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of the multi-period direct forecasting models we propose a new SURE-
based estimation method and modified Akaike information criteria for
model selection. Empirical analysis of the 170 variables studied by
Marcellino, Stock and Watson (2006) shows that information in factors
helps improve forecasting performance for most types of economic vari-
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sample modifications to the Akaike information criterion can modestly
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1 Introduction

Economists are commonly asked to forecast uncertain outcomes multiple
periods ahead in time. For example, when the economy is in a recession a
policy maker may wish to know how long it might take before a recovery
begins, and so is interested in forecasts of output growth for, say, horizons
of 1, 3, 6, 12, and 24 months ahead. Similarly, fixed-income investors are
interested in comparing forecasts of spot rates multiple periods ahead against
current long-term interest rates in order to arrive at an optimal investment
strategy, and stock market investors may consider the effect of demographic
variables on expected returns and risks at both short and long investment
horizons (Favero and Tamoni, 2010).

Two basic strategies have been proposed for generating multi-period fore-
casts. The first approach is to estimate a dynamic model for data observed
at the highest available frequency, e.g. monthly, and then use the chain rule
to generate forecasts at longer horizons. Under this “iterated” or “indirect”
approach, the model specification is the same across all forecast horizons;
only the number of iterations changes with the horizon. Univariate ARMA
models or their multivariate VARMA equivalent, are usually used in the
iterations. The second approach is to estimate a separate model for each
horizon, regressing future realizations on current information. Such “direct”
forecasts dispense with the need for forward iteration. Under this approach,
both the model specification and estimates can vary across different forecast
horizons.

Both approaches have advantages and drawbacks. For a given model
specification the iterated approach leads to more efficient parameter estim-
ates since it includes data recorded at the highest available frequency and
so uses the largest available sample size. If the model is misspecified, due,
for example, to an omitted variable or because of an incorrect lag order,
iterating the model multiple steps ahead can either attenuate or reduce ex-
isting biases. Direct forecasts are less efficient, but also more likely to be
robust to model misspecification as they are typically linear projections of
current realizations on past data. Direct forecasts introduce new problems,
however, due to the overlap in data when the forecast horizon exceeds one
which affects the covariance of the forecast errors.

Given the importance of the horizon to many forecasting problems, it
is not surprising that a substantial theoretical literature has considered the
multi-step forecasting problem, including Bao (2007), Cox (1961), Brown
and Mariano (1989), Clements and Hendry (1998), Findley (1983), Hoque,
Magnus and Pesaran (1988), Ing (2003), Schorfheide (2005), and Ullah
(2004), with Bhansali (1999) providing a survey. This literature has ex-
amined the bias-efficiency trade-off in the context of specific models such as
stationary first-order or higher-order autoregressive models. Whether the
direct or iterated approach can be expected to produce the best forecasts
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will generally depend on the sample size, forecast horizon, the (unknown)
underlying data generating process and the methods used to select lag length
for the forecasting models (Ing, 2003). In general, no approach can be shown
to uniformly dominate the other so, as pointed out by Marcellino, Stock and
Watson (2006) (MSW, henceforth), the relative merit of the iterated versus
direct forecasting methods is an empirical question.

For multivariate forecasting models additional issues complicate the com-
parison of the direct and iterated forecasting approaches. First, it becomes
important how the potentially high-dimensional variable selection search is
conducted and how multi-step forecasts of additional predictor variables are
generated under the iterated approach. For multivariate specifications of
even modest dimension, a global model specification search very rapidly be-
comes intractable unless the problem is further constrained: with d potential
regressors, there are 2d different linear models and with d easily in the hun-
dreds it is infeasible to evaluate every possible model. To deal with this
dimensionality problem, we propose a factor-augmented VAR approach to
iterated forecasting that builds on the work by Bernanke, Boivin and Eliasz
(2005) and Stock and Watson (2005). This limits the model specification
search to consider inclusion of only a few common factors extracted from
different categories of economic variables. In addition to past values of the
predicted variable itself, relatively few potential predictors therefore need to
be considered.

A second issue that has not previously received much attention in this
context is the serial correlation in the errors of the direct forecast models,
which arises due to the use of overlapping data. This raises issues at the
estimation and the model selection stage. We propose a SURE estimation
approach that reorganizes the data in non-overlapping blocks of observations
spaced apart by the length of the forecast horizon. We show how to com-
pute the resulting covariance matrix under this approach which holds the
potential of efficiency gains over conventional direct forecasts. We also pro-
pose modifications to the Akaike information criterion that account for serial
correlation in residuals from the forecast models. Monte Carlo simulations
confirm that the modifications to the AIC and the SURE approach both
lead to improvements in the performance of the direct forecasting models.

In an empirical exercise we consider the 170 variables studied by MSW.
We confirm their finding that the iterated forecasts are best overall among
the univariate forecasting methods, particularly at long horizons where the
inefficiency of the direct forecasting method is most prominent. We also find
that forecasts generated by the factor-augmented VARs generally perform
better than the univariate forecasts, an important exception being variables
tracking prices and wages. This suggests that it is helpful to extend the
forecasting models beyond purely univariate schemes and include the mul-
tivariate information that is embedded in common factors. Among the direct
forecasts, in the majority of cases, both, the modified Akaike information
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criteria and the SURE approach, help improve forecasting performance.
In summary, the main contributions of the paper are as follows: First,

we propose a factor-augmented forecasting approach that extends to the
multivariate setting iterated methods previously considered in a univariate
context. Second, we propose a new SURE estimation method that accounts
for the data overlap that arises at multi-period horizons under the direct
forecast approach. Third, we extend the AIC to account for the overlap
introduced by the direct forecasting method which affects the covariance of
the forecast errors and so can lead to different models being chosen in small
samples. Fourth, we study the forecasting performance of both extant and
new model selection and forecasting methods through Monte Carlo simula-
tions. Finally, we present an empirical application that considers recursively
generated forecasts of the economic variables included in the study by MSW
and extends their study to a multivariate setting.

The outline of the paper is as follows. Section 2 sets up the multi-period
forecasting problem for univariate and multivariate cases, while Section 3
deals with model selection and estimation issues. Section 4 presents Monte
Carlo results, while Section 5 describes our empirical findings using the
Marcellino et al. data set. Section 6 concludes.

2 Methods for Multi-period Forecasting

Suppose a forecaster is interested in predicting a K×1 vector of target vari-
ables yt+h = (y1,t+h, y2,t+h, . . . , yK,t+h)

0 by means of their own past values
and the past values of an additional set of M potentially relevant predictor
variables, xt = (x1t, x2t, . . . , xMt)

0. Typically K is small, often one or two,
but M could be very large.

The forecaster’s horizon, h, may be a single period, h = 1, or may
involve several periods, h > 1. Iterated forecasts use a single model fitted
to the shortest horizon and then iterate on this model to obtain multi-step
forecasts. Direct forecasts regress realizations h periods into the future on
current information and estimate and select a separate forecasting model for
each horizon.

For purposes of calculating one-step-ahead forecasts under the iterated
approach, the regressors are treated as conditional information and so how
they are generated is not a concern. This also holds under the direct fore-
casting approach irrespective of the forecast horizon. In contrast, when
applying the iterated forecasting approach to multi-period horizons, h > 1,
the regressors themselves need to be predicted since such values in turn are
required to predict future values of yt.
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2.1 Multi-step Forecasts with Factor-Augmented VARs

In cases where M is relatively small one approach is to treat all variables
simultaneously, i.e. model (y0t,x

0
t)
0 jointly. Multi-period forecasts of yt can

then be obtained by iterating on a VAR of the formµ
yt
xt

¶
=

µ
μy

μx

¶
+ Λ(L)

µ
yt−1
xt−1

¶
+ ψt, (1)

where Λ(L) is a matrix lag polynomial of finite order. In the common
situation where M is large while the time-series dimension of the data is
limited, this approach is unlikely to be successful due to the high dimension
of Λ(L), particularly the parts tracking dynamics in the large-dimensional
vector xt.

To deal with this issue, a conditional factor-augmentation approach can
be used. Under this approach, the large-dimensional xt-vector is condensed
into a subset of factors, f t, of dimensionm < M , that summarize the salient
features of the larger-dimensional data. A factor-augmented VAR (FAVAR)
based on the variables zt = (y0t,f

0
t)
0 can then be used:

zt = μz +

µ
Ap(L) Bq(L)
0 Ds(L)

¶
zt−1 + ξt, (2)

where the finite-order matrix lag polynomials are

Ap(L) = A0 +A1L . . .+Ap−1L
p−1,

Bq(L) = B0 +B1L+ . . .+Bq−1L
q−1,

Ds(L) = D0 +D1L+ . . .+Ds−1L
s−1.

Notice the asymmetric treatment of yt and f t under this approach: future
values of the factors are generated using only current and past values of the
factors themselves. The y-variables are therefore not used to predict the
factors, while the factors are used to predict the y-variables.

