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models that account for autoregressive conditional dumagffects. We also present a method to account
for the effect of time-varying state variables that may dewithin a duration. We find strong evidence
of dynamic dependencies in the direction and speed of stock movements. Past interest rates are
also found to affect the speed and direction of completiores. Out-of-sample prediction results show
that forecasts of the direction of moves in stock prices aagreatly improved by including covariates
such as interest rates and allowing for dynamics in the avetric specification.

Journal of Economic Literatur€lassification Numbers: C41, G1.

*We thank an anonymous referee, an associate editor, Rob Engle Maahina and Ruth Williams for helpful conversations.

We are grateful to INQUIRE UK for financial support for this reséarc



Completion Time Structures of Stock Price Movements?

November 2004

Abstract

This paper proposes to model movements in more than a cesftdayly US stock prices as the outcome
of a multi-state marked point process and studies the titakés for stock prices to complete an up or
a down move of a certain size. We present a hew econometraifispdon for a class of dynamic

models that accounts for autoregressive conditional auraffects and for the effect of time-varying

state variables that may change within a duration. We finghgtievidence of dynamic dependencies
in the direction and speed of stock price movements. Pasteisit rates are also found to affect the
speed and direction of completion times. Out-of-samplaiption results show that forecasts of the
direction of moves in stock prices can be greatly improvethbluding covariates such as interest rates

and allowing for dynamics in the econometric specification.

Journal of Economic Literatur€lassification Numbers: C41, G1.

a8 We thank an anonymous referee, an associate editor, Role,Bigtk Machina and Ruth Williams for helpful
comments. We are grateful to INQUIRE UK for financial supgortthis research.



Completion Time Structures of Stock Price Movements

1. INTRODUCTION

The extent to which stock market returns can be predicted has long demncuestion in finance. Pre-
dictable patterns in prices map into changes in investors’ optimal portfolio lysdso different models for
the evolution in stock prices translate naturally into different asset allosatidost notably, in the absence
of predictability of stock returns, investors face constant investmerartypties and their optimal stock
holdings become independent of the investment horizon, c.f. Merto®] B Samuelson (1969).

A vast body of empirical work on asset prices has found evidencestbek returns are partially pre-
dictable either through past movements in stock prichse to the presence of a mean-reverting component,
c.f. Fama & french (1988) and Poterba & Summers (19&8)by means of time-varying predictor variables
such as interest rate spreads, default premia, the dividend yield,rtiiegsaprice ratio or similar variables,
c.f. Campbell (1987), Campbell & Shiller (1988), Fama & french (19&®son & Harvey (1991) and
Keim & Stambaugh (1986).

Another strand of this literature has documented predictability in higher arderents of stock returns
such as volatility (Glosten, Jagannathan & Runkle (1993)), skewnédaiatosis (Guidolin & Timmermann
(2004)). In the presence of such time-variations in the conditional reiatribution, investors’ optimal as-
set allocation will generally depend on state variables that track cumdritigure investment opportunities.
Investors’ time horizon will also matter for their asset allocation, as will theueacy of any rebalancing
opportunities. This holds both if investors’ objectives are to maximize expedidy or if they are simply
interested in controlling risk.

Common to the vast majority of work on predictability of stock returns is that iiegyarice moves over
a fixed holding period such as a day, a week or a month. Similarly, meadursis @e commonly based on
qguantiles or moments of the return distribution defined over a fixed holdingdoekssets with high mean
return and low volatility or low probability of incurring a large loss over a ppecified investment horizon
are viewed as more desirable by risk averse investors.

Rather than fixing the holding period and studying how far prices movedabeertain time interval,
asset price movements can be analyzed by fixing the size of the movemaeinedely the asset price
and treat the resulting completion time as an unknown, random variable. iBfds ya complementary
perspective to the analysis of fixed-horizon movements in asset pricesx&mple, how desirable an asset
is to a risk averse investor can equally well be characterized in terms ofdmgathe investor expects to
have to wait before the asset pays off a pre-determined return s asnd how uncertain this waiting

time is. The higher the variance of this completion time, or duration, the riskiesget ean be considered
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to be. Likewise, if the mean duration is long, the expected return per unit oftithiend to be low.

Duration-based risk measures are useful in many finance applicationsx&mnple, consider the asset
allocation decision of a pension fund manager in charge of an undedupension scheme with known
future liabilities. Regulatory rules often require that an existing funding(gepthe difference between the
projected value of the liabilities and the market value of the assets) is eliminated avithecified period of
time such as a year. The pension fund manager is thus faced with the riskavering the underfunding
within a specific period of time. To ensure compliance with such regulationuticerhanager would need
a forecast of the expected time before the value of the assets underamardagnove up by the funding
gap, says%. The expected completion time should be well under the maximum allowed time,eor els
the portfolio holdings need to be changed. Our paper presents new mdlav@llow the fund manager to
compute such probability estimates not just initially, but in real time as a functiasef of underlying state
variables that predict future price movements and that are allowed to €ltammg the duration spell. As
a second example, traders in financial markets often have contractayhatype-specified bonus provided
that they reach a performance mark within a certain period of time (e.g., alealgear) and duration-based
probability measures are ideally suited to characterize the associatedifitiéisehat such a threshold will
be reached.

In many cases clearly a duality exists between asset return charactenistisared over a fixed horizon
vis-a-vis the distribution of durations or completion times associated with a fetedn: Most notably,
when asset prices are generated by a geometric random walk pratessmstant drift and volatility-as
assumed in much of modern finardbere is a one-to-one relationship between standard measures of risk
and returns that condition on a fixed holding period and duration measasesl on completion times that
condition on a fixed return.

Outside this framework, however, no general results exist on the redhtpibetween risk measures
based on fixed-horizon returns and measures based on fixed-detations so one would expect that they
can uncover very different features of the underlying data gengrptiocess. This becomes particularly
important in the presence of nonlinearities in returns. Recent empiricll sugigests that nonlinearities in
asset returns are important. For example, Christoffersen & DiebolB§20@ Guidolin & Timmermann
(2004) suggest complicated dynamic dependencies in the term structisk ahd in the probabilities of
up and down moves, Value at Risk (VaR) or expected shortfall. Detemplejas& Rindisbacher (2003)
also document strong evidence of nonlinear dynamics in asset prices.

Theoretical models in the asset pricing literature also suggest complicatédeaw dynamics in stock

prices arising as a result of speculative bubbles (McQueen & That&84(), over-reaction to recent news
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(De Bondt & Thaler (1985)), learning dynamics (Timmermann (1996, 20@&ronesi (1999)), habit persis-

tence (Campbell & Cochrane (1999)) or non-linear dynamics in the didigeocess (Donaldson & Kamstra
(1996)). The prevalence of such theories means that it is informativgetalternative measures of risk and
different modes of analysis to identify possibly complicated dynamics in pases.

As an example of a nonlinearity, suppose that log-stock prices fluctuate a&itiarrow band for a long
period of time reflecting, perhaps, support and resistance levels athlegizred by many technical trading
models, c.f. Brock, Lakonishok & Lebaron (1992) and Sullivan, Timmenm& White (1999). This type
of sample path could result from a model with time-varying serial correlatioaisvary as a function of
the distance to the bands. The resulting low volatility would make the asset $eantiae even though,
over a longer horizon, the asset return can be expected to be low siestoirs have to wait longer than
expected before earning a positive return sufficiently high to requiceto move beyond the bah®Buch
nonlinear dependencies would be reflected in the distribution of duratfoms and down movements in
stock prices provided that a range of thresh@ltds,, £6,, ... = §;} for the change in the log asset prices is
studied. In analogy with the fixed income literature, we refer to the joint distoibwf expected completion
times for different values af as the completion time structure. Completion time measures can also capture
other features commonly associated with stock returns. For example, outlibesreturn distribution will
lead to more short durations as will volatility clustering. Similarly, the completion timranafp move will
be shorter (longer) if more large and positive (negative) than largmegaltive (positive) shocks occur, so
duration models can also identify skews in asset price dynamics.

The contributions of our paper are three-fold. First, we present p@lications to stock price move-
ments of models for completion time dynamics using more than a century of daily siaidet prices.
While duration features of stock price movements have been explored ituthea market microstructure
effects (c.f. the literature survey by Engle & Russell (2002)), little wak been undertaken on the duration
of movements in stock prices of the size or frequency considered I8geondly, we make a methodolog-
ical contribution by showing how to account for the effect of time-vangtaje variables that may change

within a duration. This is particularly important in finance applications wheediptor variables such as

1 Suppose for example that this band is given by( [y =+ 8/2, wherepg is the initial asset price antis the width
of the band. Then the expected rate of return within the bamaldvbe bounded by/ T, whereT is the investment
period.

2 One exception is the paper by Lunde & Timmermann (2004) wktalies bull and bear states. However, that
paper adopts a very different methodology that does not éstke of the required stock price movement, but instead
defines underlying (latent) states according to the sizegfrice changes since the previous local peak or trough.
This is an important distinction since our framework here tiee random walk model as a natural benchmark whereas
this is not the case in the setup with (endogenous) bull anddiates.
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the interest rate are likely to be subject to important time-variations. Suchduatation variations are likely
to affect the time of completion. Hence, by only conditioning on information aviglat the time of the
beginning of a new duration spell, an important part of the behavioralaelbetween stock prices and the
relevant state variables may be missed or at worst reversed. Ouraappatbows investors to update, in
real time, the expected value of the remaining time until the completion of a durg@inas the values
of the relevant state variables change. Third, we present new emgvidance of predictability in stock
price movements using both in-sample and out-of-sample experiments, with thedatip to replicate the
real-time forecasts of an investor.

