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Abstract

This paper characterizes equilibrium asset prices under adaptive, rational and Bayesian learning

schemes in a model where dividends evolve on a binomial lattice. The properties of equilibrium stock

and bond prices under learning are shown to differ significantly. Learning causes the discount factor

and risk-neutral probability measure to become path-dependent and introduces serial correlation and

volatility clustering in stock returns. We also derive conditions under which the expected value and

volatility of stock prices will be higher under learning than under full information. Finally, we investigate

restrictions on prior beliefs under which Bayesian and rational learning lead to identical prices and show

how the results can be generalized to more complex settings where dividends follow either multi-state

i.i.d. distributions or multi-state Markov chains.
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1. Introduction

Recent studies have recognized the importance of explicitly incorporating learning effects in equilibrium

asset pricing models.1 Learning introduces a link between state variables and agents’ beliefs which the

standard assumption of full information rational expectations ignores. This link creates rich dynamics

in the mapping from state variables to agents’ decisions and thus affects market outcomes such as prices

and returns. However, although many alternative learning schemes have appeared in the literature (e.g.,

adaptive boundedly rational, Bayesian or rational), little is known about their properties when applied to

equilibrium asset pricing problems. In fact, the majority of the literature on asset pricing under learning

has been developed in a partial equilibrium setting while general equilibrium effects have not received

nearly as much attention.2

In this paper we show that equilibrium stock and bond prices strongly depend on the nature of the

underlying learning process. Our analysis proceeds in the context of one of the cornerstones of modern

finance, namely the binomial lattice model proposed by Cox, Ross and Rubinstein (1979). This model is

the discrete time equivalent of the geometric Brownian motion process underlying the Black-Scholes model

and has thus been used extensively in finance (see, e.g., Stapleton and Subrahmanyam (1984)). While in

the classical finance literature asset prices are assumed to follow a binomial lattice, we assume instead that

dividends follow a binomial lattice with unknown probability of an up move, π. In equilibrium, asset prices

are determined endogenously as a function of the evolution in agents’ beliefs and in dividends.

Existing studies can usefully be separated according to whether they use boundedly rational (adaptive)

or fully rational learning schemes and whether agents use Bayesian or non-Bayesian approaches. Along these

lines we compare three learning models, namely Bayesian, rational and adaptive schemes. Bayesian agents

view π as a random variable and start with a set of prior beliefs on the probability distribution of π that are

updated through Bayes’ rule as new dividend information arrives. Under the two other learning schemes,

π is viewed as non-random. The adaptive learning model ignores changes in future parameter estimates,

π̂t+k, viewed from the present (time t), conditioning instead on the current estimate, π̂t.
3 In contrast, the

forward-looking, ‘rational’ learning scheme accounts for future updates in π̂t, acknowledging that although

π is constant, the estimator, π̂t+k, is a random variable that is correlated with future dividends. Under

rational learning, asset prices reflect not only the most recent estimate of the parameters, but also all

possible future values that the estimator may take. Current equilibrium prices thus reflect all possible

1Brennan and Xia (2001), Bullard and Duffy (2001), Timmermann (1993, 1996, 2001), and Veronesi (1999) are among the

contributions on the topic.
2For instance, Lakner (1995) investigates consumption and portfolio choice in a finite horizon model in which agents have

power utility. While asset prices are observable, their drift and the price shocks are not. As a special case, Lakner studies

the case where agents learn by recursive application of Bayes’ rule and derives the optimal portfolio policy using martingale

methods.
3Most of the early literature on asset pricing implication of learning adopted the adaptive, least-squares learning approach,

see e.g. Timmermann (1993), Barsky and De Long (1993), and Barucci (2000). Sargent (1993) contains a number of ap-

plications of boundedly rational learning schemes to finance. Evans and Honkapohja (1995), Kuan and White (1994), and

Marcet and Sargent (1989) proved convergence for parametric least-squares estimators while Chen and White (1998) considered

nonparametric estimators that approximate unknown equilibrium relationships with flexible functions.
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future probability distributions of the parameter estimates.4

Unfortunately, the need to consider all possible sequences of (path-dependent) predictive distributions

normally makes rational learning models difficult to handle. At best, multi-step predictive densities can be

approximated numerically. The binomial setup provides an ideal vehicle for addressing these concerns. It

generates closed-form expressions for the predictive distribution of future payoffs that allow us to provide

analytical results on the properties of asset prices under learning. Furthermore, the results are easy to

interpret. Agents update their parameter estimates each period noting which state occurred, and intuition

in terms of ‘good’ news (the up-state) and ‘bad’ news (the down-state) applies.

We find that the properties of equilibrium prices on learning paths differ strikingly from the full informa-

tion rational expectations case. For instance, under learning, perceived dividends follow a non-stationary

distribution and the mapping from realized dividends to equilibrium stock prices also becomes time-varying,

even though the true (but unknown) dividend process follows a stationary, homogenous Markov chain. This

means that the risk-neutral probability distribution becomes path dependent. We also show that agents’

probability beliefs under rational learning form a mean-preserving spread relative to the adaptive learning

scheme that ignores the effect of future updating in beliefs. More specifically, the limiting distribution of

asset payoffs under rational learning is no longer log-normal but follows a beta-binomial distribution whose

parameters reflect agents’ current beliefs.

We establish precise links between equilibrium asset prices under the three learning schemes. We show

that asset prices under the rational and Bayesian learning schemes are identical provided the Bayesian

agents have beta priors. Under different priors, the Bayesian learning equilibrium may not be fully rational,

so rationality effectively imposes constraints on the structure of the priors which must reflect the underlying

model as they do in the beta-binomial case. Likewise, asset prices under adaptive learning arise as a special

case of Bayesian learning when agents have degenerate priors that put full weight on the current probability

estimate.

Some papers have considered the equilibrium effects of recursive filtering of hidden state variables.

Brennan and Xia (2001) and Veronesi (1999, 2004) develop continuous time models where the dividend

drift is unobservable and a filtered estimate is used by a representative agent. In Brennan and Xia’s model

there are two lognormally distributed state variables, dividends and non-capital income. Veronesi’s papers

focus on the dividends process but assume that the drift may switch between two values. Timmermann

(1993, 1996) studies the equilibrium effect of adaptive least squares learning on asset prices when agents are

risk neutral. Lewellen and Shanken (2002) propose a simple overlapping generations model for a risk-averse,

Bayesian agent who is learning about the unknown mean of dividends. These papers show that parameter

uncertainty can lead to predictability and excess volatility in equity returns. However, this literature has

not considered the same array of learning schemes that we entertain here so uncertainty remains as to the

characterization and ranking of the effects produced by different assumptions on how investors learn.

A related literature investigates the properties of Bayesian learning schemes under experimentation.

4Uncertainty about the future mappings from state variables to decisions is thus explicitly incorporated in agents’ expected

utility maximization problem. Boundedly rational learning rules do not incorporate the effects of future learning on current

asset prices and give agents incentives to engage in trading to exploit future learning effects (Townsend (1978, pp. 485-486)).
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In the context of Bayesian learning, Wieland (2000a, 2000b) finds important differences between myopic

(adaptive) learning schemes−which minimize (maximize) a Bayesian loss (reward) function conditional on
the most recent estimate of the posterior density of some unknown parameters−and fully optimal (rational)
schemes where expectations are taken with respect to future beliefs that change over time. Consistent with

these papers, we find that rational learning schemes lead to very different equilibrium outcomes (asset

prices) relative to myopic-adaptive schemes. Moreover, we also find that Bayesian learning in itself is

neither necessary nor sufficient for full rationality of decisions on a learning path.5

Brandt, Zeng, and Zhang (2004) perform an exercise related to ours that − using numerical methods
applied to a version of the Lucas (1978) asset pricing model − compares the properties of equity risk premia
under Bayesian learning and under various suboptimal learning rules (e.g. over- and under-confidence, c.f.

Abel (2002)). While Bayesian learning does affect risk premia, the suboptimal rules are associated with

stronger effects. While the objective of comparing the effects of alternative learning rules on equilibrium

stock prices is common to this and our paper, there are clearly many important differences. First, by

focusing on the binomial lattice we can derive many analytical results that do not require simulations or

approximations. Second, we study learning in the form of parameter estimation uncertainty while Brandt

et al. (2004) investigate a filtering problem for a Markov switching model. Finally, while Brandt et al.

(2004) compare Bayesian learning to rules from the behavioral finance literature, we limit ourselves to

learning schemes that are not commonly construed as the outcome of behavioral biases.

Cogley and Sargent (2005) have recently discussed the distinction between boundedly rational, adap-

tive learning schemes and rational ones, in which future parameter updating is taken into account when

estimating the predictive distribution of future outcomes. They also employ binomial and multinomial

lattice examples to show that in a simple asset pricing problem (with endogenous Arrow-Debreu securi-

ties only) the price of risk is increased by learning. However, their focus is mostly on documenting that

adaptive schemes may provide an accurate numerical approximation to the values of endogenous quantities

calculated under fully rational schemes (asset prices and consumption), while in our paper we aim at a

characterization of the conditions under which different learning schemes are equivalent.

The outline of the paper is as follows. The binomial lattice model is introduced in Section 2. Section

3 derives equilibrium asset prices under full information rational expectations. Section 4 introduces the

three learning schemes. Section 5 characterizes equilibrium asset prices on the learning paths and provides

conditions for the existence of an equilibrium. Section 6 provides insights into the effect of rational learning

on the distribution of asset payoffs and uses simulations to quantify the effects of alternative learning

schemes on equilibrium asset returns. Section 7 shows that many of our results and insights can be

generalized to more general stochastic processes, although the basic intuition is better conveyed by the

binomial lattice case. Section 8 concludes and an appendix contains proofs of the main results.

5Wieland also makes it clear that while adaptive policies can easily be characterized in closed-form, rational ones normally re-

quire numerical methods. In this paper, we manage to characterize closed form solutions for asset prices by assuming−consistent
with a number of papers in finance−that dividends follow a binomial lattice.
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2. The Binomial Lattice Model

Consider an economy with two assets: a single-period, risk-free, zero-coupon bond in zero net supply

trading at time t at a price of Bt and earning interest of ft = − lnBt. After one period, the bond pays out

a single unit of the consumption good. There is also a stock in unit supply trading at a price, St. The stock

pays out an infinite stream of dividends {Dt+k}∞k=0 measured in units of the consumption good. Dividends
evolve on a binomial lattice with dividend growth rates gt+k ≡ Dt+k

Dt+k−1
− 1 driven by a Bernoulli process:

gt+k =

(
gh with prob. π

gl with prob. 1− π
π ∈ (0, 1) (1)

We assume that gh > gl > −1 so dividends are always positive provided D0 > 0, Dt ∈ R++.6

Limiting our attention to an arbitrarily large, but finite, number of periods T, the information set

consists of a finite sample space ΩT comprising all sequences of 0s and 1s of the form

ωT =
©
I{g1=gh}, I{g2=gh}, ..., I{gT=gh}

ª
.

I{·} is a standard zero-one indicator function. Each ωT ∈ ΩT captures a possible sequence of dividend
growth rates up to time T. The information available to the representative agent at each point in time

includes only knowledge of present and past dividend levels. Hence, the economy’s information structure

FT = {zt; t = 0, 1, ..., T} is a filtration composed of an infinite, nested sequence of σ−algebras, zt+1 ⊇ zt

∀t ≥ 0, with zt representing the first t movements of dividends. For given D0 this ensures that the process

{Dt}Tt=1 is adapted to FT . Finally the probability measure is given by

P (ωT ) = πj(1− π)T−j , (2)

where ωT ∈ ΩT is any state with j high growth and T − j low growth occurrences.

