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1. INTRODUCTION

The extent to which stock market returns can be predicted has long been akey question in finance. Pre-

dictable patterns in prices map into changes in investors’ optimal portfolio holdings, so different models for

the evolution in stock prices translate naturally into different asset allocations. Most notably, in the absence

of predictability of stock returns, investors face constant investment opportunities and their optimal stock

holdings become independent of the investment horizon, c.f. Merton (1969) and Samuelson (1969).

A vast body of empirical work on asset prices has found evidence thatstock returns are partially pre-

dictable either through past movements in stock prices−due to the presence of a mean-reverting component,

c.f. Fama & french (1988) and Poterba & Summers (1988)−or by means of time-varying predictor variables

such as interest rate spreads, default premia, the dividend yield, the earnings-price ratio or similar variables,

c.f. Campbell (1987), Campbell & Shiller (1988), Fama & french (1989),Ferson & Harvey (1991) and

Keim & Stambaugh (1986).

Another strand of this literature has documented predictability in higher ordermoments of stock returns

such as volatility (Glosten, Jagannathan & Runkle (1993)), skewness and kurtosis (Guidolin & Timmermann

(2004)). In the presence of such time-variations in the conditional returndistribution, investors’ optimal as-

set allocation will generally depend on state variables that track current and future investment opportunities.

Investors’ time horizon will also matter for their asset allocation, as will the frequency of any rebalancing

opportunities. This holds both if investors’ objectives are to maximize expected utility or if they are simply

interested in controlling risk.

Common to the vast majority of work on predictability of stock returns is that it studies price moves over

a fixed holding period such as a day, a week or a month. Similarly, measures of risk are commonly based on

quantiles or moments of the return distribution defined over a fixed holding period. Assets with high mean

return and low volatility or low probability of incurring a large loss over a pre-specified investment horizon

are viewed as more desirable by risk averse investors.

Rather than fixing the holding period and studying how far prices moved over a certain time interval,

asset price movements can be analyzed by fixing the size of the movement required by the asset price

and treat the resulting completion time as an unknown, random variable. This yields a complementary

perspective to the analysis of fixed-horizon movements in asset prices. For example, how desirable an asset

is to a risk averse investor can equally well be characterized in terms of howlong the investor expects to

have to wait before the asset pays off a pre-determined return such as5% and how uncertain this waiting

time is. The higher the variance of this completion time, or duration, the riskier the asset can be considered
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to be. Likewise, if the mean duration is long, the expected return per unit of timewill tend to be low.

Duration-based risk measures are useful in many finance applications. For example, consider the asset

allocation decision of a pension fund manager in charge of an underfunded pension scheme with known

future liabilities. Regulatory rules often require that an existing funding gap(i.e. the difference between the

projected value of the liabilities and the market value of the assets) is eliminated within a specified period of

time such as a year. The pension fund manager is thus faced with the risk of not covering the underfunding

within a specific period of time. To ensure compliance with such regulation, the fund manager would need

a forecast of the expected time before the value of the assets under management move up by the funding

gap, sayδ%. The expected completion time should be well under the maximum allowed time, or else

the portfolio holdings need to be changed. Our paper presents new methods that allow the fund manager to

compute such probability estimates not just initially, but in real time as a function ofa set of underlying state

variables that predict future price movements and that are allowed to change during the duration spell. As

a second example, traders in financial markets often have contracts that pay a pre-specified bonus provided

that they reach a performance mark within a certain period of time (e.g., a calendar year) and duration-based

probability measures are ideally suited to characterize the associated probabilities that such a threshold will

be reached.

In many cases clearly a duality exists between asset return characteristicsmeasured over a fixed horizon

vis-a-vis the distribution of durations or completion times associated with a fixed return. Most notably,

when asset prices are generated by a geometric random walk process with constant drift and volatility−as

assumed in much of modern finance−there is a one-to-one relationship between standard measures of risk

and returns that condition on a fixed holding period and duration measuresbased on completion times that

condition on a fixed return.

Outside this framework, however, no general results exist on the relationship between risk measures

based on fixed-horizon returns and measures based on fixed-returndurations so one would expect that they

can uncover very different features of the underlying data generating process. This becomes particularly

important in the presence of nonlinearities in returns. Recent empirical work suggests that nonlinearities in

asset returns are important. For example, Christoffersen & Diebold (2003) and Guidolin & Timmermann

(2004) suggest complicated dynamic dependencies in the term structure ofrisk and in the probabilities of

up and down moves, Value at Risk (VaR) or expected shortfall. Detemple, Garcia & Rindisbacher (2003)

also document strong evidence of nonlinear dynamics in asset prices.

Theoretical models in the asset pricing literature also suggest complicated nonlinear dynamics in stock

prices arising as a result of speculative bubbles (McQueen & Thorley (1994)), over-reaction to recent news
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(De Bondt & Thaler (1985)), learning dynamics (Timmermann (1996, 2001), Veronesi (1999)), habit persis-

tence (Campbell & Cochrane (1999)) or non-linear dynamics in the dividend process (Donaldson & Kamstra

(1996)). The prevalence of such theories means that it is informative to use alternative measures of risk and

different modes of analysis to identify possibly complicated dynamics in assetprices.

As an example of a nonlinearity, suppose that log-stock prices fluctuate within a narrow band for a long

period of time reflecting, perhaps, support and resistance levels as hypothesized by many technical trading

models, c.f. Brock, Lakonishok & Lebaron (1992) and Sullivan, Timmermann & White (1999). This type

of sample path could result from a model with time-varying serial correlationsthat vary as a function of

the distance to the bands. The resulting low volatility would make the asset seem attractive even though,

over a longer horizon, the asset return can be expected to be low since investors have to wait longer than

expected before earning a positive return sufficiently high to require prices to move beyond the band.1 Such

nonlinear dependencies would be reflected in the distribution of durations of up and down movements in

stock prices provided that a range of thresholds{±δ1,±δ2, ...± δ j } for the change in the log asset prices is

studied. In analogy with the fixed income literature, we refer to the joint distribution of expected completion

times for different values ofδ as the completion time structure. Completion time measures can also capture

other features commonly associated with stock returns. For example, outliersin the return distribution will

lead to more short durations as will volatility clustering. Similarly, the completion time ofan up move will

be shorter (longer) if more large and positive (negative) than large andnegative (positive) shocks occur, so

duration models can also identify skews in asset price dynamics.

The contributions of our paper are three-fold. First, we present new applications to stock price move-

ments of models for completion time dynamics using more than a century of daily stockmarket prices.

While duration features of stock price movements have been explored in the study of market microstructure

effects (c.f. the literature survey by Engle & Russell (2002)), little work has been undertaken on the duration

of movements in stock prices of the size or frequency considered here.2 Secondly, we make a methodolog-

ical contribution by showing how to account for the effect of time-varyingstate variables that may change

within a duration. This is particularly important in finance applications where predictor variables such as

1 Suppose for example that this band is given by log(p0)± δ/2, wherep0 is the initial asset price andδ is the width
of the band. Then the expected rate of return within the band would be bounded byδ/T , whereT is the investment
period.

2 One exception is the paper by Lunde & Timmermann (2004) whichstudies bull and bear states. However, that
paper adopts a very different methodology that does not fix the size of the required stock price movement, but instead
defines underlying (latent) states according to the size of log-price changes since the previous local peak or trough.
This is an important distinction since our framework here has the random walk model as a natural benchmark whereas
this is not the case in the setup with (endogenous) bull and bear states.
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the interest rate are likely to be subject to important time-variations. Such inter-duration variations are likely

to affect the time of completion. Hence, by only conditioning on information available at the time of the

beginning of a new duration spell, an important part of the behavioral relation between stock prices and the

relevant state variables may be missed or at worst reversed. Our approach allows investors to update, in

real time, the expected value of the remaining time until the completion of a duration spell as the values

of the relevant state variables change. Third, we present new empiricalevidence of predictability in stock

price movements using both in-sample and out-of-sample experiments, with the latter set up to replicate the

real-time forecasts of an investor.

The plan of the paper is as follows. In the context of the geometric random walk model Section 2 shows

the duality between conventional measures of risk and returns over a fixed time horizon and completion

time measures and also presents some initial empirical results. Section 3 presents the econometric methods

used to characterize the distribution of completion times. Section 4 reports estimation results for a range

of empirical specifications, while Section 5 evaluates the duration models in an out-of-sample forecasting

experiment and Section 6 concludes. Technical details are provided in twoappendices at the end of the

paper.

2. COMPLETION TIMES UNDER THEGEOMETRIC RANDOM WALK

Suppose we are interested in studying the time it takes for the logarithm of an asset price,P, to complete a

move of a certain size. To establish a benchmark for the distribution of such durations, it is useful to first

consider this question for the standard geometric random walk model. In this model the logarithm of stock

prices,pt = log(Pt), evolves according to the following stochastic differential equation:

dpt = µdt + σdWt , (1)

whereW is a standard one-dimensional Wiener process. To measure durations, we have to define a random

variable that tracks the completion times. To this end we study how long it takes for the logarithm of the

stock price index to move up by a fixed amount,δ > 0.3 This can be achieved by defining a chain of first

passage times measuring the time it takes for log-stock prices to cross a single barrierδ units away from the

3 Lunde & Timmermann (2004) define bull and bear markets as states that partition the data according to sequences
of local peaks and troughs. This definition reflects the most common use of these terms but does not lead to a tractable
benchmark duration model since the classification of the current state depends on both past and future movements in
stock prices.
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initial log-price pt0,i :

τ ∗
upi
(δ, pt0,i ) = inf{t ≥ t0,i : pt − pt0,i ≥ δ}, (2)

where the notationt0,i reflects thatpt0,i is the log-price at the origin of thei th first passage time.