The plan of the paper is as follows. In the context of the geometric randaknmodel Section 2 shows
the duality between conventional measures of risk and returns overdatiime horizon and completion
time measures and also presents some initial empirical results. Section 3pteeatonometric methods
used to characterize the distribution of completion times. Section 4 reports estimegidts for a range
of empirical specifications, while Section 5 evaluates the duration models iotasf-eample forecasting
experiment and Section 6 concludes. Technical details are provided iafgpendices at the end of the

paper.

2. COMPLETION TIMES UNDER THE GEOMETRIC RANDOM WALK

Suppose we are interested in studying the time it takes for the logarithm o$einpaice,P, to complete a
move of a certain size. To establish a benchmark for the distribution of sueliahs, it is useful to first
consider this question for the standard geometric random walk model. In thlisl i@ logarithm of stock

prices,p; = log(P,), evolves according to the following stochastic differential equation:
dp = pdt + odW, 1)

whereW is a standard one-dimensional Wiener process. To measure durat®hayw/to define a random
variable that tracks the completion times. To this end we study how long it takéisefdogarithm of the
stock price index to move up by a fixed amount; 0.2 This can be achieved by defining a chain of first

passage times measuring the time it takes for log-stock prices to cross a sirmgestunits away from the

3 Lunde & Timmermann (2004) define bull and bear markets agssthait partition the data according to sequences
of local peaks and troughs. This definition reflects the mostroon use of these terms but does not lead to a tractable
benchmark duration model since the classification of theecistate depends on both past and future movements in
stock prices.
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initial log-price py,; :

TZQ (4, pto,i) = inf{t > toi @ Pt — Pro; = 8}, (2)

where the notatioly; reflects thatp,; is the log-price at the origin of thigh first passage time.
The first passage timg, for the event that some barrig€return units away from the starting point, ,

is crossed has the following Inverse Gaussian density, and survival functionS(t):*

8 —(8 — put)?

o= o/2rt3 eXN 202t ), ®)
o 8—nput B 26 —§ — ut

S(t) = &( P ) — exp( o2 )P ( ot )s 4)

where® denotes the standard Gaussian cumulative density function. Thus, thedgeometric random
walk model (1), for a given barries, the duration distribution has a convenient closed form that is com-
pletely characterized by the drif.] and volatility ) of asset prices. Ift < 0 no positive moments ofF

exist, while foru > 0 it holds that:

BTl = 2,
%
2
Var(T) = @; (5)
%

As expected, these moments depend on the drift and volatility parandetergi. o) as well as the
distance to the barrie. These parameters can either be retrieved from the duration distributmngthr
maximum likelihood estimation based on (3) and (4) or, as is traditionally doom, tihe moments of the
returns data sampled at a given calendar frequency.

The single barrier definition (2) only indirectly reflects down moves in sta@éep in as far as these
show up as longer durations before stock prices move up by a frattidn alternative is to introduce
duration measures that more directly reflect down moves by tracking the tirkestftar log-prices to either

decline or rise by:
Tzlown 6, Pr,) = inf{t > to; : pr — Pro; < =9}, (6)

Tin 0, Pyoy) = inf{t > toi : pr — P, > 8} (7)
Only the introduction of (6) is changed here since (7) is identical to (2)vév¥er, the definitions (6)-(7) now
give rise to a two-barrier problem since we measure the time it takes beaferefdwo barriers is crossed
by the stock price index. We capture this information through a sequemoared durations

i = {MiN(T goun » Tip)» &' (8)

4 See, e.g., Lancaster (1990, page 119).
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whered is an indicator variable that equals one if the upper barrier is crossgdfisotherwise is zero.
Many of the methods used in this paper are relatively new to the finance Ilieratith the exception
of studies of market microstructure effects — so we first look at the débacbeonsidering the more detailed

econometric analysis in the subsequent sections.

2.1. Data

To investigate the properties of up and down movements in stock prices almigtinition proposed in
Section 2, we construct a data set of daily US stock prices from 2/17t8B%31/1997. From 2/17/1885
to 2/7/1962 the nominal stock price index is based on the daily returns pdobid8chwert (1990). These
returns include dividends. From 3/7/1962 to 12/31/1997 the stock priexiisdconstructed from daily
returns on the Standard & Poors 500 price index, again including did&gdand obtained from the CRSP
tapes. Combining these series generates a time series of 31,412 daily ndotkalrges.

Inflation has varied considerably over the sample period and the driftriminad prices does not have
the same interpretation during low and high inflation periods. To deal with this,isge construct a daily
inflation index as follows. We use monthly data on the consumer price inder fetw@ Shiller (2000)
and convert it into daily inflation rates by solving for the daily inflation ratehstiat the daily price index
grows smoothly - and at the same rate - between subsequent values ofritidynsonsumer price index.
Finally we divide the nominal stock price index by the consumer price indext@ glaily index for real

stock prices.

2.2. Durations

An informal comparison of the observed durations with those implied by eaqusaf8) and (4) provides a
first way of detecting deviations from the Geometric random walk model €t)absumes independently
distributed, Gaussian price increments.

Figure 1 accomplishes this by plotting the distribution of the residuals from tleesevGaussian model
fitted to US stock price durations. Another natural benchmark is a GAR@Eifggation, so we also show
the distribution of duration residuals for a price index constructed so thatite increments are normalized

by the conditional volatility. This latter price index thus adjusts for persistentiee conditional volatility?

5 Since the volatility of daily inflation rates is likely to baly a fraction of that of daily stock returns, normalizing
by the inflation rate has the effect of a time-varying drifjustinent. Lack of access to daily inflation data is unlikely
to affect our results in any important way.

6 The volatility adjustment was accomplished by means of thieving components GARCH model proposed
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In order to make the plots more comprehensible we plot residuals with a urdistribution that are defined
as follows. If T has survivor functiorS(t), then S(T) is uniformly distributed. Both for short and long
durations the residuals of both series are systematically underrepigkstnespectively of whether stock
prices are adjusted for time-variation in volatility, the figure shows that trer$evGaussian model does not
fit the data particularly well.

To demonstrate how time-series dependence in stock prices shows up urdtierdss, Figure 2 plots
the sequence of marked durations based on a barrier or ‘fifter’0.10. The length of each bar measures
the time it took (in trading days) before stock prices either moved up by 1086wen by 10%, whichever
happened first. Durations witt},,,, < 7}, are plotted below zero while those witl), < 5, are shown
above zero. If duration spells were independently distributed over time gheuld be no information in
the sign or length of a given duration for the evolution in future duratiofisp€learly, however, this is
not the pattern observed in Figur€ Bhort (long) durations tend to follow short (long) durations. This is
related to the well-documented phenomenon of volatility clustering which giseda sequences of very
short durations when volatility is high and the price index moves fast. Funthrey, there appears to be
dependence in the direction of the market or, equivalently, in the sign chiduage in the stock price: Both
up and down moves have a tendency to cluster in time suggesting that if theysrevove was up (down),
then there is a higher probability that the following move will also be up (dowWh)s indicates that there
is predictability not simply in the volatility but also in the direction of the market, coestswith recent
findings by Christoffersen & Diebold (2003).

Using equations (6-8) we computed durations, measured in calenderfdaysanging from 1% to
15%. Varying the size of the barrief, is equivalent to varying the return horizon, as is frequently done
in the literature on variance ratios. It allows us to map out different degredynamic dependencies for
different filter sizes. Summary statistics for the up and down durationsresemted in Table 1.

Two caveats should be mentioned before interpreting the results. Firshlywmeasure stock prices at

the end of each day so our observations are reported in integer daysmall filter sizes such as= 1%,

by Engle & Lee (1999) and extended to include an ARCH-in-mefiect: ry = p + fri_1 + yot + &, of =
G +a(ef g — G-1) + B(07 1 — G-1), Gt = @ + p(G-1 — @) + P(ef_; — o), With ex ~ N(0, o). Using this
specification we compute ARCH-adjusted, normalized retyfn= & /6; wheregj =rj — ji — Bri,l — yaoij is the
residual from the ARCH model ar its estimated volatility. We then construct a new price intlat is adjusted for
first-order autocorrelation (reflecting the effects of adywonous trading) and ARCH effects in the volatility andtdri
Such adjustments ensure that the new price index has theasamage drift and volatility as the original one.

7 This is also supported by the Ljung-Box statistic for secairelation. Using 15 lags this test statistic equals
110.6 for theT series and 477.2 for the (M) series. Under the null of no serial correlation in the dwraithe 5%
critical value is 25.
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it is likely that the data is measured with some error since the price index may awelirhoved by more
thané percent during the day and could even have generated two or morgdaraithin the same day.
Such measurement errors are difficult to deal with given our data limitatimrighey are unlikely to be
important for slightly larger filter§. It should also not be forgotten that the standard analysis based on
returns measured, say, on a monthly basis is faced with the same problemdaatenths do not have
the same number of trading days: February typically has fewer tradirggtdag most other months and the
markets are closed some days during December. Second, the sequémeions depends on the starting
point of our analysis, which is February 17, 1885. We experimented wifdreht starting days and found
that the results are very robust with respect to the starting point, so trésdbappear to be a problem.
Returning to the results, as the required size of a price move increasesyniser of completed dura-
tions declines. Thus, for a filter siz&, of 1%, there are 4,713 up-moves and 3,853 down-moves. These
numbers decline to 119 up-moves and 54 down-moves for the largestfilté#@ Hence the length of the
historical sample clearly constrains the statistical analysis for large filtey sizee the power of any statis-
tical tests declines as fewer duration spells are completed. Another feathedata is that the proportion
of up-moves is higher, the larger the filter st?eThis is to be expected since the positive drift in the stock
price index is more important relative to the volatility of price movements for thatauns based on the
larger filter sizes. Equally unsurprising is the finding that the standarnetitav of the durations increases

as the filter size goes up as we would expect from equation (5).

