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Abstract

This paper investigates the international asset allocation effects of time-variations in

higher order moments of stock returns such as skew and kurtosis. In the context of a

four-moment international CAPM specification that relates stock returns in five regions to

returns on a global market portfolio and allows for time-varying prices of covariance, co-

skewness and co-kurtosis risk, we find evidence of distinct bull and bear regimes. Ignoring

such regimes, an unhedged US investor’s optimal portfolio is strongly diversified interna-

tionally. The presence of regimes in the return distribution leads to a substantial increase

in the investor’s optimal holdings of US stocks as does the introduction of skew and kurto-

sis preferences. We relate these findings to the US market portfolio’s relatively attractive

co-skewness and co-kurtosis properties with respect to the global market portfolio and its

performance during global bear states.
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Despite the increased integration of international capital markets, investors continue to hold eq-

uity portfolios that are largely dominated by domestic assets. According to Thomas, Warnock and

Wongswan (2006), by the end of 2003 US investors held only 14% of their equity portfolios in foreign

stocks at a time when such stocks accounted for 54% of the world market capitalization.1 This evi-

dence is poorly understood: Calculations reported by Lewis (1999) suggest that a US investor with

mean-variance preferences should hold upwards of 40% in foreign stocks or, equivalently, only 60% in

US stocks.

Potential explanations for the home bias include barriers to international investment and transac-

tion costs (Black (1990), Chaieb and Errunza (2007), Stulz (1981)); hedging demand for stocks that

have low correlations with domestic state variables such as inflation risk or non-traded assets (Adler

and Dumas (1983), Serrat (2001)); information asymmetries and higher estimation uncertainty for

foreign than domestic stocks (Brennan and Cao (1997), Guidolin (2005)); and political or corporate

governance risks related to investor protection (Dahlquist et al (2004)).2

As pointed out by Lewis (1999) and Karolyi and Stulz (2002), the first of these explanations is

weakened by the fact that barriers to international investment have come down significantly over the

last thirty years and by the large size of gross investment flows. Yet there is little evidence that US

investors’ holdings of foreign stocks have been increasing over the last decade where this share has

fluctuated around 10-15%. The second explanation is weakened by the magnitude by which foreign

stocks should be correlated more strongly with domestic risk factors as compared with domestic stocks.

In fact, correlations with deviations from purchasing power parity can exacerbate the home bias puzzle

(Cooper and Kaplanis (1994)) as can the strong positive correlation between domestic stock returns

and returns on human capital (Baxter and Jermann (1997)). It is also not clear that estimation

uncertainty provides a robust explanation as it affects domestic as well as foreign stocks. Finally,

political risk seems to apply more to emerging and developing financial markets and is a less obvious

explanation of investors’ limited diversification among stable developed economies. Observations such

as these lead Lewis (1999, p. 589) to conclude that “Two decades of research on equity home bias

have yet to provide a definitive answer as to why domestic investors do not invest more heavily in

foreign assets.”

In this paper we address whether a combination of investor preferences that put weight on the skew

and kurtosis of portfolio returns along with time-variations in international investment opportunities

captured by regime switches can help explain the home bias and, if so, why US stocks may be more

1Similar home biases in aggregate equity portfolios are present in other countries, see French and Poterba (1991) and

Tesar and Werner (1994).
2Behavioral explanations (e.g., ‘patriotism’ or a generic preference for ‘familiarity’) have been proposed by, e.g., Coval

and Moskowitz (1999) and Morse and Shive (2003). Uppal and Wang (2003) provide theoretical foundations based on

ambiguity aversion.
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attractive to domestic investors than previously thought. Our analysis generalizes the standard inter-

national CAPM (ICAPM) specification that assumes mean-variance preferences over a time-invariant

distribution of stock returns in two significant ways. First, we allow investor preferences to depend

not only on the first two moments of returns but also on higher moments such as skew and kur-

tosis. The motivation for the generalization to higher moments arises from studies such as Harvey

and Siddique (2000), Dittmar (2002) and, subsequently, Smith (2007), which, in the context of three

and four-moment CAPM specifications for the cross-section of US stock returns, have found that

higher order moments add considerable explanatory power and have first order effects on equilibrium

expected returns. In addition, Harvey, Liechty, Liechty and Muller (2004) have found that interna-

tional asset holdings can be quite different under third-moment preferences compared to the standard

mean-variance case.3

Second, we model returns by means of a four-moment ICAPM with regimes that capture time-

variations in the risk premia, volatility, correlations, skew and kurtosis (as well as co-skewness and co-

kurtosis) of local equity return indices and the world market portfolio. Studies such as Ang and Bekaert

(2002) have shown that regime switching models can successfully capture the asymmetric correlations

found in international equity returns during volatile and stable markets, while Das and Uppal (2004)

report that simultaneously occurring jumps that capture large declines in most international markets

can affect international diversification. We go further than these studies and allow both the exposure

of local markets to global risk factors and the world price of covariance, co-skewness and co-kurtosis

risk to vary across regimes.

Both higher order preferences and regimes turn out to play important roles in US investors’ in-

ternational asset allocation and thus help explaining the home bias. Regimes in the distribution of

international equity returns generate skew and kurtosis and therefore affect the asset allocation of a

mean-variance investor differently from that of an investor whose objectives depend on higher moments

of returns. This is significant since the single state model is severely misspecified and fails to capture

basic features of international stock market returns. Our estimates suggest that a US mean-variance

investor with access to the US, UK, European, Japanese and Pacific stock markets should hold only

30 percent in domestic stocks. The presence of bull and bear states raises this investor’s weight on

US stocks to 50 percent. Introducing both skew and kurtosis preferences and bull and bear states

further increases the weight on US stocks to 70 percent of the equity portfolio, much closer to what is

observed empirically.

3Harvey, Liechty, Liechty and Muller (2004) propose a Bayesian framework for portfolio choice based on Taylor

expansions of an underlying expected utility function. They assume that the distribution of asset returns is a multivariate

skewed normal. In their application to an international diversification problem, they find that under third-moment

preferences, roughly 50 percent of the equity portfolio should be invested in US stocks.
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To gain intuition for these findings, note that markets that have positive co-skewness with the

global market portfolio are desirable to risk averse investors since they tend to have higher expected

returns during volatile periods. Similarly, low co-kurtosis with global market returns means that

local returns tend to be higher when world market returns are skewed to the left (i.e. during global

bear markets), and is thus attractive since it decreases the overall portfolio risk. This turns out to be

important because US stocks have attractive co-skewness and co-kurtosis properties. The US portfolio

has a co-skewness of -0.05 and a co-kurtosis of 3.40 with the global market portfolio. In comparison, a

fully-diversified ICAPM portfolio has lower skewness (-0.50) and higher kurtosis (4.51). Moreover, the

US portfolio also has better co-skew and co-kurtosis properties than most of the other equity markets

included in our analysis.

Previous studies have found that foreign stocks form an important part of US investors’ optimal

portfolio holdings under mean-variance preferences. However, the intuition above suggests that a US

investor who dislikes negative co-skewness and high co-kurtosis with returns on the world market

portfolio will put more weight on domestic stocks. The question then becomes how investors trade

off between the mean, variance, skew and kurtosis properties of local market returns in an inter-

national portfolio context. Our paper addresses this issue when higher-order moments are modeled

endogenously as part of an asset pricing model with regime shifts.

The contributions of our paper are as follows. First, we develop a flexible regime switching model

that captures time-variations in the covariance, co-skewness and co-kurtosis risk of international stock

markets with regard to the world equity portfolio. We find evidence of two regimes in the distribution

of international stock returns. The first regime is a bear state with low ex-post mean returns and

high volatility related to uncertainty spurred by market crashes, uncertain economic prospects during

recessions or uncertainty about monetary policy. The second regime is a bull state which is associated

with less volatile returns and more attractive investment opportunities. Variations in the skew and

kurtosis of the world market portfolio are linked to uncertainty induced by shifts between such states.

For example, the uncertainty surrounding a switch from a bull to a bear state takes the form of an

increased probability of large negative returns (high kurtosis and large negative skew).

Second, we build on and generalize Harvey (1991)’s findings of time-variations in the world price

of covariance risk to cover variations in the world price of co-skewness and co-kurtosis risk. We

find that co-skewness and co-kurtosis risk are economically important components of the overall risk

premium with magnitudes comparable to the covariance risk premium. This finding has substantial

asset allocation implications and is an important difference between our study and that of Ang and

Bekaert (2002) who cannot reject that expected returns are identical across different states, in part

due to large estimation errors. By estimating a constrained asset pricing model which nests the two-
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and three-moment conditional ICAPM as special cases, we manage to identify significant variations

in expected returns across the two states.

Third, we analyze the international portfolio implications of time-varying higher order moments.

As in Harvey and Siddique (2000) and Dittmar (2002), our approach approximates the unknown

marginal utility function by means of a Taylor series expansion of the utility function. Moreover, our

analysis decomposes the effect of regimes and higher order moments on portfolio weights. We find

that US stocks are more attractive than is reflected in the standard mean-variance case due to their

relatively high co-skewness and low co-kurtosis with the global market portfolio. Compared with other

stock markets, US stocks tend to perform better when global markets are volatile or skewed to the

left, i.e. during global bear markets. This gives rise to another important difference to the analysis

in Ang and Bekaert (2002) who conclude that the presence of a bear state with highly volatile and

strongly correlated returns does not negate the economic gains from international diversification. We

show that the relatively good performance of US stocks in the bear state can in fact help explain the

higher allocation to the US market than in the benchmark single-state model. Intuition for this result

comes from the higher marginal utility of additional payoffs during global bear markets which means

that stock markets with good performance in these states tend to be attractive to risk averse investors.

The fourth and final contribution of our paper is to develop a new tractable approach to optimal

asset allocation that is both convenient to use and offers new insights. When coupled with a utility

specification that incorporates skew and kurtosis preferences, the otherwise complicated numerical

problem of optimal asset allocation in the presence of regime switching is reduced to that of solving

for the roots of a low-order polynomial. While papers such as Ang and Bekaert (2002) use numerical

methods to solve bi- or tri-variate portfolio problems, our paper employs a moment-based utility

specification that offers advantages both computationally and in terms of the economic intuition for

how results change relative to the case with mean-variance preferences. The ability of our approach to

solve the portfolio selection problem in the presence of multiple risky assets is important since gains

from international asset allocation can be quite sensitive to the number of included assets.

The plan of the paper is as follows. Section 1 describes the return process in the context of an

ICAPM extended to account for higher order moments, time-varying returns and regime switching

and reports empirical results for this model. Section 2 sets up the optimal asset allocation problem for

an investor with a polynomial utility function over terminal wealth when asset returns follow a regime

switching process. Section 3 describes the solution to the optimal asset allocation problem, while

Section 4 reports a range of robustness checks. Section 5 concludes. Appendices provide technical

details.
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1. A Four-Moment ICAPM with Regime Switching in Asset Returns

Our assumptions about the return process build on extensive work in asset pricing based on the

no-arbitrage stochastic discount factor model for (gross) asset returns, Ri
t+1:

E[Ri
t+1mt+1|Ft] = 1 i = 1, ..., I. (1)

Here E[·|Ft] is the conditional expectation given information available at time t,Ft, and mt+1 is the

investor’s intertemporal marginal rate of substitution between current and future consumption or —

under restrictions established by Brown and Gibbons (1985) — current and future wealth.

The two-moment CAPM follows from this setup when the pricing kernel, mt+1, is linear in the

returns on an aggregate wealth portfolio. Harvey (1991) shows that, in a globally integrated market,

differences across country portfolios’ expected returns should be driven by their conditional covariances

with returns on a world market portfolio, RW
t+1:

E[Ri
t+1|Ft]−Rf

t =
E[RW

t+1|Ft]−Rf
t

V ar[RW
t+1|Ft]

Cov[Ri
t+1, R

W
t+1|Ft]. (2)

Here both equity returns, Ri
t+1, and the conditionally risk free return, R

f
t , are expressed in the same

currency (e.g. US dollars).

The two-moment ICAPM in equation (2) can be extended to account for higher order terms such as

Cov[Ri
t+1, (R

W
t+1)

2|Ft] and Cov[R
i
t+1, (R

W
t+1)

3|Ft] that track the conditional co-skewness or co-kurtosis
between the aggregate (world) portfolio and local portfolio returns. Such terms arise in a nonlinear

model for the pricing kernel that depends on higher order powers of returns on the world market

portfolio. Consistent with this, and building on Harvey and Siddique (2000) and Dittmar (2002),

suppose that the pricing kernel can be approximated through a third-order Taylor series expansion of

the marginal utility of returns on aggregate wealth:

mt+1 = g0t + g1tR
W
t+1 + g2t

¡
RW
t+1

¢2
+ g3t

¡
RW
t+1

¢3
, (3)

where gjt = U j+1/U 0 is the ratio of derivatives of the utility function (U (1) ≡ U 0 is the first derivative,

etc.) evaluated at current wealth. Assuming positive marginal utility (U 0 > 0), risk aversion (U 00 < 0),

decreasing absolute risk aversion (U 000 > 0) and decreasing absolute prudence (U 0000 < 0), it follows

that g1t < 0, g2t > 0 and g3t < 0.
4 Negative exponential utility satisfies such restrictions and the same

applies to constant relative risk aversion preferences. More generally, Scott and Horvath (1980) have

shown that a strictly risk-averse individual who always prefers more to less and consistently (i.e. for

all wealth levels) likes skewness will necessarily dislike kurtosis.

4Vanden (2006) argues that investors’ preference for positively skewed portfolio returns may have far-reaching impli-

cations for the stochastic discount factor, to the point of making options nonredundant so that (powers of) their returns

enter the expression for the equilibrium pricing kernel.
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Combining (1) with the cubic pricing kernel (3) and assuming that a conditionally risk-free asset

exists, we get a four-moment asset pricing model:

E[Ri
t+1|Ft]−Rf

t = γ1tCov(R
i
t+1, R

W
t+1|Ft)+γ2tCov(R

i
t+1, (R

W
t+1)

2|Ft)+γ3tCov(R
i
t+1, (R

W
t+1)

3|Ft), (4)

where γjt = −gjtR
f
t (j = 1, 2, 3), so γ1t > 0, γ2t < 0 and γ3t > 0. This means that covariance and

co-kurtosis risk earn positive risk premia while co-skewness risk earns a negative risk premium since

an asset with a high return during times when returns on the world portfolio are highly volatile is

desirable to risk averse investors. The positive premium on co-kurtosis risk suggests that the standard

CAPM covariance premium carries over to ‘large’ returns. Co-skew earns a negative risk premium

since an asset with a high return during times when the world portfolio is highly volatile is desirable

to risk averse investors.