The first passage time,t , for the event that some barrierδ return units away from the starting point,pt0,i ,

is crossed has the following Inverse Gaussian density,f (t), and survival function,S(t):4

f (t) = δ

σ
√

2π t3
exp(

−(δ − µt)2

2σ 2t
), (3)

S(t) = 8(
δ − µt

σ
√

t
)− exp(

2µδ

σ 2
)8(

−δ − µt

σ
√

t
), (4)

where8 denotes the standard Gaussian cumulative density function. Thus, underthe geometric random

walk model (1), for a given barrier,δ, the duration distribution has a convenient closed form that is com-

pletely characterized by the drift (µ) and volatility (σ ) of asset prices. Ifµ ≤ 0 no positive moments ofT

exist, while forµ > 0 it holds that:

E[T] = δ

µ
,

Var(T) = δσ 2

µ3
. (5)

As expected, these moments depend on the drift and volatility parametersθ = (µ σ)
′

as well as the

distance to the barrier,δ. These parameters can either be retrieved from the duration distribution through

maximum likelihood estimation based on (3) and (4) or, as is traditionally done, from the moments of the

returns data sampled at a given calendar frequency.

The single barrier definition (2) only indirectly reflects down moves in stock prices in as far as these

show up as longer durations before stock prices move up by a fractionδ. An alternative is to introduce

duration measures that more directly reflect down moves by tracking the time it takes for log-prices to either

decline or rise byδ:

τ ∗
downi

(δ, pt0,i ) = inf{t ≥ t0,i : pt − pt0,i ≤ −δ}, (6)

τ ∗
upi
(δ, pt0,i ) = inf{t ≥ t0,i : pt − pt0,i ≥ δ}. (7)

Only the introduction of (6) is changed here since (7) is identical to (2). However, the definitions (6)-(7) now

give rise to a two-barrier problem since we measure the time it takes before one of two barriers is crossed

by the stock price index. We capture this information through a sequence ofmarked durations

τ ∗
i = {min(τ ∗

downi
, τ ∗

upi
),d∗

i }, (8)

4 See, e.g., Lancaster (1990, page 119).
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whered∗
i is an indicator variable that equals one if the upper barrier is crossed first, and otherwise is zero.

Many of the methods used in this paper are relatively new to the finance literature−with the exception

of studies of market microstructure effects – so we first look at the data before considering the more detailed

econometric analysis in the subsequent sections.

2.1. Data

To investigate the properties of up and down movements in stock prices along the definition proposed in

Section 2, we construct a data set of daily US stock prices from 2/17/1885to 12/31/1997. From 2/17/1885

to 2/7/1962 the nominal stock price index is based on the daily returns provided by Schwert (1990). These

returns include dividends. From 3/7/1962 to 12/31/1997 the stock price index is constructed from daily

returns on the Standard & Poors 500 price index, again including dividends and obtained from the CRSP

tapes. Combining these series generates a time series of 31,412 daily nominal stock prices.

Inflation has varied considerably over the sample period and the drift in nominal prices does not have

the same interpretation during low and high inflation periods. To deal with this issue, we construct a daily

inflation index as follows. We use monthly data on the consumer price index taken from Shiller (2000)

and convert it into daily inflation rates by solving for the daily inflation rate such that the daily price index

grows smoothly - and at the same rate - between subsequent values of the monthly consumer price index.5

Finally we divide the nominal stock price index by the consumer price index to get a daily index for real

stock prices.

2.2. Durations

An informal comparison of the observed durations with those implied by equations (3) and (4) provides a

first way of detecting deviations from the Geometric random walk model (1) that assumes independently

distributed, Gaussian price increments.

Figure 1 accomplishes this by plotting the distribution of the residuals from the inverse Gaussian model

fitted to US stock price durations. Another natural benchmark is a GARCH specification, so we also show

the distribution of duration residuals for a price index constructed so that the price increments are normalized

by the conditional volatility. This latter price index thus adjusts for persistencein the conditional volatility.6

5 Since the volatility of daily inflation rates is likely to be only a fraction of that of daily stock returns, normalizing
by the inflation rate has the effect of a time-varying drift adjustment. Lack of access to daily inflation data is unlikely
to affect our results in any important way.

6 The volatility adjustment was accomplished by means of the following components GARCH model proposed
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In order to make the plots more comprehensible we plot residuals with a uniformdistribution that are defined

as follows. If T has survivor functionS(t), then S(T) is uniformly distributed. Both for short and long

durations the residuals of both series are systematically underrepresented. Irrespectively of whether stock

prices are adjusted for time-variation in volatility, the figure shows that the Inverse Gaussian model does not

fit the data particularly well.

To demonstrate how time-series dependence in stock prices shows up in the durations, Figure 2 plots

the sequence of marked durations based on a barrier or ‘filter’,δ = 0.10. The length of each bar measures

the time it took (in trading days) before stock prices either moved up by 10% ordown by 10%, whichever

happened first. Durations withτ ∗
down < τ ∗

up are plotted below zero while those withτ ∗
up < τ ∗

down are shown

above zero. If duration spells were independently distributed over time, there should be no information in

the sign or length of a given duration for the evolution in future duration spells. Clearly, however, this is

not the pattern observed in Figure 2.7 Short (long) durations tend to follow short (long) durations. This is

related to the well-documented phenomenon of volatility clustering which gives rise to sequences of very

short durations when volatility is high and the price index moves fast. Furthermore, there appears to be

dependence in the direction of the market or, equivalently, in the sign of thechange in the stock price: Both

up and down moves have a tendency to cluster in time suggesting that if the previous move was up (down),

then there is a higher probability that the following move will also be up (down).This indicates that there

is predictability not simply in the volatility but also in the direction of the market, consistent with recent

findings by Christoffersen & Diebold (2003).

Using equations (6-8) we computed durations, measured in calender days, for δ ranging from 1% to

15%. Varying the size of the barrier,δ, is equivalent to varying the return horizon, as is frequently done

in the literature on variance ratios. It allows us to map out different degrees of dynamic dependencies for

different filter sizes. Summary statistics for the up and down durations are presented in Table 1.

Two caveats should be mentioned before interpreting the results. First, we only measure stock prices at

the end of each day so our observations are reported in integer days. For small filter sizes such asδ = 1%,

by Engle & Lee (1999) and extended to include an ARCH-in-meaneffect: r t = µ + βr t−1 + γ σ t + εt , σ
2
t =

qt + α(ε2
t−1 − qt−1) + β(σ 2

t−1 − qt−1), qt = ω + ρ(qt−1 − ω) + φ(ε2
t−1 − σ 2

t−1), with εt ∼ N(0, σ 2
t ). Using this

specification we compute ARCH-adjusted, normalized returns r ∗
i = ε̂i /σ̂ i whereε̂i = r i − µ̂ − β̂r i−1 − γ̂ σ̂ i is the

residual from the ARCH model and̂σ i its estimated volatility. We then construct a new price index that is adjusted for
first-order autocorrelation (reflecting the effects of asynchronous trading) and ARCH effects in the volatility and drift.
Such adjustments ensure that the new price index has the sameaverage drift and volatility as the original one.

7 This is also supported by the Ljung-Box statistic for serialcorrelation. Using 15 lags this test statistic equals
110.6 for theT series and 477.2 for the ln(T) series. Under the null of no serial correlation in the durations the 5%
critical value is 25.

7



Completion Time Structures of Stock Price Movements

it is likely that the data is measured with some error since the price index may well have moved by more

thanδ percent during the day and could even have generated two or more durations within the same day.

Such measurement errors are difficult to deal with given our data limitations,but they are unlikely to be

important for slightly larger filters.8 It should also not be forgotten that the standard analysis based on

returns measured, say, on a monthly basis is faced with the same problem. Calendar months do not have

the same number of trading days: February typically has fewer trading days than most other months and the

markets are closed some days during December. Second, the sequence of durations depends on the starting

point of our analysis, which is February 17, 1885. We experimented with different starting days and found

that the results are very robust with respect to the starting point, so this does not appear to be a problem.9

Returning to the results, as the required size of a price move increases, thenumber of completed dura-

tions declines. Thus, for a filter size,δ, of 1%, there are 4,713 up-moves and 3,853 down-moves. These

numbers decline to 119 up-moves and 54 down-moves for the largest filter of 15%. Hence the length of the

historical sample clearly constrains the statistical analysis for large filter sizes since the power of any statis-

tical tests declines as fewer duration spells are completed. Another featureof the data is that the proportion

of up-moves is higher, the larger the filter size.10 This is to be expected since the positive drift in the stock

price index is more important relative to the volatility of price movements for the durations based on the

larger filter sizes. Equally unsurprising is the finding that the standard deviation of the durations increases

as the filter size goes up as we would expect from equation (5).