3. ECONOMETRICFRAMEWORK

The empirical results reported so far demonstrate the limitations to the staretartetyic random walk

model for stock prices in its most basic form or extended to allow for ARGELeS. In this section we

therefore propose a framework for analyzing and modeling the distribotidarations of stock price move-
ments that is sufficiently general to account for dynamic dependenciesripletion times and the effects
of time-varying predictor variables (covariates).

To analyze the dynamics in completion times for stock prices, we proposmavitark that extends the

8 To investigate the effect on maximum likelihood estimatithe parameterg, o implied by the observed dura-
tions, we conducted a Monte Carlos study for the model (1) fafad that the effect on the parameter estimates was
relatively small and limited to the smallest filters.

9 Again this has an analogy when modeling returns over a fixeizd such as one month. One could start the
monthly horizon on any one day during a month and could akst tveek-end and holiday effects in different ways.

10 For the filter size of 1%, the proportion of down moves (as a@etage of the total number of up and down
moves) is 45%, while it is 31% for the 15% filter.
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models proposed by Lancaster (1990) and Engle (2000). Relatettdnuiaive models have also recently
been suggested by Russell (2001), Rydberg & Shephard (199@)jddka (2000) and Bowsher (2002).
These models build on the multivariate point process framework treated iG@xg Lewis (1972). In this
setting up and down movements are treated as the marginal event pro&essemka (2000) and Bowsher
(2002) suggest looking at the so-called pooled process of all dusatidlowever, this framework is not
appropriate for our purpose, where a down excursion often is cethéy an up move. Hence our approach
is much closer related to competing risk models.

Both notations and econometric methods are specific to the duration literatunes frst briefly in-
troduce the underlying stochastic process, transition probability modelfikatidood-based estimation
methods. The timing of events such as the completion of a first passage tirseig&/¢o a simple point
processT = {to,t1,...,ty,...}. The sequence of points intimg, < t; < ... <ty < ... are the arrival
times from which durationsg = t; —t;_; can be defined. Since up and down moves in asset prices typically
arrive at irregularly spaced points in time, the point process is an ideatlfimgddevice for our purpose.
Associated with every point;,, areM marksz; = {z, ..., zim } which often will be the variables of primary
interest as they identify and measure the event that occtirr€tle mark process can be decomposed into
a univariate discrete process identifying the event that occurred (sthtators,d;) and a vector process

containing the marks that measure the variable defined at the associate(state marksy;):1?

X

Xi =t — tj_1: points or durations

joint 4

process d =1{1,..., K}: state indicators

Vi = {¥i1, .-, Yin()}: State marks

DECOMPOSITION OF A MULTFSTATE MARKED POINT PROCESS

Using this decomposition, movements in asset prices can be characterizeghttine stochastic pro-

cess{(Yi, Di, Xj); i =1,..., N}, whereN is the total number of completed duration spells. We call this a

11 An example of this is Engle (2000) who analyzes data comisio types of random variables such as the time
of a financial transaction and the collection of variablesastred as the trade takes place.

121n our analysis the logarithm of the price (index) is a stateknin(P;, ) = py,, and by constructiolhpq - pti_1| =
3.
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Multi-State Marked Point proceser in short an MSMP process. The joint distribution of thl observa-

tion conditional on the past filtration @¥;, D;, X;), Fi_1, iS given by
P{Yi <y, Di =d, Xi <X | Fi_1; wi}, 9)

wherew; are the parameters determining the distribution ofittreduration. Modelling this distribution
directly can be very complicated and fortunately a simpler approach is aeail&fihout loss of generality,
the joint density can be factored into the product of the marginal densityeafurations (parameterized by
w1 ) and the state indicators times the conditional distribution of the state marksngtarazed byw,; ), all

conditional on the past filtration:
PYi <yi,Di =d, Xi <% | Fi_1; @i}
= Pi<yi|Di=d, X =x,F 1wy} P{Di=d, Xi <X | Fi_1; 02} (10)
It is obviously of separate interest to investigate how certain marks atedd@D and X. On a macro
scale interesting marks to consider would be GDP, inflation rates, intetestet. On a micro scale

several interesting market microstructure questions can be addrestedsshow volume, depth, spreads

and liquidity relate to the distribution dd and X. We defer such issues to future research.

3.1. State Transitions

We are concerned with modelling the duration distribution of up and down miewsck prices. Our focus

is therefore on modelling the marginal distributionmfand X; conditional on the past of the joint process:
P{Di =di, Xi <X | Fi_1: 02} . (11)

An estimate of the density associated with this distribution can be obtained thnoagmum likelihood
estimation based of(D;, X; | fi_l)}iNzl. We begin by considering the distribution of the completion time
for the point procesdl, i.e. Fi(t) = P {X; <t —t_1 | Fi_1; wz } with no concern for the alternating states.

Following standard definitions the survivor functicdh, and the hazard function;, are given by

SO =1-P{Xi <t—t_1| Fi_ywa}, for ti_;<t<t,

and
A) = lim Plt—tia<Xi<t—tia+h|Xi>t—ti Fi1 a2}
h—0 h
fi (t d
= % T log(S(t)), for ti_i<t<t. (12)

13 As is common, we assume th&tis absolutely continuous with respect to Lebesgue measiard that the
density ofX;, f = dP/d¢, is the Radon-Nikodyn derivative @ with respect tos.

10
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The hazard rate,; (1), is the probability that the stock price passes through a barrier in any tirstaime.
For anyt > tj_1, the probability of this event is conditioned on both the fact that there hdseem an event
sincet;_; and on all past events.

Ignoring for the moment the conditioning on the past informatign,;, and the parametere,;, and

assuming that there at€ possible states, we can use the fundamental law of probability to write

K
P{Xi<t—tia}=) P{X <t—t_1|D =k P{D =k
k:l

Lettingwixk = P{D; =k} andFix(t) = P{X; <t —t_1 | D; = k}, this simplifies to an expression that is

easier to interpret:

K
Ft) = Znik Fik(t).

k=1
Here theriy’s are the transition probabilities, i.e. the probabilities that ttheevent will be a move to state

k. These sum to one across tkestates.F; (t) is therefore a finite mixture distribution;4, ..., wik are the
mixing weights and=;1(t), ..., Fik (t) are the component distributions of the mixture. The specification is
quite flexible as the transition probabilities are allowed to change from evewnetd as might be the case
due to institutional shifts or changing market behavior. Using this notatiorsuhévor function can be

written as follows:

K
S =) miSk(). (13)

k=1
Note thatrik Sk(t) is the joint probability that no event occurs betweden andt and that the eventual

departure is to state Using (12) and (13), the transition intensities for thestates are given by

. d B “ ik firc(t)
xﬂ»——ammsmy—g;jig—

K K
 P{t—ti_i<Xi<t—ti_1+h Di=k|X >t—t_q}

= lim a = i), (14)

k=1 k=1

forti_; <t < tj. Henceii(t)dt is the probability of departure to stakein the short intervalt, t + dt)

given that there has been no event frpm to t.14

14 As pointed out by Lancaster (1990 (t) is not equal tofix(t)/Sk(t) as it would be ifAik (t) were a hazard
function conditional on departure to st&teThe conditioning event fakiy is that no event occurs fron_1 to t, not
that no event occurs betwegni andt and that departure is to stte

11
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These events and their probabilities can be related to the observed dataisvbiaracterized by the

probability P {departure t& in (t, t + dt)} . This can be factored out as follows

S (DA (t)dt = P {departure tk in (t,t 4+ dt) | no events int_1,t) } P {no events intj 1, 1) }

= ik fik(t)dt, (15)

where fi (t)dt is the probability of departure at timegiven that the departure will be to state This
equation shows the close connection between mixing weights and transitlebities. Integrating (15)

overt yields the following expression for the transition probabilities

Tik =/O S(S)rik(s)ds. (16)

Once the transition intensities, have been estimated, the transition probabilities follow from (16).
Using these definitions, Appendix A sets up the likelihood function as a funofithe transition inten-

sities, while Appendix B provides extensions to include time-varying covatiate

4. EMPIRICAL RESULTS

In this section we report empirical results for particular specifications efrdmnsition intensity, moving
from an autoregressive conditional duration specification to more flexibtels that incorporate the effect

of time-varying state variables (covariates).

4.1. Autoregressive Conditional Duration Models

The autoregressive conditional duratiockCD) model suggested by Engle & Russell (1998) and the log-
ACD suggested by Bauwens & Giot (2000) provides a flexible dynamicifspegtion. In our setup it takes

the following form:
Aik = expiks + M2 IN(hi—1k) + AaXi—1(hi—11 + Ai—12)] for k=1,2. (17)

We refer to this model dd SMP-dy. It allows the past transition intensity,; k, to influence the subsequent
intensity in an autoregressive manner. In addition, we include an innovationfrom the part of the past
realized duration that was unpredictable ex-arte,(Ai—1.1 + Ai—1.2).

Estimation results are reported in Tabler2; anda,; identify the persistence in the transition intensities
linked to the autoregressive term. Estimates of these paramstera/n in PaneR—are uniformly very high

across all filter sizes and for both up- and down-moves. Furthermaeptiily decline slowly from 0.98 to

12
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around 0.95 as the filter size increases from 1% to 15%. Clearly the egphatation is highly correlated
over time. The higher the previous transition intensity, the more likely it is thatulremt intensity will
also be high. Moreover, the significarif somewhat smallercoefficient estimates, 13 and 3, suggest
that the previous innovation to the transition intensity also affects the sudasielansition intensity. These
estimates are significant across all filter sizes.