2.1. The investor’s optimization problem

For a given dividend process, we follow Lucas (1978) and let asset prices be determined in equilibrium by

the representative investor’s first order conditions. There is a single representative agent who is a price

taker and has an infinite horizon. The consumption good, paid out in the form of dividends, is perishable.

Ownership of assets is determined by trading in competitive markets for exchange of the consumption

good, stocks and bonds. In equilibrium the representative consumer holds the existing (unit) supply of the

stock and consumes all of the dividends paid out by the stock (c.f. Lucas (1978, p. 1430)).

Consumer preferences over random consumption sequences are represented by the functional

E

" ∞X
k=0

βku(Ct+k)|zt

#
, (3)

where u(·): <+ → < is a continuously differentiable, strictly increasing, and strictly concave Von-Neumann
Morgenstern utility function, and Ct is real consumption at time t. β =

1
1+ρ , 1 > ρ > 0 is the subjective

6<+ is the set of non-negative real numbers; <++ the set of positive real numbers.
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rate of impatience, and E [·|zt] ≡ Et[·] denotes the conditional expectation operator. We assume that the
functional (3) is bounded (although u(·) may be unbounded) but later derive conditions under which this
holds. No assumptions are made on the mapping between the probability distribution used to calculate

E [·|zt] and the information set zt. In particular, this mapping is allowed to change over time as a function

of past state variables.

Following common practice in the literature, much of our analysis assumes that the representative

investor has constant relative risk aversion preferences:

u(Ct) =

(
C1−γt −1
1−γ γ 6= 1, γ ≥ 0

lnCt γ = 1
. (4)

This function is continuously differentiable, strictly increasing, and strictly concave as assumed.

The agent’s holdings of stocks and bonds in period t, ws
t and wb

t , solve the following problem: Given a

pricing function mapping dividends into asset prices, the state of the economy, Dt, and initial asset holdings

ws
t−1 and wb

t−1, the agent selects a sequence of consumption plans and (end-of-period) asset holdings,©
Ct+k, w

s
t+k, w

b
t+k

ª∞
k=0

, to maximize the discounted value of the infinite stream of expected future utilities

(3) subject to the sequence of constraints:

Ct+k + ws
t+kSt+k + wb

t+kBt+k ≤ ws
t+k−1(St+k +Dt+k) + wb

t+k−1

Ct+k ≥ 0 ∀k ≥ 0. (5)

Here {St+k, Bt+k}∞k=0 are asset prices consistent with the assumed pricing function. In equilibrium the

consumer holds exactly one unit of the stock and no zero-coupon bonds. Without loss of generality we

can thus introduce a bound w̄ > 1 on the asset holdings, |ws
t+k| ≤ w̄ and |wb

t+k| ≤ w̄ (∀k ≥ 0); so that (5)
defines a compact set. None of these bounds will be binding in equilibrium. Our goal is to characterize

asset prices in a particular class of equilibria (Prescott and Mehra (1980)):

Definition 1 (Stationary Recursive Competitive Equilibrium). A stationary competitive equilibrium

is defined by:

(i) A stationary pricing function q: <++ → <2+ − q(Dt) ≡ [St(Dt) Bt(Dt)]
0− from the current state of

the economy, Dt, to asset prices.

(ii) A continuous value function V : <++ ×<2 → <, V (Dt, w
s
t−1, w

b
t−1).

(iii) A consumption-portfolio choice policy ŵC: <++ ×<2 → <3+ maximizing

u(Ct) + βE
h
V (Dt+1, w

s
t , w

b
t )|zt

i
subject to the constraints (5). This maps the state variables relevant to the agent into optimizing

consumption and portfolio decisions, ŵC(Dt) ≡ [Ĉt ŵ
s
t ŵ

b
t ]
0. ŵC(Dt) takes the pricing function q(Dt)

as given.

(iv) Ĉt = Dt, ŵ
s
t = 1 and ŵb

t = 0, i.e. markets clear.
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Given any continuous, strictly positive pricing function q: <++ → <2++, Prescott and Mehra (1980) show
the existence of a unique, bounded, measurable, and continuous function V (Dt, w

s
t−1, w

b
t−1) under our

continuity and boundedness assumptions on u(.) provided that the conditional c.d.f. of Dt is continuous,

and the feasible set of consumption and investment choices is compact and continuous in the state variables.

This value function satisfies the Bellman optimality equation

V (Dt, w
s
t−1, w

b
t−1) = max

Ct,wst ,w
b
t

n
u(Ct) + βE

h
V (Dt+1, w

s
t , w

b
t )|zt

io
Ct + ws

tSt + wb
tBt ≤ ws

t−1(St +Dt) + wb
t−1

Ct ≥ 0 ws
t ≤ w̄ wb

t ≤ w̄ (6)

V (.) generally depends on the assumed pricing function q. Moreover, when u(·) is concave and the budget
constraint convex, V (Dt, w

s
t−1, w

b
t−1) may also be shown to be strictly increasing and (weakly) concave.

Using continuity and concavity of the value function, existence of a recursive competitive equilibrium

follows from standard contraction mapping arguments.7

3. Asset Prices under Full Information

To derive the properties of the stationary pricing function q, we use property (iii) of the definition of a

competitive equilibrium. Under full information rational expectations, the investor’s optimization program

implies the first-order conditions

u0(Ĉt)St = βE

∙
∂V (Dt+1, ŵ

s
t , ŵ

b
t )

∂ws
t

|zt

¸
u0(Ĉt)Bt = βE

∙
∂V (Dt+1, ŵ

s
t , ŵ

b
t )

∂wb
t

|zt

¸
.

>From V (Dt, w
s
t−1, w

b
t−1) = u(ws

t−1(St +Dt) +wb
t−1 − ŵs

tSt − ŵb
tBt)+ βE

£
V (Dt+1, ŵ

s
t , ŵ

b
t )|zt

¤
subject to

(6), the envelope condition implies

∂V (Dt, w
s
t−1, w

b
t−1)

∂ws
t−1

¯̄̄̄
¯
ŵC(Dt)

= u0(Ĉt)(St +Dt)

∂V (Dt, w
s
t−1, w

b
t−1)

∂wb
t−1

¯̄̄̄
¯
ŵC(Dt)

= u0(Ĉt). (7)

Substituting (7) into the first order conditions, we obtain stock and bond prices

St = E [Qt+1(St+1 +Dt+1) | zt] , (8)

Bt = E [Qt+1 | zt] . (9)

Qt+1 = βu0(Ĉt+1)/u
0(Ĉt) is the representative agent’s marginal rate of substitution between consumption

in period (t+1) and period t. Every pricing function (8)-(9) reflects the representative agent’s preferences

7It is easy to show that boundedness of the value function follows directly by imposing the condition ρ > πgh + (1− π)gl.
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through Qt+1. Under CRRA preferences Qt+1 reduces to β
u0(Ct+1)
u0(Ct)

= β
³
Ct+1
Ct

´−γ
or, from the equilibrium

condition, Ct+k = Dt+k, Qt+1 = β (1 + gt+1)
−γ . (8)-(9) and Qt+1 = β (1 + gt+1)

−γ thus constitute the

stationary equilibrium pricing function in Definition 1. Lucas (1978, p. 1435) shows that these pricing

functions are unique (from uniqueness of the stationary recursive equilibrium).

In the full information case where the parameters of the dividend process {π, gh, gl} are known to
agents, an explicit solution for asset prices is obtained using the method of undetermined coefficients:

SFI
t = lim

T→∞
Et

"
TX
s=1

Ã
βs

sY
i=1

(Dt+i/Dt+i−1)
1−γ
!#

Dt ≡ ΨFI(π)Dt. (10)

The linear homogenous form of the equilibrium pricing function SFI(zt, π) = Ψ
FI(π)Dt is a direct implica-

tion of expected utility maximization.8 ΨFI denotes the constant pricing kernel. The solution to (10) can

conveniently be stated in terms of the transformed parameters g∗l = (1+gl)
1−γ−1 and g∗h = (1+gh)

1−γ−1:

Proposition 1. Suppose that ρ > πg∗h+(1−π)g∗l and that the transversality condition limT→∞ Et[(
QT

k=1

Qt+k)St+T ] = 0 holds. Then the full information rational expectations (FI) stock price, S
FI
t , is given by

SFI
t (Dt) = Ψ

FIDt =
1 + g∗l + π(g∗h − g∗l )

ρ− g∗l − π(g∗h − g∗l )
Dt. (11)

The full information bond price, BFI
t , is

BFI =
(1 + gl)

−γ + π [(1 + gh)
−γ − (1 + gl)

−γ ]

1 + ρ
> 0. (12)

The proof is given in Appendix A. Since the stock price is homogeneous of degree one in dividends, SFI
t

follows the same binomial lattice {gh, gl, π} as dividends.9

Notice that while Cox et al. (1979) take the process for the underlying price as exogenous, we derive

the underlying stock price in an equilibrium model. This result can also be related to Stapleton and

Subrahmanyam (1984) who value options in a general equilibrium model where markets are incomplete

and the stock price evolves on a lattice. In contrast to Stapleton and Subrahmanyam, our model assumes

that markets are complete, but −as in their paper−the exogenous lattice process applies to dividends.
Obviously, in both cases preferences affect the equilibrium stock price. Moreover, while in Cox et al.

(1979, p. 232) stock prices follow an exogenous binomial lattice process so that the restriction gl < f < gh

is necessary and sufficient to rule out the existence of arbitrage opportunities, no such restrictions are

required here. The condition

ρ > πg∗h + (1− π)g∗l (13)

ensures that ΨFI > 0 and is also necessary and sufficient for convergence of the infinite sum
P∞

s=1Et[(
Qs

i=1

Qt+i) Dt+s] and therefore existence of the equilibrium.

8Mehra and Prescott (1985, p.152) note that linear homogeneity of the pricing function in dividends is a general property

of constant relative risk aversion preferences.
9As in Abel (1988), when γ < 1, prices will increase as a function of the proportion of high growth states (π), while the

opposite result holds for γ > 1. Under logarithmic utility (γ = 1) the asset price is independent of π.

8



4. Learning Models

Suppose now that agents do not know the true value of the parameter π and instead use the available

sample information on current and past dividends zt to estimate π ∈ Π ≡ [0, 1]. Since the seminal papers
by Blume et al. (1982) and Bray and Kreps (1987) boundedly rational and fully rational learning schemes

have been considered in the literature. In boundedly rational or adaptive learning models agents treat their

time t perception π̂t of the unknown π as if it were the true parameter value. π̂t is recursively updated

over time, as new information arrives. Changes in the perceptions π̂t induce non-stationarities in the

equilibrium relationship, but such (ex-post) time-variation is ignored in agents’ decisions.10 In contrast, a

rational learning scheme assumes that agents account for the effect of learning on the equilibrium mapping

between payoff-relevant state variables and prices (c.f. Townsend (1978)). Since recursive updating induces

changes in π̂t+k (k ≥ 0), future estimates of π are treated as random variables. Rational learning requires

consistent updating of beliefs on π and therefore that Bayes rule be recursively applied.

