1.
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Table 1. Size of the Reduced Rank Regression Tests in Two-Way Tables (rxy = 0)

A. No Serial Correlation (' = 0)
m Sample Trace Canonical Correlation Maximum Canonical Correlation Ordered

Size Static Dyn. Augm. Static Dyn. Augm. Alternatives
2 20 0.043 0.058 0.043 0.058 0.034
2 50 0.030 0.044 0.030 0.044 0.027
2 100 0.059 0.049 0.059 0.049 0.027
2 500 0.052 0.048 0.052 0.048 0.036
2 1000 0.045 0.050 0.045 0.050 0.049
3 20 0.020 0.066 0.022 0.061 0.044
3 50 0.042 0.052 0.040 0.055 0.048
3 100 0.050 0.057 0.047 0.057 0.045
3 500 0.056 0.056 0.058 0.059 0.049
3 1000 0.056 0.054 0.054 0.053 0.053
4 20 0.008 0.091 0.002 0.042 0.034
4 50 0.032 0.062 0.030 0.056 0.044
4 100 0.040 0.059 0.040 0.056 0.048
4 500 0.046 0.049 0.046 0.050 0.050
4 1000 0.050 0.052 0.051 0.053 0.052
B. Serial Correlation (' = 0:8)
m Sample Trace Canonical Correlation Maximum Canonical Correlation Ordered

Size Static Dyn. Augm. Static Dyn. Augm. Alternatives
2 20 0.143 0.070 0.143 0.070 0.151
2 50 0.185 0.061 0.185 0.061 0.165
2 100 0.232 0.053 0.232 0.053 0.168
2 500 0.236 0.048 0.236 0.048 0.204
2 1000 0.223 0.051 0.223 0.051 0.230
3 20 0.088 0.082 0.086 0.078 0.200
3 50 0.204 0.057 0.204 0.060 0.260
3 100 0.257 0.058 0.258 0.062 0.278
3 500 0.288 0.052 0.294 0.051 0.297
3 1000 0.287 0.051 0.285 0.054 0.288
4 20 0.031 0.117 0.007 0.057 0.203
4 50 0.166 0.070 0.163 0.061 0.268
4 100 0.234 0.057 0.238 0.056 0.282
4 500 0.294 0.052 0.292 0.054 0.310
4 1000 0.305 0.050 0.305 0.051 0.322
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Table 2. Size and Power of Conditional and Joint Tests in Three-Way Tables
I. Conditional Tests

A. Size: No Serial Corr.
(' = 0, � = 0, Ry = 0)

m Sample Trace Maximum
Size Static Dyn. Static Dyn.

2 100 0.045 0.047 0.045 0.047
2 500 0.046 0.046 0.046 0.046
2 1000 0.056 0.056 0.056 0.056
3 100 0.049 0.052 0.047 0.053
3 500 0.058 0.059 0.061 0.067
3 1000 0.049 0.051 0.050 0.050
4 100 0.039 0.052 0.042 0.053
4 500 0.047 0.048 0.047 0.052
4 1000 0.049 0.051 0.058 0.059

B. Size: Serial Corr.
(' = 0:8, � = 0, Ry = 0)

2 100 0.242 0.064 0.242 0.064
2 500 0.227 0.050 0.227 0.050
2 1000 0.225 0.057 0.225 0.057
3 100 0.264 0.068 0.271 0.068
3 500 0.304 0.049 0.301 0.048
3 1000 0.288 0.058 0.284 0.058
4 100 0.271 0.076 0.261 0.066
4 500 0.312 0.061 0.301 0.071
4 1000 0.306 0.052 0.307 0.059

C. Power: No Serial Corr.
(' = 0, � = 0:1, Ry = 0:2)
Trace Maximum

Static Dyn. Static Dyn.
0.095 0.098 0.095 0.098
0.281 0.284 0.281 0.284
0.503 0.504 0.503 0.504
0.075 0.084 0.073 0.084
0.253 0.254 0.257 0.264
0.492 0.496 0.495 0.499
0.073 0.089 0.072 0.081
0.205 0.211 0.212 0.215
0.427 0.429 0.444 0.446
D. Power: Serial Corr.
(' = 0:8, � = 0:1, Ry = 0:2)
0.250 0.076 0.250 0.076
0.409 0.148 0.409 0.148
0.503 0.234 0.503 0.234
0.273 0.092 0.271 0.087
0.426 0.158 0.425 0.168
0.550 0.236 0.553 0.246
0.272 0.098 0.271 0.091
0.431 0.143 0.428 0.153
0.554 0.260 0.564 0.269

II. Joint Tests
A. Size: No Serial Corr.
(' = 0, � = 0, Ry = 0)

m Sample Trace Maximum
Size Static Dyn. Static Dyn.