The effect of past duration innovations on current transition intensitiesgative across filter sizes both
in up- and down-states. Transition intensities are therefore lower in bethngbdown-states if the past
duration was unexpectedly long. Interestingly, the largest effect afrawvation to the previous duration
is found for the mid-sized filters (4-7%) in up-states but for the largestdi(tet, 15%) in the down-states.
Furthermore, an interesting asymmetry can be detected by comparing the estimat@anda,s. If the last
duration was surprisingly long, then the subsequent transition intensigydgmen by more in up-markets
than in down-markets for filters up to 7%, while the converse result hotdariger filter sizes. This suggests
that it takes disproportionately longer for the market to move down by a Ergrint (corresponding to a
large filter size$) following a long duration than it takes for the market to move up by the samergmou
This effect is similar, but not identical, to mean reversion in asset pricesiffioftowing sense: a long
previous duration (for a fixed filter size) translates into a smaller rate afrand this seems to be followed
by a relative slow-down if the stock price moves down compared to if it mopés u

Panel B reports diagnostic tests for this model. The estimated model is a mixexpafential distri-

butions, so the residuals can be obtained from the realized durationd bgdlee transition intensities:
& =X (Ai1+ i) for i=1,..., N. (18)

If the model fits the data, the residudds : i = 1,..., N} should be identically and independently expo-
nentially distributed with a mean and a standard deviation of one. None of the fiteduce any evidence
of serial correlation in the residuals from this model. The only evidencastgthis model is the over-

dispersion in the residuals based on filtéraynder 5%.

15 As the filter sizeg, increases, the standard errors of the parameter estiinatesise and the absolute values
of the associatettstatistics (for similar values of the estimated regressioefficients) decrease systematically. This
a result of the fewer completed duration spells for the laxgdues ofs, c.f. Table 1, and the associated decline in
power. The estimates in Tables 2-4 suggest that, on grouritie power of the statistical tests, it is not advisable to
consider filter sizes greater than 10-15%, depending on hamymarameters the model requires estimating.

13
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4.2. Interest Rate Effects
4.2.1. Data

A popular state variable frequently used in the analysis of stock markehsatithe interest rate which is
known to closely track cyclical movements in the economy and forecashgetlio make our results com-
parable to the existing literature, we therefore consider the effect of tamgng interest rates on transition
intensities. Since there is no continuous data series on daily interest @te$885 to 1997, we construct
our data from four separate sources. From 1885 to 1889 the sowgaiis Shiller (2000). From 1890 to
1925, we use the interest rate on 90-day stock exchange time loanagddp Banking and Monetary
Statistics, Board of Governors of the Federal Reserve System (IBd&3e rates are provided on a monthly
basis and we convert them into a daily series by simply applying the inteteseported for a given month
to each day of that month. From 1926 to 1954 we use the one-month T-billfrata the risk-free rates file
on the CRSP tapes, again reported on a monthly basis and converted inljosedas. Finally, from July
1954 to 1997 we use the daily Federal Funds rate. These three setsesdting¢es are concatenated to form

a single time series covering the full sample.

4.2.2. Interest Rate Effects in tHdSMP-dy Model

Before turning to the model with time-varying covariates, first considerreayc model with constant

covariates. This model extends theSMP-dy specification (17) by including as covariates the state of the
previous durationd;_1) which equals 1 if the — 1'th duration was an up-move and is 2 otherwise, the
interest rate level at the beginning of the duratimn({ _,)), and the change in the interest rate over the past

duration Aint(t;_;)). Hence, the model is specified as follow

Ak () = exp[ i + M IN(hi—11) + AaXi—1(hi—1.1 4+ Ai—12)
+ Bra(di—1 — 1) + Bioint(ti—y) + BsAint(ti_1)] for k=1,2 (19)

We refer to this model agISMP-dyc.

Estimation results for this model are reported in panel A of Table 3. Sincentitha following model
have more parameters to estimate, we only report results for filter 8iagsto 10%. This ensures that we
have sufficiently many durations available for estimation. Ignoring the otherriate effects, variations in

the conditional transition intensitiesi; = Aig =k.d_,=j. due to the dummy indicators can be mapped out

14
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as follows:

Ai11 = exp[iid] : Intensity ofupscoming from theup state.
Ai1p = exp[kll + ;311] : Intensity ofupscoming from thedownstate. (20)
Ai21 = eXp[Aizq] : Intensity ofdownscoming from theup state.

liop = exp[)m + ,321] : Intensity ofdownscoming from thedownstate.

The positive and significant estimates®f, and 8,, in Table 3 show that the transition intensities of
both up- and down-moves are higher coming from a down state. This is likebflert the well-known
leverage effect: negative shocks have a disproportionately larget efii future volatility compared with
positive shocks of the same size. Negative shocks thus have thedffiecteasing the ‘speed’ of the stock
price index, leading to higher intensities. Furthermore, the estimaigs @fre generally higher than those
of 8,, suggesting that the effect is highest for future down-markets.

The autoregressive parameter estimatgandi,, continue to be very high (0.97) for the smallest filters
but are now much smaller for the largest filter sizes. Past duration shonkaue to have a negative effect
on the transition intensities as both andi»3 are negative, suggesting that an unexpectedly long previous
duration gives rise to a lower transition intensity and hence a longer exigettee duration.

For both up and down moves the estimated effects of the level of the intatesbm the transition
intensities (312 andez) are generally negative and significant for about half of the filtershhéfignterest
rates are thus associated with lower transition intensities for both up- andmowes and will increase the
expected completion time. Turning to the effects of changes in interest ratéadvsome quite intuitive
results. Rising interest rates are associated with slower up movgs;(asalways negative) and faster down
moves (asB,; is positive). The effect of interest rate changes on transition intensit@sasmuch higher
than the effect of the interest rate level as can be seen in the size ofetffieieat estimate4®

Interest rates therefore influence bathw longit takes before the market moves by a certain percentage
and alsowhetherthe market moves up or down. Furthermore, the coefficient on the intatestovariate
goes up as the filter size increases, suggesting different long- ariergsheffects of interest rate movements
on stock prices.

Finally the diagnostic tests reported in Panel B of Table 3 suggest thatisheoeserial correlation in

the residuals although some evidence of excess dispersion remains faifig®up to 4%.

16 The estimated effects are not directly comparable as thpgaagn the table, but we also estimated the model
for all filter sizes with the interest rate variables staddsed to have unit variance. This resulted in even bigger
differences.
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4.2.3. Time-varying Interest Rate Effects in tiSMP-dy Model

The model with covariates (19) only accounts for interest rate effectsfar as these have evolved prior to
the beginning of a new duration. In contrast, the following time-varying at&model allows interest rate

effects that can changgiring duration spells:
Lik (1) = explik + Ak IN(hi—1k(Xi 1)) + AkaXi—1(Ai—1.1(Xi—1) + Ai—12(Xi-1))
+ Bra(di—1 — 1) + Bioint(t) + BysAint(t)] for k=1, 2. (21)

Here Aint(t) is the most recent change in the interest rate occurring just beford tilEgtimation of this
model proceeds by means of the techniques developed in Appendix B.

This dynamic model with time-varying covariate effects is referred tM&8P-dytvc. This is quite a
complicated model that allows the transition intensities to depend on their laglyed vpast innovations
to the transition intensities as well as movements in the interest rate. Resultsstiorat®n of this model
are provided in Table 4. The estimates of the persistence and innovatimtsedfo not change much as
compared to the earlier model (19) that did not allow interest rates to cléangey the duration. The
coefficients measuring interest rate level effects are also largely ngetialn contrast the effect of changes
in interest rates during a duration spell is less pronounced than befopassible interpretation of this
finding is that changes in interest rates do not have an immediate impact kipst®s and take more time

to show up systematically in future stock price movements.

4.3. Comparison with Fixed-horizon Results

It is fair to ask what can be learned from these results that could niby éase been gleaned from the
standard fixed-horizon analysis of predictability in stock returns. lddeben stock prices follow a simple
linear process driven by Gaussian innovations, the same informatioreaani&ined from either approach.
Which method dominates in a particular application will then only depend on wisiimation approach
is most efficient. However, outside this very special case (which is dyroegcted empirically), the two
methods can yield very different insights as they are affected differéytigonlinearities and dynamic
dependencies in stock prices. For example, ARCH effects in stock aieegenerally viewed as mainly
affecting the second moment of returns with a smaller effect on expedtegdseIn contrast, as we saw in
our analysis, the mean duration time will also be strongly affected by ARG tsff

The tendency of future down moves to follow current or past down mig\adso an interesting new find-

ing since the equivalent measure based on a fixed-horizon arahgsisely serial correlation in returasends
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to be very weak for a broadly defined stock price index such as thaidemed here. Again this demonstrates
that the power of a duration-based approach to identify regularities ik sttwrns can differ significantly

from that of the traditional fixed-horizon approach.

5. OUT-OF-SAMPLE FORECASTEVALUATION

So far we have measured model fit by means of values of the likelihoodidarend by inspecting diag-
nostics for serial correlation and over-dispersion in the residuals.afranvestor, however, the value of
the various completion time models depends on how well they predict movememtsknpsices out-of-
sample since this will ultimately measure any potential improvements over a passgément strategy
such as buy-and-hold. To provide information on this issue we computstepeahead forecasts of the
time-varying transition probabilities and compare these to the subsequestiatiref movements in stock
prices. These forecasts simulate an investor’s forecasts in real timeestigcetes of the model used to
forecast at some point in timg,only use information up to that point in time.

To get a sense of the movements in the transition probabilities, Figure 3 platsodessthe full sample
period for the MSMP-dyc model. Transition probabilities follow step-like tiores and can vary signifi-
cantly over short periods of time such as during the period with highly volatiedst rates in the late 1970s
and early 1980s.