Under Bayesian learning, agents view π as a random variable. A Bayesian learning scheme is neither

necessary nor sufficient for rational learning.11 Our paper shows that an explicit Bayesian set-up is not

necessary to a rational learning model. On the other hand, Bayesian learning per se is not sufficient

to obtain full rationality of the learning process. This is similar to Wieland’s (2000a) notion of myopic

Bayesian decision policies under experimentation. In our binomial lattice set up we derive restrictions on

the priors that ensure that such an equivalence obtains. Although the classical applications of Townsend

(1978) and Frydman (1982) were based on a Bayesian framework, the essence of a rational scheme lies in

agents’ awareness of being on a recursive learning path (see Bray and Kreps (1987, p. 604) for further

discussion). Perhaps surprisingly, it turns out that Bayesian and rational learning give identical equilibrium

prices under a particular choice of the prior in the Bayesian learning scheme.12

4.1. Adaptive Learning

First consider the learning scheme of a ‘frequentist’ agent that views π as non-random but estimates this

parameter recursively through the maximum likelihood rule:

bπt = nt
Nt

. (14)

Here nt denotes the number of high growth states recorded up to time t, while Nt is the total number of

periods. This maximum likelihood estimator, bπt, is a function of the dividend process and is thus itself
a random variable. The key question is whether the agent accounts for parameter estimation uncertainty

and its effect on future asset prices. To show the significance of this point, consider the agent’s forecast of

Dt+T . If the agent does not know π but conditions on the most recent estimate, π̂t, the forecast becomes

10Examples include Bray (1982), Bray and Savin (1986), and Marcet and Sargent (1989).
11Indeed, Blume and Easley (1982) presented “ (...) a boundedly rational version of Bayesian learning.” (p. 341). Their

agents use a Bayesian decision-theoretic set-up but fail to recognize that the true relationship between prices and states of

nature is intrinsically non-stationary.
12Blume and Easley (1982, p. 341) put it this way: “Fully rational learning would require each trader to take into account

the effect of his learning (...) on equilibrium prices.”
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the simple projection:

PAL
n
Dj
t+T = (1 + gh)

j(1 + gl)
T−jDt|zt, π̂t

o
=

µ
T

j

¶
π̂jt (1− π̂t)

T−j j = 0, 1, ..., T.

Obviously, this scheme is fundamentally misspecified since optimal decisions in the future will be based on

different estimates {π̂t+k}Tk=1. Equivalently, this learning scheme relies on an application of the certainty
equivalence principle even though the required conditions (e.g. a quadratic objective function) do not

apply, c.f. Gennotte (1986).

4.2. Rational Learning

We start by adapting the following generic definition from Bray and Kreps (1987, p. 606):

Definition 2 (Rational Learning). In a rational learning model, the sequence of agents’ optimizing

choices and equilibrium market outcomes are derived:

(i) conditional on agents’ use of all available data relevant to make inferences on π ∈ Π;

(ii) from a statistical framework of belief formation (and updating) concerning π ∈ Π that is consistent
with the resulting sequence of equilibrium market outcomes;

(iii) from recursive Bayesian updating of beliefs using a correctly specified likelihood function for the data,

i.e. incorporating the equilibrium mapping from π ∈ Π to market outcomes.

We note that (i) is a simple efficiency requirement that all available information is used to make

optimal decisions. (ii) requires that the sequence of equilibrium market outcomes reflects the recursive

belief updating process. It also requires beliefs to account for the mapping from beliefs to market outcomes.

Rational learning thus represents a fixed point in the space of learning strategies (Townsend (1978)). Indeed

(iii) requires the likelihood function for the data to be consistent with the equilibrium mapping from π ∈ Π
to market outcomes.

In the context of our model rational learning implies that agents recursively update their estimate of π,

π̂t, using Bayes rule although they need not view π as a random variable.13 They account for estimation

uncertainty in future estimates, π̂t+k, and conditions (i) - (iii) in definition 2 apply so agents forecast

DRL
t+T = Ê

n
...Ê

h
Ê (Dt+T |zt+T−1, π̂t+T−1) |zt+T−2, π̂t+T−2

i
...|zt, π̂t

o
. (15)

Ê (·|zt+k, π̂t+k) conditions on future estimates of π, again assuming that agents use Bayes’ rule to update

the parameter estimates. Under rational learning the entire sequence {π̂t, π̂t+1, ..., π̂t+T−1} enters the
forecasting problem and future probability beliefs are recognized to be random (Wieland (2000, p. 507)).

13This is a subtle distinction: a rational learner always perceives π̂t+k (k ≥ 1) as random though π itself is treated as a

random variable only in the Bayesian case.
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4.3. Bayesian Learning

Bayesian agents perceive π as a random variable and have prior distributions, p(π), over the values that

π can assume. These prior beliefs are recursively updated into posterior beliefs by applying Bayes’ rule.

The estimator for π is chosen to minimize the agent’s loss function which we next derive.14 Define the

optimal value of the infinite stream of expected future utilities derived from consumption of real dividends

and investment under the true but unknown π :n
Ĉt+k(π), ŵ

s
t+k(π), ŵ

b
t+k(π)

o∞
k=0
≡ â(π) ≡ argmax

{Ct+k,wst+k,wbt+k}∞k=0
E

" ∞X
k=0

βku(Ĉt+k(π))|zt, π

#
(16)

s.t. Ĉt+k(π) + ŵs
t+k(π)St+k + ŵb

t+k(π)Bt+k = ŵs
t+k−1(π)(St+k +Dt+k) + ŵb

t+k−1(π).

Then the loss incurred under the consumption-investment plan a ≡ {Ct+k, w
s
t+k, w

b
t+k} is

L(π, a) ≡ E

" ∞X
k=0

βku(Ĉt+k(π))|zt, π

#
−E

" ∞X
k=0

βku(Ct+k)|zt, π

#
≥ 0

s.t. Ct+k + ws
t+kSt+k + wb

t+kBt+k = ws
t+k−1(St+k +Dt+k) +wb

t+k−1.

This loss function is defined over Π × <+ × <2 and has values in <+. For a given π ∈ Π, minimization
of L(π, a) is equivalent to maximization of E

£P∞
k=0 β

ku(Ct+k)|zt, π
¤
. Since L(π, a) is a function of the

conditional expectation under zt, the optimal consumption-investment plan at time t is also a function of

zt. The investor chooses a decision rule mapping all possible information sets in Ft into an optimal action,

δ(zt) : Ft → <+ × <2. The loss function, L(π, δ(zt)), can then be written as a mapping from Π ×∆ to

<+, where ∆ is the space of decision rules.

The Bayesian agent’s objective is to choose δ(zt) to minimize the Bayes risk:

min
δ(zt)∈∆

Λ(π, δ(zt)) ≡ min
δ(zt)∈∆

Ep

©
Ezt|π [L(π, δ(zt))]

ª
, (17)

where Ep[·] denotes the expectation over the prior p(π) and Ezt|π[·] is the expectation over the sample
distribution parameterized by π ∈ Π. We refer to this solution as the Bayes rule, δp(zt).

Dt is a sufficient statistic for the realization of dividends on the sample path, zt, so the objective

simplifies as follows:

Λ(π, δ(zt)) ≡ Ep

©
EDt|π [L(π, δ(Dt))]

ª
=

Z
Π

Z
Dt

L(π, δ(Dt))p(Dt|π)p(π)dDtdπ

=

Z
Π

Z
Dt

L(π, δ(Dt))p(π|Dt)m(Dt)dDtdπ.

p(π|Dt) is the posterior distribution of π given Dt, and m(Dt) is the marginal distribution of Dt.

14Blume and Easley (1984) use a similar decision theoretic approach to study convergence of rational learning in general

equilibrium. Implicitly, they identify their rationality requirement with a Bayesian approach.
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(17) is a functional optimization problem with control δ(Dt) ∈ ∆. Solving this problem is usually a

daunting task but is made easier by the following lemma (c.f. Brown and Purves (1973))

Lemma 1. Solving (17) is equivalent to finding the elements of the (t + 1) × 1 vector a ≡ [a0 a1 ... at]
0

that maximize

Λj(π, aj) =

Z
Π
L(π, aj)p(π|(1 + gl)

t−j(1 + gh)
jD0)dπ j = 0, 1, ..., t.

so âj = δ̂
p
((1+ gl)

t−j(1 + gh)
jD0) where δp ≡ [δ((1 + gl)

tD0) δ((1 + gl)
t−1(1 + gh)D0) ... δ((1 + gh)

tD0)]
0.

In practice, the âjs simply solve consumption-investment problems conditional on the posterior distribution

of π. Therefore in what follows we simply concentrate on solving the program:

min
aj
Λj(π, aj) ≡ min

aj
Eπ|Dt

[L(π, aj)] j = 0, 1, ..., t.

Eπ|Dt
[·] is the expectation taken over the Bayesian posterior distribution of π. This distribution must be

characterized before asset prices can be derived and requires specifying the agent’s priors.

We follow conventional practice in the Bayesian literature and assume that the agent has a beta prior

with parameters n0 and N0, π ∼ beta(n0, N0 − n0), n0, N0 − n0 > 0. The most natural interpretation of

this prior is that the agent has pre-sample information with n0 of N0 realizations being ‘up’.
15 This prior,

when combined with the Bernoulli dividend process gives a standard setup, c.f. Zellner (1971, page 39)

and ensures that the posterior p(π|Dt) is also a beta distribution:

Lemma 2. A prior π ∼ beta(n0, N0 − n0) implies the following posterior on the binomial lattice:

π|(1 + gl)
t−j(1 + gh)

jD0 ∼ beta(n0 + j,N0 − n0 + t− j) j = 0, 1, ..., t.

The beta(c, d) posterior for π incorporates sample information in a simple way: n0 is updated to n0 + j

by adding the number of high growth realizations between time 0 and t, while N0 − n0 is updated to

N0 − n0 + (t− j), where (t− j) is the number of low growth realizations.

5. Equilibrium Asset Prices under Learning

This section derives equilibrium asset prices under the adaptive, rational and Bayesian learning schemes.

As in Brandt et al. (2004) we use a common asset pricing model and vary the learning rules followed by

the representative agent.

5.1. Asset Prices under Adaptive Learning

Suppose that although agents recursively update their current probability estimate, they do not take into

account the effect of future revisions in bπt when computing the current stock price, St. Uncertainty about
π is entirely disregarded. Conditional on agents’ current estimate of the proportion of up-states (bπt), the
15The requirements n0,N0 − n0 > 0 imply that at least one period of high growth and one period of low growth must have

been observed. When n0 = N0 − n0 = 1 the beta prior becomes uniform.
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asset price under such an adaptive (AL) learning scheme is16

SAL
t (Dt) =

∞X
s=1

E

"Ã
sY

i=1

Qt+i

!
Dt+s|zt, bπt#

= Dt

∞X
s=1

E

"
sY

i=1

Qt+i
Dt+i

Dt+i−1
|zt, bπt#

= Dt

∞X
s=1

(1 + ρ)−s
sY

i=1

hbπt (1 + gh)
1−γ + (1− bπt) (1 + gl)

1−γ
i

=
1 + g∗l + bπt(g∗h − g∗l )

ρ− g∗l − bπt(g∗h − g∗l )
Dt (18)

As in all adaptive learning models, this formula is generally misspecified (c.f. Bray and Kreps (1987, pp.

599-600)). Only in the limit as t → ∞, does it follow from the Mann-Wald theorem that π̂t converges to

the true π and SAL
t /SFI

t converges to 1.