2 100 0.037 0.044 0.040 0.045
2 500 0.047 0.050 0.048 0.051
2 1000 0.051 0.048 0.052 0.050
3 100 0.042 0.055 0.042 0.051
3 500 0.048 0.050 0.053 0.051
3 1000 0.043 0.047 0.047 0.050
4 100 0.035 0.065 0.033 0.055
4 500 0.047 0.047 0.048 0.051
4 1000 0.050 0.053 0.049 0.052

B. Size: Serial Corr.
(' = 0:8, � = 0, Ry = 0)

2 100 0.197 0.063 0.197 0.063
2 500 0.187 0.057 0.187 0.057
2 1000 0.187 0.057 0.187 0.057
3 100 0.191 0.059 0.199 0.063
3 500 0.241 0.056 0.237 0.049
3 1000 0.225 0.055 0.229 0.053
4 100 0.189 0.073 0.181 0.072
4 500 0.224 0.059 0.226 0.061
4 1000 0.222 0.048 0.234 0.052

C. Power: No Serial Corr.
(' = 0, � = 0:1, Ry = 0:2)
Trace Maximum

Static Dyn. Static Dyn.
0.300 0.301 0.300 0.301
0.950 0.952 0.950 0.952
1.000 1.000 1.000 1.000
0.194 0.219 0.189 0.208
0.902 0.908 0.922 0.921
1.000 0.999 1.000 1.000
0.127 0.191 0.128 0.175
0.826 0.833 0.872 0.872
0.995 0.994 0.998 0.998
D. Power: Serial Corr.
(' = 0:8, � = 0:1, Ry = 0:2)
0.449 0.423 0.449 0.423
0.956 0.986 0.956 0.986
1.000 1.000 1.000 1.000
0.393 0.376 0.394 0.380
0.930 0.990 0.935 0.994
0.999 1.000 1.000 1.000
0.311 0.330 0.298 0.306
0.876 0.984 0.899 0.993
0.994 1.000 0.998 1.000
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Table 3. Empirical results for Microeconomic Survey Data: Price and Production forecasts

Trace Maximum
Canonical Corr. Canonical Corr. Ordered Serial Corr.

Firm No. Static Dyn.Augm. Static Dyn.Augm. Alternative Actual Forecast
A. Prices

1 45.30 10.35 41.46 9.88 36.60 51.33 56.01
(0.000) (0.035) (0.000) (0.028) (0.000) (0.000) (0.000)

2 48.91 32.44 29.55 21.09 20.42 58.4 36.26
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 45.05 16.06 41.36 15.1 34.73 34.75 30.7
(0.000) (0.003) (0.000) (0.002) (0.000) (0.000) (0.000)

4 16.65 3.14 16.35 2.97 15.76 32.25 36.88
(0.002) (0.535) (0.001) (0.499) (0.000) (0.000) (0.000)

5 45.27 26.02 35.62 20.71 33.82 63.69 49.17
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

6 11.68 7.68 11.67 7.68 7.23 13 17.07
(0.02) (0.104) (0.012) (0.074) (0.007) (0.011) (0.002)

7 4.59 6.14 4.46 6 1.6 15.99 0.7
(0.332) (0.189) (0.286) (0.152) (0.206) (0.003) (0.951)

8 29.81 15.46 21.44 15.35 9.68 34.87 18.11
(0.000) (0.004) (0.000) (0.002) (0.002) (0.000) (0.001)

9 56.6 7.79 56.1 7.74 22.32 86.81 136.31
(0.000) (0.100) (0.000) (0.072) (0.000) (0.000) (0.000)

10 49.11 18.79 46.16 18.73 44.17 45.51 53.53
(0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000)

Average 38.03 17.82 30.35 15.16 20.10 34.00 42.99
(522 Firms)
% Rejections 89.0 63.4 88.6 64.2 86.2 77.6 93.1
(522 Firms)
B. Production

1 11.88 2.70 10.09 2.13 6.32 19.22 8.09
(0.018) (0.609) (0.025) (0.658) (0.012) (0.001) (0.088)

2 27.39 21.00 24.41 20.01 9.67 11.58 6.84
(0.000) (0.000) (0.000) (0.000) (0.002) (0.021) (0.145)

3 34.61 31.44 25.03 31.03 14.81 19.31 26.03
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

4 8.94 5.09 6.5 4.94 3.02 13.81 55.89
(0.063) (0.278) (0.123) (0.237) (0.082) (0.008) (0.000)

5 17.11 5.30 16.39 5.18 10.17 25.93 84.51
(0.002) (0.258) (0.001) (0.214) (0.001) (0.000) (0.000)

6 11.39 7.55 10.65 7.13 2.89 17.91 5.45
(0.023) (0.11) (0.019) (0.095) (0.089) (0.001) (0.244)

7 28.97 11.32 25.82 10.08 22.61 24.97 33.41
(0.000) (0.023) (0.000) (0.025) (0.000) (0.000) (0.000)

8 4.35 3.45 4.09 3.38 2.44 3.11 27.11
(0.361) (0.486) (0.33) (0.432) (0.118) (0.54) (0.000)

9 27.23 16.23 18.94 11.17 16.93 4.94 40.84
(0.000) (0.003) (0.000) (0.015) (0.000) (0.294) (0.000)

10 16.06 8.59 15.55 7.46 10.35 14.16 22.59
(0.003) (0.072) (0.002) (0.082) (0.001) (0.007) (0.000)

Average 21.39 11.42 18.16 9.87 11.80 26.32 32.67
(448 Firms)
% Rejections 71.9 43.8 71.1 43.8 71.9 78.7 84.6
(448 Firms)
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Figure 1: Power Curves for Trace Canonical Correlation and ordered alternative
tests under serial independence (�=0)

0

0.2

0.4

0.6

0.8

1

1.2

­0.9 ­0.8 ­0.7 ­0.6 ­0.5 ­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r_xy

Static Dynamic Augmented Ordered Alternatives

Figure 2: Power Curves for Trace Canonical Correlation and ordered alternative
tests under serial dependence (�=0.8)