We next undertook a formal statistical test of the ability of the various mquisifications to predict
the direction of future moves in the stock market. Results from an out-ofisdiomgcast experiment are
provided in Table 5. For filter sizes between 1% and 8% we use half the safrthieations for estimating
the first forecast, and progressed to the end of the sample from thagstimating the parameters after each
completed duration. For filter sizes of 9% and 10% we use three quarténe drations for the initial
estimation. We did not perform the experiment for the larger filter sizes leetd2% and 15%, as these
generate too few durations to enable a meaningful analysis.

To evaluate out-of-sample performance, the table repoxt Zontingency tables cross-listing the sign
of the predicted and realized move in stock prices. We also provide vafuie ¢earsory? statistic
for independence between the predicted and realized sign of the sebsegove and the PT test of sign
predictability proposed by Pesaran & Timmermann (1992).

As a benchmark we report the results from a randomized strategy tliatisran up-move with prob-

ability r;; and a down move with probability X i1, with r;; chosen to match the duration dafaThe

17 The randomization is necessary since the statistical tesstiirectional forecasting require that the model does
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performance of such a strategy is averaged across 5,000 simulations.

As expected, the benchmark model does not show any ability to prediciréetiah of the market and
generates ‘hit rates’, defined as the sum of the probabilities on the maiondiag.e. the proportion of
correctly predicted directional moves, between 50% and 53%. This fraictioeases to between 52% and
62% under the MSMP-dy model and to between 55% and 67% under the MigMmodel. Notice that
the percentage of correct predictions generally increases for adl thoelels as the filter size gets larger and
the average duration increasesbeit not uniformly due to random sampling variation. This is consistent
with the evidence of stronger predictability in long-run durations and is jpdetiy noticeable under the
MSMP-dyc model where two-thirds of the signs of the duration spells areaity predicted for the largest
filter sizes. Turning to the formal test statistics, the MSMP-dy model showe sbility to forecast up
and down moves, but only for filter sizes smaller than or equal to 3%. Itrastnthe MSMP-dyc model
generates highly significant out-of-sample performance statistics foltatldizes. The decline in the test
statistic for the largest filter sizes is due to the decrease in the effectivdessizgas the filter size increases
and fewer duration spells are terminated during our historical sample. ddgests that although large up-
and down-moves in stock prices appear to be easier to predict than smalles,ntcalso becomes more
difficult to document predictability with much statistical precision, the larger itecf the move.

These results show that out-of-sample predictions of the direction oféiizedmoves in stock prices can
be improved by accounting for information on the direction of previous mawesby including covariates
and dynamics in the specification of the transition intensities.

Our results are related in interesting ways to those reported by Chriseifé& Diebold (2003) for
fixed-horizon asset returns. Consistent with our results, Chrisseffietnd Diebold find that the sign of price
changes is predictable. They also find that sign predictability is horizeoHgp-which is consistent with
our finding of considerable variation in ‘hit rates’ across filter sizasd tends to be strongest at intermediate

horizons.

6. CONCLUSION

This paper proposed a new approach to modelling dynamic dependensteskrprices by studying the
completion times of up and down moves that exceed a given threshold. @uoraetric approach is very
general and accounts for autoregressive dynamics in transition intepsitie-varying covariates and mul-

tiple states.

not always forecast the same direction.
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Our results suggest that there is strong evidence of deviations frodastamodels of stock price move-
ments, some of which are related to well-known patterns while others appbeamivel. Unsurprisingly,
the expected duration of a move of a given size is strongly autocorrelathd.past duration was short, the
subsequent duration is also expected to be short and vice versa. Télstésl to the well-known volatil-
ity clustering effects. While this type of persistence is strong for both updamdh moves, there are also
important asymmetries that cannot be explained by standard ARCH e#entsng from a down state the
transition probability to another down-state is higher, while the transition pitityaof an up-state declines,
thus increasing the likelihood of a future down move. The level of intea¢ssiboth at the outset of an event
and during the event also affects the durations of up- and down-meysswetrically. Higher interest rates
lead to slower up-moves but tend to increase the speed of down moves.

There are many interesting portfolio implications of our findings. Predictabififixed-horizon returns
has been demonstrated to translate into significant changes in investorglggsset allocation, c.f. Camp-
bell, Chan & Viceira (2002) and Kandel & Stambaugh (1996). Similarly, §eadhic dependencies in the
durations of up and down moves in stock prices uncovered here cowgpbaited in an investment rule
that lowers the weight in stocks if the last duration spell was long andsepted a down-move so that the
probability of a subsequent short-lived up-move is lower. A more forppi@ach could be based on using
Monte Carlo simulation methods to sample repeatedly from a particular duratiogl,recgl, MSMP-dyc,
and then use dynamic programming methods under a specified objectivi@fusiech as power utility to
optimize the allocation to stocks as a function of the current state variablés.isTih line with methods
proposed by Detemple et al. (2003) and can readily be used evenrftinger dynamic models for stock
prices such as the ones entertained here.

For risk measurement or risk management purposes, there is importantatifmn in the duration dis-
tribution or survivor function for up and down moves. In fact, the methaml®loped in Appendix B would
allow an investor to compute these functions in real time conditional upon thentstate variables. This
provides an alternative measure of the risk associated with holding st@tksatiurally complements mea-
sures based on a fixed investment horizon such as Value at Risk overday or a one week period. When
stock prices do not follow a simple stochastic process such as geometvimiBromotion, none of the
standard measures of risk will be a sufficient statistic so combinations efetiff measures of risk will

generally provide a more complete picture of the risks associated with holdicigss
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APPENDIXA: LIKELIHOOD FUNCTION

Equations (13), (14), (15) and (16) in the main text specify the keytemsafor the probabilities in the
marginal model. Here we derive the density of the marginal process fatdkesindicators and durations,
(11), conditional on past informatiorf; _;.

If we only observe that an event occurred after tirrieen the probability of that event is just(t)dt.
Moreover, if it is known that the event at tinhavas a move to statie, then the probability of this event is
fik (1) ik which again equalsik () exp{ — fg fo:l Aik(s)ds} dt, whereK is the number of possible states

The joint p.d.f. of the indicator variabld3;4, ..., Dix and the duratiorX; is therefore

x K K
f(dil, e, diK7 Xi) = exp{—/ Zkik(S)dS} Hkik(xi)dik.
0 k=1 k=1

Hence the log-likelihood function for thé&h departure is given by

K

l(di, %i; 021 | Fi) =) |:dik log(ik (X)) —/0 | )»ik(S)dS} :

k=1

Summing over all event$\, the log-likelihood function is

N
[(d,x; w2 | Fn) = Z|(di, Xi, @i | Fi—1). (A.1)

i=1
Notice the simplicity of this likelihood function when expressed in terms of theitransntensities. Spec-
ifying the transition intensities- preferably based on economic theeryleads directly to the likelihood
function. All dependence of the likelihood on parameters and past infmmmeomes through the tran-
sition intensities. We make this dependence explicit in the following notation tleatfigs the transition

intensities conditional on the past filtration:
Ak(®) = Akt | Fior, @2i6) = At YL DL XY wgi).

We continue to adopt a notation that expresses the transition intensitiesrasiarfwfY'~%, D't and X' 1
because much of the empirical analysis aims to find the best functional ¢ortimef transition intensities as
a function of these components.

If only two events are possiblenamely an up-move or a down-mavthe log-likelihood function (A.1)

takes the form:

N %
1(d, X, @2 | Fv) = Y _{di11og(hi1(x)) + dhiz10g(1i2(%)) — /0 (Ai1(8) + Aiz(s))ds }. (A.2)
i=1
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Estimation of this equation requires specifying a model for the transition intenajtie) and ij2(X;).

Since the hazard function; (t), and the transition intensities are instantaneous probabilities, they must be
positive. To avoid introducing complicated restrictions on the parameteargingsfrom this constraint, we
model the logarithm ofix(s), k = 1, 2. The simplest specification of the transition intensities ignores any

dependence on past marks and therefore takes the form
Aik(®) = ¢ (exp[y; (D1, XL AT ()] 1), k=1,2, (A.3)

for A™(t) = {(Ari—1(D), Azi—1(D), Ari—2(D), Azi—a(D), ...}
Duration-invariant specifications assume that the transition intensities ageindent of. Hence they

do not depend on the time since the last event and, usingtbat) = s, simplify to'®
Ak = exp[y; (DL XL ATY] k=1, 2. (A.4)

This reduces the log-likelihood function to

N

[(d, X, w2 | Fn) = Z {di1log(ri1) + dizlog(riz) — Xi (Aix + Ai2)} .
i1

The hazard function is simply; = i1 + Ai2 while, using (16), the two transition probabilities are

)\'.
Tik = /\Lk L k=12 (A.5)
I

In this model the probability that the next event will be an up or a down mowize therefore does not

depend on when the event occurs and only depends on the pastithrug

APPENDIX B: EXTENSIONS TOTIME-VARYING COVARIATES!?

A potential drawback of the models formulated so far is that they only conditiorariables that are
determined before the beginning of a particular duration and do not allplareatory variables to change
within a duration. While such models are of separate interest, it is clearly interestiegelop a framework
that allows us to address the effect of a change in variables such asettesimate on the expected duration

of the event as this would allow investors to update their estimates in real timeefidusis summarized by

18 We take duration-dependence to mean that the hazard ratesgiven event change with the length of the
associated duration and thus dependtonTime-dependence means that the hazard rates dependtioe event
number. Using these definitions the intensities defined b§)(Are duration-independent, but time-dependent.