By imposing restrictions on equation (4), it is possible to obtain a variety of asset pricing models

from the literature as special cases. If γ3t = 0 at all times, then (4) reduces to Harvey and Siddique’s

(2000) three-moment framework in which only covariance and co-skewness are priced. If γ2t = γ3t = 0,

then (4) becomes a time-varying, conditional ICAPM

E[Ri
t+1|Ft]−Rf

t = γtCov(R
i
t+1, R

W
t+1|Ft) = βt(E[R

W
t+1|Ft]−Rf

t ), (5)

where both the risk premium and the exposure to risk (measured by the conditional beta) are time-

varying.

In spite of its ability to nest a number of important asset pricing models, there are good reasons to

be skeptical about the exact validity of the four-moment model in (4). On theoretical grounds, a reason

for the failure of the CAPM to hold exactly in an international context is that it requires the world

market portfolio to be perfectly correlated with world consumption (Stulz (1981)). Furthermore,

Bekaert and Harvey (1995) show that limited international capital market integration means that

terms such as V ar[Ri
t+1|Ft] will affect the risk premium. On empirical grounds, conditional CAPM

specifications have been tested extensively for international stock portfolios and been found to have

significant limitations. Harvey (1991) reports that not all of the dynamic behavior of country returns

is captured by a two-moment model and interprets this as evidence of either incomplete market

integration, the existence of other priced sources of risk or model misspecification. The four-moment

CAPM also ignores the presence of persistent ‘regimes’ documented for asset returns in papers such as

Ang and Chen (2002), Engel and Hamilton (1990), Guidolin and Timmermann (2006), Gray (1996),

Perez-Quiros and Timmermann (2000) and Whitelaw (2001).
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1.1. Regime Switches

To allow for conditional time-variations in the return process and the possibility of misspecification

biases, we extend the four-moment CAPM as follows. First, consistent with equations (3) and (4)

we assume that returns on the world market portfolio depend not only on the conditional variance,

V ar[RW
t+1|Ft], but also on the conditional skew, Sk[RW

t+1|Ft], and kurtosis, K[R
W
t+1|Ft] of this portfo-

lio.5 Furthermore, to obtain a flexible representation without imposing too much structure, the price

of risk associated with these moments is allowed to depend on a latent state variable, St+1, that is

assumed to follow a Markov process but is otherwise not restricted. In turn this state dependence

carries over to the price of the risk factors appearing in the equations for returns on the individual

stock market portfolios, denoted by γ1,St+1 (covariance risk), γ2,St+1 (co-skewness risk) and γ3,St+1 (co-

kurtosis risk). Finally, consistent with empirical evidence in the literature (Harvey (1989) and Ferson

and Harvey (1991)) we allow for predictability of returns on the world market portfolio through a

vector of instruments, zt+1, assumed to follow some autoregressive process.

Defining excess returns on the I individual country portfolios, xit+1 = Ri
t+1 −Rf

t (i = 1, ..., I) and

the world portfolio, xWt+1 = RW
t+1 −Rf

t , our model is

xit+1 = αiSt+1 + γ1,St+1Cov[x
i
t+1, x

W
t+1|Ft] + γ2,St+1Cov[x

i
t+1, (x

W
t+1)

2|Ft] + γ3,St+1Cov[x
i
t+1, (x

W
t+1)

3|Ft]

+biSt+1zt + ηit+1

xWt+1 = αWSt+1 + γ1,St+1V ar[x
W
t+1|Ft] + γ2,St+1Sk[x

W
t+1|Ft] + γ3,St+1K[x

W
t+1|Ft] + b

W
St+1zt + ηWt+1

zt+1 = μz,St+1 +BzSt+1zt + ηZt+1. (6)

Consistent with the restrictions implied by the four-moment ICAPM, the risk premia γj,St+1 (j =

1, 2, 3) are common across the individual assets and the world market portfolio. However, we al-

low for asset-specific intercepts, αiSt+1 , that capture other types of misspecification. The innovations

ηt+1 ≡ [η1t+1...ηIt+1 ηWt+1 (ηZt+1)0] ∼ N(0,Ωst+1) can have a state-dependent covariance matrix captur-

ing periods of high and low volatility. The predictor variables, zt+1, follow a first order autoregressive

process with state-dependent parameters, BzSt+1 , reflecting the persistence in commonly used predic-

tor variables.

To complete the model we assume that the state variable, St+1, follows a K−state Markov process
with transition probability matrix, P:

P[i, j] = Pr(st+1 = j|st = i) = pij , i, j = 1, ..,K. (7)

Our model can thus be viewed as a time-varying version of the multi-beta latent variable model of

Ferson (1990) where both risk premia and the amount of risk depend on a latent state variable.

5Conditional skewness and kurtosis are defined as Sk[RW
t+1|Ft] ≡ E[(RW

t+1 − E(RW
t+1|Ft))3|Ft] and K[RW

t+1|Ft] ≡
E[(RW

t+1 −E(RW
t+1|Ft))4|Ft], respectively.
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Country returns in the asset pricing model (6) depend on their covariances, co-skewness and co-

kurtosis with returns on the world portfolio. Estimating the skew and kurtosis of asset returns is

difficult (Harvey and Siddique (2000)). However, our model allows us to obtain precise conditional

estimates in a flexible manner as it captures skew and kurtosis as a function of the mean, variance and

persistence parameters of the underlying states. Such model-based estimates are typically determined

with considerably more accuracy than estimates of the third and fourth moments obtained directly

from realized returns which tend to be very sensitive to outliers. Moreover, as we show in Appendix

A, when the world price of covariance, co-skewness and co-kurtosis risk is identical across all markets,

the model implies a tight set of restrictions across asset returns.

To gain intuition for the asset pricing model in (6), consider the special case with a single state

where the price of risk is constant and−because the innovations ηt+1 ∼ N(0,Ω) are drawn from

a time-invariant distribution−the higher moment terms Cov[xit+1, (xWt+1)2|Ft], Cov[xit+1, (xWt+1)3|Ft],
Sk[xWt+1|Ft], and K[xWt+1|Ft] are constant and hence do not explain variations in returns:

xit+1 = αi + γ1Cov[x
i
t+1, x

W
t+1|Ft] + bizt + ηit+1

xWt+1 = αW + γ1V ar[x
W
t+1|Ft] + b

Wzt + ηWt+1

zt+1 = μz +Bzzt + ηZt+1. (8)

This is an extended version of the ICAPM in which instruments (zt) are allowed to predict returns

and alphas are not restricted to be zero ex-ante. When the restrictions αi = αW = 0 and bi =

bW = 0 are imposed on all return equations, (8) simplifies to the standard ICAPM which sets γ1t =

E[xWt+1|Ft]/V ar[x
W
t+1|Ft] so

E[xit+1|Ft] =
Cov[xit+1, x

W
t+1|Ft]

V ar[xWt+1|Ft]
E[xWt+1|Ft] ≡ βitE[x

W
t+1|Ft]. (9)

There are several advantages to modelling returns according to the general specification in (6).

Conditional on knowing the state next period, St+1, the return distribution is Gaussian. However,

since future states are not known in advance, the return distribution is a mixture of normals with

weights reflecting the current state probabilities. Such mixtures of normals provide a flexible repre-

sentation that can be used to approximate many distributions. They can accommodate mild serial

correlation in returns−documented for returns on the world market portfolio by Harvey (1991)−and
volatility clustering since they allow the first and second moments to vary as a function of the under-

lying state probabilities (Timmermann (2000)). Finally, multivariate regime switching models allow

return correlations across markets to vary with the underlying regime, consistent with the evidence of

asymmetric correlations in Longin and Solnik (2001) and Ang and Chen (2002).
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1.2. Data

In addition to the world market portfolio, our analysis incorporates the largest international stock

markets, namely the United States, Japan, the United Kingdom, the Pacific region (ex-Japan), and

continental Europe. More markets could be included but parameter estimation errors are likely to

become increasingly important in such cases so we do not go beyond five equity portfolios in addition

to the world market portfolio.6

Following common practice, we consider returns from the perspective of an unhedged US investor

and examine excess returns in US dollars on Morgan Stanley Capital International (MSCI) indices.7

The risk-free rate is measured by the 30-day US T-bill rate provided by the Center for Research in

Security Prices. Our data are monthly and cover the sample period 1975:01 - 2005:12, a total of 372

observations. Returns are continuously compounded and adjusted for dividends and other non-cash

payments to shareholders. A number of studies have documented the leading role of US monetary

policy and the US interest rate as a predictor of returns across international equity markets so we

include the short US T-bill rate as a predictor variable.8 Again our framework allows more variables

to be included at the cost of having to estimate additional parameters.

Table 1 reports summary statistics for the international stock returns, the world market portfolio

and the US T-bill rate. Mean returns are positive and lie in a range between 0.37 and 0.75 percent per

month. Return volatilities vary from four to seven percent per month. Comparing the performance

across stock markets, US stock returns are characterized by a fairly high mean and low volatility.

Returns in all but one market (Japan) are strongly non-normal, skewed and fat-tailed, suggesting that

a flexible model is required to incorporate such features. While the US T-bill rate is highly persistent,

there is little evidence of serial correlation in stock returns. However, many of the return series display

strong evidence of time-varying volatility.

1.3. Empirical Results

Panel A of Table 2 reports parameter estimates for the benchmark single-state, two-moment CAPM

in equation (8). Alphas are positive in five regions and economically large but imprecisely estimated

and statistically insignificant. The model’s failure to capture returns in Japan is consistent with the

strong rejections for Japan in the two-moment CAPM tests reported in Harvey (1991) and is perhaps

to be expected in view of the gradual liberalization of financial markets in Japan during the 1980s and

6At the end of 2005 these markets represented roughly 97% of the world equity market capitalization.
7This is consistent with other authors’ finding that US investors predominantly hold large and liquid foreign stocks

such as those that dominate the MSCI indices (Thomas, Warnock and Wongswan (2006)).
8See Obstfeld and Rogoff (1995) for the micro foundations of such models and Kim (2001) for empirical evidence.
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the analysis in Bekaert and Harvey (1995). The negative coefficients on the lagged T-bill rate are also

consistent with existing literature. At 5.3, the estimated world price of covariance risk, γ1, is positive

and significant as expected.

Next consider the asset pricing model with two states, estimates of which are shown in Panel B of

Table 2. To reduce the number of parameters, we impose two sets of constraints on the general model

(6). First, the regression coefficients on the lagged T-bill rate were found to be insignificant for all

stock markets in the first state and hence we impose that these coefficients are zero. In the second state

the coefficients on the T-bill rate are large and negative and most are significant. Second, we impose

that the correlations (but not the variances) between country-specific innovations, Corr(ηit+1, η
j
t+1),

are the same in the two states. This restriction is again supported by the data and does not imply

that the correlations between country returns (Corr(xit+1, x
j
t+1)) are the same in the two states since

state-dependence in both the alphas and in the biSt+1 and b
W
St+1

coefficients generate time-variations in

return correlations.9

As we shall see below, the economic interpretation suggested by the estimates reported in Table

2 is that state one is a bear state where returns have low (ex-post) means, high volatility and are

more strongly correlated across markets. Conversely, state two is associated with more attractive, less

uncertain and less correlated return prospects.

Figure 1 shows that the two states are generally well identified with state probabilities near zero

or one most of the time. The bear state occurred during the three-year period between 1979 and 1982

where the Fed changed its monetary policy and again during shorter spells in 1984, 1987, 1990/1991

and 2002. These periods coincide with global recessions (the early 1980s, 1990s and 2002 recessions)

and occasions with high return volatility such as October 1987. Common to these episodes is the high

degree of uncertainty about economic prospects and the associated high volatility of global equity

returns. In fact, volatility is highest in the first state for all equity portfolios with the exception of the

UK.10

The persistence of the first state (0.90) is lower than that of the second state (0.94) and so the

average duration of the first state (ten months) is shorter than that of the second state (20 months).

In steady state one-third and two-thirds of the time is spent in states one and two, respectively.

Neither of the states identifies isolated ‘outliers’ or jumps — a feature distinguishing our model from

that proposed by Das and Uppal (2004).

It is interesting to compare the alpha estimates for the single-state and two-state models. Alpha

9A likelihood ratio test of the restriction that correlations do not depend on the state, i.e. Cov(ηit+1, η
j
t+1) =

Cor(ηit+1, η
j
t+1)σ

i
St+1

σjSt+1 , produces a p-value of 0.11 and is not rejected.
10The finding for the UK is due to two outliers in January and February of 1975 with monthly excess returns of 44

and 23 percent. If excluded from the data, the volatilility in the first state is highest also for the UK.
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estimates are negative in state 1 but positive in state 2 for all portfolios. The alphas in the two states

may appear to be quite large in economic terms.11 However, as they measure returns conditional on

being in a particular state and the state is never known in advance, they are not directly comparable

to the corresponding estimates from the single state model. To account for this, we simulated 50,000

returns from the two-state model over a 12-month horizon, allowing for regime shifts and uncertainty

about future states. Measured this way, the 12-month alphas starting from the first and second states

are 0.06 and 0.70 for the US, while those for Japan are -0.45 and 0.86. The world portfolio generates

alphas of -0.13 and 0.70, starting from the first and second state, respectively. All other estimates

of the alphas in the two regimes shrink towards zero. Hence, although the individual state alphas

appear to be quite large conditional on knowing the true state, in many regards they imply weaker

evidence of mispricing than the single-state model which assumes that non-zero alphas are constant

and constitute evidence of permanent model misspecification or mispricing.