For illustration, suppose that the K × 1 vector of target variables, yt, is
generated according to the following factor model

yt = μ+Ayt−1 +Bf t−1 + ut, t = 1, ..., T, (3)

ut ∼ iid(0,Σ),

where f t is a vector of unobserved common factors, while μ, A, B, and Σ
are unknown coefficient matrices.

Using this model to predict yt+h given information at time t requires a
forecast of the factors whenever h ≥ 2. Despite the dynamic nature of the
above model, we follow Stock and Watson (2002) and estimate f t by the
principal component (PC) procedure, although one could equally employ
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the dynamic factor approach of Forni et al. (2005). A key question when
using factor models is the choice of the number of factors. This can be
determined, for example, by using the information criteria (IC) proposed by
Bai and Ng (2002). In practice there is considerable uncertainty surrounding
the number of factors to be used, and as pointed out by Bai and Ng (2009),
the use of IC is based on the assumption that the factors are ordered as
predictors of the regressors xt, an ordering that might not be appropriate
for predicting the target variables, yt.

In view of these concerns we adopt a hierarchical approach where we
first divide all variables into economically distinct groups and then select
the first PC from each of the categories. All the computations are carried
out recursively with rolling estimation windows of length w, so no future
information is used in the construction of the factors. We denote the recurs-
ively estimated PCs by f̂ t, t = R, . . . , T − h, where t is the point in time
where the factors are computed, R ≥ w is the length of the initial estimation
sample, and T is the total sample length. Hence, at time t we use data over
the sample t− w + 1 : t to extract f̂ t.

Only those factors that help predict yt are relevant and should be in-
cluded in the model. This may be a subset, f̂1t, of the full set of factors,
f̂ t, under consideration. One then has to choose whether to use the full set
of factors f̂ t = (f̂1t, f̂2t) to predict the subset of factors, f̂1t, selected when
forecasting yt+h, or whether to use only lagged values of f̂1t to predict their
future values. The choice would depend on the number of available factors.
In the empirical application below where we consider five factors we use all
factors to forecast future values of f̂1t.

2.2 Iterated System Forecasts

To generate multivariate forecasts we first select the relevant subset of factors
and the lag lengths p and q using the conditional model:

yt = μy +Ap(L)yt−1 +Bq(L)f̂ t−1 + ut. (4)

We determine the lag orders p and q and the subset of m1 factors from the
total set of m factors by applying IC to the likelihood of yt.

For simplicity, we obtain forecasts only from the full set of m = m1+m2

factors. Hence we first select a VAR(s) model in f̂ t where the value of s is
determined by some IC, again applied recursively:

f̂ t = μf +Ds(L)f̂ t−1 + εt. (5)

Next, to compute h−step-ahead forecasts of yt, we simply combine the
conditional and marginal models:

yt = μy +Ap(L)yt−1 +Bq(L)f̂ t−1 + ut,

f̂ t = μf +Ds(L)f̂ t−1 + νt,
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which, recalling that zt = (y0t, f̂
0
t)
0 and ξt = (u0t,ν

0
t)
0, is consistent with

equation (2). Notice that the selection of factors in the conditional model (4)
is reflected in zero-restrictions on B1, B2, . . . , Bq, where the columns
corresponding to the factors that are not selected are set to zeros. The
factor-augmented VAR in zt can then readily be iterated forward.1

2.3 Univariate Forecasts

Univariate forecasts are a special case of the multivariate forecasts described
above. Nevertheless, it is worth briefly clarifying how such forecasts are
computed.

For example, with p lags the iterated univariate forecast of yt+h given
information at time t is

ŷt+h = α̂+ β̂1ŷt+h−1 + β̂2ŷt+h−2 + . . .+ β̂pŷt+h−p, t = R, ...., T − h

where ŷt+h−p = yt+h−p if h ≤ p and the parameters are estimated from the
regression model by OLS

yt = α+ β1yt−1 + β2yt−2 + . . .+ βpyt−p + ut, t = R, . . . , T − h.

Under the direct approach, for a given horizon h, and a given lag length,
p, the parameters are estimated from the regression

yt = αh + β1hyt−h + β2hyt−h−1 + . . .+ βphyt−h−p + uht,

and the forecast is

ŷt+h = α̂h + β̂1hyt + β̂2hyt−1 + . . .+ β̂phyt−p.

3 Estimation and Model Selection

Two important econometric issues arise in the context of multi-period fore-
casting. First, the direct forecast models introduce overlaps in the observa-
tions and give rise to a particular dependence structure which, if imposed
on the estimation, could lead to efficiency gains. Second, for both iterative
and direct forecasts, how a particular model is chosen by the forecaster is of
great importance given the large dimension of the set of potentially relevant
predictor variables. In this section we discuss both issues, first presenting a
new SURE estimation procedure that may lead to efficiency gains and next
considering a variety of information criteria, including modified ones that
deal with serial dependence in the errors.

1Alternatively, one could model only the factors that have been selected in the condi-
tional model, (4). This may be less efficient than using the full VAR in (5), but a smaller
number of parameters needs to be estimated from a finite number of observations. It is
therefore not clear a priori which approach will perform better.
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3.1 Estimation

Overlaps in the data associated with the direct forecasting models introduce
serial dependence in the errors. Even if the underlying errors are serially
uncorrelated, the errors associated with an h-period overlap typically fol-
low an MA(h− 1) process. This suggests that estimating VARMA models
could be beneficial. However, we do not follow this direction for two reas-
ons. First, estimation of VARMA models is not a very common undertaking
in the forecasting literature and thus goes against our focus on evaluating
forecasting methods in common use. Second, VARMA models have stability
and convergence problems for the types of multivariate models considered in
our paper, which can be of large dimension, and require extensive specific-
ation searches; see Athanasopoulos and Vahid (2008) for further discussion
of these points.

Instead, we propose using SURE estimation which leads to some effi-
ciency gains as it exploits the information of the MA structure of the error
even if it implies a more heavily parameterized model. Consider estimation
of the following direct forecasting model

yt = β0zt−h + ut, t = R, . . . , T, (6)

and suppose that ut follows an (h− 1) order moving average process

ut = εt + θ1εt−1 + θ2εt−2 + . . .+ θh−1εt−h+1, εt ∼ iid(0, σ2). (7)

The regressors, zt−h, include yt−h, yt−h−1, . . . , yt−h−p for some order p, and
estimated factors dated t − h or earlier, i.e. f̂ t−h, . . . , f̂ t−h−p. When the
direct regression is derived from an underlying VAR(p) in yt and f̂ t the
regression coefficients, β, and the MA coefficients θ = (θ1, θ2, . . . , θh−1)0

are related, and fully efficient estimation of (6) must allow for such cross-
parameter restrictions. This type of restrictions can be implemented by
assuming that β and θ are both functions of a set of deeper parameters, φ,
with estimation of β(φ) and θ(φ) carried out directly in terms of φ. To
simplify the notations, we suppress the explicit dependence of β and θ on
φ.

Imposing such restrictions on the system of direct forecasting models
simply helps recover the original parameter values from the iterated fore-
casting model. Since the latter efficiently uses data at the highest frequency,
maximum likelihood estimates from joint estimation of the mutually consist-
ent h-step direct forecasting models is identical to estimation of the para-
meter estimates from the one-step-ahead model, which of course is far more
easily achieved. In scenarios where the direct forecast would dominate the
iterated forecast, e.g., because the forecasting model is misspecified, using
the parameters of the iterated forecast model for the covariance matrix may
be undesirable. As for the model parameters, it may therefore be better
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to estimate the covariance matrix directly without imposing the parameter
restrictions on the iterated forecast.

Asymptotically efficient estimates of β can be computed by applying
maximum likelihood directly to the overlapping regressions for t = 1, 2, . . . , T ,
allowing for the MA(h − 1) process of the errors. Alternatively, one could
consider estimating β from pooled regressions of h non-overlapping regres-
sions. Suppose that T is an exact multiple of h and set n = T/h. Let
z̃ij = yj+(i−1)h and decompose the overlapping regressions in (6) into the
following h non-overlapping regressions

z̃ij = β0wi−1,j + vij , for i = 1, 2, . . . , n, and j = 1, 2, . . . , h, (8)

where wi−1,j = wi,j−h = xj+(i−1)h−h, and vij = uj+(i−1)h. When h = 2, we
have two non-overlapping regressions: one for the odd observations, z̃i1, and
another for the even observations, z̃i2, for i = 1, 2, . . . , n.

For each j the errors vij are serially uncorrelated across i and the least
squares regression of z̃j = (z̃1,j , z̃2,j , . . . , z̃n,j)0 onWj = (w0,j ,w1,j , . . . ,wn−1,j)0

yields a consistent estimate of β which we denote by β̂j . However, this
estimate is not efficient and a pooled estimate that utilizes all the h non-
overlapping regressions can be more efficient. The estimates across the h
non-overlapping regressions can be pooled in a number of ways, e.g., with a
simple or a weighted average of β̂j , over j = 1, 2, . . . , h, with weights based
on the relative precision of the different estimates.