19 This material was previously contained in a paper entitleGéneralized Gamma Autoregressive Conditional
Duration Model.
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the change in the mean residual lifetime at the point in time where the covariaitgeshd he mean residual

lifetime atx measures the expected remaining lifetime of the most recent duration:

L@ —x) ftdt B [ Sdt
S(x) S0

Clearly this expectation changes with the covariates through the hazatwfurin the exponential case

mrl(X) = E(X — X|X > X) = (A1)

the mean residual lifetime is simply given by

[ exp(—0;i (x)u) du
e—0i (0x

mrl; (X) = =0;(x)"L

To deal with this complication we extend the MSMP model class to incorporate tiny&ig covariates
building on earlier work by Petersen (1986) and Hamilton & Jorda (2802). keep the notation as simple
as possible, we present the likelihood for a non-negative continuadsmavariable T, that measures the
inter-event arrival time, and its state indicatdr, The time spent waiting for the next event depends on a
set of exogenous covariateés(t), that follow step-functions or deterministic continuous functions of time.
Hence the observed duratian,may be partitioned into intervals £ ay < ... < ax = t whereV stays
constant a¥(aj_1) in [a;_1; ;) and jumps toV(a)) ata;, for j = 1,...k. In this setting the hazard rate

conditional on the path of the covariates up to time defined as

AAV(1) = AtV (D) + 22(tV (D))

_ Pt<T<t+hD=1T>tV(t) . Pt<T<t+hD=0T=>t V1)
hi0 h h{0 h

Based on the partitioning sequent#a} }g the cumulative hazard is

g

t k
A) :/O ruvandu=3" [ auive-)du. (A2)
=1

aj_l

The assumption of step-function covariates makes integration easy bebaustal duration can always be
partitioned into sub-periods during which all the covariates stay constantiséal the survivor function is

given by S(t) = exp(—A(t)), while the likelihood of the'th duration is given by

Li = A IV ) a2t |V G ))%2S(t), (A.3)

20 One way of incorporating time-varying covariate effectsoisitilize the Cox regression approach suggested by
Cox (1972) and detailed in Cox (1975). The Cox regressiorsenaiparametric method which in a first step estimates
the effect of the covariates parametrically and then, insisgond step, estimates a nonparametric baseline hazard.
This method assumes that the observations are indeperhehtt, is not clear how one would extend it to the case
with sequences of dependent durations.
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and the log-likelihood function of the full set of events for fltle duration is

INLi = digInAi1(G V() +di2In itV (7)) + In S(t)
K a
= dirInAir GV (E)) + dizIn A2t V(7)) — Z/ A(UlV(aj-1))du. (A.4)
j=1 78
In practice we have a sample of events at timges. ., t, tj 1, ..., ty and wish to consider the duration

from thet;_;’th to thet;’th event,x; = tj — tj_;. The covariatesy;, change at timegjg < ... < ax €
[ti_1; t) with a9 = tj_1 andajk = tj, wherei refers to the duration number akdefers to the partition. The
log-likelihood for the full sample is thus given By

N K ag

InL =" [dia i@ VE)) + doIn G IVE) = Y f AUV (@j-p)du (A5)

i=1 j:l &j-1

and the model is fully specified through the functional form of the haaandtion.
Transition intensities that include dynamic autoregressive effects and &mawg covariates now take

the form

In Lk (1)) = At 4+ A2 N Z1c (=) + AaXi—1 (Ai—1,1(6—1) + Ai—12(X—1)) + BV (D) (A.6)
for k=12,

where;_1 k(xi—1) is the transition intensity at the end of the previous duration. Notice that tlagdceazte

only depends ohthrough time-variations in the covariates:
AT =11V (1) = Aia (D) + Aiz(D).

Utilizing the step-function assumption, from (A.5) we get the following log-likedd:

N k

InL = Z di1 INAi1(@ik-1) + dizIn Aix(@ik—1) — Z(aij —aj-1) [Mi1(@j-1) + ri2@j—D] | . (A7)
i—1 -1

We use this specification in our empirical analysis in Section 4. It providesergl framework that encom-
passes as special cases MSMP models with constant transition probabilies {x3 = 0 andf, = 0)

and pure autoregressive conditional duration moggls= 0).

21 Here we assume that there are no censored observatiorisat.all events have finished by the end of the sample.
This assumption is of course harmless since it at most affew duration spell (the one at the end) in our sample.

23



Completion Time Structures of Stock Price Movements

REFERENCES

Bauwens, L. & Giot, P. (2000), ‘The logartihmic ACD model: an application thfd-ask quote process
of three NYSE stocks’Annales d’Economie et de Statistigp@1), 117-149.

Bowsher, C. G. (2002), Modelling security market events in continuous timensity based, multivariate

point process models. unpublished manuscript, Nuffield College, Oxford

Brock, W., Lakonishok, J. & Lebaron, B. (1992), ‘Simple technicadling rules and the stochastic proper-
ties of stock returns.Journal of Financed7, 1731-1764.

Campbell, J. (1987), ‘Stock returns and the term structdmirnal of Financial Economic$8, 373-399.

Campbell, J., Chan, Y. & Viceira, L. (2002), ‘A multivariate model of stritexsset allocation'Journal of

Financial Economic$7, 41-80.

Campbell, J. & Cochrane, J. (1999), ‘By force of habit: A consumpbiased explanation of aggregate

stock market behaviorJournal of Political Economit07, 205-251.

Campbell, J. & Shiller, R. (1988), ‘The dividend price ratio and expeatatf future dividends and dis-
count factors’Review of Financial Studiels 195-228.

Christoffersen, P. F. & Diebold, F. X. (2003), ‘Financial assetmetyudirection-of-change forecasting, and
volatility dynamics’,NBER working paper 10009

Cox, D. R. (1972), ‘Regression models and life-tables (with discussidayrnal of the Royal Statistical
SocietyB 34, 187-220.

Cox, D. R. (1975), ‘Partial likelihoodBiometrika62(2), 269—-276.

Cox, D. R. & Lewis, P. A. W. (1972), Multivariate point processisl.. M. Le Cam, J. Neyman & E. L.
Scaott, eds, ‘Proceedings of the Sixth Berkeley Symposium on Mathematitasities and Probability’,
Vol. Ill, University of California Press, Berkeley and Los Angeleg, $01—-448. volume IlI.

De Bondt, W. F. M. & Thaler, R. (1985), ‘Does the stock market owart®’, Journal of Financed0, 793—
805.

Detemple, J., Garcia, R. & Rindisbacher, M. (2003), ‘A monte carlo metbodgtimal portfolios’ Journal
of Finance58, 401-446.

24



Completion Time Structures of Stock Price Movements

Donaldson, G. & Kamstra, M. (1996), ‘new dividend forecasting pthwe that rejects bubbles in asset
prices: The case of 1929s stock cragkeview of Financial Studie 333-383.

Engle, R. F. (2000), ‘The econometrics of ultra-high frequency d@dnometrice68(1), 1-22.

Engle, R. F. & Lee, G. G. J. (1999), A permanent and transitory coemanodel of stock return volatility,
in R. F. Engle & H. White, eds, ‘Cointegration, Causality, and Forecastingegschrift in Honor of

Clive W. J. Granger’, Oxford University Press, Oxford, pp. 449+

Engle, R. F. & Russell, J. R. (1998), ‘Autoregressive conditionalktion: a new model for irregularly
spaced transaction dat&conometrice66(5), 1127-1163.

Engle, R. F. & Russell, J. R. (2002), Analysis of high frequency aadsction data’in Y. Ait-Sahalia
& L. P. Hansen, eds, ‘forthcoming in Handbook of Financial Econom&iriol. |, Elsevier-North

Holland, Amsterdam.

Fama, E. F. & french, K. R. (1988), ‘Permanent and temporal comgeraf stock prices’ Journal of
Political Economy96(2), 246-273.

Fama, E. F. & french, K. R. (1989), ‘Business conditions and expeeteirns on stocks and bond3gurnal

of Financial Economic&9, 23—-49.

Ferson, W. & Harvey, C. (1991), ‘The variation of economic risk pramsy Journal of Political Economy
99, 385-415.

Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993), ‘On the reldt@iween the expected value and

the volatility of the nominal excess return on stockigurnal of Finance48, 1779-1801.

Guidolin, M. & Timmermann, A. (2004), ‘Strategic asset allocation and caypion decisions under mul-

tivariate regime switchingManuscript, University of Virginia and UCSD

Hamilton, J. D. & Jorda, O. (2002), ‘A model of the Federal Funds raitgetg Journal of Political Economy
111(5), 1135-1167.

Kamionka, T. (2000), ‘La moglisation des dorées haute &quence’Journal de la Soéte Francaise de
Statistiquel41(1-2), 167-211.

Kandel, S. & Stambaugh, R. (1996), ‘On the predictability of stock retuknsasset-allocation perspective’,
Journal of Financebl, 385-424.

25



Completion Time Structures of Stock Price Movements

Keim, D. & Stambaugh, R. (1986), ‘Predicting returns in the stock and bwawttets’,Journal of Financial
Economicsl7, 357-390.

Lancaster, T. (1990) he Econometric Analysis of Transition Da@ambridge university press.

Lunde, A. & Timmermann, A. (2004), ‘Duration dependence in stock priéen analysis of Bull and Bear
markets’ Journal of Business & Economic StatistR&3), 253-273.

McQueen, G. R. & Thorley, S. (1994), ‘Bubbles, stock returns andtibn dependencelpurnal of Finan-
cial and Quantitative Analysi9, 379—-401.

Merton, R. C. (1969), ‘Lifetime portfolio selection under uncertainty: €batinuous-time caseReview of
Economics & StatisticS1, 247-257.

Pesaran, M. H. & Timmermann, A. (1992), ‘A simple non-parametric testediptive performanceJour-
nal of Business & Economic Statistit8, 461-465.

Petersen, T. (1986), ‘Fitting parametric survival models with time-deperaariates’ Applied Statistics
35(3), 281-288.

Poterba, J. & Summers, L. (1988), ‘Mean reversion in stock retusidersce and implicationsJournal of

Financial Economic®2, 27-60.