3. ECONOMETRICFRAMEWORK

The empirical results reported so far demonstrate the limitations to the standard geometric random walk

model for stock prices in its most basic form or extended to allow for ARCH effects. In this section we

therefore propose a framework for analyzing and modeling the distributionof durations of stock price move-

ments that is sufficiently general to account for dynamic dependencies in completion times and the effects

of time-varying predictor variables (covariates).

To analyze the dynamics in completion times for stock prices, we propose a framework that extends the

8 To investigate the effect on maximum likelihood estimates of the parametersµ, σ implied by the observed dura-
tions, we conducted a Monte Carlos study for the model (1). Wefound that the effect on the parameter estimates was
relatively small and limited to the smallest filters.

9 Again this has an analogy when modeling returns over a fixed horizon such as one month. One could start the
monthly horizon on any one day during a month and could also treat week-end and holiday effects in different ways.

10 For the filter size of 1%, the proportion of down moves (as a percentage of the total number of up and down
moves) is 45%, while it is 31% for the 15% filter.
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models proposed by Lancaster (1990) and Engle (2000). Related but alternative models have also recently

been suggested by Russell (2001), Rydberg & Shephard (1999), Kamionka (2000) and Bowsher (2002).

These models build on the multivariate point process framework treated in e.g.Cox & Lewis (1972). In this

setting up and down movements are treated as the marginal event processes. Kamionka (2000) and Bowsher

(2002) suggest looking at the so-called pooled process of all durations. However, this framework is not

appropriate for our purpose, where a down excursion often is censored by an up move. Hence our approach

is much closer related to competing risk models.

Both notations and econometric methods are specific to the duration literature, so we first briefly in-

troduce the underlying stochastic process, transition probability models andlikelihood-based estimation

methods. The timing of events such as the completion of a first passage time gives rise to a simple point

process,T = {t0, t1, . . . , tn, . . .}. The sequence of points in time,t0 < t1 < . . . < tn < . . . are the arrival

times from which durations,xi = ti − ti−1 can be defined. Since up and down moves in asset prices typically

arrive at irregularly spaced points in time, the point process is an ideal modelling device for our purpose.

Associated with every point,ti , areM markszi = {zi 1, . . . , zi M } which often will be the variables of primary

interest as they identify and measure the event that occurred.11 The mark process can be decomposed into

a univariate discrete process identifying the event that occurred (stateindicators,di ) and a vector process

containing the marks that measure the variable defined at the associated event (state marks,yi ):12

joint
process

t�
�

�
�

�
�

H
H

H
H

H
H

t

z
t

zi
�

�
�

�
�

�

H
H

H
H

H
H

d

y

t
di

di = {1, . . . , K }: state indicators

t

yi

yi = {yi 1, . . . , yi N (di )}: state marks

t

xi

xi = ti − ti−1: points or durations

DECOMPOSITION OF A MULTI-STATE MARKED POINT PROCESS

Using this decomposition, movements in asset prices can be characterized through the stochastic pro-

cess{(Yi , Di , Xi ); i = 1, . . . , N}, whereN is the total number of completed duration spells. We call this a

11 An example of this is Engle (2000) who analyzes data comprising two types of random variables such as the time
of a financial transaction and the collection of variables observed as the trade takes place.

12 In our analysis the logarithm of the price (index) is a state mark, ln(Pti ) = pti , and by construction
∣

∣pti − pti −1

∣

∣ ≥
δ.
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Multi-State Marked Point process, or in short an MSMP process. The joint distribution of thei ’th observa-

tion conditional on the past filtration of(Yi , Di , Xi ), Fi−1, is given by

P {Yi ≤ yi , Di = di , Xi ≤ xi | Fi−1; ωi } , (9)

whereωi are the parameters determining the distribution of thei ’th duration. Modelling this distribution

directly can be very complicated and fortunately a simpler approach is available. Without loss of generality,

the joint density can be factored into the product of the marginal density of the durations (parameterized by

ω1i ) and the state indicators times the conditional distribution of the state marks (parameterized byω2i ), all

conditional on the past filtration:

P {Yi ≤ yi , Di = di , Xi ≤ xi | Fi−1; ωi }

= P {Yi ≤ yi | Di = di , Xi = xi ,Fi−1; ω1i }P {Di = di , Xi ≤ xi | Fi−1; ω2i } (10)

It is obviously of separate interest to investigate how certain marks are related to D and X. On a macro

scale interesting marks to consider would be GDP, inflation rates, interest rates etc. On a micro scale

several interesting market microstructure questions can be addressed such as how volume, depth, spreads

and liquidity relate to the distribution ofD andX. We defer such issues to future research.

3.1. State Transitions

We are concerned with modelling the duration distribution of up and down movesin stock prices. Our focus

is therefore on modelling the marginal distribution ofDi andXi conditional on the past of the joint process:

P {Di = di , Xi ≤ xi | Fi−1; ω2i } . (11)

An estimate of the density associated with this distribution can be obtained throughmaximum likelihood

estimation based on{(Di , Xi | Fi−1)}N
i=1. We begin by considering the distribution of the completion time

for the point process,T , i.e. Fi (t) = P {Xi ≤ t − ti−1 | Fi−1; ω2i } with no concern for the alternating states.

Following standard definitions the survivor function,Si , and the hazard function,λi , are given by:13

Si (t) = 1 − P {Xi ≤ t − ti−1 | Fi−1; ω2i } , for ti−1 ≤ t < ti ,

and

λi (t) = lim
h→0

P {t − ti−1 ≤ Xi < t − ti−1 + h | Xi ≥ t − ti−1,Fi−1; ω2i }
h

= fi (t)

Si (t)
= − d

dt
log(Si (t)), for ti−1 ≤ t < ti . (12)

13 As is common, we assume thatP is absolutely continuous with respect to Lebesgue measureς and that the
density ofXi , f = dP/dς , is the Radon-Nikodyn derivative ofP with respect toς .
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The hazard rate,λi (t), is the probability that the stock price passes through a barrier in any instant of time.

For anyt > ti−1, the probability of this event is conditioned on both the fact that there has not been an event

sinceti−1 and on all past events.

Ignoring for the moment the conditioning on the past information,Fi−1, and the parameters,ω2i , and

assuming that there areK possible states, we can use the fundamental law of probability to write

P {Xi ≤ t − ti−1} =
K

∑

k=1

P {Xi ≤ t − ti−1 | Di = k}P {Di = k} .

Lettingπ ik = P {Di = k} andFik(t) = P {Xi ≤ t − ti−1 | Di = k}, this simplifies to an expression that is

easier to interpret:

Fi (t) =
K

∑

k=1

π ik Fik(t).

Here theπ ik ’s are the transition probabilities, i.e. the probabilities that thei ’th event will be a move to state

k. These sum to one across theK states.Fi (t) is therefore a finite mixture distribution,π i 1, . . . , π i K are the

mixing weights andFi 1(t), . . . , Fi K (t) are the component distributions of the mixture. The specification is

quite flexible as the transition probabilities are allowed to change from event toevent as might be the case

due to institutional shifts or changing market behavior. Using this notation, thesurvivor function can be

written as follows:

Si (t) =
K

∑

k=1

π ik Sik(t). (13)

Note thatπ ik Sik(t) is the joint probability that no event occurs betweenti−1 and t and that the eventual

departure is to statek. Using (12) and (13), the transition intensities for theK states are given by

λi (t) = − d

dt
log(Si (t)) =

K
∑

k=1

π ik fik(t)

Si (t)

=
K

∑

k=1

lim
h→0

P {t − ti−1 ≤ Xi < t − ti−1 + h, Di = k | Xi ≥ t − ti−1}
h

=
K

∑

k=1

λik(t), (14)

for ti−1 ≤ t < ti . Henceλik(t)dt is the probability of departure to statek in the short interval(t, t + dt)

given that there has been no event fromti−1 to t.14

14 As pointed out by Lancaster (1990),λik(t) is not equal tofik(t)/Sik(t) as it would be ifλik(t) were a hazard
function conditional on departure to statek. The conditioning event forλik is that no event occurs fromti−1 to t , not
that no event occurs betweenti−1 andt and that departure is to statek.

11



Completion Time Structures of Stock Price Movements

These events and their probabilities can be related to the observed data which is characterized by the

probabilityP {departure tok in (t, t + dt)} . This can be factored out as follows

Si (t)λik(t)dt = P {departure tok in (t, t + dt) | no events in(ti−1, t) }P {no events in(ti−1, t) }

= π ik fik(t)dt, (15)

where fik(t)dt is the probability of departure at timet given that the departure will be to statek. This

equation shows the close connection between mixing weights and transition probabilities. Integrating (15)

overt yields the following expression for the transition probabilities

π ik =
∫ ∞

0
Si (s)λik(s)ds. (16)

Once the transition intensities,λik , have been estimated, the transition probabilities follow from (16).

Using these definitions, Appendix A sets up the likelihood function as a function of the transition inten-

sities, while Appendix B provides extensions to include time-varying covariates.