Alternatively, the h regressions in (8) can be viewed as a set of seemingly
unrelated regression equations (SURE), allowing for the cross dependence
of the errors vij across j for each i . Specifically, consider the regressions

z̃j =Wjβ + vj , for j = 1, 2, . . . , h, (9)

which in stacked form can be written as

z̃ =Wβ + v,

where z̃ = (z̃01, z̃
0
2, . . . , z̃

0
h)
0,W = (W0

1,W
0
2, . . . ,W

0
h)
0, and v = (v01,v

0
2, . . . ,v

0
h)
0.

To derive the covariance matrix of v we first note that vj = (uj , uj+h, uj+2h,
. . . , uj+(n−1)h)

0, and denote the autocovariance of {ut}, which follows an
MA(h − 1) process, by γ(s), where γ(s) = γ(−s) = 0 for s ≥ h. It is now
easily seen that

E(vjv
0
j) = γ(0)In,

where In is an identity matrix of order n. Similarly, if s > r,

E(vrv
0
s) ≡ Ψrs =

9



⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ(s− r) 0 0 · · · 0 0
γ(h− s+ r) γ(s− r) 0 · · · 0 0

0 γ(h− s+ r) γ(s− r) · · · 0 0
...

...
...

...
...

...
0 0 · · · γ(h− s+ r) γ(s− r) 0
0 0 · · · 0 γ(h− s+ r) γ(s− r)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

while if r > s,
E(vrv

0
s) ≡ Ψrs =⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ(r − s) γ(h− s+ r) 0 · · · 0 0
0 γ(r − s) γ(h− r − s) · · · 0 0
0 0 γ(r − s) · · · 0 0
...

...
...

...
...

...
0 0 · · · 0 γ(r − s) γ(h− r + s)
0 0 · · · 0 0 γ(r − s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the covariance matrix of v is given by

Σv(θ) =

⎛⎜⎜⎜⎜⎜⎝
γ(0)In Ψ12 Ψ13 · · · Ψ1h
Ψ21 γ(0)In Ψ23 · · ·
...

...
...

Ψh−1,1 Ψh−1,2 · · · γ(0)In Ψh−1,h
Ψh,1 Ψh,2 · · · Ψh,h−1 γ(0)In

⎞⎟⎟⎟⎟⎟⎠ . (10)

The log-likelihood function of the SURE specification is now given by

c(β,θ) ∝ −1
2
ln |Σv(θ)|−

1

2
(z̃−Wβ)0Σ−1v (θ)(z̃−Wβ). (11)

The unknown parameters can be obtained by maximization of the log-
likelihood function. In particular

β̂SURE =
£
W0Σ−1v (θ)W

¤−1
W0Σ−1v (θ)z̃. (12)

This maximum likelihood procedure is equivalent to the maximum likelihood
estimation of the original overlapping regression in equation (6) with errors
following the MA(h − 1) process, (7). To see this let y = (y1, y2, . . . , yT )

0,
and note that since the elements of z are selected from the elements of y
without repetition then there exists a non-singular T × T selection matrix
P such that z̃ = Py. Hence the log-likelihood functions based on y and z̃
must be the same, and the covariance matrix in (10) is equivalent to using
a GLS covariance matrix after reordering the observations.

Maximum likelihood estimation of β under the SURE approach sug-
gests intermediate procedures that are computationally less extensive and
relatively easy to implement. One possible approach would be to estimate
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Σv(θ) using consistent estimates of γ(s) obtained from ût = yt − β̂
0
LSzt−h

where β̂LS is the first-stage least squares estimates of β computed from the
overlapping regressions. Hence2

γ̂(s) =

TP
t=1

ûtût−s

T
, for s = 0, 1, 2, . . . , h.

Alternatively, we could apply the standard SURE estimation to (9) sub-
ject to the restrictions βj = β for all j = 1, 2, . . . , h and use the covariance
matrix Σh ⊗ IT/h, where Σh is the covariance matrix of the SURE system
(9) without accounting for the restrictions in (10). This procedure provides
an efficient way of pooling the h different consistent estimates of β but does
not take account of the specific form of the cross dependence of the errors
from the different non-overlapping regressions. Monte Carlo experiments
not reported here but available from the authors suggests that this leads
to an inferior forecast performance and we will therefore not consider this
approach.

In the Monte Carlo simulations and empirical analysis we use the first ap-
proach and the likelihood function (11) to calculate the information criteria.
In order to obtain robust estimates of γ(s) we estimate them nonparametric-
ally using a Bartlett window. Additionally, we down-weigh the covariances
γ(s) by (1− s

h). To robustify the calculation of the forecasts, one can use the
SURE approach in the model selection stage, but then use OLS estimation
for the selected model. Numbers reported in subsequent tables are based on
this combination, but results are very similar without this modification.

3.2 Model selection

We consider two model selection criteria, namely the AIC and BIC. Both are
commonly used in forecasting studies and have well known properties: AIC
achieves a good approximate model as the sample size expands even if the
true model is not contained in the universe of models under consideration.
However, it is not a consistent criterion and so does not select the true
model with probability one, asymptotically, if it happens to be included in
the search. In contrast, BIC is a consistent model selection criterion if the
true model is one of the models under consideration.

The iterated forecasting models can be selected either on the basis of
single equations or using a system of equations. For the direct forecasting
models a decision has to be made whether or not to correct for the overlap
in the observations that affects the sample covariance matrix of the forecast
errors.

2For relatively large values of h, the estimates of γ̂(s) can be down-weighted using
Bartlett of Parzen windows.
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3.2.1 Iterated Forecasts

Individual models in the specification search select different subsets of zt−1 =
(y0t−1 f̂

0
t−1)

0. We consider the following criteria. First, we apply AIC or BIC
recursively to the single equation (K = 1) containing the variable of interest,
i.e., at time t, for a particular model we have:

AICt = ln[û0t−w+2:tût−w+2:t/(w − 1)] +
2d

w − 1 , (13)

BICt = ln[û0t−w+2:tût−w+2:t/(w − 1)] +
d ln(w − 1)

w − 1 ,

where d is the dimension of the vector containing the subset of zt−1 selected
by the model under consideration, û0t−w+2:t is a (w−1)×1 vector of estimated
residuals from the rolling-window estimation with typical element ût = y1,t−
β̂
0
tzt−1, and β̂t is estimated using the most recentw observations up to period

t.3

Similarly, for K > 1, we have

AICt = ln |Σ̂t|+
2Kd

w − 1 (14)

BICt = ln |Σ̂t|+
Kd ln(w − 1)

w − 1

where Σ̂t is the K ×K estimated error covariance matrix

Σ̂t =
1

w − 1
£
Y 0

tY t − Y 0
tZt−1(Z

0
t−1Zt−1)

−1Z0t−1Y t

¤
,

Y t is the (w − 1)×K matrix of stacked yt = (y1t, y2t, . . . , yKt)
0, and Zt−1 is

the observation matrix formed by stacking zt−1 over the w− 1 observations
indexed by t− w + 2, t− w + 3, . . . , t.

3.2.2 Direct Forecasts

The direct forecasting models that are not based on the SURE system (9)
are selected based on either AIC or BIC

AICt = ln[û0t−w+1+h:tût−w+1+h:t/(w − h)] +
2d

w − h
,

BICt = ln[û0t−w+1+h:tût−w+1+h:t/(w − h)] +
d ln(w − h)

w − h
, (15)

where ût−w+1+h:t is a (w− h)× 1 vector of estimated residuals with typical
element ût = y1t − β̂

0
tzt−h. For h > 1, the overlap in the forecasts will

3For simplicity, we shall refer to zit−1 as comprising both the most recent lag as well
as any additional lags. This notation therefore corresponds to using the companion form
of the model.
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produce autocorrelation in the residuals. This should be accounted for in
small samples when calculating the information criteria. Here we consider
two ways to calculate the corrections for the case where K = 1. To motivate
these, assume that the h−step forecast model takes the form in equation
(6) estimated using the observations t = 1, 2, . . . , T , and denote the least
squares criterion for estimating β by

Q(β) =
1

2σ2u
(yT −ZT,hβ)

0(yT −ZT,hβ),

where σ2u = V ar(ut), yT = (y1, y2, . . . , yT )
0, andZT,h = (z1−h,z2−h, . . . ,zT−h)0.

Let Q0(β) = E[Q(β)], where expectations are taken with respect to the
true conditional density of yt, and denote the jth derivative of Q(β) by
Q(j)(β). Moreover, let β0 be the true value of β, and its estimate given
by β̂ = argminβ [Q(β)]. Using these notations, we have that Q

(1)
0 (β0) = 0,

Q(1)(β̂) = 0, Q(2)(β) = Q
(2)
0 (β0) =

1
σ2u
Z 0T,hZT,h.

Define Q0(β̂) as the loss incurred by using the estimated parameter β̂
instead of the unknown true parameter, β0. Then

E[Q0(β̂)] = E[Q(β̂)] + E[Q0(β̂)−Q(β̂)].