Figure 2 shows that consistent with previous studies (Ang and Bekaert (2002), Longin and Solnik

(1995, 2001) and Karolyi and Stulz (1999)), return correlations are higher in the bear state than in the

full sample. Pairwise correlations between US stock returns and returns in Japan, Pacific ex-Japan,

UK and Europe in the bear (bull) states are 0.39 (0.27), 0.65 (0.47), 0.67 (0.48) and 0.59 (0.45) and are

thus systematically higher in the bear state. This happens despite the fact that correlations between

return innovations are identical in the two states. In part this is due to the higher volatility of the

common world market return in the bear state. Furthermore, since mean returns are different in the

two states, return correlations also depend on the extent of the covariation between these parameters.

To help interpret the two states and gain intuition for what leads to changes in skew and kurtosis,

it is useful to consider the time-variation in the conditional moments of the world market portfolio.

To this end, Figure 3 shows the mean, volatility, skew and kurtosis implied by our model estimates,

computed using the results in Appendix A.1. Consistent with our interpretation of state 1 as a bear

state, mean excess returns are lower in this state, while conversely the volatility of returns is much

higher.12 Moreover, large changes in the conditional skew and kurtosis turn out to be linked to regime

switches. Preceding a shift from the bull to the bear state, the kurtosis of the world market portfolio

rises while its skew becomes large and negative and volatility is reduced. Uncertainty surrounding

shifts from a bull to a bear state therefore takes the form of an increased probability of large negative

returns.

Once in the bear state, the kurtosis gets very low and the skew close to zero, while world market

volatility is much higher than normal. Hence the return distribution within the bear state is more

11Furthermore, the alphas in the two states are sufficiently precisely estimated that the hypothesis that they are equal

to zero is very strongly rejected by a likelihood ratio test.
12Notice that, consistent with basic intuition, the expected excess return on the world portfolio is never negative.
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dispersed, although closer to symmetric. Finally, when exiting from the bear to the bull state, the

kurtosis again rises — reflecting the increased uncertainty associated with a regime shift — while volatil-

ity and skew decline to their normal levels. These large variations in the volatility, skew and kurtosis

of world market returns means that our model is able to capture the correlated extremes across local

markets found to be an important feature of stock returns in Harvey et al. (2004).

1.4. Time-Variations in Risk Premia

Further economic intuition can be gained from studying variations in the risk premia. The premium

on covariance with returns on the world market portfolio (γ1) is positive in both states but, at 15.9,

is much higher in the bull state than in the bear state for which an estimate of 9.5 is obtained. The

number reported by Harvey (1991) for the subset of G7 countries is 11.5 and hence lies between these

two values. Consistent with the large difference between the covariance risk premium in the bull and

bear state that we find here, Harvey rejects that the world price of risk is constant.

A similar conclusion holds for the co-kurtosis premium (γ3) which is positive and insignificant in

the bear state but positive and significant in the bull state. After suitable scaling the estimates of γ3

can be compared to the price of covariance risk, γ2.
13 This yields a price of co-kurtosis risk of 1.7

and 12.3 in the bear and bull state, respectively, and a steady state average of 8.7. As expected, the

co-skewness premium (γ2) is negative in both states although it is only significant (and by far largest)

in the bull state. When converted to the same units as the covariance risk premium, the estimates are

-1.1 and -3.1 in the bear and bull state, respectively, while the steady state average is -2.4.

Both the price of risk and the quantity of risk are required to show how much co-skewness risk and

co-kurtosis risk contribute to expected returns compared with covariance risk. Using the parameter

estimates from Table 2, we found that covariance risk (measured relative to the world market portfolio)

contributes roughly the same amount to the risk premium in all markets, namely between 2.7 and

3.3 percent per year. Co-skewness risk premia vary more cross-sectionally, namely from 0.6 percent

per year in Japan to 2.6 percent for Pacific stocks. Finally, co-kurtosis risk contributes between 0.5

and 1 percent to expected returns in annualized terms. For four of the six portfolios we study here

(including the US and World portfolios), the combined co-skew and co-kurtosis risk premium is within

one percent of the covariance risk premium.

13Scaling is required for meaningful comparisons. For instance, γ1 measures the covariance risk premium per unit of

covariance risk, Cov[xit+1, x
W
t+1|Ft], while γ2 measures the co-skew risk premium with reference to Cov[xit+1, (x

W
t+1)

2|Ft].
Since Cov[xit+1, x

W
t+1|Ft] and Cov[xit+1, (xWt+1)2|Ft] are measured in different units (co-skewness involves squared returns),

they cannot be directly compared. Because the scale of Cov[xit+1, x
W
t+1|Ft] is similar to V ar[xWt+1|Ft] and the scale of

Cov[xit+1, (x
W
t+1)

2|Ft] is similar to |Sk[xWt+1|Ft]|, the transformation γ̃2 = γ2×V ar[xWt+1|Ft]/|Sk[xWt+1|Ft]| leads to a new
coefficient γ̃2 which is comparable to γ1. Similarly, γ̃3 = γ3 × V ar[xWt+1|Ft]/K[xWt+1|Ft] can be compared to γ1.
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We conclude from this analysis that the coefficients on covariance, co-skewness and co-kurtosis risk

have the expected signs and are economically meaningful: Investors dislike risk in the form of higher

volatility or fatter tails but like positively skewed return distributions. Furthermore, the co-skew and

co-kurtosis risk premia appear to be important in economic terms as they are of the same order of

magnitude as the covariance risk premium.

1.5. Are Two States Needed?

A question that naturally arises in the empirical analysis is whether regimes are really present in the

distribution of international stock market returns. To answer this we computed the specification test

suggested by Davies (1977), which very strongly rejected the single-state specification.14 Inspection of

the residuals from the single-state model confirmed that this model fails to capture even the most basic

properties of the international returns data while the residuals from the two-state model (standardized

by subtracting the conditional mean and dividing by the conditional standard deviation) were much

closer to the model assumptions.

2. The Investor’s Asset Allocation Problem

We next turn to the investor’s asset allocation problem. Consistent with the analysis in the previous

section, we assume that investor preferences depend on higher order moments of returns and allow

regimes to affect the return process.

2.1. Preferences over Moments of the Wealth Distribution

Suppose that the investor’s utility function U(Wt+T ;θ) only depends on wealth at time t+ T , Wt+T ,

and a set of shape parameters, θ, where t is the current time and T is the investment horizon. Consider

an m-th order Taylor series expansion of U around some wealth level vT :

U(Wt+T ;θ) =
mX
n=0

1

n!
U (n)(vT ;θ) (Wt+T − vT )

n + ςm, (10)

where the remainder ςm is of order o((Wt+T − vT )
m) and U (0)(vT ;θ) = U(vT ;θ). U

(n)(.) denotes the

n−th derivative of the utility function with respect to terminal wealth. Provided that (i) the Taylor
series converges; (ii) the distribution of wealth is uniquely determined by its moments; and (iii) the

order of sums and integrals can be exchanged, the expansion in (10) extends to the expected utility

14Regime switching models have parameters that are unidentified under the null hypothesis of a single state. Standard

critical values are therefore invalid in the hypothesis test. Details of the analysis are available upon request.
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functional:

Et[U(Wt+T ;θ)] =
mX
n=0

1

n!
U (n)(vT ;θ)Et[(Wt+T − vT )

n] +Et[ςm], (11)

where Et[.] is short for E[.|Ft]. For instance, Tsiang (1972) shows that these conditions are satisfied for

negative exponential utility when asset returns are drawn from a multivariate distribution for which

the first m central moments exist. We thus have

Et[U(Wt+T ;θ)] ≈ Êt[U
m(Wt+T ;θ)] =

mX
n=0

1

n!
U (n)(vT ;θ)Et[(Wt+T − vT )

n]. (12)

While the approximation improves as m gets larger — setting m = 2 or 3 is likely to give accurate

approximations for CARA utility according to Tsiang (1972) — many classes of Von-Neumann Mor-

genstern expected utility functions can be well approximated using a relatively small value of m and

a function of the form:15

Êt[U
m(Wt+T ;θ)] =

mX
n=0

κnEt[(Wt+T − vT )
n], (13)

with κ0 > 0, and κn positive (negative) if n is odd (even).

2.2. Solution to the Asset Allocation Problem

We next characterize the solution to the investor’s asset allocation problem when preferences are

defined over moments of terminal wealth while, consistent with the analysis in Section 1, returns

follow a regime switching process. Following most papers on portfolio choice (e.g., Ang and Bekaert

(2002) and Das and Uppal (2004)), we assume a partial equilibrium framework that treats returns as

exogenous.

The investor maximizes expected utility by choosing among I risky assets whose continuously

compounded excess returns are given by the vector xst ≡ (x1t x2t ... xIt )0. Portfolio weights are collected
in the vector ω1t ≡ (ω1t ω2t ... ωIt )0 while (1− ω0tιI) is invested in a short-term interest-bearing bond,

where ιI is an I × 1 vector of ones. The portfolio selection problem solved by a buy-and-hold investor

15For power utility, Tsiang (1972) and Kraus and Litzenberger (1976) prove that the condition

Pr{|h| = |Wt+T − vT | ≤ Et[Wt+T ]} = 1

is required for the series

(Et[Wt+T ])
1−γ

1− γ
+ h(Et[Wt+T ])

−γ − 1

2
(Et[Wt+T ])

−γ−1h2 +
1

6
(Et[Wt+T ])

−γ−2h3 + ...− (−1)m 1

m!
(Et[Wt+T ])

−γ−m+1hm

to converge. This corresponds to imposing a bound on the amount of risk accepted by the investor. In general convergence

is slower than in the exponential utility case and depends on the investment horizon, T .
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with unit initial wealth then becomes

max
ωt

Et [U(Wt+T (ωt);θ)]

s.t. Wt+T (ωt) =
n
(1− ω0tιI) exp

³
Rb
t+T

´
+ ω0t exp

¡
Rs

t+T

¢o
, (14)

whereRs
t+T ≡ (xst+1+rbt+1)+(xst+2+rbt+2)+...+(xst+T+rbt+T ) is the vector of continuously compounded

equity returns over the T−period investment horizon while Rb
t+T ≡ rbt+1 + rbt+2 + ... + rbt+T is the

continuously compounded bond return. Accordingly, exp(Rs
t+T ) is a vector of cumulated returns.

Short-selling can be ruled out through the constraint ωit ∈ [0, 1] for i = 1, 2, ..., I .
For generality, we assume the following process for a vector of I + 1 excess returns (the last of

which can be taken to represent the risky returns on a short-term bond, xbt+τ = rbt+τ ):
16

xt+1 = μ̃St+1 +

pX
j=1

Bj,St+1xt−j + εt+1, (15)

where μ̃St+1 = (μ
1
st+1 , ..., μ

I+1
st+1)

0 is a vector of conditional means in state St+1 (possibly used to “fold in”

all components of the mean in state St+1), Bj,St+1 is a matrix of autoregressive coefficients associated

with the jth lag in state St+1, and εt+1 = (ε1t+1, ..., ε
I+1
t+1 )

0 ∼ N(0,ΩSt+1) is a vector of zero-mean

return innovations with state-dependent covariance matrix ΩSt+1 .

With I + 1 risky assets and K states, the wealth process becomes

Wt+T = ω0t exp

"
TX

τ=1

(xt+τ + rbt+τ )

#
+ (1− ω0tιI) exp

"
TX

τ=1

rbt+τ

#
. (16)

We next present a simple and convenient recursive procedure for evaluating the expected utility

associated with a vector of portfolio weights, ωt, of relatively high dimension:

Proposition 1. Under the regime-switching return process (15) and m−moment preferences (13),
the expected utility associated with the portfolio weights ωt is given by

Êt[U
m(Wt+T )] =

mX
n=0

κn

nX
j=0

(−1)n−jvn−jT nCjEt[W
j
t+T ] (17)

=
mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶ jX
i=0

µ
j

i

¶
Et

h¡
ω0t exp

¡
Rs

t+T

¢¢ii
((1-ω0tιh) exp(Tr

f ))j−i.

The nth moment of the cumulated return on the risky asset portfolio is

Et

£¡
ω0t exp

¡
Rs

t+T

¢¢n¤
=

nX
n1=0

· · ·
nX

nI=0

λ(n1, n2, ..., nI)

Ã
IY

i=1

ωnii

!
M
(n)
t+T (n1, ..., nI), (18)

16This equation is more convenient to use than (6) but is fully consistent with the earlier setup if the last elements of

the return vector, rt+1, are used to capture the predictor variables, zt+1, which may themselves be asset returns.
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where
PI

i=1 ni = n, 0 ≤ ni ≤ n (i = 1, ..., I),

λ(n1, n2, ..., nh) ≡
n!

n1!n2! ... nh!
. (19)

and M
(n)
t+T (n1, ..., nI) can be evaluated recursively, using (B12) in the Appendix.

Appendix B proves this result. The solution is in closed-form in the sense that it reduces the

expected utility calculation to a finite number of steps each of which can be solved by elementary

operations.

Given their recursive structure, these results are complex and difficult to analyze. Appendix B

therefore uses a simple two-state model to illustrate the result with a single risky asset. Here we use

the setup of the model from Table 2 to provide intuition for proposition 1 in terms of the underlying

determinants of the optimal asset allocation:

1. The current state probabilities (πt, 1− πt) are particularly important for investors with a short

horizon. Starting from the bear state, investment prospects are less favorable than starting from

the bull state since there is a higher chance of remaining in the initial state. Stock markets with

relatively good performance in the bear state (relative to other markets) will thus be preferred

when starting from this state. How far πt is removed from zero or one reflects investors’ uncer-

tainty about the current state. The more uncertain they are, the less aggressive the resulting

asset allocation.

2. State transition probabilities, pij , affect the speed of mean reversion towards the steady state

investment opportunity set. The closer the “stayer” probabilities, p11, p22 are to one, the more

persistent the individual states will be and hence the more the initial state matters. Conversely,

if one state has a very low “stayer” probability, then this state is more likely to capture the

occasional outlier or jump in asset prices as in Das and Uppal (2004).