5.2. Asset Prices under Rational Learning

Under rational learning (RL), agents account for the state dependence of future estimates (bπt+k) :
SRL
t =

∞X
s=1

Dt

(1 + ρ)s
Êt

"µ
Dt+1

Dt

¶1−γ
Êt+1

µ
Dt+2

Dt+1

¶1−γ
...

"
Êt+s−1

"µ
Dt+s

Dt+s−1

¶1−γ#
...

##
. (19)

Êt[·] is the expectation operator conditional on the period-t estimate, bπt. Future probability beliefs,

Êt+1, Êt+2,... do not disappear from this expression and have to be accounted for. Since the sequence of

conditional expectations at the nodes t+1, t+2, ..., t+T implied by the Euler condition under RL depends

on the future states {bπτbt+1, bπτbt+2, ...}, the law of iterated expectations can no longer be applied to reduce
(19) since the distributions over which future expectations are computed depend on future information.

On the binomial lattice, the probability distribution under rational learning, Êt[...Êt+s−1[·]...], can be
fully characterized. We prove in Appendix A that the compound probability distribution for the number

of up-states occurring between period t and t+ s, is given by

PRL

½
Dt+s

Dt
=(1+gh)

i(1+gl)
s−i | bπt, Nt

¾
=

µ
s

i

¶Qi−1
k=0(nt + k)

Qs−i−1
k=0 (Nt − nt + k)Qs−1

k=0(Nt + k)
, i = 0, ..., s (20)

where
¡s
i

¢
= s!

(s−i)! i! and
−1Q
k=0

(·) = 1. The updated probability distribution of dividends for period t+ s only

depends on the number of up-states between periods t and t + s − 1 and is independent of the specific
path followed on the lattice. Using this result, the equilibrium stock price under rational learning can be

derived by summing the probability-weighted product of the marginal rate of substitution and dividends

across the number of up-states (i) and time (s):

SRL
t = lim

T→∞

(
TX
s=1

Dt

(1 + ρ)s

sX
i=0

µ
s

i

¶
(1 + g∗h)

i(1 + g∗l )
(s−i)

Qi−1
k=0(nt + k)

Qs−i−1
k=0 (Nt − nt + k)Qs−1

k=0(Nt + k)

)
.

16For this to be well-defined we assume that ρ > π̂tg
∗
h +(1− π̂t)g

∗
l for all t. Given γ and ρ, this may impose restrictions on

the values taken by π̂t on a learning path.
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These findings lead directly to the stock price under rational learning (RL):

Proposition 2. Suppose that a transversality condition holds

lim
T→∞

bEt

n
Qt+1

bEt+1

h
Qt+2... bEt+T−1 (Qt+TSt+T ) ...

io
= 0,

and that ρ > max {g∗l , g∗h} . Then the stock price under rational learning, SRL
t , is

SRL
t (Dt) = Ψ

RL
t (bπt,Nt) ·Dj

t =

( ∞X
s=1

βs
sX

i=0

(1 + g∗h)
i(1 + g∗l )

s−iPRL
¡
Di
t+s|bπt, Nt

¢)
·Dj

t (21)

where PRL
³
Di
t+s = (1 + gh)

i(1 + gl)
s−iDj

t |bπt, Nt

´
is given by

PRL
©
Di
t+s|bπt, Nt

ª
=

µ
s

i

¶Qi−1
k=0(nt + k)

Qs−i−1
k=0 (Nt − nt + k)Qs−1

k=0(Nt + k)
. (22)

The equilibrium bond price under rational learning is

BRL
t (Dt) = bEt

£
β(1 + gt+1)

−γ¤ = (1 + gl)
−γ + bπt [(1 + gh)

−γ − (1 + gl)
−γ ]

1 + ρ
.

Proposition 2 has several implications. First the price-dividend ratio is no longer a constant and depends

on π̂t = nt/Nt. Dividend shocks between time t and t + 1 lead to a change in the stock price not only

through the linear relationship, SRL
t = ΨRL

t Dt, but also through revisions to the pricing kernel. Second,

while under full information the risk-free rate is constant, on a learning path it changes as a function of the

state variables nt and Nt. High dividend growth raises the risk free rate by raising bπt+1 above bπt. Third,
as the rational learning stock price is a time-varying multiple of dividends, stock prices no longer follow

the dividend lattice {gh, gl, π}. On a learning path, a recombining, flexible lattice is needed to capture the
stochastic process of equilibrium stock prices. However, the tree is still recombining so that a period of

high growth followed by one of low growth leads to the same stock price as a period of low price growth

followed by one of high price growth. The period [t, t+ 1] (gross) capital gain on the stock index is:

(1 + gt+1)
ΨRL
t+1

ΨRL
t

=

⎧⎨⎩
ΨRL(πut+1,Nt+1)

ΨRL(πt,Nt)
(1 + gh) w/prob. π

ΨRL(πdt+1,Nt+1)

ΨRL(πt,Nt)
(1 + gl) w/prob. (1− π)

,

where π̂ut+1 ≡ 1
Nt+1

(Ntπ̂t + 1) and π̂
d
t+1 ≡ Nt

Nt+1
π̂t. The capital gain is time-varying and depends on nt and

Nt, as well as on the realized state between t and t+ 1. Therefore it changes as we move along the lattice

for ex-dividend stock prices. The (local) volatility of the stock price − in this set up, the size of the jump
in price caused by dividend news − changes over time (as Nt increases deterministically with t) and as a

function of the underlying cash index.

The description of equilibrium asset prices on a rational learning path is completed by establishing

restrictions on the values taken by bπt which rule out arbitrage opportunities:
Corollary 1. Under the conditions stated in Proposition 2, the following inequalities are sufficient for the

absence of arbitrage opportunities:

1+ΨRL(bπdt+1, Nt+1)

ΨRL(bπt, Nt)
(1+gl) <

1 + ρ

(1+gl)−γ+bπt [(1+gh)−γ-(1+gl)−γ ] < 1+ΨRL(bπut+1, Nt+1)

ΨRL(bπt, Nt)
(1+gh). (23)
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Completeness and absence of arbitrage opportunities are guaranteed by (23), so a unique risk neutral

measure exists for our model although it will be a function of the entire sequence of probability beliefs.

This can most easily be seen by comparing the value as of period t+ 1 of one dollar in period t+ 3 when

a high and a low dividend growth state occur. With high growth followed by low growth,£
exp(fRLt+1(bπut+1))¤−1 hexp(fRLt+2(bπudt+2))i−1 =

1 + ρ

(1 + gl)−γ +
(nt+1)
(Nt+1)

[(1+gh)−γ − (1+gl)−γ ]
× 1 + ρ

(1 + gl)−γ +
(nt+1)
(Nt+2)

[(1+gh)−γ − (1+gl)−γ]
.

where bπudt+2 = nt+1
Nt+2

= bπdut+2. Reversing the sequence (low growth followed by high growth), we geth
exp(fRLt+1(bπdt+1))i−1 hexp(fRLt+2(bπdut+2))i−1 =

1 + ρ

(1 + gl)−γ +
nt

Nt+1
[(1 + gh)−γ − (1 + gl)−γ ]

× 1 + ρ

(1 + gl)−γ +
nt+1
Nt+2

[(1 + gh)−γ − (1 + gl)−γ ]
.

Taking the ratio of these two expressions and defining B = [(1 + gh)
−γ − (1 + gl)

−γ], we have

(1 + gl)
−2γ + nt(nt+1)

(Nt+1)(Nt+2)
B2 + nt(Nt+2)+(nt+1)(Nt+1)

(Nt+1)(Nt+2)
(1 + gl)

−γB

(1 + gl)−2γ +
(nt+1)2

(Nt+1)(Nt+2)
B2 + (nt+1)(2Nt+3)

(Nt+1)(Nt+2)
(1 + gl)−γB

,

which in general differs from unity. For discounting purposes, the exact sequence of dividend realizations

thus matters.

5.3. Asset Prices under Bayesian Learning

At time t, the optimal decision rule of a Bayesian agent with prior beta(n0, N0 − n0) solves

min
aj

Eπ|Dt
[L(π, aj)] ,

where π|Dt ∼ beta(n0 + j,N0− n0+ t− j). From the definition of L(π, aj) this is equivalent to solving the

program:

max
Cj
t+k,w

s,j
t+k,w

b,j
t+k

∞

k=0

E
π|Dj

t

(
E

" ∞X
k=0

βku(Cj
t+k)|D

j
t , π

#)

s.t. Cj
t+k +ws,j

t+kSt+k +wb,j
t+kBt+k = ws,j

t+k−1(St+k +Dt+k) + wb,j
t+k−1

Dj
t = (1 + gl)

t−j(1 + gh)
jD0, (24)

where aj ≡
n
Cj
t+k, w

s,j
t+k, w

b,j
t+k

o∞
k=0

is the optimal plan conditional on current dividends Dj
t = (1+gl)

t−j(1+

gh)
jD0. (24) is identical to the consumption-portfolio problem in Section 2, the only difference lying in

the probability distribution with respect to which the expectation in (24) is taken. Using Lemma 2, asset

prices under Bayesian learning can be characterized as follows:
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Proposition 3. Suppose that ρ > max{g∗l , g∗h} and that the Bayesian agent has a beta(n0, N0 − n0) prior

density on π. Under the transversality condition limT→∞Ej
t,π

h³QT
k=1Qt+k

´
St+T

i
= 0, ∀π, j, the Bayesian

learning (BL) equilibrium stock price, SBL
t , is given by

SBL
t (Dt) = Dj

tΨ
BL = Dj

t ·
∙

Γ(N0 + t)

Γ(j + n0)Γ(t+N0 − n0 − j)

×
Z 1

0

1 + g∗l + π (g∗h − g∗l )

ρ− g∗l − π
¡
g∗h − g∗l

¢πj+n0−1(1− π)t+N0−n0−j−1dπ

#
,

where j is the number of ‘up’ moves in dividends between period 1 and t. The Bayesian learning bond

price, BBL
t , is (recalling that π̂t ≡ n0+j

N0+t
)

BBL
t (Dt) =

(1 + gl)
−γ + π̂t [(1 + gh)

−γ − (1 + gl)
−γ ]

1 + ρ
> 0.

5.4. Relationships Between Asset Prices under Bayesian, Rational, and Adaptive Learning

5.4.1 Bayesian and Rational learning

There is a simple relationship between asset prices under the Bayesian and rational learning schemes.

Recall that on a rational learning path, the stock price is

SRL
t = Dj

t ·
( ∞X

s=1

βi
sX

i=0

(1 + g∗h)
i(1 + g∗l )

s−iPRL
³
Di
t+s|bπjt , Nt

´)
,

where the expectation is taken under the RL distribution for future dividends (given bπt and Nt). Under

the assumptions of Proposition 3, SBL
t can be written in a similar way based on the Bayesian predictive

density for future dividends, p(Dt+i), calculated as:

p(Dt+i) =

Z
Π
p(Dt+i|π)p(π|Dt)dπ i ≥ 1.

where p(Dt+i|π) is the predictive distribution of future dividends given π and p(π|Dt) is the posterior for

π. Using Lemma 2, the following result applies:

Proposition 4. Suppose that ρ > max(g∗l , g
∗
h) and that the Bayesian agent has a beta(n0,N0 − n0) prior

density on π. Then the Bayesian learning (BL) equilibrium stock price is given by

SBL
t (Dt) = Dt ·

" ∞X
s=1

sX
i=0

β (1 + g∗l )
s−i (1 + g∗h)

i PBL(Di
t+s)

#
, (25)

where PBL(Di
t+s = (1 + gl)

s−i(1 + gh)
iDj

t ) is given byµ
s

i

¶
Γ(N0 + t)

Γ(n0 + j)Γ(N0 − n0 + t− j)

Γ(n0 + j + i)Γ(N0 + t+ s− n0 − j − i)

Γ(N0 + t+ s)
. (26)

Provided the Bayesian agent has a beta prior, PBL(Dt+s) follows a beta-binomial distribution with para-

meters (s,N0 + t,N0 + t− n0 − j) and PRL {Dt+s} = PBL(Dt+s) so the two asset prices are identical:
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Proposition 5. Suppose that ρ > max{g∗l , g∗h}. (i) if the Bayesian agent has a beta(n0, N0 − n0) prior

density on π and Nt = N0 + t, nt = n0 + j. Then the rational learning (RL) equilibrium stock and bond

prices are identical to the BL prices:

SBL
t (Dt) = SRL

t (Dt)

BBL
t (Dt) = BRL

t (Dt).