Second order Taylor expansions yield

Q0(β̂) = Q0(β0) + (β̂ − β0)0Q
(2)
0 (β0)(β̂ − β0),

Q(β̂) = Q(β0) + (β̂ − β0)0Q(1)(β0) + (β̂ − β0)0Q
(2)
0 (β0)(β̂ − β0) .

Taking expectations of the last equation yields

E[Q(β̂)] = E[Q(β0)] + E[(β̂ − β0)0Q(1)(β0)] + E[(β̂ − β0)0Q
(2)
0 (β0)(β̂ − β0)]

= Q0(β0) + E[(β̂ − β0)0Q(1)(β0)] + E[(β̂ − β0)0Q
(2)
0 (β0)(β̂ − β0)],

and therefore

E[Q0(β̂)−Q(β̂)] = −E[(β̂ − β0)0Q(1)(β0)].

Furthermore
(β̂ − β0) = −[Q(2)(β0)]−1Q(1)(β0),

and therefore (for a given set of regressors)

−E[(β̂ − β0)0Q(1)(β0)] = −E[tr(σ−2u u0TZT,h(Z
0
T,hZT,h)

−1ZT,huT )]

= −tr
h
σ−2u (Z

0
T,hZT,h)

−1Z 0T,hE
¡
uTu

0
T

¢
ZT,h

i
,

where uT = (u1, u2, . . . , uT )0. If the errors ut were IID, this would give the
standard penalty term K. However, in overlapping forecasts the errors will
be autocorrelated and the expression will not collapse toK in small samples.
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Building on this result, we first consider a band diagonal modified AIC
that takes the form

AICΠ̂S
= ln[û0t−w+1+h:tût−w+1+h:t/(w − h)] +

2tr
³
Π̂S

´
w − h

, (16)

where
Π̂S = (Z

0
T,hZT,h)

−1Z 0T,hShZT,h/h.

Sh is a matrix with h on the diagonal, h− 1 on the first diagonal above and
below the main diagonal, h− 2 on the second diagonal above and below the
main diagonal etc., i.e.

Sh =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h h− 1 h− 2 . . . 0
h− 1 h h− 1 . . . 0

h− 2 h− 1 1
...

...
. . . h− 1 h− 2

0 . . . h− 1 h h− 1
0 . . . h− 2 h− 1 h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This formulation aims at capturing theMA(h−1) form of the error process
in the overlapping regressions but assumes that the serial correlation in the
underlying (non-overlapping) observations is negligible.

The second approach uses an estimated covariance matrix. In particular,
we use the Newey-West (1987) covariance matrix to obtain the correction.
This yields the modified AIC:

AICΠ̃ = ln[û
0
t−w+1+h:tût−w+1+h:t/(w − h)] +

2tr
³
Π̃
´

w − h
, (17)

where Π̃ = Σ̂
−1
zz Ω̂, Σ̂zz = σ̂2u

³
Z0
T,hZT,h
w−h

´
, Ω̂ is the long-run variance of

the residuals as estimated by the Newey-West covariance matrix with the
bandwidth set to min(h,w1/3).

When selecting the models based on the SURE system in (9), standard
formulations of AIC and BIC with likelihood (11) can be used. The unknown
parameters of the covariance matrix need not be included in the penalty term
as models are compared only for the same forecast horizon, so the number
of parameters in the covariance matrix will be the same across models.

4 Monte Carlo Simulations

We next turn to Monte Carlo simulations as a means to evaluate the per-
formance of the various model selection and estimation approaches under
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two data generating processes (DGPs). For both DGPs we consider situ-
ations with a single target variable, K = 1, and m factors which yields the
following VAR model for zt = (y1t, f1t, . . . , fmt)

0:Ã
y
(b)
1t

f
(b)
t

!
=

µ
αρ αγ0

0 A

¶Ã
y
(b)
1t−1
f
(b)
t−1

!
+ ε

(b)
t , ε

(b)
t ∼ N(0,Σm+1), (18)

where b = 1, 2, . . . , B tracks the replications in the Monte Carlo experiments.
We set Σm+1 to a block-diagonal matrix, where the first block corresponds
to the target variable and the second block to the m×m covariance matrix
of the factors. The goodness of fit of the prediction equation (the first row
of (18)) is controlled by the parameters α, ρ, γ, A and Σm+1. We set
α such that the population R2 for y1t, denoted R2y, is either 0.2 or 0.8,
representing low and high predictability scenarios, respectively. Assuming
that the eigenvalues of A lie inside the unit circle, it is readily seen that
Cov(f

b)
t ) = Im provided that the part of the covariance matrix Σm+1 that

corresponds to the factors is set to (Im −AA0). From (18) we see that

R2y =
α2ρ2 + α2 (γ0γ) /σ2ε1
1 + α2 (γ0γ) /σ2ε1

,

where σ2ε1 is the variance of the innovation to y1t. For a given choice of R
2
y,

ρ and γ we then have (setting σ2ε1 = 1)

α2 =
R2y

ρ2 + γ0γ(1−R2y)
.

In practice, the factors are unobserved and forecasters will extract estimates
of these from a panel of observed variables. We generate Mj variables for
each factor j, j = 1, 2, . . .m, in a hierarchical fashion, which corresponds to
the estimation of the factors in the empirical analysis,

x
(b)
jit = λjif

(b)
jt + ψ

(b)
jit, ψ

(b)
jit ∼ N(0, 1), i = 1, 2, ...,Mj , j = 1, 2, . . . ,m,

where Mj = 30 for all j. λji is set such that R2jx = 0.5 in the low predictab-
ility scenario and 0.8 in the high predictability scenario:

R2jx =
λ0jλj

1 + λ0jλj
, j = 1, 2, . . . ,m,

where λj = (λj1, λj2, . . . , λjMj )
0.

Data are generated for window sizes of w = 60, 120, and 240 observations
which in turn are used to compute forecasts for period w + h. We consider
forecast horizons of h = 1, 3, 6, 12, and 24 periods.
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Data Generating Process 1

The first DGP assumes that all variables contain useful information for
predicting the variable of interest (always the first variable) and so the one-
step-ahead forecast should select all variables. Moreover, we set m = 2 and
choose the remaining parameters as follows

C ≡
µ

ρ γ0

0 A

¶
=

⎛⎝ 0.8 0.5 0.5
0 0.5 0
0 0 0.8

⎞⎠ ,

so that both f1 and f2 help predict y1, but f1 and f2 are in turn not them-
selves predictable by means of past values of y1. Moreover, f2 is quite
persistent while f1 is not, suggesting that for large values of h, f2 should
play more of a role in forecasting y1 than f1.

Data Generating Process 2

Under the second DGP, iterated multi-step forecasts can be expected to
be inefficient because they select models that produce good one-step-ahead
forecasts and a factor in the DGP is only helpful for longer horizon forecasts.
Specifically, the parameters for the second DGP are set to m = 3 and

C ≡
µ

ρ γ0

0 A

¶
=

⎛⎜⎜⎝
0.1 0.5 0 0
0 0.2 0.6 0
0 0 0.2 0.6
0 0 0 0.75

⎞⎟⎟⎠ .

Notice that f1 helps predict y1, but f1 is in turn not itself predictable by
means of past values of y1. Moreover, f2 neither predicts nor is predicted
by y1 but f2 predicts f1 and therefore may help predict y1 over medium
horizons. Finally, the most persistent factor, f3, indirectly helps predict y1
through its ability to predict f2.

4.1 Forecasts

We generate forecasts from both univariate and multivariate models. The
univariate forecasts are based on AR models with lag length up to pmax =
12. The multivariate models consider all regressors in the DGPs with the
maximum lag length restricted to pmax = 2.

In each case forecasts are based on the model selected by one of the cri-
teria discussed in the previous section. Iterated forecasts are then calculated
as follows:

Ẑ
(b)∗
t+h =

∙
Im+1 + Ĉ

(b) + · · ·+
h
Ĉ(b)

ih−1¸
μ̂+

h
Ĉ(b)

ih
z
(b)∗
t , (19)
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where Z(b)∗t = z
(b)∗
t if z(b)∗t includes y(b)1t or Z

(b)∗
t = (y

(b)
1t ,z

(b)∗
t ) if z(b)∗t does

not include y
(b)
1t . z

(b)∗
t is the subset of z(b)t chosen in the model selection

procedure, z(b)t = (f̂1t, f̂2t, . . . , f̂mt), and f̂jt is the first principle component
extracted from the set of Mj regressors, xjit, i = 1, 2, . . . ,Mj . Ĉ(b) is the
estimate ofC defined above for the bth Monte Carlo replication. The iterated
h-step ahead forecast of y(b)1t is denoted by ŷ

(b)
1,t+h.

Direct forecasts are obtained from

ỹ
(b)
1,t+h = μ̂h + β̂

0
hz
(b)
ht , (20)

where z(b)ht is the subset of regressors that are selected for the h-step ahead
forecast.