4. EMPIRICAL RESULTS

In this section we report empirical results for particular specifications of the transition intensity, moving

from an autoregressive conditional duration specification to more flexiblemodels that incorporate the effect

of time-varying state variables (covariates).

4.1. Autoregressive Conditional Duration Models

The autoregressive conditional duration (ACD) model suggested by Engle & Russell (1998) and the log-

ACD suggested by Bauwens & Giot (2000) provides a flexible dynamic specification. In our setup it takes

the following form:

λik = exp
[

λk1 + λk2 ln(λi−1,k)+ λk3xi−1(λi−1,1 + λi−1,2)
]

for k = 1,2. (17)

We refer to this model asMSMP-dy. It allows the past transition intensity,λi−1,k, to influence the subsequent

intensity in an autoregressive manner. In addition, we include an innovationterm from the part of the past

realized duration that was unpredictable ex-ante,xi−1(λi−1,1 + λi−1,2).

Estimation results are reported in Table 2.λ12 andλ22 identify the persistence in the transition intensities

linked to the autoregressive term. Estimates of these parameters−shown in PanelA−are uniformly very high

across all filter sizes and for both up- and down-moves. Furthermore, they only decline slowly from 0.98 to

12
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around 0.95 as the filter size increases from 1% to 15%. Clearly the expected duration is highly correlated

over time. The higher the previous transition intensity, the more likely it is that the current intensity will

also be high. Moreover, the significant−if somewhat smaller−coefficient estimates,̂λ13 and λ̂23, suggest

that the previous innovation to the transition intensity also affects the subsequent transition intensity. These

estimates are significant across all filter sizes.

The effect of past duration innovations on current transition intensities isnegative across filter sizes both

in up- and down-states. Transition intensities are therefore lower in both up- and down-states if the past

duration was unexpectedly long. Interestingly, the largest effect of aninnovation to the previous duration

is found for the mid-sized filters (4-7%) in up-states but for the largest filters (14, 15%) in the down-states.

Furthermore, an interesting asymmetry can be detected by comparing the estimates ofλ13 andλ23. If the last

duration was surprisingly long, then the subsequent transition intensity goes down by more in up-markets

than in down-markets for filters up to 7%, while the converse result holds for larger filter sizes. This suggests

that it takes disproportionately longer for the market to move down by a largeamount (corresponding to a

large filter size,δ) following a long duration than it takes for the market to move up by the same amount.

This effect is similar, but not identical, to mean reversion in asset prices in the following sense: a long

previous duration (for a fixed filter size) translates into a smaller rate of return and this seems to be followed

by a relative slow-down if the stock price moves down compared to if it moves up.15

Panel B reports diagnostic tests for this model. The estimated model is a mixture ofexponential distri-

butions, so the residuals can be obtained from the realized durations scaled by the transition intensities:

ξ i = xi (λi 1 + λi 2) for i = 1, . . . , N. (18)

If the model fits the data, the residuals{ξ i : i = 1, . . . , N} should be identically and independently expo-

nentially distributed with a mean and a standard deviation of one. None of the filters produce any evidence

of serial correlation in the residuals from this model. The only evidence against this model is the over-

dispersion in the residuals based on filters,δ, under 5%.

15 As the filter size,δ, increases, the standard errors of the parameter estimatesincrease and the absolute values
of the associatedt-statistics (for similar values of the estimated regression coefficients) decrease systematically. This
a result of the fewer completed duration spells for the larger values ofδ, c.f. Table 1, and the associated decline in
power. The estimates in Tables 2-4 suggest that, on grounds of the power of the statistical tests, it is not advisable to
consider filter sizes greater than 10-15%, depending on how many parameters the model requires estimating.

13
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4.2. Interest Rate Effects

4.2.1. Data

A popular state variable frequently used in the analysis of stock market returns is the interest rate which is

known to closely track cyclical movements in the economy and forecast returns. To make our results com-

parable to the existing literature, we therefore consider the effect of time-varying interest rates on transition

intensities. Since there is no continuous data series on daily interest rates from 1885 to 1997, we construct

our data from four separate sources. From 1885 to 1889 the source isagain Shiller (2000). From 1890 to

1925, we use the interest rate on 90-day stock exchange time loans as reported in Banking and Monetary

Statistics, Board of Governors of the Federal Reserve System (1943). These rates are provided on a monthly

basis and we convert them into a daily series by simply applying the interest rate reported for a given month

to each day of that month. From 1926 to 1954 we use the one-month T-bill rates from the risk-free rates file

on the CRSP tapes, again reported on a monthly basis and converted into a daily series. Finally, from July

1954 to 1997 we use the daily Federal Funds rate. These three sets of interest rates are concatenated to form

a single time series covering the full sample.

4.2.2. Interest Rate Effects in theMSMP-dy Model

Before turning to the model with time-varying covariates, first consider a dynamic model with constant

covariates. This model extends theMSMP-dy specification (17) by including as covariates the state of the

previous duration (di−1) which equals 1 if thei − 1’th duration was an up-move and is 2 otherwise, the

interest rate level at the beginning of the duration (int(ti−1)), and the change in the interest rate over the past

duration (1int(ti−1)). Hence, the model is specified as follow

λik(t) = exp
[

λk1 + λk2 ln(λi−1,k)+ λk3xi−1(λi−1,1 + λi−1,2)

+ βk1(di−1 − 1)+ βk2int(ti−1)+ βk31int(ti−1)] for k = 1,2 (19)

We refer to this model asMSMP-dyc.

Estimation results for this model are reported in panel A of Table 3. Since this and the following model

have more parameters to estimate, we only report results for filter sizes,δ, up to 10%. This ensures that we

have sufficiently many durations available for estimation. Ignoring the other covariate effects, variations in

the conditional transition intensities,λik j = λi |di =k,di −1= j , due to the dummy indicators can be mapped out

14
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as follows:

λi 11 = exp[λ11] : Intensity ofupscoming from theupstate.

λi 12 = exp
[

λ11 + β11

]

: Intensity ofupscoming from thedownstate.

λi 21 = exp[λ21] : Intensity ofdownscoming from theupstate.

λi 22 = exp
[

λ21 + β21

]

: Intensity ofdownscoming from thedownstate.

(20)

The positive and significant estimates ofβ11 andβ21 in Table 3 show that the transition intensities of

both up- and down-moves are higher coming from a down state. This is likely toreflect the well-known

leverage effect: negative shocks have a disproportionately large effect on future volatility compared with

positive shocks of the same size. Negative shocks thus have the effectof increasing the ‘speed’ of the stock

price index, leading to higher intensities. Furthermore, the estimates ofβ21 are generally higher than those

of β11 suggesting that the effect is highest for future down-markets.

The autoregressive parameter estimatesλ12 andλ22 continue to be very high (0.97) for the smallest filters

but are now much smaller for the largest filter sizes. Past duration shockscontinue to have a negative effect

on the transition intensities as bothλ̂13 andλ̂23 are negative, suggesting that an unexpectedly long previous

duration gives rise to a lower transition intensity and hence a longer expected future duration.

For both up and down moves the estimated effects of the level of the interest rate on the transition

intensities (̂β12 andβ̂22) are generally negative and significant for about half of the filters. Higher interest

rates are thus associated with lower transition intensities for both up- and down-moves and will increase the

expected completion time. Turning to the effects of changes in interest rates we find some quite intuitive

results. Rising interest rates are associated with slower up moves (asβ̂13 is always negative) and faster down

moves (aŝβ23 is positive). The effect of interest rate changes on transition intensities isalso much higher

than the effect of the interest rate level as can be seen in the size of the coefficient estimates.16

Interest rates therefore influence bothhow longit takes before the market moves by a certain percentage

and alsowhetherthe market moves up or down. Furthermore, the coefficient on the interestrate covariate

goes up as the filter size increases, suggesting different long- and short-run effects of interest rate movements

on stock prices.

Finally the diagnostic tests reported in Panel B of Table 3 suggest that thereis no serial correlation in

the residuals although some evidence of excess dispersion remains for filter sizes up to 4%.

16 The estimated effects are not directly comparable as they appear in the table, but we also estimated the model
for all filter sizes with the interest rate variables standardized to have unit variance. This resulted in even bigger
differences.
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4.2.3. Time-varying Interest Rate Effects in theMSMP-dy Model

The model with covariates (19) only accounts for interest rate effects in as far as these have evolved prior to

the beginning of a new duration. In contrast, the following time-varying covariate model allows interest rate

effects that can changeduringduration spells:

λik(t) = exp[λk1 + λk2 ln(λi−1,k(xi−1))+ λk3xi−1(λi−1,1(xi−1)+ λi−1,2(xi−1))

+ βk1(di−1 − 1)+ βk2int(t)+ βk31int(t)] for k = 1,2. (21)

Here1int(t) is the most recent change in the interest rate occurring just before timet . Estimation of this

model proceeds by means of the techniques developed in Appendix B.