3. Differences between mean parameters (μ1, μ2) and variance parameters (σ1, σ2) across states are

important since skewness can only arise in the regime switching model provided that expected

returns differ across states, i.e. μ1 6= μ2, while kurtosis is strongly affected by differences in

variance parameters in the states (see Timmermann (2000)). The greater the differences between

expected returns and volatilities in the bear and bull states, the larger the role played by skew and

kurtosis risk. Risk averse investors prefer to invest in countries with relatively good performance

in the bear state since these provide a hedge against the poor performance of the world market

portfolio and since the marginal utility of payoffs are higher in this state.

4. Investor preferences, as captured in part by m, the number of higher order moments that matter

to the investor, in part by the weights assigned to the various moments which we discuss further
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below. Going from m = 2 to m = 3 or m = 4, we move from mean-variance preferences to a

setup where skew and kurtosis matter as well. Moreover, as the weight in the utility function

on skew and kurtosis increases, investors become more sensitive to states with high volatility

and higher probability of negative returns. This means that the significance of such states in

determining the optimal asset allocation grows as does the weight on countries with relatively

attractive co-skewness and co-kurtosis properties.

5. The investment horizon, T , plays a role in conjunction with the average duration of the states.

The shorter the investment horizon and the more persistent the states, the more sensitive the

investor’s asset allocation will be with respect to the current state probability. As the investment

horizon grows, the return distribution will converge to its “average” value and so the asset

allocation becomes less sensitive to the initial state and more sensitive to the steady state

probabilities.

It is useful to compare the solution method in Proposition 1 to existing alternatives. Classic results

on optimal asset allocation have been derived for special cases such as power utility with constant

investment opportunities or under logarithmic utility (Merton (1969) and Samuelson (1969)). For

general preferences there is no closed-form solution to (14), but given its economic importance it is not

surprising that a variety of solution approaches have been suggested. Recent papers that solve the asset

allocation problem under predictability of returns include Ang and Bekaert (2002), Brandt (1999),

Brennan, Schwarz and Lagnado (1997), Campbell and Viceira (1999, 2001). These papers generally

use approximate solutions or numerical techniques such as quadrature (Ang and Bekaert (2002)) or

Monte Carlo simulations (Detemple, Garcia and Rindisbacher (2003)) to characterize optimal portfolio

weights. Quadrature methods may not be very precise when the underlying asset return distributions

are strongly non-normal. They also have the problem that the number of quadrature points increases

exponentially with the number of assets. Monte Carlo methods can be computationally expensive to

use as they rely on discretization of the state space and use grid methods.17 Although existing methods

have clearly yielded important insights into the solution of (14), they are therefore not particularly

well-suited to our analysis of international asset allocation which involves a large number of portfolios.

3. International Portfolio Holdings

We next consider empirically the optimal international asset allocation under regime switching and

four-moment preferences. The weights on the first four moments of the wealth distribution are deter-

mined to ensure that our results can be compared to those in the existing literature. Most studies on

17In continuous time, closed-form solutions can be obtained under less severe restrictions, see Kim and Omberg (1996).
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optimal asset allocation use power utility so we calibrate our coefficients to the benchmark

U(Wt+T ; θ) =
W 1−θ

t+T

1− θ
, θ > 0. (20)

For a given coefficient of relative risk aversion, θ, (20) serves as a guide in setting values of {κn}mn=0
in (13) but should otherwise not be viewed as an attempt to approximate results under power utility.

Expanding the powers of (Wt+T − vT ) and taking expectations, we obtain the following expression for

the four-moment preference function:

Êt[U
4(Wt+T ; θ)] = κ0,T (θ)+κ1,T (θ)Et[Wt+T ]+κ2,T (θ)Et[W

2
t+T ]+κ3,T (θ)Et[W

3
t+T ]+κ4,T (θ)Et[W

4
t+T ],

(21)

where18

κ0,T (θ) = v1−θT

∙
(1− θ)−1 − 1− 1

2
θ − 1

6
θ(θ + 1)− 1

24
θ(θ + 1)(θ + 2)

¸
κ1,T (θ) =

1

6
v−θT [6 + 6θ + 3θ(θ + 1) + θ(θ + 1)(θ + 2)] > 0

κ2,T (θ) = −1
4
θv
−(1+θ)
T [2 + 2(θ + 1) + (θ + 1)(θ + 2)] < 0

κ3,T (θ) =
1

6
θ(θ + 1)(θ + 3)v

−(2+θ)
T > 0

κ4,T (θ) = − 1
24

θ(θ + 1)(θ + 2)v
−(3+θ)
T < 0. (22)

Expected utility from final wealth increases in Et[Wt+T ] and Et[W
3
t+T ], so higher expected returns

and more right-skewed distributions lead to higher expected utility. Conversely, expected utility is

a decreasing function of the second and fourth moments of the terminal wealth distribution. Our

benchmark results assume that θ = 2, a coefficient of relative risk aversion compatible with much

empirical evidence.19

A solution to the optimal asset allocation problem can now easily be found from Proposition 1 by

solving a system of cubic equations in ω̂t derived from the first order conditions

∇ωtÊt[U
4(Wt+T ; θ)]

¯̄̄
ω̂t
= 00. (23)

At the optimum ω̂t sets the gradient, ∇ωtÊt[U
4(Wt+T ; θ)], equal to zero and produces a negative

definite Hessian matrix, HωtÊt[U
4(Wt+T ; θ)].

18The notation κn,T makes it explicit that the coefficients of the fourth order Taylor expansion depend on the investment

horizon through the coefficient vT , the point around which the approximation is calculated. We follow standard practice

and set vT = Et[Wt+T−1].
19Based on the evidence in Ang and Bekaert (2002) — who show that the optimal home bias is an increasing function

of the coefficient of relative risk aversion — this is also a conservative choice.
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3.1. Empirical Results

As a benchmark, Table 3 first reports equity allocations for the single-state model using a short 1-month

and a longer 24-month horizon. Our empirical analysis considers returns on five equity portfolios and

the world market. To arrive at total portfolio weights we therefore re-allocate the weight assigned to

the world market using the regional market capitalizations as weights.20 Since we are interested in

the home equity bias, we report equity weights as percentages of the total equity portfolio so they

sum to unity. The allocation to the risk-free asset (as a percentage of the total portfolio) is shown for

interest rates that vary by up to two standard deviations from the mean. When the T-bill rate is set

at its sample mean of 5.9% per annum, at the one-month horizon only 31% of the equity portfolio is

invested in US stocks. Slightly less (29%) gets invested in US stocks at the 24-month horizon. Thus,

in both low and high interest rate environments the fraction of the equity portfolio allocated to US

stocks remains considerably short of the percentages typically reported in the empirical literature.

These results support earlier findings under mean-variance preferences (e.g. Lewis (1999)) and also

show that the home bias puzzle extends to a setting with return predictability from the short T-bill

rate.

Turning to the two-state model, Table 3 shows that the allocation to US stocks is much higher in

the presence of regimes. This holds both when starting from the steady-state probabilities — i.e. when

the investor has imprecise information about the current state — as well as in the separate bull and

bear states. Under steady state probabilities and assuming an average short-term US interest rate

the 1-month allocation to US stocks is 70% of the total equity portfolio. This reflects an allocation of

75% in the bear state and an allocation of 60% in the bull state.

These results show that a four-moment regime switching asset pricing model can substantially

increase the optimal weights on US stocks. Moreover, this finding is robust to the level of the short

US interest rate. Varying this rate predominantly affects the allocation to the risk-free asset versus

the overall equity portfolio but has little affect on the regional composition of the equity portfolio.21

While the next section explains these results in the context of higher order moments, preliminary

intuition can be gained in terms of how well the stock portfolios perform in the “bad” (bear) state.

During bear markets, US stocks perform relatively better than the other markets with a higher Sharpe

ratio due in part to higher mean returns and in part to lower volatility. This turns out to be especially

important here since states with poor returns tend to be more heavily weighted under four-moment

preferences than under mean-variance preferences and helps explain why the two-state model, which

20This introduces a very small approximation error as the included stock markets account for only 97% of the world

market.
21The allocation to the short-term bond is much higher in the bear state than in the bull state. This happens because

equity returns are small and volatile in the bear state and hence unattractive to risk averse investors.
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distinguishes between return distributions in good and bad states, leads to higher allocations to US

stocks than the single-state model which does not make this distinction. Of course, explanations based

only on the first two moments merely scratch the surface of the issue here. We therefore next turn to

the effect of higher order moments on international portfolio choice.

3.2. Effects of Higher Moments

Compared with the benchmark model, our four-moment regime switching model is able to significantly

increase the allocation to US stocks. An economic understanding of the effect of skew and kurtosis

on the optimal asset allocation requires studying the co-skewness and co-kurtosis properties at the

portfolio level. To this end, define the conditional co-skewness of the return on market i with the

world market as:

Si,W (Ft, St) ≡
Cov[xit+1, (x

W
t+1)

2|Ft, St]
{V ar[xit+1|Ft, St](V ar[xWt+1|Ft, St])2}1/2

. (24)

The co-skewness is normalized by scaling by the appropriate powers of the volatility of the respective

portfolios. A security that has negative co-skewness with the market portfolio pays low returns when

the world market portfolio becomes highly volatile. To a risk averse investor this is an unattractive

feature since global market risk rises in periods with low returns. Conversely, positive co-skewness is

desirable as it means higher expected returns during volatile periods.

Similarly, define the co-kurtosis of the excess return on asset i with the world portfolio as

Ki,W (Ft, St) ≡
Cov[xit+1, (x

W
t+1)

3|Ft, St]

{V ar[xit+1|Ft, St](V ar[xWt+1|Ft, St])3}1/2
. (25)

Large positive values are undesirable as they mean that local returns are low (high) when world market

returns are largely skewed to the left (right), thus increasing the overall portfolio risk.

Table 4 reports estimates of these moments in the bull and bear states as well as under steady

state probabilities. The latter gives a measure that is more directly comparable to the full-sample

estimates listed in the final column. Comparing the values implied by the two-state model to the

full-sample estimates, the model generally does a good job at matching the data. Interestingly, with

the exception of Japan, US stocks have the lowest co-kurtosis and highest co-skewness coefficients in

both the bear state and under steady-state probabilities. Moreover, Japanese stocks are unattractive

due to their low mean returns over the sample period. As we shall see, these observations help explain

why domestic stocks are more attractive to US investors with skew and kurtosis preferences than in

the mean-variance case.

To address the effect of higher order moments on the asset allocation, we next computed the

optimal portfolio weights under mean-variance (m = 2) preferences:

Êt[U
2(Wt+T ; θ)] = κ0,T (θ) + κ1,T (θ)Et[Wt+T ] + κ2,T (θ)Et[W

2
t+T ], (26)
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where κ0,T (θ) ≡ v1−θT

£
(1− θ)−1 − 1− 1

2θ
¤
, κ1,T (θ) ≡ v−θT (1 + θ) > 0 and κ2,T (θ) ≡ −12θv

−(1+θ)
T < 0.

We also consider optimal allocations under three-moment preferences

Êt[U
3(Wt+T ; θ)] = κ0,T (θ) + κ1,T (θ)Et[Wt+T ] + κ2,T (θ)Et[W

2
t+T ] + κ3,T (θ)Et[W

3
t+T ] (27)

where now κ0,T (θ) ≡ v1−θT

£
(1− θ)−1 − 1− 1

2θ −
1
6θ(θ + 1)

¤
, κ1,T (θ) ≡ v−θT

£
1 + θ + 1

2θ(θ + 1)
¤
> 0,

κ2,T (θ) ≡ −12θv
−(1+θ)
T (2 + θ) < 0 and κ3,T (θ) ≡ 1

6θ(θ + 1)v
−(2+θ)
T > 0.

Using steady-state probabilities, Table 5 shows that the allocation to US stocks as a portion of the

overall equity portfolio is just above 50% under both mean-variance and skewness preferences. The

introduction of two states on its own thus increases the allocation to US stocks from roughly 30% (as

seen in Table 3) to 50%. This allocation rises further to 70% of the equity portfolio when we move to

the case with skew and kurtosis preferences. Interestingly, in the bear state the large increase in the

allocation to US stocks due to introducing higher moment preferences comes from the skew while the

kurtosis plays a similar role in the bull state.

The correlation, co-skewness and co-kurtosis between the short interest rate and stock returns

also affect asset allocations. At the 1-month horizon, the correlation between the risk-free rate and

stock returns is zero since the risk-free rate is known. Future short-term spot rates are stochastic,

however. This matters to buy-and-hold investors with horizons T ≥ 2 months who effectively commit
(1 − ω0tιI) of their portfolio to roll over investments in T−bills T − 1 times at unknown future spot
rates. We therefore computed the co-skewness and co-kurtosis between the individual stock returns

and rolling six-month bond returns assuming steady state probabilities and setting the initial interest

rate at its unconditional mean. US stocks were found to generate the second-highest co-skewness

coefficient (-0.06) and the second lowest co-kurtosis coefficient (4.44). Only Japanese stocks turn

out to be preferable to US stocks, although their conditional mean and variance properties make

them undesirable to a US investor. We conclude that the co-moment properties of US stocks against

rolling returns on short US T-bills help to explain the high demand for these stocks under three- and

four-moment preferences.

4. Robustness of Results

To summarize our results so far, we extended the standard model in two directions: First, by defining

preferences over higher moments such as skew and kurtosis and, second, by allowing for the presence

of bull and bear regimes tracking periods with very different mean, variances, correlations, skew and

kurtosis of stock returns. In this section we consider the robustness of our results with regard to

alternative specifications of investor preferences, estimation errors and dynamic portfolio choice.
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4.1. Preference Specification

We first consider the effect of changing the coefficient of relative risk aversion from θ = 2 in the

baseline scenario to values of θ = 5 (high) and θ = 10 (very high). Ang and Bekaert (2002) and Das

and Uppal (2004) found that changes in risk aversion affect their conclusions on the importance of

either regime shifts or systemic (jump) risks. In unreported results that are available upon request,

we found that there was no monotonic relation between θ and the weight on US stocks, although the

allocation to US stocks tends to be greater for θ = 10 than for θ = 2. Risk aversion has a first order

effect on the choice of T-bills versus stocks but has far less of an effect on the composition of the

equity portfolio. Therefore, it does not seem that our conclusions depend on a particular choice of θ.