Russell, J. R. (2001), Econometric modelling of multivariate irregulargegpdigh-frequency data. Un-

published manuscript, University of Chicago, Graduate School of Basin

Rydberg, T. H. & Shephard, N. (1999), Modelling trade-by-tradegomovements of multiple assets using

multivariate compound Poisson processes. Unpublished ManuscrifielN@ollege, Oxford.

Samuelson, P. (1969), ‘Lifetime portfolio selection by dynamic stochastigranoming’, Review of Eco-
nomics & Statistic®l, 239-246.

Schwert, G. W. (1990), ‘Indexes of united states stock prices frof2 18 1987’,Journal of Business
63, 399-426.

Shiller, R. J. (2000)lrrational ExuberancePrinceton University Press.

Sullivan, R., Timmermann, A. & White, H. (1999), ‘Data-snooping, techrtiealing rule performance, and
the bootstrap’Journal of Financeb4, 1647-1691.

26



Completion Time Structures of Stock Price Movements

Timmermann, A. (1996), ‘Excess volatility and predictability of stock returnautoregressive dividend

models with learning’Review of Economic Studié3(4), 523-557.

Timmermann, A. (2001), ‘Structural breaks, incomplete information andkgidces’,Journal of Business
& Economic Statistic49, 299-315.

Veronesi, P. (1999), ‘Stock market overreaction to bad news in goodtifeational expectations equilib-
rium model’,Review of Financial Studiegss 975-1007.

27



Completion Time Structures of Stock Price Movements

APPENDIX: TABLES AND FIGURES

Table 1: SUMMARY STATISTICS FOR THE DURATION OF UP AND DOWN MOVEMENTS.

Series Filter no. obs Mean Median Standard dev. Min. Max.
1 4713 4.07 3 3.58 1 35
2 2145 9.59 7 9.28 1 86
3 1261 16.83 12 16.10 1 126
4 831 25.91 18 25.55 1 221
5 596 36.77 27 37.31 1 373
6 458 47.52 34 44.96 1 280
Up excursions 7 361 62.33 48 56.23 1 377
(days) 8 287 80.72 58 78.53 3 510
9 240 98.46 70 89.69 2 519
10 220 109.27 74 108.71 2 704
11 183 127.87 88 110.97 3 645
12 167 147.41 108 145.54 3 1059
13 145 165.12 112 159.80 2 862
14 130 179.59 134 152.06 3 702
15 119 211.04 151 177.58 4 999
1 3853 3.17 2 2.96 1 28
2 1681 6.45 4 7.21 1 88
3 961 10.57 6 12.53 1 119
4 607 16.23 9 18.68 1 117
5 411 23.10 12 27.70 1 169
6 301 31.92 18 38.71 1 296
Down excursions 7 227 39.08 22 46.52 1 329
(days) 8 175 46.44 21 57.81 1 317
9 137 55.88 27 66.04 1 339
10 128 56.67 28 69.24 1 323
11 96 82.34 35 137.27 2 850
12 86 77.74 40 114.86 1 866
13 71 103.63 67 150.59 2 904
14 62 127.81 7 167.07 1 884
15 54 115.48 76 161.84 5 861

This table reports summary statistics for up and down eixwuss The durations are computed using the
definition of barriers given by equations (6-8) and are messin trading days.
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Table 2: ESTIMATING MSMP-dy

Panel A: Parameter Estimates

Filter Parameters
A11 (t.g4=0) A12 (SB A13 (t.1,=0) A21 (tpy=0) A22 (SB A23 (t.p=0)

1 0.076(11.49) 0.984(0.002) -0.085(-11.62) 0.064(8.72)  0.989(0.002) -0.072(-8.74)

2 0.124(9.61) 0.976(0.005) -0.137(-9.40) 0.118(7.97) 0.979(0.005) -0.131(-7.87)

3 0.142(7.57) 0.970(0.009) -0.156(-7.21) 0.157(7.86) 0.974(0.007) -0.174(-7.83)

4 0.212(8.78) 0.940(0.013) -0.239(-8.78) 0.199(6.54) 0.962(0.008) -0.223(-6.70)

5 0.221(7.65) 0.918(0.021) -0.254(-7.62) 0.173(6.10) 0.958(0.009) -0.202(-6.58)

6 0.185(5.22)  0.928(0.032) -0.213(-4.92) 0.131(4.80)  0.967(0.009) -0.155(-5.38)

7 0.1722.96)  0.927(0.061) -0.201(-2.49) 0.139(4.81)  0.966(0.013) -0.165(-5.60)

8 0.0823.53)  0.985(0.014) -0.088(-3.45) 0.123(4.56)  0.983(0.014) -0.138(-4.37)

9 0.079(2.81) 0.981(0.025) -0.086(-2.84) 0.141(4.14) 0.978(0.025) -0.161(-3.83)
10 0.142(2.79) 0.975(0.032) -0.150(-2.62) 0.190(4.44) 0.976(0.026) -0.210(-3.94)
11 0.1053.112) 0.975(0.026) -0.113(-3.10) 0.164(4.06) 0.969(0.027) -0.195(-3.96)
12 0.0903.08) 0.976(0.016) -0.097(-3.43) 0.155@3.78)  0.965(0.023) -0.189(-3.81)
13 0.096(3.08) 0.977(0.016) -0.101(-3.64) 0.1714.71) 0.973(0.021) -0.198(-4.91)
14 0.093(2.56) 0.970(0.016) -0.102(-2.91) 0.2174.27) 0.951(0.025) -0.271(-4.50)
15 0.081(1.68) 0.964(0.026) -0.091(-2.14) 0.173(2.94) 0.938(0.035) -0.244(-4.34)

Panel B: Diagnostics
Filter LB(x, 15 LB(, 15 s —1 E-R EDT Max Like LR-bench.

1 3965.40 11.55 0.212 -12.40 -13929.00 1094.90

2 2402.30 18.86 0.123 -5.05 -6014.30 909.28

3 1687.90 13.55 0.116 -3.63 -3420.30 665.55

4 865.86 13.19 0.116 -2.94 -2187.10 479.48

5 488.43 8.30 0.041 -0.894 -1530.40 327.38

6 335.61 14.03 0.014 0.277 -1165.50 212.25

7 268.24 17.11 0.032 -0.540 -907.78 153.04

8 104.51 15.18 0.052 0.811 -721.96 94.69

9 125.75 7.72 0.014 0.196 -581.12 92.07
10 116.52 14.38 0.022 0.290 -522.72 109.80
11 89.02 14.85 0.037 0.440 -422.04 71.34
12 49.08 16.97 0.097 1.14 -389.97 51.32
13 66.06 9.47 0.091 0.984 -322.24 62.60
14 79.89 15.97 0.089 -0.833 -293.54 38.97
15 54.61 11.53 0.005 0.048 -266.67 26.80

Table 2 presents the results of estimating the dynavttsdVP model given in equation (17). Panel A shows the
parameter estimates. The first column gives the filter sibjnens 2-4 show the parameter estimates for the up
intensities and columns 5-7 show the parameter estimatéssfaown intensities. T-statistics or standard errorethas
on a Quasi-Likelihood are shown in parentheses.

Panel B reports diagnostics for the fitted models. LB(x,1%) &B(£,15) denotes the Ljung Box statistic with 15
lags, computed on raw durations and the residuals definaBmg.%(lS) = 25). Column 4 shows the amount of
over-dispersion in the residuals. In column 5, E-R EDT issh ter over-dispersion with respect to the exponential
distribution suggested by Engle & Russell (1998). The lattiron shows a likelihood ratio test of the nalj; =

Ao2 = 0.
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Table 3: ESTIMATING MSMP-dyc

Panel A: Parameter Estimates
Filter Parameters

A11 (to) A128B  A13(to) P11 (to) B12 (to) B13 (to) A21 (to) A22SB  A23(to) P (to) B22 (to) B23 (to)
1 .057(8.08) .971(005) -.09(-12) .041(5.82) -.001(-2.13) -.033(-1.81) .022(3.20) .974(.007) -.08(-7.0) .089(4.58) -.001(-1.77) .068(4.05)
2 .086(.66) .951(.010) -.14(-10) .093(6.41) -.003(-2.91) -.012(-0.50) .036(2.26) .946(.018) -.15(-6.9) .199(4.18) -.003(-2.28) .132(5.59)
3 .097@.54) .930(.017) -.17(-7.3) .119(5.53) -.004(-2.29) -.050(-1.71) .039(1.45) .922(.027) -.20(-6.7) .283(3.85) -.005(-2.11) .142(4.44)
4 .123(4.00) .890(.019) -.23(-8.1) .187(5.74) -.007(-2.55) -.064(-1.73) .025(0.62) .891(.032) -.24(-6.8) .396(4.42) -.010(-2.52) .099(2.81)
5 .123(3.33) .856(.027) -.25(-7.8) .236(5.05) -.009(-2.24) -.093(-2.19) -.030(-0.39) .862(.054) -.23(-7.1) .489(3.22) -.012(-2.12) .089(2.14)
6 .082(1.97) .866(.037) -.20(-6.0) .219(3.88) -.007(-1.63) -.075(-1.63) -.036(-0.26) .861(.116) -.21(-3.7) .442(1.48) -.012(-1.20) .119(2.68)
7 .091(1.59) .844(064) -.21(-3.5) .199(3.27) -.006(-1.05) -.088(-1.47) .019(0.24) .901(.063) -.18(-4.3) .282(1.68) -.008(-1.17) .138(3.65)
8 .060(0.72) .648(.091) -.26(-3.7) .360(3.44) -.021(-1.93) -.075(-1.37) -.264(-1.65) .646(.084) -.25(-3.8) .854(4.28) -.033(-2.79) .151(2.57)
9 -.035(-0.39) .699(.109) -.17(-2.3) .336(3.28) -.012(-1.31) -.127(-2.05) -.166(-0.54) .750(.267) -.24(-2.8) .679(1.25) -.022(-0.83) .166(3.13)
10 .038(0.48) .733(.082) -.26(-4.2) .554(3.89) -.020(-1.90) -.068(-1.01) -.068(-0.45) .783(.112) -.28(-4.5) .718(2.34) -.029(-1.57) .177(3.09)