This dynamic model with time-varying covariate effects is referred to asMSMP-dytvc. This is quite a

complicated model that allows the transition intensities to depend on their lagged values, past innovations

to the transition intensities as well as movements in the interest rate. Results from estimation of this model

are provided in Table 4. The estimates of the persistence and innovation effects do not change much as

compared to the earlier model (19) that did not allow interest rates to changeduring the duration. The

coefficients measuring interest rate level effects are also largely unchanged. In contrast the effect of changes

in interest rates during a duration spell is less pronounced than before.A possible interpretation of this

finding is that changes in interest rates do not have an immediate impact on stock prices and take more time

to show up systematically in future stock price movements.

4.3. Comparison with Fixed-horizon Results

It is fair to ask what can be learned from these results that could not easily have been gleaned from the

standard fixed-horizon analysis of predictability in stock returns. Indeed, when stock prices follow a simple

linear process driven by Gaussian innovations, the same information can be obtained from either approach.

Which method dominates in a particular application will then only depend on which estimation approach

is most efficient. However, outside this very special case (which is strongly rejected empirically), the two

methods can yield very different insights as they are affected differentlyby nonlinearities and dynamic

dependencies in stock prices. For example, ARCH effects in stock pricesare generally viewed as mainly

affecting the second moment of returns with a smaller effect on expected returns. In contrast, as we saw in

our analysis, the mean duration time will also be strongly affected by ARCH effects.

The tendency of future down moves to follow current or past down movesis also an interesting new find-

ing since the equivalent measure based on a fixed-horizon analysis−namely serial correlation in returns−tends

16



Completion Time Structures of Stock Price Movements

to be very weak for a broadly defined stock price index such as that considered here. Again this demonstrates

that the power of a duration-based approach to identify regularities in stock returns can differ significantly

from that of the traditional fixed-horizon approach.

5. OUT-OF-SAMPLE FORECASTEVALUATION

So far we have measured model fit by means of values of the likelihood function and by inspecting diag-

nostics for serial correlation and over-dispersion in the residuals. Foran investor, however, the value of

the various completion time models depends on how well they predict movements in stock prices out-of-

sample since this will ultimately measure any potential improvements over a passiveinvestment strategy

such as buy-and-hold. To provide information on this issue we compute one-step-ahead forecasts of the

time-varying transition probabilities and compare these to the subsequent direction of movements in stock

prices. These forecasts simulate an investor’s forecasts in real time sinceestimates of the model used to

forecast at some point in time,t , only use information up to that point in time.

To get a sense of the movements in the transition probabilities, Figure 3 plots these over the full sample

period for the MSMP-dyc model. Transition probabilities follow step-like functions and can vary signifi-

cantly over short periods of time such as during the period with highly volatile interest rates in the late 1970s

and early 1980s.

We next undertook a formal statistical test of the ability of the various model specifications to predict

the direction of future moves in the stock market. Results from an out-of-sample forecast experiment are

provided in Table 5. For filter sizes between 1% and 8% we use half the sampleof durations for estimating

the first forecast, and progressed to the end of the sample from there, re-estimating the parameters after each

completed duration. For filter sizes of 9% and 10% we use three quarters ofthe durations for the initial

estimation. We did not perform the experiment for the larger filter sizes between 11% and 15%, as these

generate too few durations to enable a meaningful analysis.

To evaluate out-of-sample performance, the table reports 2× 2 contingency tables cross-listing the sign

of the predicted and realized move in stock prices. We also provide values of the Pearsonχ2 statistic

for independence between the predicted and realized sign of the subsequent move and the PT test of sign

predictability proposed by Pesaran & Timmermann (1992).

As a benchmark we report the results from a randomized strategy that predicts an up-move with prob-

ability π i 1 and a down move with probability 1− π i 1, with π i 1 chosen to match the duration data.17 The

17 The randomization is necessary since the statistical testsfor directional forecasting require that the model does
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performance of such a strategy is averaged across 5,000 simulations.

As expected, the benchmark model does not show any ability to predict the direction of the market and

generates ‘hit rates’, defined as the sum of the probabilities on the main diagonal, i.e. the proportion of

correctly predicted directional moves, between 50% and 53%. This fraction increases to between 52% and

62% under the MSMP-dy model and to between 55% and 67% under the MSMP-dyc model. Notice that

the percentage of correct predictions generally increases for all three models as the filter size gets larger and

the average duration increases−albeit not uniformly due to random sampling variation. This is consistent

with the evidence of stronger predictability in long-run durations and is particularly noticeable under the

MSMP-dyc model where two-thirds of the signs of the duration spells are correctly predicted for the largest

filter sizes. Turning to the formal test statistics, the MSMP-dy model shows some ability to forecast up

and down moves, but only for filter sizes smaller than or equal to 3%. In contrast, the MSMP-dyc model

generates highly significant out-of-sample performance statistics for all filter sizes. The decline in the test

statistic for the largest filter sizes is due to the decrease in the effective sample size as the filter size increases

and fewer duration spells are terminated during our historical sample. This suggests that although large up-

and down-moves in stock prices appear to be easier to predict than smaller moves, it also becomes more

difficult to document predictability with much statistical precision, the larger the size of the move.

These results show that out-of-sample predictions of the direction of fixed-size moves in stock prices can

be improved by accounting for information on the direction of previous movesand by including covariates

and dynamics in the specification of the transition intensities.

Our results are related in interesting ways to those reported by Christoffersen & Diebold (2003) for

fixed-horizon asset returns. Consistent with our results, Christoffersen and Diebold find that the sign of price

changes is predictable. They also find that sign predictability is horizon-specific−which is consistent with

our finding of considerable variation in ‘hit rates’ across filter sizes−and tends to be strongest at intermediate

horizons.

6. CONCLUSION

This paper proposed a new approach to modelling dynamic dependencies instock prices by studying the

completion times of up and down moves that exceed a given threshold. Our econometric approach is very

general and accounts for autoregressive dynamics in transition intensities, time-varying covariates and mul-

tiple states.

not always forecast the same direction.
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Our results suggest that there is strong evidence of deviations from standard models of stock price move-

ments, some of which are related to well-known patterns while others appear tobe novel. Unsurprisingly,

the expected duration of a move of a given size is strongly autocorrelated.If the past duration was short, the

subsequent duration is also expected to be short and vice versa. This isrelated to the well-known volatil-

ity clustering effects. While this type of persistence is strong for both up anddown moves, there are also

important asymmetries that cannot be explained by standard ARCH effects.Arriving from a down state the

transition probability to another down-state is higher, while the transition probability of an up-state declines,

thus increasing the likelihood of a future down move. The level of interest rates both at the outset of an event

and during the event also affects the durations of up- and down-moves asymmetrically. Higher interest rates

lead to slower up-moves but tend to increase the speed of down moves.

There are many interesting portfolio implications of our findings. Predictability of fixed-horizon returns

has been demonstrated to translate into significant changes in investors’ optimal asset allocation, c.f. Camp-

bell, Chan & Viceira (2002) and Kandel & Stambaugh (1996). Similarly, the dynamic dependencies in the

durations of up and down moves in stock prices uncovered here could beexploited in an investment rule

that lowers the weight in stocks if the last duration spell was long and represented a down-move so that the

probability of a subsequent short-lived up-move is lower. A more formal approach could be based on using

Monte Carlo simulation methods to sample repeatedly from a particular duration model, e.g., MSMP-dyc,

and then use dynamic programming methods under a specified objective function such as power utility to

optimize the allocation to stocks as a function of the current state variables. This is in line with methods

proposed by Detemple et al. (2003) and can readily be used even for nonlinear dynamic models for stock

prices such as the ones entertained here.

For risk measurement or risk management purposes, there is important information in the duration dis-

tribution or survivor function for up and down moves. In fact, the methodsdeveloped in Appendix B would

allow an investor to compute these functions in real time conditional upon the current state variables. This

provides an alternative measure of the risk associated with holding stocks that naturally complements mea-

sures based on a fixed investment horizon such as Value at Risk over a one day or a one week period. When

stock prices do not follow a simple stochastic process such as geometric Brownian motion, none of the

standard measures of risk will be a sufficient statistic so combinations of different measures of risk will

generally provide a more complete picture of the risks associated with holding stocks.
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APPENDIX A: L IKELIHOOD FUNCTION

Equations (13), (14), (15) and (16) in the main text specify the key equations for the probabilities in the

marginal model. Here we derive the density of the marginal process for thestate indicators and durations,

(11), conditional on past information,Fi−1.

If we only observe that an event occurred after timet then the probability of that event is justfi (t)dt.

Moreover, if it is known that the event at timet was a move to statek, then the probability of this event is

fik(t)π ik which again equalsλik(t)exp
{

−
∫ t

0

∑K
k=1 λik(s)ds

}

dt, whereK is the number of possible states.

The joint p.d.f. of the indicator variablesDi 1, . . . , Di K and the durationXi is therefore

f (di 1, . . . ,di K , xi ) = exp

{

−
∫ xi

0

K
∑

k=1

λik(s)ds

}

K
∏

k=1

λik(xi )
dik .

Hence the log-likelihood function for thei ’th departure is given by

l (di , xi ; ω2i | Fi−1) =
K

∑

k=1

[

dik log(λik(xi ))−
∫ xi

0
λik(s)ds

]

.