To make our results comparable to those reported in the literature which assume power utility, we

also compared results under four-moment preferences to those under constant relative risk aversion.

Differences between results computed under power utility and four-moment preferences were relatively

minor.22 In the bear state the allocation to US stocks was around 2-4% lower under power utility

while conversely the allocation to UK stocks tended to be higher. In the more persistent bull state,

allocations under the four-moment preference specification were similar to those under constant relative

risk aversion.

4.2. Precision of Portfolio Weights

Mean-variance portfolio weights are generally highly sensitive to the underlying estimates of mean

returns and covariances. Since such estimates often are imprecisely estimated, this means that the

portfolio weights in turn can be poorly determined, see Britten-Jones (1999). As pointed out by

Harvey, Liechty, Liechty and Muller (2004), this could potentially be even more of a concern in a

model with higher moments due to the difficulty of obtaining precise estimates of moments such as

skew and kurtosis.23

To address this concern, we computed standard error bands for the portfolio weights under the

single state and two-state models using that, in large samples, the distribution of the parameter

estimates from a regime switching model is

√
T
³bθ − θ´ ∼ N(0,Vθ). (28)

22A problem associated with low-order polynomial utility functionals is the difficulty of imposing restrictions on the

derivatives (with respect to the moments of wealth) that apply globally. For example, nonsatiation cannot be imposed

by restricting a quadratic polynomial to be monotonically increasing and risk aversion cannot be imposed by restricting

a cubic polynomial to be globally concave (see Post and Levy (2005) and Post, van Vliet and Levy (2007)). It is therefore

important to compare our results to those obtained under power utility.
23See also the discussion of “Omega” in Cascon, Keating and Shadwick (2003) which is used to capture sample

information beyond point estimates through the cumulative density function of returns.
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We set up the following simulation experiment. In the qth simulation we draw a vector of parameters,b̂
θ
q

, from N(bθ, T−1V̂θ) where V̂θ is a consistent estimator of Vθ. Using this draw,
b̂
θ
q

, we solve for the

associated vector of portfolio weights b̂ωq
. We repeat this process Q times. Confidence intervals for

the optimal asset allocation ω̂t can then be derived from the distribution of b̂ωq
, q = 1, 2, ..., Q. This

approach is computationally intensive, as the asset allocation problem (14) must be solved repeatedly,

so we set the number of simulations to Q = 2, 000.

Results are reported in Table 6. Unsurprisingly, and consistent with the analysis in Britten- Jones

(1999), the standard error bands are quite wide for the single state model. For example, at the

1-month horizon the 90% confidence band for the weight on the US market in the equity portfolio

goes from 2% to 38%−a width of 36%. The width of the confidence band is roughly similar at the
24-month horizon. In comparison, the confidence band for the US weight in the two-state model under

steady state probabilities only extends from 64% to 73%, a width of less than 10%. Even at longer

investment horizons, the confidence bands remain quite narrow under the two-state model (e.g. from

50% to 69% under steady state probabilities when T = 24 months). In fact, the standard error bands

for the portfolio weights are generally narrower under the two-state model than under the single-state

model. This suggests that the finding that a large part of the home bias can be explained by the US

stock market portfolio’s co-skewness and co-kurtosis properties in bull and bear states is fairly robust.

Intuition for these findings is as follows. First, the fact that the portfolio weights do not become less

precise even though we account for skew and kurtosis is related to the way we compute these moments

from a constrained two-state asset pricing model. As can be seen from the time series in figures 2

and 3, these moments are well behaved without the huge spikes and sampling variations typically

observed when such moments are estimated directly from returns data using rolling or expanding data

windows. Second, the two-state model captures many properties of the returns data far better than

the single-state model and so reduces noise due to misspecification. Third, and related to this point,

one effect of conditioning on states is to capture more of the return dynamics. This means that some

of the parameters in the two-state model are more precisely estimated than in the single-state model.

Again this reduces the standard error bands on the portfolio weights under the two-state model.

An alternative way to measure the effect of parameter estimation error that directly addresses

its economic costs is to compute the investor’s average (or expected) utility when the estimated

parameters as opposed to the true parameters are used to guide the portfolio selection. To this end,

Panel A of Table 7 reports the outcome of a Monte Carlo simulation where returns were generated

from the two-state model in Table 2. In these simulations, the parameter values were assumed to

be unknown to the investor who had to estimate these using a sample of the same length as the

actual data before selecting the portfolio weights assuming either a 1-month or a 24-month investment
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horizon. For comparison, we also report results for alternatives such as using the single state model

(8) or adopting the ICAPM weights (i.e. each region is purchased in the proportion that it enters into

the global market portfolio).

Even after accounting for the effect of parameter estimation errors, the two-state model produces

the highest certainty equivalent return and the highest average wealth at both the 1-month and 24-

month horizons. Furthermore, the improvements are meaningful in economic terms, suggesting an

increase in the certainty equivalent return of about two percent per annum. Since US stock holdings

are considerably higher under the two-state model, the better performance of this model again indicates

that parameter estimation error does not diminish the ability of this model to explain home biases in

US investors’ equity holdings.

4.3. Out-of-Sample Portfolio Selection

Econometric models fitted to asset returns may produce good in-sample (or historical) fits and imply

asset allocations that are quite different from the benchmark ICAPM portfolio. However, this is by

no means a guarantee that such models will lead to improvements in ‘real time’ when used on future

data. This problem arises, for example, when the proposed model is misspecified. It could also be the

result of parameter estimation error as discussed above.

To address both concerns, we next explored how well the two-state model performs out-of-sample

through the following recursive estimation and portfolio selection experiment. We first used data up

to 1985:12 to estimate the parameters of the two-state model. Using these estimates, we computed the

mean, variance, skew and kurtosis of returns and solved for the optimal portfolio weights at 1-month

and 24-month horizons. This exercise was repeated the following month, using data up to 1986:1 to

forecast returns and select the portfolio weights. Repeating this until the end of the sample (2005:12)

generated a sequence of realized returns from which realized utilities and certainty equivalent returns

were computed.24

Since this experiment does not assume that the two-state model is the ‘true’ model — realized

returns are computed using actual data and not simulated returns — and since the sample (1986-2005)

covered several bull and bear markets, this experiment provides an ideal way to test if the two-state

model can add value over alternative approaches.

Results are shown in Panel B in Table 7. Again the two-state model came out ahead of the single-

state model and ICAPM specifications in realized utility terms and for both investment horizons.25

24In this experiment we updated all the parameters once a year while the state probabilities were updated each month

using the Hamilton-Kim filter (see Hamilton (1990) for details).
25An investment strategy based on the two-state model fails to produce the highest out-of-sample mean return which

is now associated with the ICAPM. However, the ICAPM portfolio weights also generate return volatilities that are 2-3%
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For example, at the 1-month horizon, the certainty equivalence return of the two-state model was two

percent higher than under the single-state model while it exceeded that of the ICAPM by 80 basis

points per annum. Results were very similar at the 24-month horizon.

4.4. Rebalancing

To keep the analysis simple, so far we ignored the possibility of portfolio rebalancing. However, as noted

in the literature, rebalancing opportunities give investors incentives to exploit current information more

aggressively. To explore the importance of this point, we therefore considered rebalancing using two

investment horizons (T = 6 and 24 months) and various rebalancing frequencies (ϕ = 1, 3, 6, 12

months). To save space we simply summarize the results here, while further details are available on

request. Our analysis showed that rebalancing matters most when it occurs very frequently, i.e. when

ϕ is small. Stock allocations under rebalancing are large and always exceed 60% of current wealth.

Starting from the bull state, the allocation under frequent rebalancing (ϕ = 1 and 3 months) differs

significantly from the buy-and-hold results as the investor attempts to time the market by shifting the

portfolio towards Pacific stocks and away from US and UK equities.

However, starting from the bear state or assuming that the initial state is unknown (i.e. adopting

steady-state probabilities), very frequent rebalancing (ϕ = 1 and 3 months) increases the allocation

to US stocks for long horizons (T = 24 months), while Japanese stocks also emerge as an attractive

investment. For all possible values of ϕ this implies an even greater allocation to US stocks than

under the buy-and-hold scenario. In fact, under frequent rebalancing a US investor with four-moment

preferences and a long horizon should hold even more in US securities than under no rebalancing. For

example, for T = 24, almost 100% of wealth goes into domestic securities, comprising between 60%

and 85% in stocks (only 8-12% of total wealth goes into foreign stocks).

All told, regime shifts combined with preferences that reflect aversion against fat tails and negative

skew help explain the home bias under a range of assumptions about the rebalancing frequency,

especially when investors have little information about the current state (and thus adopt steady state

probabilities), which seems to be a plausible assumption.

5. Conclusion

The composition of US investors’ equity portfolio into domestic and foreign stocks depends critically on

how the distribution of global equity returns is modeled and which preferences investors are assumed

to have. Under mean-variance preferences and a single-state model for stock returns, we continue to

higher than the portfolio associated with the two-state model. This helps explain why the two-state portfolio attains

higher realized utilities and certainty equivalent returns.
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find substantial gains to US investors from international diversification and thus confirm the presence

of a home bias puzzle. However, we argue that the standard two-moment ICAPM has important

shortcomings since it ignores skewness and kurtosis in international stock returns and present empirical

evidence that such moments are associated with significant risk premia. Once we account for US

investors’ dislike for negative skew and fat-tailed return distributions and incorporate the strong

evidence of persistent bull and bear states in global equity returns, we find a much larger allocation

to domestic stocks.

Intuition for this result comes from the attractive properties that US stocks have for an investor

who — besides being risk averse — prefers positively skewed (asymmetric) payoffs and dislikes fat tails

(kurtosis). For example, US stocks have relatively high co-skewness and low co-kurtosis with respect to

the global market portfolio. The performance of US stocks certainly worsens during the global ‘bear’

state. However, compared with other international markets, the US market portfolio is relatively less

affected and offers better investment opportunities when global equity markets are highly volatile or

experience large negative returns.

Our empirical findings are consistent with and shed new light on recent papers that justify un-

derdiversification from a theoretical perspective. Mitton and Vorkink (2007) propose a model in

which investors’ skewness preferences lead them to hold substantially under-diversified portfolios in

equilibrium. Polkovnichenko (2005) shows that several forms of rank-dependent preferences generate

preference for wealth skewness. For a range of plausible parameterizations, this can lead to under-

diversification of the optimal portfolio.

An interesting issue that goes beyond the analysis in the current paper is whether our results

extend to the home bias observed in investors’ equity holdings in other countries. One may conjecture

that — because stock and bond markets in the same economy are more likely to be “in phase” than

are markets across national borders — the finding that stock returns in one country have attractive

co-moment properties with national short-term rates extends beyond our analysis for the US. This

would contribute to explain the international evidence of a pervasive home bias in stock holdings.26

Appendix A: Conditional Moments and Estimation Procedure

This appendix describes how we derive the conditional higher order moments of stock returns and

explains the econometric methodology used in estimating the asset pricing model (6).

A.1 Moments of Returns

Letting yt+1 = (x
0
t+1, x

W
t+1, z

0
t+1)

0 be a vector of excess returns and predictor variables with inter-

cepts μSt+1 = (α
1
St+1

, .., αISt+1 , α
W
St+1

,μ0zSt+1)
0, we can collect the conditional moments of returns and

26We are grateful to an anonymous referee for pointing our attention in this direction.
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the world price of co-moment risk in the matricesMSt and ΥSt+1 as follows

MSt ≡

⎛⎜⎝
⎡⎢⎣
"
Cov[xt+1, x

W
t+1|Ft] Cov[xt+1, (x

W
t+1)

2|Ft] Cov[xt+1, (x
W
t+1)

3|Ft]

V ar[xWt+1|Ft] Sk[xWt+1|Ft] K[xWt+1|Ft]

#
O

⎤⎥⎦⊗ ι03
⎞⎟⎠¯ ¡ι03 ⊗ I¢

ΥSt+1 ≡

⎡⎢⎣ γ11,St+1 ... γI1,St+1 γW1,St+1 0 ... 0

γ12,St+1 ... γI2,St+1 γW2,St+1 0 ... 0

γ13,St+1 ... γI3,St+1 γW3,St+1 0 ... 0

⎤⎥⎦ ,
where ι3 is a 3× 1 vector of ones and J is a matrix that selects the co-moments of excess returns:

J ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0
...
...
...
...
...
...
...
...
...

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0
...
...
...
...
...
...
...
...
...

0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can then write the asset pricing model (6) more compactly as

yt+1 = μSt+1 +MStvec(ΥSt+1) +Bst+1yt + ηt+1. (A1)

HereBSt+1 captures autoregressive terms in state St+1 and also collects the coefficients b
i
St+1

and bWSt+1
that measure the impact of the lagged instruments zt on the risk premia. Finally ηt+1 ∼ N(0,ΩSt+1)

is the vector of state-dependent innovations.

To characterize the moments of returns on the world market portfolio and its co-moments with

local market returns, note that mean returns can be computed from

ȳt+1 ≡ E[yt+1|Ft] =
KX
k=1

(π0tPek)μ̃k +
KX
k=1

(π0tPek)Akyt, (A2)

where πt is the vector of state probabilities, ek is a vector of zeros with a one in the k-th position so

(π0tPek) is the ex-ante probability of being in state k at time t + 1 given information at time t, Ft,

and μ̃k ≡ μk +MStvec(Υk).