(ii) Under different priors the rational learning and Bayesian learning asset prices will generally differ.

Of course, Bayesian learning induces a beta distribution only if the agent’s prior follows a beta distribution.

With other, non-conjugate types of priors, different posterior and predictive distributions are obtained and

asset prices will be different under the two learning schemes. Two points fundamentally distinguish RL

from BL. The first is the role of the prior under the Bayesian learning model. A rational learner need

not view π as random but certainly perceives the estimator π̂t+k as a random variable. A Bayesian agent

instead adopts a prior over π and regards π as random. Future dividend information is used to update the

posterior density for π.

The second difference is equally fundamental: while the rational learner is extremely smart and ac-

knowledges the effect of updates in his future beliefs on the current price, the Bayesian agent is myopic

and only accounts for his current beliefs - as reflected in the conditional probability distribution for π.

It is only to the extent that the posterior distribution is consistent with the data generating process for

dividends that the myopic Bayesian learning scheme will be rational. If the Bayesian learner used, say,

a truncated normal prior on [0, 1], the resulting prices would not be fully rational. Rationality under a

representative agent’s Bayesian learning scheme hence requires restrictions on the prior distribution which

must be chosen to be consistent with the structure of the model.17

These differences are deep and represent very different learning mechanisms, so it is surprising that the

two approaches can lead to identical asset prices although of course only under restrictive assumptions.

5.4.2 Bayesian and Adaptive Learning

Asset prices under Bayesian and adaptive learning form a general-to-special relation. Suppose the agent

has a degenerate prior

p(π) =

(
1 if π = t−1

Pt
i=1 I{gi=gh}

0 otherwise
.

Then the BL stock price can be written as

SBL
t = Dt

∞X
s=1

Z 1

0

"
sX

i=0

βs (1 + g∗l )
s−i (1 + g∗h)

i

µ
s

i

¶
(1− π)s−iπi

#
p(π|Dt)dπ

= Dt

∞X
s=1

sX
i=0

βs (1 + g∗l )
s−i (1 + g∗h)

i

µ
s

i

¶
(1− π̂t)

s−iπ̂t

= Dt

Ã
1 + g∗l + π̂t (g

∗
h − g∗l )

ρ− g∗l − π̂t
¡
g∗h − g∗l

¢! .

17On the other hand, our result does not impose restrictions on how n0 and N0 are selected (other than n0 6= 0, n0 6= N0).

The proof of Proposition 4 holds irrespective of the exact choice of values for n0,N0.
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Hence SBLt (Dt) = SALt (Dt) for all dividend levels.
18 Adaptive learning can thus be viewed as a special

case of Bayesian learning in which a very particular (infeasible) prior is employed.19 An adaptive learner

effectively conditions on the current estimate of π̂t and is systematically surprised by changes to future

values, π̂t+k. Apart from this special case, Bayesian and adaptive stock prices differ.

While Bayesian learning provides sufficient flexibility to obtain asset prices under adaptive learning as

a special case, the same does not occur for finite t under rational learning. To see this, write SALt as:20

SAL
t = lim

T→∞

(
TX
s=1

Dt

(1 + ρ)s

sX
i=0

µ
s

i

¶
(1 + g∗h)

i(1 + g∗l )
s−i ·

Qi−1
k=0 nt

Qs−i−1
k=0 (Nt − nt)Qs−1
k=0Nt

)
.

Clearly for i = 0, 1, ..., sµ
s

i

¶Qi−1
k=0(nt + k)

Qs−i−1
k=0 (Nt − nt + k)Qs−1

k=0(Nt + k)
6=
µ
s

i

¶Qi−1
k=0 nt

Qs−i−1
k=0 (Nt − nt)Qs−1
k=0Nt

.

RL and AL stock prices can therefore not be identical. Another way to characterize such differences is

through the speed of the learning clock used by agents to update their beliefs over time. Rational learning

is obtained when the learning clock is updated every time new information arrives. If beliefs are never

updated (i.e. the updating frequency is infinity and the learning clock has stopped), SAL
t is obtained.

Apart from the special case of a degenerate prior, under a rational or Bayesian learning scheme, agents’

probability beliefs form a mean-preserving spread relative to adaptive probability beliefs:

Proposition 6. The probability weights assigned to the tails of the binomial lattice are higher under

rational learning than under adaptive learning. Conversely the adaptive learning scheme puts more weight

on the centre of the lattice.

In fact, the Bayesian and rational learning schemes both adopt a Beta distribution over the unknown value

of π. Under rational learning this is obtained as a limiting result as the horizon, T , goes to infinity. To

demonstrate this, Figure 1 plots the probability distribution for the proportion of up-states, using different

values of the forecast horizon (T = 2, 10, 100, 1000), assuming bπt = 2
10 . The probability mass in the tails

is always higher under rational than under adaptive learning.

6. Properties of Asset Prices under Learning

This section explores properties of asset prices and returns under learning. Given the equivalence between

equilibrium asset prices under rational and Bayesian learning under the assumptions of Proposition 5, we

focus on rational learning results.21 Because of its boundedly rational foundations, we disregard adaptive

learning.

18BBL
t (Dt) = BAL

t (Dt) only when the degenerate prior assigns unit mass to a value of π that coincides with the mean of

the beta density.
19This prior is not feasible as π̂t is a function of future information unknown at time 0. Hence the probability that this

prior is used is zero and this case is only useful to illustrate the formal relationship between BL and RL stock prices.
20The equilibrium risk-free rates do coincide, fLSt = fRLt . In general, rational and adaptive learning schemes imply the same

equilibrium asset prices one-period prior to expiration when future learning effects can be disregarded.
21However, Section 6.3 shows that many of the theoretical findings in Sections 6.1-6.2 continue to apply to AL and BL under

non-conjugate priors. It is straightforward to prove that ΨBL(πt,Nt) is increasing in πt when γ < 1, decreasing in πt when
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Properties of asset prices and returns under rational learning crucially depend on the mapping from

agents’ beliefs, bπt, to stock prices. We first establish conditions for monotonicity and convexity of this
mapping:

Proposition 7. Under the assumptions of Proposition 2, the rational learning price-dividend ratio,

ΨRL(bπt, Nt) =
∞X
s=1

βi
sX

i=0

(1 + g∗h)
i(1 + g∗l )

s−iPRL
t (i, s),

is a nondecreasing and convex function of bπt = nt
Nt
when γ ≤ 1. For γ > 1 the pricing function is a

decreasing and convex function of bπt.
Figure 2 illustrates this result when π = 0.6. The other parameters are Nt = 100, gh = +6%, gl = −4%,
ρ = 6%. The coefficient of relative risk aversion is either 0.5 or 1.5.

6.1. Serial Correlation and Volatility Clustering

Even when dividend shocks are i.i.d., equilibrium stock returns under learning will in general be serially

correlated and heteroskedastic. Serial correlation in both the level of returns and in squared asset returns

is commonly found in empirical studies, c.f. Lo and MacKinlay (1988) and Bollerslev et. al. (1992).

Proposition 8 relates these properties to learning effects. To state the result we define the continuously

compounded rate of return on the stock between time t and t+ 1 as rt+1 ≡ ln
³
St+1+Dt+1

St

´
.

Proposition 8. When dividends evolve on a binomial lattice, the rate of return and the squared rate

of return will be serially uncorrelated under full information rational expectations. However, in general

returns will have a non-zero correlation under learning. Furthermore, if Cov[rRLt+s, r
RL
t ] > 0 and E[rRLt+s]

and E[rRLt ] have the same sign, then Cov
£
(rRLt+s)

2, (rRLt )2
¤
> 0 for s ≥ 1.

The condition that E[rRLt+s] and E[rRLt ] have the same sign is equivalent to requiring that s cannot be too

large. Otherwise π̂t+s could be so different from π̂t that the expected stock return could change sign. When

serial correlation in returns is attributed to learning, this suggests that we can also expect to find volatility

clustering in returns.

In the presence of serial correlation in the estimator, bπt, a monotone ΨRL(bπt, Nt) is sufficient to produce

serial correlation. In contrast, the heteroskedasticity induced by learning relies on the convexity of the RL

price-dividend ratio: The larger is π̂t, the larger will be the effect on the asset price of a shock to dividends

through its effect on ΨRL(bπt, Nt).

6.2. Excess Volatility

A number of empirical studies have found stock prices to be excessively volatile compared to a full infor-

mation rational expectations benchmark (see Shiller (1981) and Leroy and Porter (1981)). Provided agents

γ > 1, independent of πt when γ = 1. Therefore, the results of Proposition 8 on serial correlation and volatility clustering

follow more generally.
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are less risk averse than under log-utility (γ < 1), we can show that rational learning generates higher

return volatility than under full information:22

Proposition 9. When 0 ≤ γ < 1 the expected stock price under rational learning will exceed the

expected stock price under full information:

E[SRL
t ] > E[SFI

t ].

Furthermore, the variance of stock returns under rational learning exceeds the variance of stock returns

under full information rational expectations:

V ar(rRLt ) > V ar(rFIt ).

When γ = 1, SRL
t = SFI

t , and the moments are identical since the price-dividend ratio is independent of π̂t.

When γ > 1 no general ranking can be established. A negative covariance between ΨRL
t (π̂t) and Dt lowers

the expected stock price, but the strict convexity of ΨRL
t (π̂t) increases the average stock price. Likewise, the

negative covariance between ΨRL
t (π̂t) and Dt leads to lower volatility while the additional price variation

induced by the dependence of the price-dividend ratio on π̂t tends to increase it. That learning leads

to higher volatility for low levels of risk aversion is encouraging in the light of the general finding that

excessive degrees of risk aversion are required to explain movements in asset prices, c.f. Grossman and

Shiller (1981).

6.3. Simulation Results

To study the quantitative implications of different learning schemes for the properties of equilibrium asset

returns, we perform a simulation exercise with parameters calibrated to match real dividend data on

Standard & Poors companies, adjusted to account for inflation as measured by the CPI (see Shiller (2000)

for data sources). We supplement these data with value-weighted index returns and 3-month T-bill returns

from CRSP. The data are aggregated to obtain real quarterly series spanning the period 1950:I - 2003:IV, a

total of 216 observations.23 We calibrate the fundamental (dividend) process to gh = +1.7%, gl = −1.5%,
π = 0.565. These parameters imply a maximum annualized real growth rate of 7% and a minimum growth

rate of -5.9% − both plausible values. The annualized real mean growth rate is 1.2% and its volatility is

3.2%, both set to match the sample moments of our real dividend series for 1950-2003. To avoid biases in

our simulation results, we set bπ0 ≡ n0/N0 = 1/2, where 1950:I is the initial time period (time 0). This

implies relatively strong learning in the immediate post-WWII period. We set ρ = 3.5% per annum and

use 5000 independent simulations of the 216-quarter path for real dividends, stock prices, and interest rates

and report sample statistics averaged across simulations.