Forecast errors are calculated as

ê
(b)
t+h = y

(b)
1,t+h − ŷ

(b)
1,t+h,

ẽ
(b)
t+h = y

(b)
1,t+h − ỹ

(b)
1,t+h. (21)

Forecasting performance is measured by the mean squared forecast error
(MSFE) computed as

MSFE =
1

B

BX
b=1

h
e
(b)
t+h

i2
, (22)

where e(b)t+h is either ê
(b)
t+h or ẽ

(b)
t+h.

4.2 Summary of Monte Carlo Results

Results from the Monte Carlo simulations are reported in Tables 1 and 2.
To study how the degree of predictability affects the findings, each table
contains a panel with R2y = 0.2 and R2x = 0.5, and a panel with R2y = R2x =
0.8. The former is closer to the empirical results that we obtain, while the
second scenario is more relevant for highly persistent variables.

First consider the results in Table 1 for the data generated under DGP1.
For both the univariate models and the FAVARs, the iterated approach
dominates the direct approach. This is a robust finding that holds across
estimation sample sizes (w = 60, 120, and 240), information criteria (AIC
versus BIC), and forecast horizons (h = 3, 6, 12, and 24). Moreover, in this
case the performance of the different methods can largely be explained by the
effect of parameter estimation error: the relative performance of the direct
to the iterated forecasts improves with the length of the estimation window,
w, since it becomes less costly to use an inefficient estimation method in the
larger samples. Conversely, for a fixed estimation window, w, the relative
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performance of the direct approach worsens as h increases since fewer ob-
servations are effectively available to estimate the parameters of the direct
forecast model.

Turning to a comparison of the univariate and multivariate forecasts, un-
der the iterated approach FAVAR-models selected by the simple AIC or BIC
produce better forecasts on average than their univariate counterparts. The
dominance of the iterated FAVAR models selected by the AIC is more pro-
nounced in the high predictability scenario (R2y = 0.8) where the parameters
of the model are more precisely estimated. Interestingly, the direct forecasts
from the FAVAR models only dominate the direct univariate forecasts in the
high predictability scenario.

For the longer horizons (i.e., h ≥ 6), the modifications to the AIC work
well as the data overlap becomes more pronounced and serial correlation
in the errors is attenuated. In particular the band diagonal modified AIC,
defined by (16), improves over the simple direct AIC in 3 of 6 of the FAVAR
cases shown in Table 1 when h = 6, while this number rises to 5 out of
6 cases when h = 24. Interestingly, the band diagonal approach is gen-
erally more successful at reducing the MSFE-values than the Newey-West
approach. The SURE approach provides an even better forecast perform-
ance and improves in 4 out of 6 cases over the simple direct AIC when h = 6
and in 6 out of 6 cases when h = 24.

Turning to the second DGP, Table 2 now shows a few cases for h = 3
where the direct FAVAR forecasts produce better performance than the
best iterated forecasts. It is clear from this DGP, however, that the degree
of misspecification has to be quite large for this to happen. The table also
shows continued gains from using the SURE approach and the band diagonal
covariance adjustment to the conventional AIC.

5 Empirical Results

In their empirical analysis, Marcellino, Stock and Watson (2006) (MSW)
found that iterated univariate forecasts generally outperform direct univari-
ate forecasts. Furthermore, they found that the relative performance of the
iterated univariate forecasts improves with the forecast horizon.

MSW studied univariate and bivariate VARs with lag orders either fixed
or selected by AIC or BIC. Apart from the search over lag orders, they
did not, however, conduct a broad model specification search involving mul-
tivariate models. This leaves open the issue of how robust their findings are
to a broader model specification search. We consider this question using the
same data as in the MSW study which comprises 170 U.S. macroeconomic
time series measured at the monthly frequency over the period 1959-2002
(528 months).4

4We are grateful to Mark Watson for making this data set publicly available.
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5.1 Data Transformations

Following MSW, all variables are transformed by differencing a suitable num-
ber of times to achieve stationarity for estimation and model selection.5 In
a second step, forecasts are transformed back to levels and compared to
level variables. We briefly explain how the forecasts are computed under
the direct and iterated approaches using the autoregressive models as an
illustration.

Denote the variables in levels by xt and differenced variables by yt. AR
forecasts can be computed as follows. Under the iterated approach, yt+h is
predicted and x̂t+h is constructed from xt and ŷt+h. The forecasts from the
AR model are based on the sample yt−w+1, yt−w+2, . . . , yt. Here yt = xt if
the variable is I(0), yt = ∆xt if the variable is I(1), and yt = ∆

2xt if the
variable is I(2). For each variable we use the same order of integration as
MSW.

Under the iterated approach the forecast of xt+h is constructed from the
forecast of yt+h, xt, and ∆xt as follows

x̂t+h =

⎧⎨⎩
ŷt+h if xt is I(0)
xt +

Ph
i=1 ŷt+i if xt is I(1)

xt + h∆xt +
Ph

i=1

Pi
j=1 ŷt+j if xt is I(2)

.

Similarly, under the direct approach, the forecast of xt+h is constructed
from the forecast of yt+h, xt, and ∆xt as follows

x̂t+h =

⎧⎨⎩
ŷt+h if xt is I(0)
xt + ŷt+h if xt is I(1)
xt + h∆xt + ŷt+h if xt is I(2)

.

5.2 Setup

Forecasting is performed recursively, begins in 1979M1 (with a minimum
of w observations before forecasting) and runs until the end of the sample
2002M12. This yields up to 286 forecasts for h = 3, and so on. Forecasts are
reported for horizons of h = 3, 6, 12, and 24 months. Two window lengths
are used for estimation, namely w = 120 and w = 240, that is, 10 and 20
years of data. Fixing the window length allows us to better understand the
role of estimation error in the relative performance of the various approaches.

To address the effect of model selection on the multivariate forecasts, we
extract factors from the 170 series arranged into five groups, namely (A)
one factor for “income, output, sales, capacity utilization” (38 variables);
(B) one factor for “employment and unemployment” (27 variables); (C)
one factor for“construction, inventories, and orders” (37 variables); (D) one

5We ignore structural breaks; see Pesaran and Timmermann (2005) for an analysis of
this on forecasts from autoregressive models.
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factor for“interest rates and asset prices” (33 variables); and (E) one factor
for “nominal prices, wages, and money” (35 variables).

To avoid any look-ahead biases, the factors are estimated recursively.
We then obtain forecasts of the factors from VARs fitted to all five factors
with lag orders chosen by AIC or BIC and pmax = 2. The search over
FAVAR models is thus conducted over specifications that include own lags
as well as those of the factors. The space of models is limited as follows.
For the univariate autoregressive models the possible lag lengths are p =
0, 1, 2, . . . , 12, where p = 0 is an intercept only model. For the factor-
augmented VAR models we search across five factors with zero, one or two
lags in addition to an intercept. For computational simplicity the lag length
is restricted to be the same for yit and f̂it.

5.3 Forecasting Performance

Empirical results are summarized in Tables 3-9. We present MSFE-values
averaged across all 170 variables (Table 3) as well as subsets of these (Table
8). Since these could be dominated by extreme values for individual vari-
ables, we also report the proportion of cases (again out of the 170 variables)
where a modeling approach either dominates the benchmark univariate iter-
ated forecasting model selected by the AIC (Table 4), or an approach is best
overall for a given variable (Table 5). To evaluate statistical significance, we
conduct pairwise comparisons of the forecast precision of various approaches
against the benchmark univariate iterated models selected by the AIC using
the approach suggested by Giacomini and White (2006) (Table 7). Finally,
we report the separate magnitude of the squared bias component in the
MSFE in order to understand whether the performance of a given forecast-
ing approach is driven by its bias or by imprecision in the forecasts (Tables
6 and 9).

5.3.1 Univariate Models

Table 3 shows the relative forecasting performance (measured by MSFE)
of the iterated and direct methods averaged over all 170 variables included
in the MSW data set. The iterated univariate forecasts based on models
selected by the AIC are better on average than the direct ones, particularly
at long horizons (h = 12 and 24 months) and when the estimation window
is short (w = 120). Conversely, in the large estimation sample (w = 240)
the direct univariate forecasting models selected by the more parsimonious
BIC perform better than the iterated forecasts selected by this criterion.
To understand this, recall that the iterated forecasts are more efficient and
therefore tend to have a lower estimation error. Such errors are most im-
portant for large models (AIC penalizes large models less than the BIC) and
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when the sample size is short.6

In the short sample (w = 120), the iterated models selected by the
AIC deliver the best average forecasting performance among the univariate
models. In the larger sample (w = 240), however, the best forecasting per-
formance for horizons of 3 and 6 months is produced by the direct forecast
approach that uses the AIC modified by using a Newey-West covariance
matrix. Once again the univariate iterated approach based on the AIC
dominates on average when h = 12 and 24. For the direct univariate fore-
cast models there is only very limited evidence that the SURE estimation
approach helps reducing average MSFE-values.