Because μ̃k involves higher order moments of the world market portfolio such as MStvec(Υk)

as well as higher order co-moments between individual portfolio returns and returns on the global

market portfolio, the (conditional) mean returns E[yt+1|Ft] enter the right-hand side of (A1). For

instance, computing Cov[xt+1, x
W
t+1|Ft] requires knowledge of the first I elements of E[yt+1|Ft]. Below

we explain the iterative estimation procedure used to solve the associated nonlinear optimization

problem.
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The conditional variance, skew and kurtosis of returns on the world market portfolio, xWt+1, can

now be computed as follows:

V ar[xWt+1|Ft] =
KX
k=1

(π0tPek)
h¡
μ̃Wk − e0I+1ȳt+1+(e0I+1Ak − ᾱI+1)yt

¢2i
+

KX
k=1

(π0tPek)V ar[η
W
t+1|St+1=k]

Sk[xWt+1|Ft] =
KX
k=1

(π0tPek)
h¡
μ̃Wk − e0I+1ȳt+1 + (e0I+1Ak − ᾱI+1)yt

¢3i
+3

KX
k=1

(π0tPek)
£¡
μ̃Wk − e0I+1ȳt+1 + (e0I+1Ak − ᾱI+1)yt

¢
V ar[ηWt+1|St+1 = k]

¤
K[xWt+1|Ft] =

KX
k=1

(π0tPek)
h¡
μ̃Wk − e0I+1ȳt+1 + (e0I+1Ak − ᾱI+1)yt

¢4i
(A3)

+6
KX
k=1

(π0tPek)
h¡
μ̃Wk − e0I+1ȳt+1 + (e0I+1Ak − ᾱI+1)yt

¢2
V ar[ηWt+1|St+1 = k]

i
.

Clearly the skew and kurtosis of global equity returns are functions of the mean and variance parame-

ters {μ̃1,k, .., μ̃I,k,Ak,Ωk}Kk=1, state probabilities, πt, and mean VAR coefficients, ᾱj ≡ e0j
PK

k=1(π
0
tPek)Ak.

Hence, no new parameters are introduced to capture the higher moments of the return distribution.

Similarly, the covariance between country returns, xit+1, and the world market return, x
W
t+1, is

Cov[xit+1, x
W
t+1|Ft] =

KX
k=1

(π0tPek)[
¡
μ̃i,k − e0iȳt+1 + (e0iAk − ᾱi)yt

¢
(μ̃Wk − e0I+1ȳt+1+

+(e0I+1Al − ᾱI+1)yt)] +
KX
k=1

(π0tPek)Cov[η
i
t+1, η

W
t+1|St+1 = k]. (A4)

Given estimates of the parameters and state probabilities, Cov[xit+1, x
W
t+1|Ft, St] can easily be calcu-

lated.

Finally, the co-skewness and co-kurtosis between local market returns and the world market return

is

Cov[xit+1, (x
W
t+1)

2|Ft] =
KX
k=1

(π0tPek)[
¡
μ̃i,k − e0iȳt+1 + (e0iAk − ᾱi)yt

¢
(μ̃Wk − e0I+1ȳt+1+

+(e0I+1Ak − ᾱI+1)yt)
2] +

KX
k=1

(π0tPek)
£¡
μ̃i,k − e0iȳt+1 + (e0iAk − ᾱi)yt

¢
V ar[ηWt+1|St+1 = k]

¤
+

+2
KX
k=1

(π0tPek)
£¡
μ̃Wk − e0I+1ȳt+1 + (e0I+1Ak − ᾱI+1)yt

¢
Cov[ηit+1, η

W
t+1|St+1 = k]

¤
, (A5)
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and

Cov[xit+1, (x
W
t+1)

3|Ft] =
KX
k=1

(π0tPek)
h¡
μ̃i,k − e0iȳt+1+(e0iAk − ᾱi)yt

¢ ¡
μ̃Wk − e0I+1ȳt+1+(e0I+1Ak-ᾱI+1)yt

¢3i
+3

KX
k=1

(π0tPek)
£¡
μ̃i,k − e0iȳt+1+(e0iAk − ᾱi)yt

¢ ¡
μ̃Wk − e0I+1ȳt+1+(e0I+1Ak − ᾱI+1)yt

¢
V ar[ηWt+1|St+1=k]

¤
+

+3
KX
k=1

(π0tPek)
h¡
μ̃Wk − e0I+1ȳt+1 + (e0I+1Ak − ᾱI+1)yt

¢2
Cov[ηit+1, η

W
t+1|St+1 = k]

i
. (A6)

Terms such as
¡
μ̃i,k − e0iȳt+1

¢ ¡
μ̃Wk − e0I+1ȳt+1

¢
show the deviations of the state-specific mean from

the overall mean and do not arise in single-state models.

A.2 Estimation

Defining ηSt+1 as a vector of residuals in state St+1, the contribution to the log-likelihood function

conditional on being in state St+1 at time t+ 1 is given (up to a constant) by:

ln p(yt+1|Ft, St+1;λ) ∝ −
1

2
ln |ΩSt+1 |−

1

2
η0St+1Ω

−1
St+1

ηSt+1 ,

where λ ={φs,Ωs,P}Ks=1 collects the mean (φ), variance (Ω) and transition probability (P) para-
meters of the model (A1). The expected value of the log-likelihood employed by the EM algorithm

is maximized by choosing the parameters λl+1 in the l + 1 iteration to satisfy (see Hamilton (1990,

p.51)):
TX
t=1

KX
St+1=1

∂ ln p(yt+1|Ft, St+1;λ)

∂λ

¯̄̄̄
λ=λl+1

p(St+1|y2,y3, ...,yT ;λl) = 0, (A7)

where {p(St+1|y2,y3, ...,yT ;λl)}KSt+1=1 are the smoothed state probabilities for each of the K states.

Letting y ≡ [y02 y03 ... y0T ]
0 and η ≡ [η01 η02 ... η0K ]

0, it is useful to re-write the log-likelihood as:

c(y1, ...,yT |δ) ∝ −1
2

KX
s=1

ln |Ωs|
TX
t=2

p(St+1;λ
l)− 1

2

KX
s=1

η0s(Σ̃s ⊗Ω−1s )ηs

= −1
2

KX
s=1

ln |Ωs|
TX
t=2

p(St+1;λ
l)− 1

2
η0W−1η

where

Z ≡

⎡⎢⎢⎢⎢⎣
Z1

Z2
...

ZK

⎤⎥⎥⎥⎥⎦ ; Zi≡

⎡⎢⎢⎢⎢⎣
[e0i e

0
i ⊗ y01]⊗ IN

[e0i e
0
i ⊗ y02]⊗ IN
...

[e0i e
0
i ⊗ y0T−1]⊗ IN

⎤⎥⎥⎥⎥⎦ ; W−1≡

⎡⎢⎢⎣
Σ̃1 ⊗Ω−11 · · · O

...
. . .

...

O · · · Σ̃K ⊗Ω−1K

⎤⎥⎥⎦
Σ̃i≡diag{p(s2 = i;λl), p(s3 = i;λl), ..., p(sT = i;λl)}.

The EM updating equation for the transition probabilities is based on the smoothed state proba-

bilities and can be found in equation (4.1) of Hamilton (1990, p. 51). Filtered state probabilities are

29



calculated as a by-product. The first order conditions for the mean and variance parameters, φ and

Ω, are

∂ ln c(yt|δ)
∂φ

= −1
2
η̂0Ŵ−1Z = 0 (A8)

∂ ln c(yt|δ)
∂Ωs

= −1
2

TX
t=1

p(St+1 = s;λl)Ω̂−1s +
1

2
Ω̂−1s ε̂0sΣ̃sε̂sΩ̂

−1
s = O s = 1, 2, ...,K, (A9)

where ε̂s ≡ [(y2 − Zs2=iφ̂)0 (y3 − Zs3=iφ̂)0 ... (yT − ZsT=iφ̂)0]0 are the residuals in state s and Ŵ−1

is a function of {Ω̂s}Ks=1. Equation (A8) implies that φ̂
l+1

is a GLS estimator once observations are

replaced by their smoothed probability-weighted counterparts:

φ̂
l+1

= (Z0Ŵ−1Z)−1Z0Ŵ−1(ιk ⊗ y). (A10)

Similarly, (A9) implies a covariance estimator

Ω̂s =
ε̂0sΣ̃sε̂sPT

t=1 p(St+1;λ
l)
. (A11)

φ̂
l+1

and {Ω̂l+1
s }Ks=1 must be solved for jointly since ε̂s enters the expression for the covariance matrix

and also depends on φ̂
l+1
, while the regime-dependent covariance matrices {Ω̂l+1

s }Ks=1 enter (A10) via
Ŵ−1. Hence, within each step of the EM algorithm, (A10)-(A11) is iterated upon until convergence

of the estimates φ̂
l+1

and {Ω̂l+1
s }Ks=1.

Finally, notice that (A8) defines η̂ from

ηt+1 ≡ yt+1 − μ̃St+1 −Bst+1yt = yt+1 − μSt+1 −MStvec(ΥSt+1)−Bst+1yt,

so that E[yt+1|Ft, St] enters MStvec(Υl), while MStvec(Υl) also affects E[yt+1|Ft, St], creating a

non-linear system of simultaneous equations. For instance, computing Cov[xt+1, x
W
t+1|Ft, St] requires

knowledge of the first I elements of E[yt+1|Ft, St]. To make estimation possible, within the (l + 1)th

step of the EM algorithm we use an iterative scheme by which MStvec(Υl) is first estimated using

the values in E[yt+1|Ft, St] from the previous optimization step, E[yt+1|Ft, St; φ̂
l
]. New values of

E[yt+1|Ft, St; φ̂
l+1
] are then computed using estimates ofMStvec(Υl) that employ E[yt+1|Ft, St; φ̂

l
].

We then proceed iteratively until convergence.

Appendix B: Proof of Proposition 1

This appendix first uses a simple example to introduce our solution technique, then derives Propo-

sition 1 and shows how to extend the results to include autoregressive terms in the return process.

B.1 Two-state example with a single risky asset
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To gain intuition we first study the asset allocation problem under the simplifying assumption of a

single risky asset (I = 1), a risk-free asset paying a constant return rf and a regime switching process

with two states:

xt+1 = μSt+1 + σSt+1εt+1, εt+1 ∼ N(0, 1),

Pr(St+1 = k|St = k) = pkk, k = 1, 2 (B1)

This specification is consistent with the ICAPM analysis in section 1 since the conditional moment

information from (6) can be folded into {μSt+1 , σSt+1} as described in Section 1.
With a single risky asset (stocks) and initial wealth set at unity, the wealth process is

Wt+T = {(1− ωt) exp (Trf ) + ωt exp (Rt+T )} , (B2)

whereRt+T is the continuously compounded stock return over the T periods and ωt is the stock holding.

For a given value of ωt, the only unknown component in (B2) is the cumulated return, exp(Rt+T ).

Under the assumption of two states, K = 2, the nth non-central moment of the cumulated returns is

given by

M
(n)
t+T = E [(exp(rt+1 + ...+ rt+T ))

n |Ft]

=
2X

St+T=1

E [(exp(rt+1 + ...+ rt+T ))
n |St+T ,Ft] Pr(St+T |Ft) (B3)

≡ M
(n)
1t+T +M

(n)
2t+T ,

where rt ≡ xt + rf . Using properties of the moment generating function of a log-normal random

variable, each of these conditional moments M
(n)
kt+1 (k = 1, 2) satisfies recursions

M
(n)
kt+T = E [exp(n(rt+1 + ...+ rt+T−1))|St+T ]E [exp(nrt+T )|St+T ,Ft] Pr(St+T |Ft)

=
³
M
(n)
kt+T−1pkk +M

(n)
−k,t+T−1(1− p−k−k)

´
exp

µ
nμk +

n2

2
σ2k

¶
, (k = 1, 2)

where we used the notation −k for the converse of state k, i.e. −k = 2 when k = 1 and vice versa. In

more compact notation we have

M
(n)
1t+1 = ξ

(n)
1 M

(n)
1t + β

(n)
1 M

(n)
2t

M
(n)
2t+1 = ξ

(n)
2 M

(n)
1t + β

(n)
2 M

(n)
2t , (B4)

where
ξ
(n)
1 = p11 exp

³
nμ1 +

n2

2 σ
2
1

´
, β

(n)
1 = (1− p22) exp

³
nμ1 +

n2

2 σ
2
1

´
,

ξ
(n)
2 = (1− p11) exp

³
nμ2 +

n2

2 σ
2
2

´
, β

(n)
2 = p22 exp

³
nμ2 +

n2

2 σ
2
2

´
.

Equation (B4) can be reduced to a set of second order difference equations:

M
(n)
it+2 = (ξ

(n)
1 + β

(n)
2 )M

(n)
it+1 + (ξ

(n)
2 β

(n)
1 − β

(n)
2 α

(n)
1 )M

(n)
it , (i = 1, 2). (B5)
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Collecting the two regime-dependent moments in the vector ϑ
(n)
it+T ≡ (M

(n)
it+T M

(n)
it+T−1)

0, equation (B5)

can be written in companion form:

ϑ
(n)
it+T =

"
ξ
(n)
1 + β

(n)
2 ξ

(n)
2 β

(n)
1 − β

(n)
21 ξ

(n)

1 0

#
ϑ
(n)
it+T−1 ≡ A

(n)ϑ
(n)
it+T−1.

The elements of A(n) only depend on the mean and variance parameters of the two states (μ1, σ
2
1, μ2,

σ22) and the state transitions, (p11, p22). Substituting backwards, we get the ith conditional moment:

ϑ
(n)
it+T =

³
A(n)

´T
ϑ
(n)
it .

Applying similar principles at T = 1, 2 and letting π1t = Pr(St = 1|Ft), the initial conditions used

in determining the nth moment of cumulated returns are as follows:

M
(n)
1t+1 = (π1tp11 + (1− π1t)(1− p22)) exp

µ
nμ1 +

n2

2
σ21

¶
,

M
(n)
1t+2 = p11 (π1tp11 + (1− π1t)(1− p22)) exp

¡
2nμ1 + n2σ21

¢
+

+(1− p22) (π1t(1− p11) + (1− π1)p22) exp

µ
n(μ1 + μ2) +

n2

2
(σ21 + σ22)

¶
,

M
(n)
2t+1 = (π1t(1− p11) + (1− π1)p22) exp

µ
nμ2 +

n2

2
σ22

¶
,

M
(n)
2t+2 = p22 (π1t(1− p11) + (1− π1)p22) exp

¡
2nμ2 + n2σ22

¢
+

+(1− p11) (π1tp11 + (1− π1t)(1− p22)) exp

µ
n(μ1 + μ2) +

n2

2
(σ21 + σ22)

¶
. (B6)

Finally, using (B3) we get an equation for the nth moment of the cumulated return:

M
(n)
t+T =M

(n)
1t+T +M

(n)
2t+T = e

0
1ϑ

(n)
1t+T + e

0
2ϑ

(n)
2t+T = e

0
1

³
A(n)

´T
ϑ
(n)
1t + e

0
2

³
A(n)

´T
ϑ
(n)
2t , (B7)

where ei is a 2× 1 vector of zeros except for unity in the ith place.
Having obtained the moments of the cumulated return process, it is simple to compute the expected

utility for any mth order polynomial representation by using (13) in the main text and (B2):

Êt[U
m(Wt+T ;θ)] =

mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶
Et[W

j
t+T ]

=
mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶ jX
i=0

µ
j

i

¶
ωitM

i
t+T ((1− ωt) exp (Trf ))

j−i . (B8)

The first order condition is obtained by differentiating this equation with respect to ωt :

mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶ jX
i=1

µ
j

i

¶
ωi−1t (1− ωt)

j−i−1M i
t+T exp ((j − i)Trf ) (i− jωt) = 0.