Summing over all events,N, the log-likelihood function is

l (d, x; ω2 | FN) =
N

∑

i=1

l (di , xi ,ω2i | Fi−1). (A.1)

Notice the simplicity of this likelihood function when expressed in terms of the transition intensities. Spec-

ifying the transition intensities− preferably based on economic theory− leads directly to the likelihood

function. All dependence of the likelihood on parameters and past information comes through the tran-

sition intensities. We make this dependence explicit in the following notation that specifies the transition

intensities conditional on the past filtration:

λik(t) ≡ λik(t | Fi−1,ω2ik) ≡ λik(t,Yi−1, Di−1, Xi−1; ω2ik).

We continue to adopt a notation that expresses the transition intensities as a function ofYi−1, Di−1 andXi−1

because much of the empirical analysis aims to find the best functional form for the transition intensities as

a function of these components.

If only two events are possible−namely an up-move or a down-move−the log-likelihood function (A.1)

takes the form:

l (d, x,ω2 | FN) =
N

∑

i=1

{di 1 log(λi 1(xi ))+ di 2 log(λi 2(xi ))−
∫ xi

0
(λi 1(s)+ λi 2(s))ds }. (A.2)
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Estimation of this equation requires specifying a model for the transition intensities λi 1(xi ) andλi 2(xi ).

Since the hazard function,λi (t), and the transition intensities are instantaneous probabilities, they must be

positive. To avoid introducing complicated restrictions on the parameters resulting from this constraint, we

model the logarithm ofλik(s), k = 1,2. The simplest specification of the transition intensities ignores any

dependence on past marks and therefore takes the form

λik(t) = φ
(

exp
[

ψ i (D
i−1, Xi−1,3i−1(t))

]

, t
)

, k = 1,2, (A.3)

for 3i−1(t) = {λ1,i−1(t), λ2,i−1(t), λ1,i−2(t), λ2,i−2(t), . . .}.
Duration-invariant specifications assume that the transition intensities are independent oft . Hence they

do not depend on the time since the last event and, using thatφ(s, t) = s, simplify to18

λik = exp
[

ψ i (D
i−1, Xi−1,3i−1)

]

, k = 1,2. (A.4)

This reduces the log-likelihood function to

l (d, x,ω2 | FN) =
N

∑

i=1

{di 1 log(λi 1)+ di 2 log(λi 2)− xi (λi 1 + λi 2)} .

The hazard function is simplyλi = λi 1 + λi 2 while, using (16), the two transition probabilities are

π ik = λik

λi
, k = 1,2. (A.5)

In this model the probability that the next event will be an up or a down move ofsizeδ therefore does not

depend on when the event occurs and only depends on the past through π ik .

APPENDIX B: EXTENSIONS TOTIME-VARYING COVARIATES19

A potential drawback of the models formulated so far is that they only conditionon variables that are

determined before the beginning of a particular duration and do not allow explanatory variables to change

within a duration. While such models are of separate interest, it is clearly interestingto develop a framework

that allows us to address the effect of a change in variables such as the interest rate on the expected duration

of the event as this would allow investors to update their estimates in real time. Thiseffect is summarized by

18 We take duration-dependence to mean that the hazard rates for a given event change with the length of the
associated duration and thus depend ont . Time-dependence means that the hazard rates depend oni , the event
number. Using these definitions the intensities defined by (A.4) are duration-independent, but time-dependent.

19 This material was previously contained in a paper entitled AGeneralized Gamma Autoregressive Conditional
Duration Model.
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the change in the mean residual lifetime at the point in time where the covariate changes. The mean residual

lifetime atx measures the expected remaining lifetime of the most recent duration:

mrl(x) = E(X − x|X > x) =
∫ ∞

x (t − x) f (t)dt

S(x)
=

∫ ∞
x S(t)dt

S(x)
(A.1)

Clearly this expectation changes with the covariates through the hazard function. In the exponential case

the mean residual lifetime is simply given by

mrli (x) =
∫ ∞

x exp(−θ i (x)u) du

e−θ i (x)x
= θ i (x)

−1.

To deal with this complication we extend the MSMP model class to incorporate time-varying covariates

building on earlier work by Petersen (1986) and Hamilton & Jorda (2002).20 To keep the notation as simple

as possible, we present the likelihood for a non-negative continuous random variable,T , that measures the

inter-event arrival time, and its state indicator,d. The time spent waiting for the next event depends on a

set of exogenous covariates,V(t), that follow step-functions or deterministic continuous functions of time.

Hence the observed duration,t , may be partitioned into intervals 0= a0 < . . . < ak = t whereV stays

constant atV(a j −1) in [a j −1; a j ) and jumps toV(a j ) at a j , for j = 1, . . . k. In this setting the hazard rate

conditional on the path of the covariates up to timet is defined as

λ(t |V(t)) = λ1(t |V(t))+ λ2(t |V(t))

= lim
h↓0

P (t ≤ T < t + h, D = 1|T ≥ t,V(t))
h

+ lim
h↓0

P (t ≤ T < t + h, D = 0|T ≥ t,V(t))
h

.

Based on the partitioning sequence,
{

a j
}k

0, the cumulative hazard is

3(t) =
∫ t

0
λ(u|V(u))du =

k
∑

j =1

∫ a j

a j −1

λ(u|V(a j −1))du. (A.2)

The assumption of step-function covariates makes integration easy because the total duration can always be

partitioned into sub-periods during which all the covariates stay constant. As usual the survivor function is

given byS(t) = exp(−3(t)), while the likelihood of thei ’th duration is given by

L i = λi 1(ti |V(t−
i ))

di 1λi 2(ti |V(t−
i ))

di 2 S(ti ), (A.3)

20 One way of incorporating time-varying covariate effects isto utilize the Cox regression approach suggested by
Cox (1972) and detailed in Cox (1975). The Cox regression is asemiparametric method which in a first step estimates
the effect of the covariates parametrically and then, in thesecond step, estimates a nonparametric baseline hazard.
This method assumes that the observations are independent,and it is not clear how one would extend it to the case
with sequences of dependent durations.
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and the log-likelihood function of the full set of events for thei th duration is

ln L i = di 1 ln λi 1(ti |V(t−
i ))+ di 2 ln λi 2(ti |V(t−

i ))+ ln S(ti )

= di 1 ln λi 1(ti |V(t−
i ))+ di 2 ln λi 2(ti |V(t−

i ))−
k

∑

j =1

∫ a j

a j −1

λ(u|V(a j −1))du. (A.4)

In practice we have a sample of events at timest0, . . . , ti , ti+1, . . . , tN and wish to consider the duration

from the ti−1’th to the ti ’th event,xi = ti − ti−1. The covariates,xi , change at timesai 0 < . . . < aik ∈
[ti−1; ti ) with ai 0 = ti−1 andaik = ti , wherei refers to the duration number andk refers to the partition. The

log-likelihood for the full sample is thus given by21

ln L =
N

∑

i=1



di 1 ln λi 1(ti |V(t−
i ))+ di 2 ln λi 2(ti |V(t−

i ))−
k

∑

j =1

∫ ai j

ai j −1

λ(u|V(ai j −1))du



 (A.5)

and the model is fully specified through the functional form of the hazard function.

Transition intensities that include dynamic autoregressive effects and time-varying covariates now take

the form

ln (λik(t)) = λk1 + λk2 ln(λi−1,k(xi−1))+ λk3xi−1
(

λi−1,1(xi−1)+ λi−1,2(xi−1)
)

+ βkV(t) (A.6)

for k = 1,2,

whereλi−1,k(xi−1) is the transition intensity at the end of the previous duration. Notice that the hazard rate

only depends ont through time-variations in the covariates:

λ(t − ti−1|V(t)) = λi 1(t)+ λi 2(t).

Utilizing the step-function assumption, from (A.5) we get the following log-likelihood:

ln L =
N

∑

i=1



di 1 ln λi 1(aik−1)+ di 2 ln λi 2(aik−1)−
k

∑

j =1

(ai j − ai j −1)
[

λi 1(ai j −1)+ λi 2(ai j −1)
]



 . (A.7)

We use this specification in our empirical analysis in Section 4. It provides a general framework that encom-

passes as special cases MSMP models with constant transition probabilities (λk2 = λk3 = 0 andβk = 0)

and pure autoregressive conditional duration models (βk = 0).

21 Here we assume that there are no censored observations, i.e.that all events have finished by the end of the sample.
This assumption is of course harmless since it at most affects one duration spell (the one at the end) in our sample.
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APPENDIX: TABLES AND FIGURES

Table 1: SUMMARY STATISTICS FOR THE DURATION OF UP AND DOWN MOVEMENTS.

Series Filter no. obs Mean Median Standard dev. Min. Max.