The average MSFE-values reported in Table 3 may be dominated by the
most volatile variables and could provide an incomplete picture of relative
forecasting performance. To deal with this, Table 4 shows the proportion
of the 170 variables for which the iterated univariate AR forecasts based
on models selected by the AIC generate a larger MSFE than the various
alternatives. We use the iterated univariate forecasts selected by the AIC as
our benchmark given the earlier evidence that this approach generally selects
good univariate models, a finding corroborated by the results reported by
MSW.

Among the univariate forecasts, in the small sample (w = 120), only the
iterated forecasts based on models selected by the BIC produce a majority
of cases that outperform the iterated AIC, and only then for h = 3 or h = 6
months. In the longer sample (w = 240) the direct forecasts based on the
AIC, whether modified or not, also produce lower average MSFE-values for
the majority of variables at horizons of 3 and 6 months.

Table 5 shows the proportion of cases (averaged across the 170 variables)
where each of the respective methods produces the lowest MSFE value.
Among the univariate approaches only the iterated AIC and the iterated
BIC produce a sizeable proportion of variables with the lowest MSFE-value,
particularly for the short estimation window (w = 120) and at the longest
horizons.

From a theoretical perspective it is unclear whether the iterated approach
leads to greater (squared) biases than the direct approach. To shed empirical
light on this issue, Table 6 reports the squared forecast bias as a ratio of
the MSFE of the benchmark iterated univariate forecast models selected
by the AIC. For all methods the squared bias grows as a proportion of
the MSFE of the benchmark model when the forecast horizon is extended.
Interestingly, at short horizons (h ≤ 6) the squared bias component of the
iterated forecasts based on models selected by the AIC is slightly larger
than that of the direct approaches, while conversely the relative bias of the

6Univariate models selected by the AIC generally include 3-4 variables in the small
sample and 4-5 variables in the larger sample. For the univariate models selected by the
BIC, this number declines to only 1-2 variables in the small sample and two variables on
average in the larger sample.
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iterated AIC models is smaller at the two longest horizons (h = 12, 24).
The iterated forecast models selected by the BIC generate a comparatively
large bias that exceeds that generated by the direct forecast models selected
by the BIC, suggesting that the parsimony of these models comes at the
expense of a larger bias.

5.3.2 Multivariate Models

Turning to the factor-augmented VAR models, Table 3 shows that the it-
erated forecasts continue to do better on average than the direct FAVAR
forecasts when a short estimation window (w = 120) is used. These res-
ults are frequently overturned, however, when the long estimation window
(w = 240) is used. In the latter case, the direct forecasting method is bet-
ter for forecast horizons of h = 3, 6 and 12 months irrespective of which
information criterion is used, and also for h = 24 months under the diagonal
modified AIC method or the SURE estimation approach.7

For the factor-augmented models, Table 3 shows that the band-diagonal
modification to the AIC helps improve on average the performance of the
direct forecasts across all horizons and for both estimation windows (w = 120
or w = 240). The Newey-West modification is less consistent in improving
on the conventional AIC method. Moreover, in contrast with the univariate
models, the SURE approach generally improves the direct FAVAR forecasts,
particularly in the larger sample (w = 240).

Comparing the average forecasting performance across both univariate
and multivariate models, at the shortest horizon (h = 3) the SURE method
based on the BIC produces the lowest average MSFE-values when w = 120.
Similarly, when w = 240, the direct forecast models estimated by SURE
produce the best performance for h = 3 and h = 6 months. In all other
cases, the univariate iterated forecast models selected by the AIC produce
the lowest average MSFE values. These results are somewhat dominated
by extreme cases, however. Table 4 shows that, for a majority of the 170
variables the iterated FAVAR forecasts based on models selected by AIC
or BIC produce lower MSFE values than the univariate iterated forecasting
models selected by AIC.

Table 5 shows additional evidence that the iterated FAVAR models per-
form well. The multivariate iterated forecasting models selected by the AIC
or BIC produce the lowest MSFE-values around 40% of the 170 variables.
This is a greater share than is recorded by other methods, although the
SURE approach also performs well at the shortest horizon (h = 3).

Table 6 shows that the squared bias associated with the FAVAR models

7As expected, the multivariate models include more predictor variables than their uni-
variate counterparts. Under the AIC, on average 5-7 regressors get included in the small
sample, rising to 6-8 variables in the larger sample. Once again, the BIC leads to somewhat
smaller models with 3-4 predictor variables.
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tends to be relatively greater than the bias found for the univariate mod-
els. Moreover, for the multivariate models the iterated approach tends to
produce relatively larger biases than the direct forecast approach.

In conclusion, for the majority of variables the iterated FAVAR models
generate smaller forecast errors than the best univariate approach. There
is less evidence in favor of the direct forecasting models: only for w =
240 and h = 3 or 6 months do we find that the direct approach leads to
comparable forecasting performance. Overall, these findings demonstrate
the value from utilizing multivariate information and also provide evidence
that our proposed refinements to the information criteria work in many
cases.

5.4 Model Comparisons

Table 7 provides test results based on a formal comparison of the bench-
mark univariate iterated model selected by the AIC with the alternative
approaches listed in each row. Tests are based on the methodology advoc-
ated by Giacomini and White (2006) which is ideally suited for our purpose
since we are conducting pair-wise model comparisons and use rolling window
estimators. The table lists the percentage of model comparisons (out of 170)
for which the null of equal predictive accuracy is rejected in a two-sided test
at a 5% significance level against the alternative that the univariate iter-
ated models selected by the AIC are best or, conversely, that the alternative
model is best (listed in brackets).

The percentage of cases where the iterated univariate AIC method dom-
inates other univariate forecast methods generally grows with the forecast
horizon and is around 5-15% when h = 3 or h = 6 months and 10-20%
for h = 12 or h = 24 months. We find far fewer cases where the iterated
univariate forecasts selected by the AIC are rejected in favor of alternative
univariate methods.

These test results provide statistical evidence that the univariate iter-
ated AIC approach frequently performs significantly better than the other
univariate methods and there is little evidence on which to prefer alternative
univariate methods.

Turning to the factor-augmented models, the evidence is generally less
clear-cut, with the proportion of significant cases where the iterated uni-
variate AIC forecasts are preferred over other approaches such as the direct
AIC forecasts, generally being more balanced, at least at the short horizon.
In most cases, however, the iterated univariate AIC forecasts continue to
reject alternative approaches more often than it gets rejected itself. Excep-
tions to this are the iterated FAVAR models based on either the AIC or BIC
which reject about as often as they themselves get rejected by the univariate
iterated models based on the AIC.

23



5.5 Results by Variable Categories

The empirical results turn out to be quite similar for four of the five cat-
egories of economic variables, namely (A) income, output, sales and capacity
utilization, (B) employment and unemployment, (C) Construction, invent-
ories and orders, and (D) interest rates and asset prices. In contrast, quite
different results are obtained for the fifth category, namely (E) Nominal
prices, wages and money. For this reason, Tables 8 and 9 present separ-
ate results averaged across variables in categories A-D versus category-E
variables.

Table 8 shows that the benefit from using the multivariate factor-based
approach comes out very strongly for the first four categories. For these
variables, across almost all sample sizes and forecast horizons, the models
selected by the multivariate iterated AIC or BIC produce lower MSFE-values
than the univariate iterated AIC approach. Among the direct FAVAR fore-
casts the modified AIC and SURE methods perform quite well, particularly
in the large sample (w = 240.)

Across the first four categories of variables, the multivariate iterated
approach based on the BIC performs best for the shortest estimation window
(w = 120) when h = 3, 6 or 12 months. When w = 240 the iterated FAVAR
approach based on the AIC generates the best results on average, except for
when h = 3 where the SURE approach is best. Table 9 shows that forecasts
based on these methods are only modestly biased.

In contrast, for the final group of variables, (E) nominal prices, wages and
money, the FAVAR approach strongly underperforms against the univariate
iterated AIC models. Iterated FAVAR models are particularly poor and are
outperformed by their direct counterparts. This suggests that the iterated
FAVAR models are heavily biased, a conjecture that is confirmed in Table 9
which reveals massive biases for the iterated FAVAR models at long horizons
in particular. The biases associated with the direct forecast models are much
smaller.

6 Conclusion

We compared the performance of iterated and direct forecasts generated
by univariate and multivariate (factor-augmented VAR) models. Our sim-
ulations and empirical results show an interesting interaction between the
length of the estimation window, how strongly a particular model selection
method penalizes the inclusion of additional variables, the forecast horizon,
the method used to estimate model parameters and the relative performance
of the direct versus iterated approaches.

Like Marcellino, Stock and Watson (2006), our results suggest that there
is no single dominant approach and that the best forecasting method varies
considerably across economic variables. The iterated factor-augmented VAR
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approach performs considerably better than the best univariate forecasting
approach for variables tracking income, output, employment, construction,
interest rates and asset prices. Conversely, the univariate iterative models
dominate among variables tracking nominal prices, wages and money for
which the factor-augmented iterated models produce heavily biased fore-
casts.