To investigate the importance of the restriction on the prior in Proposition 5 and assess the quantitative

implications across RL and BL schemes, Table 1 considers a third case, Bayesian learning when the prior

22The variance expressions in Proposition 9 consider stock returns since in our model stock prices are nonstationary.
23For brevity we do not test for or model the presence of structural breaks in fundamentals and simply start our simulations

after WWII. In the presence of an oil shock-related break (as in Timmermann (2001)) in the 1970s, the volatility and risk

premia induced by learning may be higher than what is reported here.
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is non-conjugate. In particular, we assume that the Bayesian learner initially has a truncated normal (over

(0, 1)) prior density on π, with initial parameters μ0 = n0/N0 and σ20 = n0(N0 − n0)/[(N0 + 1)N0]. Since

the problem in this case does not admit closed forms for the posterior distribution and must be handled

through numerical integration, we proceed to recursively update the posterior and calculate the predictive

density of future growth rates.

Table 1 reports sample means and standard deviations for real stock returns, excess stock returns, and

real short-term (3-month) interest rates over our sample. The data display all the typical features that are

well known in the asset pricing literature: high mean excess returns (5.6% per year), low real interest rates

(1.5%), highly volatile excess stock returns (14.9%) and stable interest rates (1.3% annualized volatility).24

There is evidence of both persistence and volatility clustering in stock returns, as shown by the Ljung-Box

statistics in the first row of the table. To evaluate this, we follow Lo and MacKinlay (1988) and compute

variance ratios − i.e. the ratio between the variance of q−period stock returns and q times the variance of

annual returns − for q = 2, ..., 5. For q = 2 the variance ratio is approximately one (1.04), but as q grows
the ratio declines (e.g. at q = 5 the variance ratio is 0.92), indicating the presence of mean-reversion in

long-horizon stock returns. Second, we report OLS estimates and R2 coefficients in long-horizon predictive

regressions of the type proposed by Campbell and Shiller (1988):

qX
j=1

(rt+j − rft+j) = a(q) + b(q) · ln(dyt) + �qt ,

where rft is the short-term real interest rate and dyt is the dividend yield. Consistent with the literature,

we find that both b̂(q) and R2(q) are monotonically increasing in the horizon, q. For instance, while

b̂(2) = 0.17, R2(2) = 0.08, b̂(5) = 0.26, R2(5) = 0.19. This indicates predictability of long-horizon returns

from the log-dividend yield.

Table 1 compares the quantitative properties of equilibrium stock and bond returns under alternative

choices of γ and different learning schemes. Since Propositions 7 and 9 focus on the case where γ < 1, we

start by considering γ = 0.5 and then increase γ to 0.9, and 1.5.25 In the absence of learning (under FI),

stock returns are i.i.d. and the lattice model fails to generate a plausible risk premium, serial correlation,

volatility clustering and sufficiently volatile stock returns. In addition, the interest rate is too high and

counterfactually constant.26 Conversely, when γ = 0.5, the rational learning model generates very plausible

asset prices with a mean excess return of 2.3%, volatility close to the 15% implied by the data, serial

correlation patterns that approximately match the data (with variance ratios close to one for q = 2 and

significantly below one for q = 5) and ARCH effects. Furthermore, the dividend yield predicts long-horizon

returns with R2−values close to those estimated from the data. One aspect of the data that is missed

24The 5.6% mean excess stock returns is heavily influenced by the inclusion of the 2000-2003 period and is closer to the

higher estimate in excess of 6% reported by Mehra and Prescott when based on the sample 1950-1999.
25Propositions 3-5 imply that the equilibrium price exists for ρ > max(g∗l , g

∗
h). Under our calibration, 0.035/4 = 0.0088 >

max(g∗l , g
∗
h) = g∗h = (1.017)

1−γ − 1 fails for γ < 0.5; 0.0088 > max(g∗l , g
∗
h) = g∗l = (0.985)

1−γ − 1 fails for γ > 1.5. Therefore

we restrict our simulations to the range γ ∈ [0.5, 1.5]. Notice also that for γ = 1, Propositions 3-5 imply that the stock price
under learning is identical to the price under FI. Hence we do not use the log-utility case in our simulations.
26Departures from unit variance ratios, zero Ljung-Box statistics, and zero predictability is explained by small sample effects.
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by the RL model is the (average) level of the price-dividend ratio, that is overestimated.27 Finally, Table

1 reveals interesting information on the differences among learning schemes. AL generates price effects

that are qualitatively similar, but weaker than RL. This is explained by the fact that treating ΨRL as a

random variable and integrating over the infinite sequence of its future values generates stronger volatility,

predictability, and ARCH effects. Both under AL and RL, the resulting price-dividend ratio is too high,

however, and the equilibrium short interest rate is both too high and insufficiently volatile (although

learning effects lower it). The same qualitative finding applies to BL under non-conjugate priors. In this

case learning generates stock returns whose mean is closer to the sample estimate. However, this learning

scheme implies too strong predictability in real stock returns, with high dividend yields predicting negative

long-run returns, and regression coefficients whose magnitude decline in q−features that are at odds with
the empirical evidence.

Panels A and B of Table 1 also illustrate the effect of raising γ. Interestingly−and consistent with
Guidolin’s (2005) results for the RL scheme−under learning, stock return volatility, mean returns, and the
Ljung-Box statistics capturing serial correlation and volatility clustering follow a U-shape when plotted

against γ, with minimum values at γ = 1, the log-utility case. When γ = 1, asset prices under FI and

under learning coincide.28 Across values of γ and across learning schemes, the case that best matches the

data is rational learning and γ = 1/2.

An estimate of γ = 1/2 may appear to be well below values required to resolve the equity premium

puzzle. Although most available econometric estimates of γ tend to exceed one-half, this value is not

inconsistent with estimates reported in studies such as Hansen and Singleton (1982, 1983) or Ferson and

Constantinides (1991). Furthermore, the bulk of the econometric evidence comes from models based on a

representative agent who is assumed to know the stationary stochastic process for asset payoffs and so the

estimates depend on the validity of this assumption. This is important since, in the presence of learning,

the representative agent’s beliefs are themselves subject to time-variation and the investor perceives a non-

stationary process for asset payoffs. It is not clear how methodologies could be developed to account for

such non-stationarities, although Table 1 indicates that this may be an important issue. Intuition suggests

that, in the presence of learning, γ controls two types of behavior: (i) agents’ aversion to consumption

risk, as in standard models solved under FI; (ii) the sensitivity of equilibrium asset prices with respect to

revisions in the predictive distribution of π. While the first effect is monotonically increasing in γ, the

second is monotonically decreasing in γ. This explains the U-shaped pattern in the mapping from γ into

the equity premium, return predictability and ARCH effects.29

27This explains why the predictability regression coefficients in columns 12 and 14 of the table are much larger under RL

than in the data: since RL over-estimates the price-dividend ratios, it also generates too small dividend yields.
28However, mean stock returns as well as short-term interest rates are monotonically increasing in γ. The intuition for why RL

and AL mean excess returns increase as γ goes from 1 to 0.5 is that as we approach risk-neutrality, the intertemporal elasticity

of substitution (1/γ) becomes larger and the equilibrium interest rate declines towards ρ, while the convexity of learning pricing

kernels makes upward revisions of the estimated π̂ more important (in terms of pricing effects) than downward revisions, so

that mean stock returns increase compared to the FI case. The result is a considerably higher equity premium than under FI,

see Guidolin (2005).
29We thank an anonymous referee for drawing our attention to this implication of our results. An expanding literature

has obtained results consistent with the notion that many asset pricing phenomena may be explained at relatively low levels
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The ability of learning models to modify standard results on what a plausible value for γ is can be

understood in the following simple method of moment framework based on Campbell et al. (1997, pp.

306-307). Under the assumption of homoskedastic and joint normally distributed dividend growth rates

(gt) and asset returns, the unconditional mean of the riskless rate and the equity risk premium are given

by:

E[rft ] = − lnβ − γ2V ar[gt]

2
+ γE[gt]

E[rt − rft ] = γCov[rt, gt], (27)

where the equity premium expression ignores a Jensen’s inequality term. As the frequency of movements

on the binomial tree increases, the joint distribution of returns under FI converges to a bivariate Gaussian

distribution (see Cox et al. (1979)). Equation (27) can therefore be expected to capture the moments

of asset returns with high accuracy under FI, while it should only be viewed as a rough but informative

approximation under learning. Using β = (1 + 0.035)−1 = 0.966 on an annualized basis, (27) can be

evaluated using the moments for real dividend growth and stock returns implied by the available time series.

In our data, we have E[gt] = 0.01216, V ar[gt] = 0.00097, Cov[rt, gt] = 0.00079, and V ar[rt] = 0.01459.

Small risk aversion coefficients, e.g. γ = 0.5, generate a plausible risk-free rate but much too low an equity

premium, while a value of γ as high as 71 is required to generate the 5.6% equity premium found in our

data−although the resulting riskless rate becomes negative. For intermediate values of γ (in the range
4-10), small positive equity premia (e.g. 0.8% for γ = 10) and interest rates below 10% per annum can be

generated under FI.

We next argue heuristically why assuming that the representative investor is on a learning path may

generate estimates of γ smaller than what is typically reported in the literature. Using the simulations

underlying the RL results in Table 1, we calculate sample averages of the perceived moments E[gt], V ar[gt],

Cov[rt, gt], and V ar[rt] under RL. In other words, at each step on our simulation paths, we calculate the

predictive density of dividend growth rates and stock returns using (20). We then average these perceptions

over time and across simulations, obtaining ÊRL[gt] = 0.01216, dV ar RL[gt] = 0.01025, while dCov RL[rt, gt]

and dV ar RL[rt] depend on the assumed level of γ. For γ = 0.5 we have dCov RL[rt, gt] = 0.02464, dV ar
RL[rt] = 0.01593, so (27) implies an equity premium of 1.3%, a plausible mean stock return of 5.2%, and

a short-term interest rate of 3.9%. Although these values do not perfectly match the sample moments,

γ = 0.5 appears to adequately trade off several competing moments. Rational learning effects magnify the

perception of the riskiness of the fundamental process and the perception of a high degree of correlation

between the real dividend growth rate and stock returns since the price-dividend ratio ΨRL is increasing

in bπt for γ < 1.

of risk aversion. For instance, David (2004) illustrates that although a declining γ reduces the required compensation for

consumption risk, it also makes agents more aggressive (based on erroneous but credible models of the economy), increases

trading risk, and hence can raise the equity premium.
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7. Extensions of the Model

Since the seminal paper by Cox et al. (1979), the binomial lattice has played a key role in the development

of finance theory. However, it is of interest to see whether our analysis applies to a more general setup

where the dividend growth rate can take more than two values at each point in time or the state transitions

are allowed to follow a Markov process. Sections 7.1 - 7.2 show that the result that BL and RL equilibrium

asset prices are identical under restrictions on the choice of the prior generalizes both to multi-state and to

Markovian processes. Section 7.3 discusses the limitations arising from our assumption of a representative

investor and points to ways in which our analysis may carry over to environments with heterogeneous

investors.