Up excursions
(days)

1 4713 4.07 3 3.58 1 35
2 2145 9.59 7 9.28 1 86
3 1261 16.83 12 16.10 1 126
4 831 25.91 18 25.55 1 221
5 596 36.77 27 37.31 1 373
6 458 47.52 34 44.96 1 280
7 361 62.33 48 56.23 1 377
8 287 80.72 58 78.53 3 510
9 240 98.46 70 89.69 2 519

10 220 109.27 74 108.71 2 704
11 183 127.87 88 110.97 3 645
12 167 147.41 108 145.54 3 1059
13 145 165.12 112 159.80 2 862
14 130 179.59 134 152.06 3 702
15 119 211.04 151 177.58 4 999

Down excursions
(days)

1 3853 3.17 2 2.96 1 28
2 1681 6.45 4 7.21 1 88
3 961 10.57 6 12.53 1 119
4 607 16.23 9 18.68 1 117
5 411 23.10 12 27.70 1 169
6 301 31.92 18 38.71 1 296
7 227 39.08 22 46.52 1 329
8 175 46.44 21 57.81 1 317
9 137 55.88 27 66.04 1 339

10 128 56.67 28 69.24 1 323
11 96 82.34 35 137.27 2 850
12 86 77.74 40 114.86 1 866
13 71 103.63 67 150.59 2 904
14 62 127.81 77 167.07 1 884
15 54 115.48 76 161.84 5 861

This table reports summary statistics for up and down excursions. The durations are computed using the
definition of barriers given by equations (6-8) and are measured in trading days.
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Table 2: ESTIMATING MSMP-dy

Panel A: Parameter Estimates

Filter Parameters

λ11 (tλ11=0) λ12 (SE) λ13 (tλ12=0) λ21 (tλ21=0) λ22 (SE) λ23 (tλ22=0)

1 0.076(11.49) 0.984(0.002) -0.085(-11.62) 0.064(8.72) 0.989(0.002) -0.072(-8.74)

2 0.124(9.61) 0.976(0.005) -0.137(-9.40) 0.118(7.97) 0.979(0.005) -0.131(-7.87)

3 0.142(7.57) 0.970(0.009) -0.156(-7.21) 0.157(7.86) 0.974(0.007) -0.174(-7.83)

4 0.212(8.78) 0.940(0.013) -0.239(-8.78) 0.199(6.54) 0.962(0.008) -0.223(-6.70)

5 0.221(7.65) 0.918(0.021) -0.254(-7.62) 0.173(6.10) 0.958(0.009) -0.202(-6.58)

6 0.185(5.22) 0.928(0.032) -0.213(-4.92) 0.131(4.80) 0.967(0.009) -0.155(-5.38)

7 0.172(2.96) 0.927(0.061) -0.201(-2.49) 0.139(4.81) 0.966(0.013) -0.165(-5.60)

8 0.082(3.53) 0.985(0.014) -0.088(-3.45) 0.123(4.56) 0.983(0.014) -0.138(-4.37)

9 0.079(2.81) 0.981(0.025) -0.086(-2.84) 0.141(4.14) 0.978(0.025) -0.161(-3.83)

10 0.142(2.79) 0.975(0.032) -0.150(-2.62) 0.190(4.44) 0.976(0.026) -0.210(-3.94)

11 0.105(3.11) 0.975(0.026) -0.113(-3.10) 0.164(4.06) 0.969(0.027) -0.195(-3.96)

12 0.090(3.08) 0.976(0.016) -0.097(-3.43) 0.155(3.78) 0.965(0.023) -0.189(-3.81)

13 0.096(3.08) 0.977(0.016) -0.101(-3.64) 0.171(4.71) 0.973(0.021) -0.198(-4.91)

14 0.093(2.56) 0.970(0.016) -0.102(-2.91) 0.217(4.27) 0.951(0.025) -0.271(-4.50)

15 0.081(1.68) 0.964(0.026) -0.091(-2.14) 0.173(2.94) 0.938(0.035) -0.244(-4.34)

Panel B: Diagnostics

Filter L B(x,15) L B(ξ ,15) sξ − 1 E-R EDT Max Like LR-bench.

1 3965.40 11.55 0.212 -12.40 -13929.00 1094.90
2 2402.30 18.86 0.123 -5.05 -6014.30 909.28
3 1687.90 13.55 0.116 -3.63 -3420.30 665.55
4 865.86 13.19 0.116 -2.94 -2187.10 479.48
5 488.43 8.30 0.041 -0.894 -1530.40 327.38
6 335.61 14.03 0.014 0.277 -1165.50 212.25
7 268.24 17.11 0.032 -0.540 -907.78 153.04
8 104.51 15.18 0.052 0.811 -721.96 94.69
9 125.75 7.72 0.014 0.196 -581.12 92.07

10 116.52 14.38 0.022 0.290 -522.72 109.80
11 89.02 14.85 0.037 0.440 -422.04 71.34
12 49.08 16.97 0.097 1.14 -389.97 51.32
13 66.06 9.47 0.091 0.984 -322.24 62.60
14 79.89 15.97 0.089 -0.833 -293.54 38.97
15 54.61 11.53 0.005 0.048 -266.67 26.80

Table 2 presents the results of estimating the dynamicMSMP model given in equation (17). Panel A shows the
parameter estimates. The first column gives the filter size; columns 2-4 show the parameter estimates for the up
intensities and columns 5-7 show the parameter estimates for the down intensities. T-statistics or standard errors based
on a Quasi-Likelihood are shown in parentheses.
Panel B reports diagnostics for the fitted models. LB(x,15) and LB(ξ ,15) denotes the Ljung Box statistic with 15
lags, computed on raw durations and the residuals defined in (18) (χ2

0.95(15) = 25). Column 4 shows the amount of
over-dispersion in the residuals. In column 5, E-R EDT is a test for over-dispersion with respect to the exponential
distribution suggested by Engle & Russell (1998). The last column shows a likelihood ratio test of the nullλ12 =
λ22 = 0.
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Table 3: ESTIMATING MSMP-dyc

Panel A: Parameter Estimates

Filter Parameters

λ̂11 (t0) λ̂12(SE) λ̂13 (t0) β̂11 (t0) β̂12 (t0) β̂13 (t0) λ̂21 (t0) λ̂22(SE) λ̂23 (t0) β̂21 (t0) β̂22 (t0) β̂23 (t0)

1 .057(8.08) .971(.005) -.09 (-12) .041(5.82) -.001(-2.13) -.033(-1.81) .022(3.20) .974(.007) -.08 (-7.0) .089(4.58) -.001(-1.77) .068(4.05)

2 .086(6.66) .951(.010) -.14 (-10) .093(6.41) -.003(-2.91) -.012(-0.50) .036(2.26) .946(.018) -.15 (-6.9) .199(4.18) -.003(-2.28) .132(5.59)

3 .097(4.54) .930(.017) -.17 (-7.3) .119(5.53) -.004(-2.29) -.050(-1.71) .039(1.45) .922(.027) -.20 (-6.7) .283(3.85) -.005(-2.11) .142(4.44)

4 .123(4.00) .890(.019) -.23 (-8.1) .187(5.74) -.007(-2.55) -.064(-1.73) .025(0.62) .891(.032) -.24 (-6.8) .396(4.42) -.010(-2.52) .099(2.81)

5 .123(3.33) .856(.027) -.25 (-7.8) .236(5.05) -.009(-2.24) -.093(-2.19) -.030(-0.39) .862(.054) -.23 (-7.1) .489(3.22) -.012(-2.12) .089(2.14)

6 .082(1.97) .866(.037) -.20 (-6.0) .219(3.88) -.007(-1.63) -.075(-1.63) -.036(-0.26) .861(.116) -.21 (-3.7) .442(1.48) -.012(-1.20) .119(2.68)

7 .091(1.59) .844(.064) -.21 (-3.5) .199(3.27) -.006(-1.05) -.088(-1.47) .019(0.24) .901(.063) -.18 (-4.3) .282(1.68) -.008(-1.17) .138(3.65)

8 .060(0.72) .648(.091) -.26 (-3.7) .360(3.44) -.021(-1.93) -.075(-1.37) -.264(-1.65) .646(.084) -.25 (-3.8) .854(4.28) -.033(-2.79) .151(2.57)

9 -.035(-0.39) .699(.109) -.17 (-2.3) .336(3.28) -.012(-1.31) -.127(-2.05) -.166(-0.54) .750(.267) -.24 (-2.8) .679(1.25) -.022(-0.83) .166(3.13)

10 .038(0.48) .733(.082) -.26 (-4.2) .554(3.89) -.020(-1.90) -.068(-1.01) -.068(-0.45) .783(.112) -.28 (-4.5) .718(2.34) -.029(-1.57) .177(3.09)

Panel B: Diagnostics

Filter L B(x,15) L B(ξ ,15) sξ − 1 E-R EDT Max Like LR-bench.