In general, our empirical and simulation results suggest that the degree
of model misspecification has to be quite large for the direct forecasts to start
dominating the iterated forecasts and that the forecasts generated by autore-
gressive models of low order−whether factor-augmented or not−are difficult
to beat for most economic variables. This is a result of the (squared) bias
component generally playing a relatively minor role relative to the import-
ant effect of parameter estimation error in the composition of MSFE-values.
Consistent with this, the iterated forecasting approach performs particularly
well relative to the direct approach when the sample size is small, when using
an information criterion such as the AIC that does not penalize additional
parameters too heavily and when the forecast horizon gets large.
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Table 3: Average of 170 variables forecasting performance measured by the
MSFE relative to the corresponding value generated by the univariate iterated
forecast models selected by the AIC
Forecast horizon 3 6 12 24 3 6 12 24

AR, w = 120 AR, w = 240
iterated AIC 1.000 1.000 1.000 1.000 0.962 0.945 0.952 0.994
direct AIC 1.015 1.018 1.084 1.208 0.964 0.945 0.987 1.087
mod. AIC(diag) 1.013 1.017 1.106 1.202 0.964 0.944 0.982 1.097
mod. AIC(NW) 1.003 1.015 1.086 1.227 0.957 0.939 0.986 1.090
AIC(SURE) 1.017 1.028 1.081 1.190 0.985 0.997 1.058 1.106
iterated BIC 1.009 1.037 1.053 1.049 1.007 1.042 1.085 1.148
direct BIC 1.009 1.017 1.077 1.157 0.970 0.953 0.989 1.081
BIC(SURE) 1.007 1.026 1.087 1.150 0.993 1.024 1.069 1.093

Factors, w = 120 Factors, w = 240
iterated AIC 0.977 1.032 1.075 1.069 0.974 1.028 1.058 1.117
direct AIC 0.985 1.045 1.129 1.252 0.949 0.995 1.049 1.134
mod. AIC(diag) 0.984 1.038 1.108 1.204 0.947 0.993 1.035 1.103
mod. AIC(NW) 0.981 1.046 1.133 1.259 0.948 0.992 1.046 1.141
AIC(SURE) 0.978 1.048 1.133 1.227 0.940 0.983 1.038 1.109
iterated BIC 0.974 1.015 1.046 1.086 0.983 1.041 1.083 1.156
direct BIC 0.981 1.018 1.106 1.223 0.960 0.998 1.043 1.117
BIC(SURE) 0.965 1.020 1.105 1.216 0.941 0.980 1.029 1.098
The table reports the MSFE of the different forecasts relative to the MSFE of the iterated
AR forecast based on the models selected by AIC with w = 120, where w is the length of the
estimation window. ‘AR’ results are based on univariate autoregressive models and ‘Factors’
results are based on multivariate factor-augmented VAR models. The MSFEs are calculated
only for those periods where forecasts from all methods are available. The forecasts labeled
‘mod. AIC(diag)’ and ‘mod. AIC(NW)’ are based on the modified AIC with band diagonal
or Newey-West covariance matrices. Forecasts ‘AIC(SURE)’ and ‘BIC(SURE)’ are based on
models that allow for autocorrelation in the likelihood function and use OLS estimates once
the model has been selected. Averages are computed across all 170 series in the Marcellino,
Stock and Watson (2006) data set.

Table 4: Proportion of 170 variables for which different forecast methods gen-
erate a lower MSFE than the corresponding values generated by the univariate
iterated forecast models selected by the AIC
Forecast horizon 3 6 12 24 3 6 12 24

AR, w = 120 AR, w = 240
direct AIC 0.441 0.429 0.218 0.176 0.518 0.506 0.359 0.235
mod. AIC(diag) 0.435 0.394 0.235 0.153 0.547 0.506 0.365 0.212
mod. AIC(NW) 0.500 0.418 0.229 0.165 0.547 0.506 0.365 0.235
AIC(SURE) 0.447 0.353 0.194 0.159 0.318 0.412 0.265 0.212
iterated BIC 0.541 0.535 0.482 0.471 0.512 0.424 0.388 0.424
direct BIC 0.412 0.418 0.200 0.165 0.447 0.429 0.324 0.241
BIC(SURE) 0.476 0.365 0.194 0.171 0.406 0.412 0.271 0.235

Factors, w = 120 Factors, w = 240
iterated AIC 0.641 0.541 0.500 0.488 0.659 0.576 0.565 0.600
direct AIC 0.565 0.441 0.341 0.212 0.665 0.518 0.435 0.429
mod. AIC(diag) 0.565 0.465 0.371 0.271 0.647 0.535 0.441 0.459
mod. AIC(NW) 0.600 0.418 0.300 0.212 0.647 0.547 0.435 0.441
AIC(SURE) 0.582 0.412 0.306 0.194 0.671 0.547 0.418 0.447
iterated BIC 0.724 0.618 0.565 0.500 0.635 0.553 0.588 0.594
direct BIC 0.612 0.500 0.335 0.212 0.647 0.529 0.424 0.429
BIC(SURE) 0.641 0.476 0.341 0.218 0.676 0.571 0.441 0.447
The table reports the proportion of series for which the iterated AR forecasts based on the
models selected by AIC have larger MSFEs than forecasts based on the respective information
criteria. Hence, values above 0.5 suggest that the respective method dominates univariate AIC
forecasts for a majority of variables. For the model selection methods see the footnote to
Table 3. Proportions are computed as averages across all 170 series in the Marcellino, Stock
and Watson (2006) data set.
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Table 5: Proportion of 170 variables for which the forecast methods produce
the lowest MSFE-values
Forecast horizon 3 6 12 24 3 6 12 24

AR, w = 120 AR, w = 240
iterated AIC 0.041 0.094 0.124 0.206 0.071 0.094 0.129 0.165
direct AIC 0.018 0.029 0.029 0.006 0.035 0.035 0.035 0.024
mod. AIC(diag) 0.041 0.029 0.006 0.018 0.041 0.041 0.035 0.000
mod. AIC(NW) 0.071 0.065 0.035 0.041 0.041 0.076 0.035 0.018
AIC(SURE) 0.041 0.018 0.006 0.006 0.029 0.029 0.000 0.024
iterated BIC 0.065 0.106 0.135 0.106 0.053 0.035 0.059 0.024
direct BIC 0.024 0.024 0.047 0.012 0.006 0.024 0.006 0.018
BIC(SURE) 0.029 0.029 0.012 0.029 0.035 0.065 0.006 0.000

Factors, w = 120 Factors, w = 240
iterated AIC 0.247 0.171 0.188 0.247 0.106 0.129 0.176 0.247
direct AIC 0.012 0.018 0.041 0.018 0.024 0.024 0.047 0.076
mod. AIC(diag) 0.018 0.035 0.053 0.059 0.024 0.035 0.053 0.094
mod. AIC(NW) 0.029 0.041 0.024 0.012 0.053 0.029 0.041 0.029
AIC(SURE) 0.059 0.047 0.006 0.012 0.118 0.065 0.053 0.047
iterated BIC 0.182 0.188 0.229 0.171 0.165 0.218 0.253 0.141
direct BIC 0.047 0.047 0.041 0.053 0.053 0.035 0.029 0.059
BIC(SURE) 0.076 0.059 0.024 0.006 0.147 0.065 0.041 0.035
For each horizon and window length, the table reports the proportion of variables for which the
respective forecast methods generate the lowest MSFE-value. For the model selection methods
see the footnote to Table 3. Proportions are computed across all 170 series in the Marcellino,
Stock and Watson (2006) data set.