The solution takes the form of the roots of an m−1 order polynomial in ωt, which are easily obtained.
The optimal solution for ωt corresponds to the root for which (B8) has the highest value.
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B.2 General Results

To derive the n-th moment of the cumulated return on the risky asset holdings in the general case

with multiple risky assets (I) and states (K), notice that

Et

£¡
ω0t exp

¡
Rs

t+T

¢¢n¤
= Et

"
nX

n1=1

...
nX

nI=1

λ(n1, n2, ..., nI)(ω
n1
1 × ..× ωnII )×

exp

Ã
TX

τ=1

r1t+τ

!n1

....× exp
Ã

TX
τ=1

rIt+τ

!nI#
. (B9)

where the powers 0 ≤ ni ≤ n (i = 1, ..., I) satisfy the summing-up constraint
PI

i=1 ni = n, and the

coefficients λ are given by

λ(n1, n2, ..., nI) ≡
n!

n1!n2! ... nI !
.

rit+τ (i = 1, ..., I) represent the return on asset i in period t+ τ , rit+τ ≡ xit+τ + rbt+τ . The sum in (B9)

involves
¡I+n−1

n

¢
terms and requires solving for moments of the form

M
(n)
t+T (n1, n2, ..., nI) = Et

"
exp

Ã
TX

τ=1

r1t+τ

!n1

× ....× exp
Ã

TX
τ=1

rIt+τ

!nI#

= Et

"
exp

Ã
IX

i=1

ni

TX
τ=1

rit+τ

!#
. (B10)

(B10) can be decomposed as follows

M
(n)
t+T (n1, n2, ..., nI) =

KX
k=1

M
(n)
k,t+T (n1, n2, ..., nI), (B11)

where for k = 1, ...,K,

M
(n)
k,t+T (n1, n2, ..., nI) = Et

"
exp

Ã
IX

i=1

ni

TX
τ=1

rit+τ

!
|St+T = k

#
Pr(St+T = k).

Each of these terms satisfies the recursions

M
(n)
k,t+T (n1, n2, ..., nI) =

KX
j=1

M
(n)
j,t+T−1(n1, n2, ..., nI)Et

"
exp

Ã
IX

i=1

nir
i
t+T

!
|St+T = k,Ft

#
pjk

=
KX
j=1

pjkM
(n)
j,t+T−1(n1, n2, ..., nI) exp

Ã
IX

i=1

niμ̃ki+
IX

i=1

IX
u=1

ninu
σk,iu
2

!
,(B12)

where μ̃ki is the mean return of asset i in state k (inclusive of risk premia related to covariance,

co-skewness and co-kurtosis) and σk,iu = e0iΩkeu is the covariance between rit+T and rut+T in state

k = 1, 2, ..., K. This is a generalization of the result in (B4).

Finally, using (B9) and (B10), we get an expression for the n−th moment of the cumulated return:

Et

£¡
ω0t exp

¡
Rs

t+T

¢¢n¤
=

nX
n1=0

· · ·
nX

nI=0

λ(n1, n2, ..., nI)(ω
n1
1 × ...× ωnIn )M

(n)
t+T (n1, ..., nI). (B13)
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Expected utility can now be evaluated in a straightforward generalization of (B8):

Êt[U
m(Wt+T ;θ)] =

mX
n=0

κn

nX
j=0

(−1)n−jvn−jT nCjEt[W
j
t+T ]

=
mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶ jX
i=0

µ
j

i

¶
Et[
¡
ω0t exp

¡
Rs

t+T

¢¢i
]
³
(1-ω0tιh) exp

³
Trf

´´j−i
.

Inserting (B13) into this expression gives a first order condition that takes the form of an m − 1th
order polynomial in the portfolio weights.

Generalizing the results to include autoregressive terms is straightforward. To keep the notation

simple, suppose k = 2. Using (15) in the main text the n-th noncentral moment satisfies the recursions

M
(n)
k,t+T = M

(n)
k,t+T−1(n)pkk exp

⎛⎝nμ̃k + n

pX
j=1

bj,kEt[rt+T−j ] +
n2

2
σ2k

⎞⎠+
+M

(n)
−k,t+T−1(n)(1− p−k−k) exp

⎛⎝nμ̃k + n

pX
j=1

bj,kEt[rt+T−j ] +
n2

2
σ2k

⎞⎠
or

M
(n)
1,t+1 = ξ̃

(n)
1 M

(n)
1,t + β̃

(n)
1 M

(n)
2,t

M
(n)
2,t+1 = ξ̃

(n)
2 M1,t + β̃

(n)
2 M

(n)
2,t ,

where now

ξ̃
(n)
1 = p11 exp

⎛⎝nμ1 + n

pX
j=1

bj,1Et[rt+T−j ] +
n2

2
σ21

⎞⎠
β̃
(n)
1 = (1− p22) exp

⎛⎝nμ1 + n

pX
j=1

bj,1Et[rt+T−j ] +
n2

2
σ21

⎞⎠

ξ̃
(n)
2 = (1− p11) exp

⎛⎝nμ2 + n

pX
j=1

bj,2Et[rt+T−j ] +
n2

2
σ22

⎞⎠
β̃
(n)
2 = p22 exp

⎛⎝nμ2 + n

pX
j=1

bj,2Et[rt+T−j ] +
n2

2
σ22

⎞⎠ .

Subject to these changes, the earlier methods can be used with the only difference that terms such as

exp
³
nμ̃k +

n2

2 σ
2
k

´
have to be replaced by

exp

⎛⎝nμ̃k + n

pX
j=1

bj,kEt[rt+T−j ] +
n2

2
σ2k

⎞⎠ .
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The term
Pp

j=1 bj,kEt[rt+T−j ] may be decomposed in the following way:

pX
j=1

bj,kEt[rt+T−j ] = I{j>T}
pX

j=1

¡
I{j≥T}bj,krt+T−j + I{j<T}bj,kEt[rt+T−j ]

¢
,

where I is an indicator function and Et[rt+1], ..., Et[rt+T−1] can be evaluated recursively, see Doan et

al. (1984):

Et[rt+1] = π1t

⎛⎝μ̃1 +

pX
j=1

bj,1rt−j

⎞⎠+ (1− π1t)

⎛⎝μ̃2 +

pX
j=1

bj,2rt−j

⎞⎠
Et[rt+2] = π0tPe1

⎛⎝μ̃1 +

pX
j=1

bj,1Et[rt+1]

⎞⎠+ (1− π0tPe1)
⎛⎝μ̃2 +

pX
j=1

bj,2Et[rt+1]

⎞⎠
...

Et[rt+T−1] = π0tP
T−1e1

⎛⎝μ̃1 +

pX
j=1

bj,1Et[rt+T−2]

⎞⎠+ (1− π0tPT−1e1)

⎛⎝μ̃2 +

pX
j=1

bj,2Et[rt+T−2]

⎞⎠ .
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Table 1 

Summary Statistics for International Stock Returns 
This table reports sample statistics for six international MSCI portfolios. Returns are monthly, denominated in US 
dollars, include dividends and are in excess of the 1-month US T-bill rate. The sample period is 1975:01 – 2005:12. 
Jarque-Bera is a test for normality based on the skew and kurtosis. Ljung-Box and Ljung-Box squares denote tests for 
fourth order serial correlation in returns and squared returns, respectively. 

 

Portfolio Mean St. Dev. Skewness Kurtosis Jarque-
Bera 

Ljung-
Box 

Ljung-Box 
squares 

MSCI United States 0.5415 4.4825 -0.7084 5.9138 162.71** 1.8775 2.4714 

MSCI Japan 0.3733 6.4830 0.0700 3.5044 4.2475 6.5087 11.888* 

MSCI Pacific ex-Japan 0.3892 7.0538 -2.2723 22.297 5655.6** 2.7472 0.4998 

MSCI Europe ex-UK 0.4158 5.0578 -0.5672 4.6124 60.246** 5.9087 12.560* 

MSCI United Kingdom 0.7503 6.1898 0.7587 10.316 865.27** 4.1915 19.845** 

MSCI World 0.4560 5.1740 -0.8711 6.9133 282.88** 2.3197 1.9827 

US 1-month T-bills 0.4906 0.2517 0.8319 3.9949 58.250** 1248.2** 1084.5** 

* denotes significance at the 5% level; ** denotes significance at the 1% level. 
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Table 2 

Parameter Estimates for Single State and Two-State Models 
Panel A reports parameter estimates for the extended single state ICAPM  
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where i
tx  and W

tx  consist of monthly excess returns on the MSCI stock index portfolios (in US dollars), i = US, Japan, 

Asia-Pacific (ex-Japan), United Kingdom, and Europe (ex-UK), ‘W’ stands for the world market portfolio, and US
tr  is 

the 1-month US T-bill rate. Panel B of the table reports maximum likelihood estimates for the two-state regime 
switching model: 
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where 1+tη ≡[ US
t 1+η  Jap

t 1+η  Pac
t 1+η  UK

t 1+η  EU
t 1+η ] ),( ~

1+tSN Ω0  is the vector of unpredictable return innovations with 
regime-specific (heteroskedastic) variances but constant correlations across states. The coefficients biS and bWS are set to 
zero in the first regime. ]x[Var W

1tt + , ]x[Skew W
1tt +  and ]x[K W

1tt +  are the conditional variance, skew and kurtosis of 
excess returns on the world portfolio. Risk premium estimates are reported per unit of covariance, skewness, and 
kurtosis scaled by the appropriate powers (1, 1.5, and 2) of the variance of excess returns on the world market portfolio. 
For the covariance matrix we report monthly volatilities on the main diagonal and correlations off the diagonal. 
Standard errors are reported in parentheses below parameter estimates. The sample period is 1975:01 – 2005:12. 

 
 U.S. Japan Pacific ex-

Japan 
Europe ex-

UK 
United 

Kingdom World U.S. T-bill 

                Panel A – Single State Gaussian Model 
 Cross-sectional risk premia 

Covariance ( 1γ ) 5.303  (2.574) 

1. Intercepts (α’s) 0.463 
(0.632) 

0.369 
(0.691) 

1.076 
(0.673) 

0.726 
(0.651) 

0.659 
(0.652) 

0.302 
(1.027) 

0.022 
(0.580) 

2. VAR coeffs.        

U.S. T-bill 
-0.655 
(0.324) 

-0.866 
(0.523) 

-2.500 
(1.047) 

-1.472 
(1.045) 

-1.055 
(1.059) 

-0.843 
(0.577) 

0.955 
(0.105) 

3. Volatilities 14.916*** 22.112*** 23.106*** 17.237*** 19.903*** 14.131*** 0.249*** 
4. Correlations        
U.S. 1       
Japan 0.308** 1      
Pacific ex-Japan 0.540*** 0.368** 1     
Europe ex-UK 0.587*** 0.476** 0.538*** 1    
United Kingdom 0.534*** 0.397** 0.555*** 0.632*** 1   
World 0.845*** 0.684*** 0.628*** 0.790*** 0.699*** 1  
U.S. T-bill -0.103 -0.014 -0.131* -0.046 -0.093 -0.102 1 
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Table 2 (continued) 

Estimates of a Two-State Regime Switching Model 
 
                            Panel B – Two State Model 
 Cross-sectional risk premia 

 Bear State Bull State 

Covariance (
1,1 +tSγ ) 9.460 (5.114) 15.874 (5.088) 

Co-skewness (
1,2 +tSγ ) -1.077 (1.050) -3.111 (1.266) 

Co-kurtosis (
1,3 +tSγ ) 1.669 (2.898) 12.302 (5.048) 

 U.S. Japan Pacific ex-
Japan 

Europe ex-
UK 

United 
Kingdom World U.S. T-bill 

1. Intercepts (α’s)        

Bear State -0.591 
(0.323) 

-1.756 
(0.402) 

-0.723 
(0.393) 

-0.720 
(0.339) 

-0.776 
(0.360) 

-0.968 
(0.313) 

0.0002 
(0.0002) 

Bull State 1.079 
(0.191) 

1.621 
(0.263) 

0.813 
(0.274) 

0.867 
(0.220) 

1.218 
(0.297) 

1.186 
(0.236) 

0.077 
(0.032) 

2. VAR coeffs.        
Bear State:        

U.S. T-bill ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 
0.999 

(0.064) 

Bull State:        

U.S. T-bill 
-0.588 
(0.039) 

-1.118 
(0.565) 

-1.143 
(0.588) 

-0.814 
(0.475) 

-0.527 
(0.321) 

-0.902 
(0.373) 

0.864 
(0.180) 

3. Volatilities        

Bear State 10.883*** 15.729*** 17.864*** 12.242*** 11.231*** 10.263*** 0.439*** 

Bull State 9.165*** 13.340*** 13.785*** 11.155*** 15.065*** 8.480*** 0.546*** 
4. Correlations        
U.S. 1       
Japan 0.276* 1      
Pacific ex-Japan 0.552*** 0.361** 1     
Europe ex-UK 0.619*** 0.447** 0.561*** 1    
United Kingdom 0.594*** 0.393** 0.645*** 0.716*** 1   
World 0.836*** 0.670*** 0.639*** 0.773*** 0.750*** 1  
U.S. T-bill -0.079 -0.122 -0.115 -0.114 -0.097 -0.154 1 
        

4. Transition 
probabilities 

Bear State Bull State 

Bear State 0.899 (0.205) 0.1011 
Bull State 0.0590 0.941 (0.146) 
*denotes significance at the 10% level, ** significance at the 5% level and *** at the 1% level. 
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Table 3 
Optimal Portfolio Weights Under the Single-State and Two-State Models 

Stock holdings are reported as a fraction of the total equity portfolio (and thus sum to 1), while the T-bill holdings are 
shown as a percentage of the total portfolio. Allocations are computed under interest rates that can deviate by up to two 
standard deviations from their mean. 