7.1. Generalization to a Multinomial Lattice

First, we show that relaxing the assumption that gt+j can only take two possible values is not important for

our result on the equivalence of BL and RL asset prices under restrictions on the choice of the (conjugate)

priors. Suppose that ∀t ≥ 1, gt can take K ≥ 2 possible values, {g1, g2, ..., gK} with probabilities {π1, π2,
..., πK} such that

PK
k=1 πk = 1, i.e. the probability distribution is defined over the K simplex. In this case

gt is drawn from a multinomial distribution with K possible outcomes. Furthermore, assume that under

BL the investor has a Dirichlet prior with parameters {n1,0, n2,0, ..., nK,0}, nk,0 > 0, k = 1, ...,K, such

that nK,0 = N0 −
PK−1

k=1 nk,0:

p

µ
π1, π2, ..., πK |n1,0, n2,0, ..., N0 −

K−1P
k=1

nk,0

¶
=

Γ (N0)QK
k=1 Γ (nk,0)

KQ
k=1

π
nk,0−1
k .

The Dirichlet prior is simply a vector generalization of the beta distribution. Once again, the most natural

interpretation is that the agent has pre-sample information with nk,0 realizations of the dividend growth

rate, gk, k = 1, ...,K, where N0 is the total number of pre-sample observations. Since the Dirichlet prior

is conjugate for multinomial distributions, the resulting posterior for p(π1, π2, ..., πK |zt) is also Dirichlet

with parameters {n1,0+X1,t, n2,0+X2,t,, ..., N0+t−
PK−1

k=1 nk,0−
PK−1

k=1 Xk,t}, where Xk,t is a counter that

measures the number of realizations of the dividend growth rate that ‘fall’ in the k−th cell, k = 1, ...,K
(see Zellner (1971) for a proof).

If the probabilities {π1, π2, ..., πK} were known, the FI equilibrium asset prices could be found, subject
to standard transversality conditions and provided that ρ >

PK
k=1 πkg

∗
k (where g

∗
k ≡ (1 + gk)

1−γ − 1), as
follows:

SFI
t = Dt

∞X
s=1

Et

"
sY

l=1

Qt+l
Dt+l

Dt+l−1

#
= Dt

∞X
s=1

(1+ρ)−s
sY

l=1

KX
k=1

h
πk (1 + gk)

1−γ
i
=
1 +

PK
k=1 πkg

∗
k

ρ−
PK

k=1 πkg
∗
k

. (28)

Similarly, the equilibrium risk-free rate in this setting is:

BFI = Et

£
β(1 + gt+1)

−γ¤ = PK
k=1 πk(1 + gk)

−γ

1 + ρ
. (29)

Clearly, (28)-(29) reduce to (11)-(12) in the special case where K = 2 and the dividend growth rate evolves

on a binomial lattice. BL asset prices are then obtained as an extension of Proposition 3. Under a similar
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set of assumptions (including a Dirichlet prior), SBL
t is given by

SBL
t = Dt ·

Γ (N0)QK
k=1 Γ (n0,k)

Z 1

0

Z 1

0
...

Z 1

0

1 +
PK

k=1 πkg
∗
k

ρ−
PK

k=1 πkg
∗
k

KQ
k=1

π
nk,0+Xk,t−1
k dπ1 · dπ2 · ... · dπK ,

while the bond price is given by

BBL
t =

Z 1

0

Z 1

0
...

Z 1

0

PK
k=1 πk(1+gk)

−γ

1 + ρ
p(π1, π2, ..., πK |Dt)dπ1 · dπ2 · ... · dπK =

PK
k=1 π̂k,t(1+gk)

−γ

1 + ρ
.

Here π̂k,t ≡ nk,0+Xk,t,

N0+t
and we used that p(π1, π2, ..., πK |zt) is also Dirichlet so E[πk|zt] =

R 1
0 πkp(πk|zt)dπk

= π̂k,t (see Gelman et al. (1995)). p(πk|zt) is the marginal distribution of πk derived from p(π1, π2, ..., πK |zt)

and

BBL
t =

Z 1

0

Z 1

0
...

Z 1

0

π1(1 + g1)
−γ

1 + ρ
p(π1, π2, ..., πK |zt)dπ1 · dπ2 · ... · dπK +

+...+

Z 1

0

Z 1

0
...

Z 1

0

πK(1 + gK)
−γ

1 + ρ
p(π1, π2, ..., πK |zt)dπ1 · dπ2 · ... · dπK

=
(1 + g1)

−γ

1 + ρ

Z 1

0
π1p(π1|zt)dπ1 + ...+

(1 + gK)
−γ

1 + ρ

Z 1

0
πKp(πK |zt)dπK .

As for the RL asset prices, equation (20) is easily generalized to:30

PRL

½
Dt+s

Dt
= (1 + g1)

X1,s(1 + g2)
X2,s × ...× (1 + gK)

s− K−1
k=1 Xk,s | π̂1,t, ..., π̂K,t, Nt

¾

=

µ
s

X1,s, ...,XK−1,s

¶QX1,s−1
i=0 (n1,t + i)

QX2,s−1
i=0 (n2,t + i)...

Qs− K−1
k=1 Xk,s−1

i=0 (Nt −
PK−1

k=1 nk,t + i)Qs−1
i=0 (Nt + i)

.(30)

In fact, the compound probability of a particular path of states between periods t+ 1 and t+ s equalsQs−1
i=0 j

k
t+i{Xk,t+i, Nt + i−Xk,t+i}Qj−1

i=0 (Nt + i)
,

where jkt+i{a, b} is again the selection operator that takes the value a if the growth rate equals gk (k =
1, ...,K) at time t + i, and otherwise equals b. (Nt + i −Xk,t+i) increases by unity each time the growth

rate differs from gk, so all paths with the same number of occurrences of the k−th state between periods
t + 1 and t + s have the same probability. Equation (30) follows since there are

¡ s
X1,s,...,XK−1,s

¢
different

paths so the states characterized by growth rates {g1, g2, ..., gK} occur {X1,s, X2,s, ..., s −
PK−1

k=1 Xk,s}
times between t+ 1 and t+ s. Equation (30) simplifies to (20) when K = 2.

Subject to a transversality condition and ρ > maxk{g∗k}, the stock price under rational learning is now

SRL
t =

⎧⎨⎩
∞X
s=1

βs
M(s)X
m=1

G∗m,s(X1,s, ...,XK,s)P
RL (Dm,t+s | π̂1,t, ..., π̂K,t, Nt)

⎫⎬⎭ ·Dt,

30In this notation s
X1,s,...,XK−1,s

is the multinomial coefficient:

s!

X1,s!X2,s!...XK−1,s!(s− K−1
k=1 Xk,s)!

.

It is easy to show for multinomial distributions that the optimal (maximum likelihood) estimator of πk is the sample frequency,

thus justifying the RL construction in (30).
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whereM(s) is the number of possible end-node values for fundamentals after s steps on aK−state multino-
mial tree, and

G∗m,s(X
m
1,s, ...,X

m
K,s) ≡

KQ
k=1

(1 + g∗k)
Xm
k,s m = 1, ...,M(s)

corresponds to the s-step intertemporal marginal rate of substitution under the vector of states {Xm
1,s, X

m
2,s,

..., s −
PK−1

k=1 Xm
k,s} given by the m-th combination.31 At this point, it is tedious but straightforward to

extend Proposition 5 to show that SBL
t = SRL

t and BBL
t = BRL

t . The BL stock price,

SBL
t =

⎧⎨⎩
∞X
s=1

βs
M(s)X
m=1

G∗m,s(X1,s, ...,XK,s)

Z 1

0

Z 1

0
...

Z 1

0

Γ (N0)QK
k=1 Γ (nk,0)

KQ
k=1

π
nk,0−1
k ×

× Γ (s)QK
k=1 Γ

³
Xk,t +Xm

k,s

´ KQ
k=1

π
Xk,t+X

m
k,s

k dπ1 · dπ2 · ... · dπK

⎫⎬⎭ ·Dt

requires evaluating integrals of the form

Γ (N0)QK
k=1 Γ (nk,0)

Γ (t+ s)QK
k=1 Γ

³
Xk,t +Xm

k,s

´ Z 1

0

Z 1

0
...

Z 1

0

KQ
k=1

π
nk,0+Xk,t+X

m
k,s−1

k dπ1 · dπ2... · dπK .

Then
R 1
0

R 1
0 ...

R 1
0

QK
k=1 π

nk,0+Xk,t+X
m
k,s−1

k dπ1 · dπ2... · dπK (m = 1, ...,M(s)) can be recognized as the kernel

of a multivariate beta distribution, which can be re-written as:QK
k=1 Γ

³
nk,0 +Xk,t +Xm

k,s

´
Γ (N0 + t+ s)

.

The quantity

Γ (N0)QK
k=1 Γ (nk,0)

Γ (t+ s)QK
k=1 Γ

³
Xk,t +Xm

k,s

´QK
k=1 Γ

³
n0k +Xk,t +Xm

k,s

´
Γ (N0 + t+ s)

=

µ
s

Xm
1,s, ...,X

m
K−1,s

¶
Γ (N0 + t)QK

k=1 Γ (nk,0 +Xk,t)

QK
k=1 Γ

³
n0k +Xk,t +Xm

k,s

´
Γ (N0 + t+ s)

(31)

is the probability distribution of a Dirichlet multinomial mixture with parameters {s, n1,0+X1,t+X1,s, ...,

nK,0+XK,t+XK,s}, which we refer to as PBL (Dt+s | π̂1,t, ..., π̂K,t, Nt) . The RL price is therefore given by

SRL
t =

⎧⎨⎩
∞X
s=1

βs
M(s)X
m=1

G∗m,s(X1,s, ...,XK,s)P
BL (Dt+s | π̂1,t, ..., π̂K,t, Nt)

⎫⎬⎭ ·Dt.

31For instance, for K = 3 and s = 2, a trinomial lattice implies that M(2) = 6 and, say, G∗2,2 = (1+ g∗1)(1+ g∗2) corresponds

to the sequence {Xm
1,s, X

m
2,s, 2− 2

k=1X
m
k,s} = {1, 1, 0}.
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Clearly, SBL
t = SRL

t if and only if PBL (Dt+s | π̂1,t, ..., π̂K,t,Nt) = PRL (Dt+s | π̂1,t, ..., π̂K,t, Nt) ∀m. Com-

paring (30) to (31) follows the lines of the proof of Proposition 5 and amounts to showing that

QX1,s−1
i=0 (n1,t + i)

QX2,s−1
i=0 (n2,t + i)...

Qs−
PK−1

k=1
Xk,s−1

i=0 (Nt −
PK−1

k=1 nk,t + i)Qs−1
i=0 (Nt + i)

=
Γ (N0 + t)QK

k=1 Γ (nk,0 +Xk,t)

QK
k=1 Γ

³
n0k +Xk,t +Xm

k,s

´
Γ (N0 + t+ s)

.

Once again this turns out to hold for all possible combinations of states, m = 1, ...,M(s), so

BRL
t = BBL

t =

PK
k=1 π̂k,t(1 + gk)

−γ

1 + ρ
.

Finally, notice that our finding that under conjugate Dirichlet priors, equilibrium asset prices under

RL and BL coincide when fundamentals follow a multinomial tree has − at least as an approximation −
some additional degree of generality. From Chamberlain (1987) we know that any generic identically and

independently distributed random variable {gt+k} with distribution function Fg over a support Zg ⊂ Z

can be approximated arbitrarily well by a multinomial distribution, in the sense that for any measurable

function h : Z → R such that
R
||h|| · dF < ∞ there exists a multinomial probability measure G whose

support is a finite subset of Z and
R
h · dF =

R
h · dG. Insofar as the process of the fundamentals growth

rate is i.i.d., it follows that an appropriately selected multinomial process can represent such a process.