Table 6: Average ratio of squared bias measured relative to the MSFE of the
iterated univariate forecast models selected by the AIC over 170 variables
Forecast horizon 3 6 12 24 3 6 12 24

AR, w = 120 AR, w = 240
iterated AIC 0.014 0.028 0.049 0.090 0.019 0.040 0.074 0.154
direct AIC 0.012 0.023 0.048 0.114 0.018 0.037 0.079 0.194
mod. AIC(diag) 0.012 0.023 0.052 0.120 0.018 0.037 0.079 0.195
mod. AIC(NW) 0.012 0.023 0.049 0.114 0.019 0.038 0.078 0.195
AIC(SURE) 0.013 0.024 0.048 0.116 0.025 0.040 0.081 0.202
iterated BIC 0.025 0.050 0.081 0.129 0.041 0.092 0.166 0.294
direct BIC 0.016 0.029 0.056 0.117 0.022 0.042 0.085 0.198
BIC(SURE) 0.018 0.031 0.059 0.122 0.032 0.050 0.094 0.213

Factors, w = 120 Factors, w = 240
iterated AIC 0.036 0.068 0.106 0.163 0.056 0.117 0.206 0.365
direct AIC 0.027 0.043 0.070 0.152 0.038 0.061 0.104 0.226
mod. AIC(diag) 0.026 0.041 0.073 0.164 0.038 0.065 0.106 0.215
mod. AIC(NW) 0.026 0.043 0.070 0.152 0.037 0.061 0.104 0.230
AIC(SURE) 0.025 0.041 0.069 0.151 0.035 0.055 0.097 0.206
iterated BIC 0.033 0.063 0.098 0.152 0.058 0.124 0.217 0.374
direct BIC 0.028 0.042 0.073 0.157 0.041 0.067 0.109 0.227
BIC(SURE) 0.025 0.041 0.073 0.157 0.037 0.061 0.101 0.205
The table reports the squared bias of the different forecasts as a ratio of the corresponding
MSFE of the iterated AR forecast based on the models selected by AIC with w = 120, where
w is the length of the estimation window. For the model selection methods see the footnote
to Table 3. Averages are computed across all 170 series in the Marcellino, Stock and Watson
(2006) data set.
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Table 8: Average forecasting performance measured by the MSFE relative to
the corresponding value generated by the univariate iterated forecasting models
selected by the AIC in sub-categories of the Marcellino, Stock and Watson (2006)
data set
Forecast horizon 3 6 12 24 3 6 12 24

Categories (A)-(D) (averages over 135 series)
AR, w = 120 AR, w = 240

iterated AIC 1.000 1.000 1.000 1.000 0.964 0.945 0.944 0.966
direct AIC 1.024 1.027 1.096 1.185 0.969 0.949 0.983 1.042
mod. AIC(diag) 1.021 1.026 1.122 1.163 0.969 0.949 0.978 1.051
mod. AIC(NW) 1.008 1.023 1.099 1.201 0.960 0.941 0.981 1.046
AIC(SURE) 1.023 1.036 1.088 1.161 0.974 0.969 0.992 1.048
iterated BIC 0.984 0.993 0.997 0.995 0.960 0.953 0.953 0.968
direct BIC 0.999 1.011 1.074 1.124 0.963 0.949 0.972 1.012
BIC(SURE) 0.996 1.015 1.076 1.113 0.962 0.966 0.980 1.009

Factors, w = 120 Factors, w = 240
iterated AIC 0.928 0.954 0.978 0.982 0.886 0.888 0.872 0.877
direct AIC 0.945 0.983 1.069 1.231 0.881 0.909 0.977 1.094
mod. AIC(diag) 0.946 0.985 1.065 1.165 0.878 0.903 0.959 1.043
mod. AIC(NW) 0.942 0.989 1.074 1.241 0.877 0.903 0.971 1.099
AIC(SURE) 0.939 0.989 1.081 1.201 0.872 0.898 0.965 1.066
iterated BIC 0.927 0.937 0.942 1.001 0.890 0.888 0.875 0.895
direct BIC 0.943 0.961 1.051 1.189 0.887 0.905 0.961 1.061
BIC(SURE) 0.931 0.967 1.061 1.183 0.872 0.890 0.949 1.045

Category (E) (averages over 35 series)
AR, w = 120 AR, w = 240

iterated AIC 1.000 1.000 1.000 1.000 0.954 0.946 0.986 1.101
direct AIC 0.983 0.984 1.038 1.296 0.943 0.927 1.004 1.258
mod. AIC(diag) 0.982 0.984 1.048 1.352 0.942 0.926 0.999 1.275
mod. AIC(NW) 0.983 0.984 1.036 1.326 0.946 0.933 1.002 1.259
AIC(SURE) 0.997 0.997 1.057 1.299 1.029 1.108 1.312 1.330
iterated BIC 1.106 1.205 1.270 1.260 1.191 1.384 1.595 1.842
direct BIC 1.046 1.038 1.088 1.284 0.997 0.971 1.053 1.346
BIC(SURE) 1.047 1.067 1.129 1.295 1.111 1.246 1.410 1.420

Factors, w = 120 Factors, w = 240
iterated AIC 1.168 1.332 1.449 1.401 1.315 1.566 1.773 2.041
direct AIC 1.139 1.281 1.360 1.332 1.210 1.328 1.323 1.291
mod. AIC(diag) 1.132 1.245 1.273 1.356 1.212 1.337 1.328 1.335
mod. AIC(NW) 1.131 1.264 1.361 1.330 1.222 1.334 1.334 1.301
AIC(SURE) 1.129 1.274 1.333 1.327 1.203 1.309 1.320 1.275
iterated BIC 1.155 1.316 1.443 1.413 1.341 1.631 1.884 2.162
direct BIC 1.129 1.237 1.320 1.353 1.239 1.358 1.357 1.333
BIC(SURE) 1.098 1.228 1.276 1.346 1.205 1.328 1.334 1.299
The table reports the MSFE of the different forecasts as a ratio of the MSFE of the iterated
AR forecast based on the model selected by AIC with w = 120, where w is the length of the
estimation window. ‘AR’ results are based on univariate autoregressive models and ‘Factors’
results are based on multivariate factor-augmented VAR models. The MSFEs are calculated
only for those periods where forecasts from all methods are available. For details see the footnote
to Table 3.
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Table 9: Average ratio of squared bias measured relative to the MSFE of the
iterated univariate forecasts selected by the AIC in sub-categories of the Mar-
cellino, Stock and Watson (2006) data set
Forecast horizon 3 6 12 24 3 6 12 24

Categories (A)-(D) (averages over 135 series)
AR, w = 120 AR, w = 240

iterated AIC 0.008 0.017 0.027 0.054 0.013 0.027 0.047 0.097
direct AIC 0.008 0.015 0.032 0.068 0.013 0.026 0.053 0.129
mod. AIC(diag) 0.008 0.016 0.037 0.067 0.013 0.026 0.053 0.128
mod. AIC(NW) 0.009 0.016 0.033 0.068 0.013 0.026 0.053 0.129
AIC(SURE) 0.008 0.016 0.031 0.066 0.015 0.029 0.054 0.125
iterated BIC 0.009 0.019 0.028 0.053 0.015 0.031 0.051 0.099
direct BIC 0.008 0.016 0.033 0.064 0.014 0.027 0.054 0.117
BIC(SURE) 0.009 0.017 0.034 0.065 0.016 0.030 0.053 0.119

Factors, w = 120 Factors, w = 240
iterated AIC 0.019 0.032 0.044 0.078 0.031 0.056 0.082 0.137
direct AIC 0.014 0.020 0.040 0.108 0.024 0.042 0.088 0.221
mod. AIC(diag) 0.015 0.022 0.048 0.119 0.024 0.044 0.087 0.194
mod. AIC(NW) 0.014 0.021 0.041 0.110 0.023 0.041 0.087 0.223
AIC(SURE) 0.013 0.019 0.040 0.109 0.022 0.037 0.080 0.196
iterated BIC 0.016 0.026 0.035 0.065 0.027 0.046 0.068 0.121
direct BIC 0.016 0.021 0.041 0.108 0.025 0.044 0.088 0.210
BIC(SURE) 0.014 0.020 0.043 0.109 0.024 0.040 0.080 0.186

Category (E) (averages over 35 series)
AR, w = 120 AR, w = 240

iterated AIC 0.035 0.074 0.134 0.228 0.041 0.088 0.180 0.372
direct AIC 0.026 0.054 0.108 0.292 0.039 0.081 0.178 0.445
mod. AIC(diag) 0.026 0.053 0.111 0.322 0.039 0.081 0.177 0.456
mod. AIC(NW) 0.025 0.052 0.108 0.293 0.040 0.083 0.179 0.447
AIC(SURE) 0.028 0.054 0.114 0.306 0.062 0.081 0.185 0.499
iterated BIC 0.083 0.171 0.286 0.421 0.138 0.323 0.609 1.042
direct BIC 0.048 0.077 0.146 0.323 0.051 0.096 0.207 0.508
BIC(SURE) 0.052 0.085 0.159 0.338 0.093 0.128 0.250 0.576

Factors, w = 120 Factors, w = 240
iterated AIC 0.100 0.206 0.344 0.490 0.151 0.353 0.683 1.241
direct AIC 0.076 0.130 0.186 0.321 0.090 0.133 0.167 0.247
mod. AIC(diag) 0.068 0.118 0.171 0.338 0.091 0.145 0.182 0.296
mod. AIC(NW) 0.072 0.127 0.181 0.315 0.092 0.135 0.170 0.253
AIC(SURE) 0.072 0.126 0.181 0.312 0.083 0.127 0.164 0.244
iterated BIC 0.099 0.205 0.340 0.485 0.178 0.425 0.791 1.350
direct BIC 0.076 0.124 0.194 0.345 0.105 0.155 0.188 0.293
BIC(SURE) 0.069 0.123 0.186 0.341 0.091 0.142 0.182 0.279
The table reports the squared bias of the different forecasts as a ratio of the MSFE of the
iterated AR forecast based on the model selected by AIC with w = 120, where w is the length
of the estimation window. For the model selection methods see the footnote to Table 3.
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