  Mean – 2 x SD. Mean – 1 x SD. Mean Mean + 1 x SD. Mean + 2 x SD.
 Single State Benchmark 
United States 0.228 0.346 0.313 0.156 0.101 
Japan 0.261 0.309 0.375 0.375 0.499 
Pacific (ex-Japan) 0.348 0.222 0.104 0.000 0.000 
United Kingdom 0.130 0.099 0.042 0.000 0.000 
Europe (ex-UK) 0.033 0.025 0.167 0.469 0.400 
US T-bills 0.082 0.191 0.515 0.681 0.800 
 Bear State (π = 1) 
United States 0.697 0.722 0.746 0.772 0.796 
Japan 0.121 0.093 0.063 0.070 0.093 
Pacific (ex-Japan) 0.061 0.056 0.048 0.035 0.037 
United Kingdom 0.030 0.056 0.048 0.070 0.074 
Europe (ex-UK) 0.091 0.074 0.095 0.053 0.000 
US T-bills 0.668 0.462 0.370 0.431 0.460 
 Steady-state probs. (π = 0.33) 
United States 0.625 0.696 0.685 0.817 0.851 
Japan 0.125 0.101 0.110 0.070 0.060 
Pacific (ex-Japan) 0.063 0.072 0.082 0.070 0.060 
United Kingdom 0.016 0.000 0.000 0.000 0.000 
Europe (ex-UK) 0.172 0.130 0.123 0.042 0.030 
US T-bills 0.357 0.312 0.269 0.289 0.333 
 Bull State (π = 0) 
United States 0.535 0.537 0.598 0.656 0.713 
Japan 0.198 0.116 0.098 0.086 0.085 
Pacific (ex-Japan) 0.116 0.074 0.054 0.043 0.032 
United Kingdom 0.023 0.021 0.022 0.011 0.011 
Europe (ex-UK) 0.128 0.253 0.228 0.204 0.160 

P
an

el
 A

 -
 T

 =
 1

 m
on

th
 

US T-bills 0.142 0.053 0.078 0.070 0.062 
 Single State Benchmark 
United States 0.310 0.367 0.286 0.000 0.000 
Japan 0.310 0.304 0.381 0.306 0.367 
Pacific (ex-Japan) 0.230 0.177 0.190 0.000 0.000 
United Kingdom 0.149 0.152 0.095 0.056 0.000 
Europe (ex-UK) 0.000 0.000 0.048 0.639 0.633 
US T-bills 0.132 0.208 0.578 0.639 0.698 
 Bear State (π = 1) 
United States 0.595 0.603 0.623 0.618 0.597 
Japan 0.139 0.141 0.130 0.118 0.125 
Pacific (ex-Japan) 0.089 0.090 0.091 0.079 0.069 
United Kingdom 0.127 0.128 0.117 0.118 0.125 
Europe (ex-UK) 0.051 0.038 0.039 0.066 0.083 
US T-bills 0.208 0.22 0.226 0.240 0.278 
 Steady-state probs. (π = 0.33) 
United States 0.590 0.593 0.635 0.627 0.622 
Japan 0.108 0.105 0.094 0.108 0.110 
Pacific (ex-Japan) 0.048 0.058 0.059 0.072 0.085 
United Kingdom 0.084 0.081 0.071 0.060 0.061 
Europe (ex-UK) 0.169 0.163 0.141 0.133 0.122 
US T-bills 0.168 0.142 0.149 0.168 0.179 
 Bull State (π = 0) 
United States 0.565 0.596 0.640 0.655 0.678 
Japan 0.087 0.090 0.093 0.080 0.080 
Pacific (ex-Japan) 0.054 0.056 0.058 0.057 0.046 
United Kingdom 0.054 0.045 0.023 0.023 0.034 
Europe (ex-UK) 0.239 0.213 0.186 0.184 0.161 

P
an

el
 B

 -
 T

 =
 2

4 
m

on
th

s 

US T-bills 0.083 0.109 0.140 0.132 0.131 
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Table 4 

Estimates of Co-Skew and Co-Kurtosis Coefficients with World Market Portfolio 
This table reports sample co-skew and co-kurtosis coefficients for returns on individual market portfolios (i) versus the 
world market portfolio (w), 
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The coefficients are calculated both conditional on the current state and under steady state probabilities 
 
 

  Bear state Bull state Steady-state 
probs. 

Data 

Co-skew 0.151 -0.127 -0.128 -0.052 United States 
Co-kurtosis 3.200 3.434 3.408 3.401 

Co-skew 0.018 -0.001 0.016 0.004 Japan 
Co-kurtosis 2.207 2.294 3.303 3.428 

Co-skew -0.161 -0.567 -0.677 -0.535 Pacific ex-Japan 
Co-kurtosis 4.522 5.782 6.561 6.704 

Co-skew -0.066 -0.252 -0.339 -0.321 United Kingdom 
Co-kurtosis 5.297 5.207 5.230 4.910 

Co-skew 0.114 -0.167 -0.222 -0.227 Europe ex-UK 
Co-kurtosis 4.192 4.095 4.116 4.113 
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Table 5 

Effects of Preferences (m) on Portfolio Choice 
This table reports the optimal allocation to international stocks as a function of the state probability for three choices of 
the order of the preference polynomial, m: m=2 (mean-variance preferences), m = 3 (three-moment or skew 
preferences), and m = 4 (four-moment or skew and kurtosis preferences). T is the investment horizon. Stock holdings 
are reported as a fraction of the total equity portfolio (and thus sum to 1), while the T-bill holdings are shown as a 
percentage of the total portfolio. 
 
 

 m U.S. Japan Pacific ex-
Japan UK EU US T-

bills 
 Bear State (π = 1) 

m = 2 0.661 0.143 0.036 0.036 0.125 0.441 
m = 3 0.841 0.079 0.016 0.063 0.000 0.373 

T
=

1 

m = 4 0.746 0.063 0.048 0.048 0.095 0.370 
m = 2 0.778 0.032 0.016 0.000 0.175 0.369 
m = 3 0.721 0.088 0.000 0.162 0.029 0.320 

T
=

6 

m = 4 0.653 0.153 0.056 0.056 0.083 0.282 
m = 2 0.594 0.000 0.058 0.000 0.348 0.309 
m = 3 0.550 0.163 0.013 0.200 0.075 0.201 

T
=

24
 

m = 4 0.623 0.130 0.091 0.117 0.039 0.226 
 Steady-state state probs. (π = 0.33) 

m = 2 0.536 0.014 0.014 0.000 0.435 0.310 
m = 3 0.521 0.366 0.000 0.113 0.000 0.289 

T
=

1 

m = 4 0.685 0.110 0.082 0.000 0.123 0.269 
m = 2 0.500 0.000 0.056 0.000 0.444 0.282 
m = 3 0.532 0.286 0.000 0.169 0.013 0.231 

T
=

6 

m = 4 0.646 0.127 0.076 0.051 0.101 0.209 
m = 2 0.525 0.000 0.050 0.013 0.413 0.198 
m = 3 0.519 0.210 0.012 0.247 0.012 0.190 

T
=

24
 

m = 4 0.635 0.094 0.059 0.071 0.141 0.149 
 Bull State (π = 0) 

m = 2 0.262 0.299 0.020 0.181 0.238 0.000 
m = 3 0.131 0.446 0.002 0.408 0.013 0.000 

T
=

1 

m = 4 0.598 0.098 0.054 0.022 0.228 0.078 
m = 2 0.189 0.232 0.042 0.147 0.389 0.048 
m = 3 0.215 0.398 0.000 0.366 0.022 0.069 

T
=

6 

m = 4 0.632 0.092 0.057 0.023 0.195 0.125 
m = 2 0.427 0.012 0.049 0.049 0.463 0.180 
m = 3 0.422 0.241 0.012 0.301 0.024 0.171 

T
=

24
 

m = 4 0.640 0.093 0.058 0.023 0.186 0.140 
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Table 6 
Confidence Bands for Portfolio Weights 

The table reports simulated confidence bands for optimal portfolio weights under either a two-state regime switching 
model or a single-state model. The weights are calculated assuming the 1-month US T-bill rate is set at its mean. The 
weight on the world market portfolio is re-allocated to the five regional portfolios using their relative market 
capitalizations as of 2005:12. T is the investment horizon. Stock holdings are reported as a fraction of the total equity 
portfolio (and thus sum to 1), while the T-bill holdings are shown as a percentage of the total portfolio.. 

 
   T = 1 month     T = 6 months T = 24 months 
 5% Lower 

Bound 
95% Upper 

Bound 
5% Lower 

Bound 
95% Upper 

Bound 
5% Lower 

Bound 
95% Upper 

Bound 

  Single-State Model 
United States 0.024 0.379 0.000 0.371 0.000 0.350 
Japan 0.088 0.469 0.075 0.451 0.137 0.404 
Pacific (ex-Japan) 0.000 0.217 0.000 0.240 0.002 0.259 
United Kingdom 0.000 0.314 0.000 0.331 0.000 0.414 
Europe (ex-UK) 0.000 0.320 0.000 0.307 0.000 0.272 
US T-bills 0.418 0.861 0.423 0.897 0.475 0.937 

 Two-State Model 
 Bear Regime (π = 1) 
United States 0.586 0.834 0.438 0.964 0.416 0.845 
Japan 0.037 0.095 0.045 0.270 0.029 0.196 
Pacific (ex-Japan) 0.033 0.065 0.000 0.114 0.006 0.137 
United Kingdom 0.020 0.081 0.000 0.150 0.012 0.184 
Europe (ex-UK) 0.013 0.220 0.000 0.382 0.000 0.201 
US T-bills 0.311 0.381 0.201 0.440 0.138 0.343 

 Steady-state probs. (π = 0.33) 
United States 0.636 0.727 0.606 0.665 0.504 0.691 
Japan 0.090 0.127 0.107 0.134 0.060 0.108 
Pacific (ex-Japan) 0.070 0.093 0.052 0.067 0.038 0.067 
United Kingdom 0.004 0.015 0.029 0.059 0.037 0.083 
Europe (ex-UK) 0.065 0.225 0.064 0.207 0.114 0.267 
US T-bills 0.256 0.289 0.209 0.216 0.047 0.194 

 Bull Regime (π = 0) 
United States 0.484 0.744 0.578 0.674 0.518 0.736 
Japan 0.015 0.145 0.073 0.106 0.060 0.113 
Pacific (ex-Japan) 0.082 0.118 0.079 0.098 0.069 0.109 
United Kingdom 0.000 0.047 0.000 0.027 0.000 0.036 
Europe (ex-UK) 0.000 0.407 0.000 0.308 0.000 0.317 
US T-bills 0.090 0.226 0.124 0.142 0.050 0.230 
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Table 7 

Out-of-Sample Portfolio Performance 
The table reports summary statistics for realized utility (using four-moment preferences) and (annualized) portfolio returns based on the portfolio weights associated 
with the recursive estimates of a two-state regime switching model, a single-state VAR(1) model, and a static ICAPM in which all international portfolios are bought in 
proportion to their weight in the world market portfolio. Asset allocations across international equity markets are calculated for two investment horizons, T = 1 month 
and T = 24 months. The weight on the world market portfolio is re-allocated to the five regional portfolios using their relative market capitalization. SD denotes 
standard deviations; the CEV is the annualized percentage certainty equivalent of a given mean realized utility. 'Equal weights' is a portfolio that assigns equal weight to 
all international equity portfolios such that the holdings in 1-month US T-bills matches those from the two-state model. Panel A reports portfolio performance from a 
simulation experiment in which the data generating process is the two-state regime switching model of Table 2. Panel B uses actual MSCI returns data from the sample 
period 1986:01 - 2005:12. 
 
 

 Panel A - Simulated Data 
 T=1 month T=24 months 
 Realized Utility Annualized Returns Realized Utility Annualized Returns 

 Mean SD CEV Mean SD Mean SD CEV Mean SD 

Two-state RS -0.987 0.021 16.42 16.77 7.28 -0.722 0.108 17.69 18.79 12.59 
VAR(1) -0.992 0.017 9.89 11.35 5.89 -0.799 0.070 11.89 12.38 7.99 
ICAPM -0.989 0.011 14.22 14.03 4.16 -0.764 0.094 14.42 15.15 10.11 
Equal weights -0.991 0.015 11.95 12.68 5.54 -0.802 0.066 11.63 12.03 7.50 
 Panel B - Actual Data 
 T=1 month T=24 months 
 Realized Utility Annualized Returns Realized Utility Annualized Returns 

 Mean SD CEV Mean SD Mean SD CEV Mean SD 

Two-state RS -0.993 0.029 8.22 8.73 10.05 -0.849 0.158 8.54 10.09 13.08 
VAR(1) -0.995 0.022 6.18 8.72 7.62 -0.872 0.103 7.09 7.89 9.69 
ICAPM -0.994 0.039 7.44 11.35 12.82 -0.850 0.223 7.72 11.45 16.76 
Equal weights -0.994 0.031 7.63 10.03 10.74 -0.849 0.154 7.33 8.72 12.30 
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Figure 1 

Bear state probabilities 
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Figure 2 

Correlations between world market and regional market returns periods 
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Note: Periods where the global bear state is most likely are shown in grey shades. 
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Figure 3 

Mean excess returns, volatility, skew and kurtosis of the world market portfolio implied  
by the two-state model (annualized figures) 
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Note: Periods where the global bear state is most likely are shown in grey shades. 
 