1 3965.40 5.19 0.215 -12.58 -13863.00 130.79
2 2402.30 13.06 0.137 -5.59 -5937.00 154.52
3 1687.90 20.57 0.128 -3.99 -3355.60 129.44
4 865.86 13.37 0.130 -3.26 -2134.90 104.42
5 488.43 9.87 0.071 -1.54 -1485.50 89.65
6 335.61 9.91 0.027 0.526 -1145.60 39.81
7 268.24 18.29 0.031 -0.514 -889.60 36.35
8 104.51 12.11 0.009 0.136 -695.71 52.51
9 125.75 8.71 0.013 0.175 -561.07 40.10
10 116.52 15.02 0.018 -0.231 -498.23 48.97

Table 3 presents the results of estimating the dynamicMSMP model given in equation (19). Panel A shows the parameter estimates. The first column
gives the filter size, columns 2-7 show the parameter estimates for the up intensity and columns 8-13 provide estimates for the down intensity. QML T-
statistics/standard errors are given in parentheses. Panel B reports diagnostics for the fitted models. LB(x,15) and LB(ξ ,15) denotes the Ljung Box statistic
with 15 lags, computed on raw durations and the residuals defined in equation (18) (χ2

0.95(15) = 25). Column 4 reports the amount of over-dispersion in the
residuals. In column 5, E-R EDT is a test for over-dispersionwrt the exponential distribution suggested by Engle & Russell (1998). The last column gives
the likelihood ratio test of the nullβ11 = β12 = β13 = β21 = β22 = β23 = 0.
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Table 4: ESTIMATING MSMP-dytvc

Panel A: Parameter Estimates
Filter Parameters

λ̂11 (t0) λ̂12(SE) λ̂13 (t0) β̂11 (t0) β̂12 (t0) β̂13 (t0) λ̂21 (t0) λ̂22(SE) λ̂23 (t0) β̂21 (t0) β̂22 (t0) β̂23 (t0)

1 .056(8.50) .970(.004) -.09 (-12) .040(6.09) -.001(-2.48) -.004(-0.32) .020(2.61) .971(.008) -.08 (-7.8) .099(5.20) -.001(-2.10) .022(1.64)

2 .087(6.78) .944(.008) -.15 (-11) .092(6.64) -.003(-3.57) -.026(-1.02) .023(1.32) .931(.017) -.17 (-8.8) .240(5.81) -.003(-2.94) .048(1.68)

3 .104(4.39) .915(.019) -.18 (-6.7) .116(5.28) -.004(-2.55) -.061(-1.36) .006(0.20) .896(.028) -.21 (-7.8) .355(5.13) -.006(-2.51) .010(0.22)

4 .127(3.79) .886(.022) -.23 (-7.2) .175(5.35) -.007(-2.73) -.006(-0.15) .002(0.04) .872(.032) -.25 (-7.6) .449(5.31) -.010(-2.95) .027(0.53)

5 .138(3.41) .849(.028) -.25 (-6.9) .212(4.54) -.010(-2.73) -.027(-0.50) -.077(-1.01) .831(.049) -.24 (-7.8) .574(4.51) -.013(-2.71) .048(0.81)

6 .113(2.46) .882(.043) -.21 (-5.5) .171(3.11) -.007(-1.54) .016(0.32) .004(0.03) .900(.117) -.19 (-2.8) .326(1.08) -.009(-0.91) .116(1.92)

7 .097(1.37) .872(.082) -.20 (-2.6) .162(2.74) -.004(-0.71) -.020(-0.33) -.026(-0.15) .885(.152) -.18 (-2.7) .357(1.02) -.007(-0.68) .080(0.96)

8 .085(0.90) .490(.202) -.28 (-4.1) .335(2.79) -.038(-1.86) -.232(-1.40) -.385(-2.57) .585(.069) -.25 (-3.6) .958(6.30) -.026(-2.22) .269(3.20)

9 .019(0.19) .688(.206) -.19 (-2.1) .274(2.58) -.016(-0.81) -.151(-0.74) -.321(-0.89) .683(.255) -.22 (-3.0) .853(1.81) -.016(-1.09) -.050(-0.32)

10 .067(0.83) .736(.086) -.26 (-4.1) .511(3.59) -.022(-1.77) -.047(-0.36) -.153(-0.84) .768(.124) -.26 (-4.0) .833(2.42) -.023(-1.83) .067(0.71)

Panel B: Diagnostics

Filter L B(x,15) L B(ξ ,15) sξ − 1 E-R EDT Max Like LR-bench.

1 3965.40 4.27 0.215 -12.55 -13872.00 113.35
2 2402.30 15.47 0.133 -5.43 -5946.70 135.22
3 1687.90 27.72 0.127 -3.95 -3365.80 108.98
4 865.86 15.04 0.129 -3.24 -2141.20 91.89
5 488.43 12.31 0.069 -1.50 -1490.00 80.68
6 335.61 9.28 0.016 0.305 -1149.60 31.81
7 268.24 17.21 0.028 -0.472 -896.47 22.61
8 104.51 18.07 0.004 0.066 -694.47 54.98
9 125.75 12.02 0.005 0.063 -567.04 28.16
10 116.52 15.04 0.016 -0.202 -502.48 40.46

Table 4 presents the results from estimating the dynamicMSMP-dytvc model given in equation (21). Panel A provides the parameterestimates. The first
column shows the filter size, columns 2-7 show the parameter estimates for the up intensity and columns 8-13 show the estimates for the down intensity. QML
T-statistics/standard errors are given in parentheses. Panel B reports diagnostics for the fitted models. LB(x,15) andLB(ξ ,15) denotes the Ljung Box statistic
with 15 lags, computed on raw durations and the residuals defined in equation (18) (χ2

0.95(15) = 25). Column 4 reports the amount of over-dispersion in the
residuals. In column 5, E-R EDT is a test for over-dispersionwrt the exponential distribution suggested by Engle & Russell (1998). The last column shows
the likelihood ratio test of the nullβ11 = β12 = β13 = β21 = β22 = β23 = 0.
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Table 5: SUMMARY STATISTICS FOR THE OUT-OF-SAMPLE FORECAST EVALUATION

Model Stat Filter (Nobs) [NFC]

1 2 3 4 5 6 7 8 9 10
(8566) (3826) (2222) (1438) (1006) (758) (588) (462) (372) (344)
[4283] [1913] [1111] [719] [503] [379] [294] [231] [93] [86]

Benchm. Matrix
[

.291 .245

.252 .212

] [

.286 .241

.257 .216

] [

.298 .231

.265 .206

] [

.307 .226

.268 .198

] [

.330 .220

.270 .180

] [

.344 .225

.261 .171

] [

.349 .218

.266 .166

] [

.381 .210

.264 .145

] [

.405 .193

.272 .130

] [

.400 .204

.263 .133

]

% Correct 0.503 0.502 0.504 0.505 0.510 0.514 0.516 0.526 0.535 0.533
(0.008) (0.011) (0.015) (0.019) (0.022) (0.026) (0.029) (0.032) (0.052) (0.053)

χ2-stat. 1.003 1.011 1.011 0.993 0.996 1.057 0.982 0.999 1.021 1.026
(1.459) (1.380) (1.431) (1.428) (1.424) (1.486) (1.361) (1.422) (1.438) (1.407)

PT-test -0.001 -0.014 0.031 0.020 -0.005 -0.007 0.006 -0.009 0.003 -0.008
(1.002) (1.006) (1.006) (0.997) (0.999) (1.030) (0.993) (1.002) (1.016) (1.019)

MSMP-dy Matrix
[

.330 .262

.213 .194

] [

.320 .247

.223 .211

] [

.385 .258

.178 .178

] [

.394 .282

.182 .142

] [

.362 .217

.239 .183

] [

.354 .208

.251 .187

] [

.463 .238

.153 .146

] [

.489 .238

.156 .117

] [

.570 .269

.108 .054

] [

.558 .314

.105 .023

]

% Correct 0.525 0.531 0.563 0.535 0.545 0.541 0.609 0.606 0.624 0.581

χ2-stat. 4.930 4.870 10.10 0.260 1.800 1.260 5.770 2.050 0.009 1.360

PT-test 2.221 2.206 3.175 0.510 1.344 1.124 2.407 1.435 0.098 -1.174

MSMP-dyc Matrix
[

.301 .205

.243 .251

] [

.308 .191

.234 .266

] [

.348 .190

.215 .247

] [

.346 .164

.229 .260

] [

.380 .141

.221 .258

] [

.322 .135

.282 .261

] [

.367 .136

.248 .248

] [

.398 .117

.247 .238

] [

.495 .151

.183 .172

] [

.477 .151

.186 .186

]

% Correct 0.552 0.574 0.595 0.606 0.638 0.583 0.616 0.636 0.667 0.663

χ2-stat. 46.00 42.80 36.90 32.40 37.70 13.60 16.40 17.60 6.160 6.040

PT-test 6.787 6.544 6.076 5.692 6.146 3.689 4.056 4.203 2.496 2.473

Table 5 reports the results of the out-of-sample forecasting experiments. Shown below the filter size is the number of excursions in the full sample (in
round brackets) and the number of observations in the out-of-sample forecasting period (in square brackets). The ”confusion matrices” sort the proportion of
predicted up and down moves against the proportion of realized up and down moves. The percentage of correct forecasts is the sum of the diagonal elements
from these matrices. Also shown are Fisher’s Chi-squared test and the PT-test for independence between the predicted and realized direction of stock price
moves.
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Completion Time Structures of Stock Price Movements
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Figure 1: Residuals from the inverse Gaussian distribution fitted to the distribution of first passage times

(δ = 0.10).
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Figure 3: Transition probabilities (black line) from the MSMP-dyc model, foran 8 % filter, plotted against
log-prices (thin line). The nearly horizontal gray line tracks the unconditional transition probabilities. The
shaded areas are periods of up durations.
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