Panel B: Diagnostics

Filter LB(x, 15 LB, 15 s —1 E-REDT Max Like LR-bench.
1 3965.40 5.19 0.215 -12.58 -13863.00 130.79
2 2402.30 13.06 0.137 -5.59 -5937.00 154.52
3 1687.90 20.57 0.128 -3.99 -3355.60 129.44
4 865.86 13.37 0.130 -3.26 -2134.90 104.42
5 488.43 9.87 0.071 -1.54 -1485.50 89.65
6 335.61 9.91 0.027 0.526 -1145.60 39.81
7 268.24 18.29 0.031 -0.514 -889.60 36.35
8 104.51 12.11 0.009 0.136 -695.71 52.51
9 125.75 8.71 0.013 0.175 -561.07 40.10
10 116.52 15.02 0.018 -0.231 -498.23 48.97

Table 3 presents the results of estimating the dynavtsMP model given in equation (19). Panel A shows the parametéanatgs. The first column
gives the filter size, columns 2-7 show the parameter estsnfat the up intensity and columns 8-13 provide estimateshi® down intensity. QML T-
statistics/standard errors are given in parentheses.| Baeports diagnostics for the fitted models. LB(x,15) and4,85) denotes the Ljung Box statistic
with 15 lags, computed on raw durations and the residualsetfn equation (18))(5.95(15) = 25). Column 4 reports the amount of over-dispersion in the
residuals. In column 5, E-R EDT is a test for over-dispersiohthe exponential distribution suggested by Engle & RUI$898). The last column gives
the likelihood ratio test of the nuB1; = B1o> = B13 = Bo1 = Box = B3 =0.
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Table 4: ESTIMATING MSMP-dytvc

Panel A: Parameter Estimates

Filter Parameters
M1(to)  A120SB Ai3(to) P11 (to) B12 (to) B13 (to) 221 (t0) A22(SB  A23(to)  B2i (to) B22 (t0) B23 (to)
1 .056(8.50) .970(.004) -.09(-12) .040(6.09) -.001(-2.48) -.004(-0.32) .020(2.61) .971(008) -.08(-7.8) .099(5.20) -.001(-2.10) .022(1.64)
2 .087(6.78) .944(008) -.15(-11) .092(6.64) -.003(-3.57) -.026(-1.02) .023(1.32) .931(017) -.17(-8.8) .240(5.81) -.003(-2.94) .048(1.68)
3 .104(4.39) .915(.019) -.18(-6.7) .116(5.28) -.004(-2.55) -.061(-1.36) .006(0.20) .896(.028) -.21(-7.8) .355(5.13) -.006(-2.51) .010(0.22)
4 127(3.79) .886(.022) -.23(-7.2) .175(5.35) -.007(-2.73) -.006(-0.15) .002(0.04) .872(.032) -.25(-7.6) .449(5.31) -.010(-2.95) .027(0.53)
5 .138(3.41) .849(.028) -.25(-6.9) .212(4.54) -.010(-2.73) -.027(-0.50) -.077(-1.01) .831(.049) -.24(-7.8) .574(4.51) -.013(-2.71) .048(0.81)
6 .113(2.46) .882(.043) -.21(-5.5) .171(3.11) -.007(-1.54) .016(0.32) .0040.03) .900(.117) -.19(-2.8) .326(1.08) -.009(-0.91) .116(1.92)
7 .0971.37) .872(082) -.20(-2.6) .162(2.74) -.004(-0.71) -.020(-0.33) -.026(-0.15) .885(.152) -.18(-2.7) .357(1.02) -.007(-0.68) .080(0.96)
8 .085(0.90) .490(.202) -.28(-4.1) .335(2.79) -.038(-1.86) -.232(-1.40) -.385(-2.57) .585(.069) -.25(-3.6) .958(6.30) -.026(-2.22) .269(3.20)
9 .019(0.19) .688(.206) -.19(-2.1) .274(2.58) -.016(-0.81) -.151(-0.74) -.321(-0.89) .683(.255) -.22(-3.0) .853(1.81) -.016(-1.09) -.050(-0.32)
10 .067(0.83) .736(.086) -.26(-4.1) .511(3.59) -.022(-1.77) -.047(-0.36) -.153(-0.84) .768(.124) -.26(-4.0) .833(2.42) -.023(-1.83) .067(0.71)
Panel B: Diagnostics
w Filter LB(x, 15 LB(, 15 s —1 E-R EDT Max Like LR-bench.
. 1 3965.40 4.27 0.215 -12.55 -13872.00 113.35
2 2402.30 15.47 0.133 -5.43 -5946.70 135.22
3 1687.90 27.72 0.127 -3.95 -3365.80 108.98
4 865.86 15.04 0.129 -3.24 -2141.20 91.89
5 488.43 12.31 0.069 -1.50 -1490.00 80.68
6 335.61 9.28 0.016 0.305 -1149.60 31.81
7 268.24 17.21 0.028 -0.472 -896.47 22.61
8 104.51 18.07 0.004 0.066 -694.47 54.98
9 125.75 12.02 0.005 0.063 -567.04 28.16
10 116.52 15.04 0.016 -0.202 -502.48 40.46

Table 4 presents the results from estimating the dynan8&1P-dytvc model given in equation (21). Panel A provides the paranettmates. The first
column shows the filter size, columns 2-7 show the paramstinates for the up intensity and columns 8-13 show the esgistor the down intensity. QML
T-statistics/standard errors are given in parentheseml Bareports diagnostics for the fitted models. LB(x,15) &Bgé¢,15) denotes the Ljung Box statistic
with 15 lags, computed on raw durations and the residualsetfn equation (18))(5.95(15) = 25). Column 4 reports the amount of over-dispersion in the
residuals. In column 5, E-R EDT is a test for over-dispersionthe exponential distribution suggested by Engle & Rli$3898). The last column shows
the likelihood ratio test of the nuB; = B1o> = B13 = Bo1 = Box = P23 =0.
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A

Table 5: SUMMARY STATISTICS FOR THE OUT-OF-SAMPLE FORECAST EVALUATION

Model Stat Filter (Nobs) [NFC]
1 2 3 4 5 6 7 8 9 10
(8566)  (3826)  (2222)  (1438)  (1006)  (758) (588) (462) (372) 344
[4283]  [1913]  [1111]  [719] [503] [379] [294] [231] [93] [86]
- 201 245| [286 241] [.298.231] [.307 226] [330 220 [344 225 [.349 218] [.381 210] [.405.193] [.400.204
Benchm.  Matrix [252 .212] [.257 .216} [.265 .206} [.268 .198] [.270 .180] [.261 .171] [.266 .166} [.264 .145] [.272 .130] [.263 .133]
% Correct 0.503 0.502 0.504 0.505 0.510 0.514 0.516 0.526 350.5 0.533
(0.008) (0.011) (0.015) (0.019) (0.022) (0.026) (0.029)  .08@) (0.052) (0.053)
x2-stat. 1.003 1.011 1.011 0.993 0.996 1.057 0.982 0.999 1.021 1.026
(1.459) (1.380) (1.431) (1.428) (1.424) (1.486) (1.361)  .422) (1.438) (1.407)
PT-test -0.001 -0.014 0.031 0.020 -0.005 -0.007 0.006 .00 0.003 -0.008
(1.002) (1.006) (1.006) (0.997) (0.999) (1.030) (0.993)  .002) (1.016) (1.019)

MSMP-dy  Matrix [.330 .262] [.320 .247] [.385 .258:| [.394 .282] [.362 .217] [.354 .208] |:‘463 .238:| [.489 .238] [.570 .269] [.558 .314]

.213 194 .223 211 .178 .178 .182 .142 .239 .183 .251 .187 .153 .146 156 .117 .108 .054 .105 .023

% Correct  0.525 0.531 0.563 0.535 0.545 0.541 0.609 0.606  240.6 0.581

x?-stat. 4.930 4.870 10.10 0.260 1.800 1.260 5.770 2.050 0.009 1.360

PT-test 2.221 2.206 3.175 0.510 1.344 1.124 2.407 1435  80.09 -1.174

MsMP-dyc Mattix |30 O] | 958 2ae) | i zar) |20 200 |22t zse| |o6s zen] |sap o a7 %8| |saare| | aee 1og
% Correct  0.552 0.574 0.595 0.606 0.638 0.583 0.616 0.636  670.6 0.663

x?-stat. 46.00 42.80 36.90 32.40 37.70 13.60 16.40 17.60 6.160 6.040

PT-test 6.787 6.544 6.076 5.692 6.146 3.689 4.056 4203 6249 2473

Table 5 reports the results of the out-of-sample forecgstkperiments. Shown below the filter size is the number ofiestons in the full sample (in
round brackets) and the number of observations in the catoiple forecasting period (in square brackets). The ieoh matrices” sort the proportion of
predicted up and down moves against the proportion of rs@ligp and down moves. The percentage of correct forecasis saitn of the diagonal elements
from these matrices. Also shown are Fisher’s Chi-squargtchted the PT-test for independence between the predictereatized direction of stock price
moves.
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Figure 1: Residuals from the inverse Gaussian distribution fitted to the disribof first passage times
(6 =0.10).
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Figure 3: Transition probabilities (black line) from the MSMP-dyc model g0 % filter, plotted against
log-prices (thin line). The nearly horizontal gray line tracks the uncondititransition probabilities. The
shaded areas are periods of up durations.
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