This implies that RL and BL equilibrium prices are identical when Bayesian investors maintain a particular

(conjugate) prior.

7.2. Generalization to First-Order Markov Dynamics

Many papers in the asset pricing literature have stressed the need to produce realistic equilibrium asset

price and return processes when fundamentals follow smooth, i.i.d. processes (see e.g. Abel, 2002). So far

we have shown that, under conjugate priors and when dividends follow a multinomial process, RL and BL

asset prices coincide. Given the ability of multinomial processes to approximate other stochastic processes,

this result is quite general. Still, the assumption of i.i.d. increments to dividends is quite restrictive and

authors such as Mehra and Prescott (1985) have used first-order Markov processes. We therefore next show

how some of our findings on RL and BL prices can be extended to this important case. After introducing

details of the dividend process, we derive BL and RL equilibrium prices and then show that choices of the

BL prior exist under which the two sets of prices coincide. To keep notations simple, we investigate the

case with two states (K = 2), as in Sections 2-6.

Suppose that dividends evolve on a lattice but now let the probability of a high (low) growth rate

between t and t+ 1, gt+1, depend on the growth rate between t − 1 and t, gt. In particular, assume that
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dividends follow a stationary, irreducible first-order Markov process for which P{gt+1|zt} = P{gt+1|gt}:

gt+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gh

(
with prob. πhh if gt = gh

with prob. 1− πll if gt = gl

gl

(
with prob. 1− πhh if gt = gh

with prob. πll if gt = gl

πhh, πll ∈ (0, 1). (32)

We collect the transition probabilities in a matrix P:

P ≡
"

πhh 1− πhh

1− πll πll

#
.

The information set continues to consist of the finite sample space ΩT comprising all sequences of 0s and

1s:

ωT =
©
I{g1=gh}, I{g2=gh}, ..., I{gT=gh}

ª
.

Sample information can be organized in a frequency count matrix FT with generic element fij,T =PT
l=1 I{gl=gj ,gl−1=gi}, i, j =‘high’, ‘low’, that keeps track of the number of transitions between the states.

Under BL, assume that the investor has a matrix beta prior on the unknown matrix P:

p (P|N0) =
Γ (N0)QK

k=1 Γ (nij,0)

Q
i=l,h

Q
j=l,h

π
nij,0−1
ij ,

where N0 is another 2 × 2 matrix with generic element nij,0 > 0 ∀i, j =‘high’, ‘low’ (h, l) and N0 =P
i=l,h

P
j=l,h nij,0. Once again, the natural interpretation of this prior is that the investor has pre-sample

information with nij,0 realizations of dividend growth rate transitions from gi to gj , where N0 is the total

number of such pre-sample observations. Since the matrix Beta prior is conjugate for problems of transition

matrix estimation of first-order Markov chains, the resulting posterior p(P|zt,N0) is also matrix Beta with

parameters given by N0 +Ft (see e.g. Fuh and Fan (1997)):

p (P|zt) =
Γ (N0 + t)QK

k=1 Γ (nij,0 + fij,t)

Q
i=l,h

Q
j=l,h

π
nij,0+fij,t−1
ij .

If the transition matrix P were known, the FI equilibrium asset price could be found using methods

similar to those in Mehra and Prescott (1985), so that, subject to standard transversality conditions,

SFI
t (gt = i)

Dt
= β

2X
k=1

πij (1 + gj)
1−γ

µ
1 +

SFI
t (gt+1 = j)

Dt+1

¶
i, j = l, h, (33)

provided ρ >
P2

k=1 πij

³
1 + g∗j

´
∀i, j. Equation (33) can be written as a system of two equations in two

unknowns, the FI price-dividend ratios in the two possible states, ΨFI
i :(

ΨFI
h = β

£
πhh (1 + g∗h) (1 +Ψ

FI
h ) + (1− πhh) (1 + g∗l ) (1 +Ψ

FI
l )
¤

ΨFI
l = β

£
(1− πll) (1 + g∗h) (1 +Ψ

FI
h ) + πll (1 + g∗l ) (1 +Ψ

FI
l )
¤ . (34)

Closed-form expressions exist but are not particularly insightful. Hence, we can express the FI stock price

for K = 2 as:

SFI
t (gt = i) = β

©
πih (1 + g∗h) (1 +Ψ

FI
h ) + πil (1 + g∗l ) (1 +Ψ

FI
l )
ª
Dt i = l, h,
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which is easy to compute once ΨFI
l and ΨFI

h are known from (34). When πhh = 1− πll = π, each of the

equations produces a FI pricing kernel identical to that in (28). The equilibrium risk-free rate remains a

function of the current state:

BFI(gt = i) = E
£
β(1 + gt+1)

−γ |gt = i
¤
=

πih(1 + gh)
−γ + πil(1 + gl)

−γ

1 + ρ
i = l, h.

BL asset prices are obtained as an extension of Proposition 3. Under the same assumptions, SBL
t is a

function of current dividend growth and is given by

SBL
t (gt = i) = Dj

t ·
Γ (N0 + t)QK

k=1 Γ (nij,0 + fij,t)
β

∙Z 1

0
π
nih,0+fih,t
ih (1 + g∗h) (1 +Ψ

FI
h )dπih+

+

Z 1

0
π
nil,0+fil,t
il (1 + g∗l ) (1 +Ψ

FI
l )dπil

¸
i = l, h,

while

BBL(gt = i) =
Γ (N0 + t)QK

k=1 Γ (nij,0 + fij,t)

Z 1

0

Z 1

0

πih(1 + gh)
−γ + πil(1 + gl)

−γ

1 + ρ

Q
k=l,h

π
nik,0+fik,t−1
ik dπih · dπil

=
Γ (N0 + t)QK

k=1 Γ (nij,0 + fij,t)

∙
(1 + gh)

−γ

1 + ρ

Z 1

0
π
nih,0+fih,t
ih dπih +

(1 + gl)
−γ

1 + ρ

Z 1

0
π
nil,0+fil,t
il dπil

¸
=

π̂ih(1 + gh)
−γ + π̂il(1 + gl)

−γ

1 + ρ
i = l, h,

where π̂ij ≡ nij,0+fij,t
nil,0+fil,t+nih,0+fih,t

and we used that p(P|zt,N0) is also matrix Beta so that (see e.g. Billard

and Meshkani, 1995):

E[πij |zt,N0] =
Γ (nil,0 + fil,t + nih,0 + fih,t)QK

k=1 Γ (nij,0 + fij,t)

Z 1

0
π
nij,0+fij,t
ij dπij = π̂ij .

Once again, assuming that a rational learner recursively updates the maximum likelihood estimate

π̂ij ≡
nij,0 + fij,t

nil,0 + fil,t + nih,0 + fih,t
i = l, h

(where the nij,0s are initial values of the frequency counters such that ni,0 ≡ nil,0+nih,0 andN0 ≡ nl,0+nh,0),

under RL equation (20) generalizes to:

PRL

½
Dt+s

Dt
= (1 + gh)

(fαhh,t+s−fhh,t)+(fαlh,t+s−flh,t)(1 + gl)
(fαhl,t+s−fhl,t)+(fαll,t+s−fll,t) | π̂hh,t, π̂ll,t, Nt, gt = i

¾
=

X
α∈A(s,,fhh,t+s,fll,t+s)

fαijt+1,t + nαijt+1,0
fαil,t + nαil,0 + fαih,t + nαih,0

×
fαit+1jt+2,t+1 + nαit+1jt+2,0

fαit+1l,t+1 + nαit+1l,0 + fαit+1h,t+1 + nαit+1h,0
× ...

...×
fαit+s−1jt+s,t+s−1 + nαit+s−1jt+s,0

fαit+s−1l,t+s−1 + nαit+s−1l,0 + fαit+s−1h,t+s−1 + nαit+s−1h,t+s−1
,

(i = l, h) where A(s, , fhh,t+s, fll,t+s) is the set collecting all paths of dividends such that

Dt+s

Dt
= (1 + gh)

(fhh,t+s−fhh,t)+(flh,t+s−flh,t)(1 + gl)
(fhl,t+s−fhl,t)+(fll,t+s−fll,t).
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Once s is fixed, fhh,t, fll,t, fhh,t+s and fll,t+s are sufficient statistics for all transitions between the two

states and so the set over which the probabilities need to be summed will depend only on how forward-

looking the investor is (s) and on fhh,t+s and fll,t+s. In this case, the probabilities of a given dividend

path α ∈ A(s, fhh,t+s, fll,t+s) over the horizon [t, t+ s], {I{gαt+1=gjt+1 ,gt=gi}, ..., I gαt+s=g
α
jt+s

,gαt+s−1=g
α
it+s−1

},

will depend on: (i) the initial state gt; (ii) the exact sequence of high and low growth rates.32 As a

consequence of (ii), notice that (??) now no longer relies on binomial coefficients to account for the fact

that there may exist multiple paths of the growth rates leading to the same final dividend level Dt+s.

Obviously, such simplification applies whenever the RL probabilities become path-independent, in which

case − because fαi
t+l

jt+l−1,t
= fαj

t+l
jt+l−1,t

≡ fαjt+q ,t
∀α ∈ A(s, fhh,t+s, fll,t+s) − A(s, fh,t+s, fl,t+s) reduces to¡

s
fh,t+s−fh,t

¢
≡
¡

s
Xh,s

¢
. Interestingly, (??) can be written as:

PRL

½
Dt+s

Dt
=(1+gh)

(fhh,t+s−fhh,t)+(flh,t+s−flh,t)(1+gl)
(fhl,t+s−fhl,t)+(fll,t+s−fll,t) | π̂hh,t, π̂ll,t, Nt, gt=i

¾

=
X

α∈A(s,,fhh,t+s,fll,t+s)

hQfαih,t+q−fαih,t−1
k=0 (nih,0+f

α
ih,t + k)

i hQs−fαih,t+q−fαih,t−1
k=0 (Ni,0 − nih,0+f

α
il,t + k)

i
Qs−1

k=0(Ni,0 + fαil,t + fαih,t + k)
. (35)

For instance,

PRL {h, l|π̂hh,t, π̂ll,t, Nt, gt=h} =

hQ0
k=0 nhh,0 + fαhh,t + k

i hQ0
k=0(Ni,0 − nhh,0 + fαhl,t + k)

i
Q1

k=0(Nh,0 + fαhl,t + fαhh,t + k)

=
nhh,0 + fαhh,t

Nh,0 + fαhl,t + fαhh,t
×

nhl,0 + fαhl,t
Nh,0 + fαhl,t + fαhh,t + 1

=
nhh,0 + fαhh,t

Nh,0 + fαhl,t + fαhh,t
×

Nh,0 − nhh,0 + fαhl,t
Nh,0 + fαhl,t + fαhh,t + 1

.

When state transitions are independent of the current state so P{gh|zt} = π ∈ (0, 1) ∀t, (35) reduces to
(20). For instance, using our example,

PRL {h, l|π̂t, Nt} =
nh,0 + fαh,t

Nh,0 + fαl,t + fαh,t
×

Nh,0 − nh,0 + fαl,t
Nh,0 + fαl,t + fαh,t + 1

=
n0 + nt

N0 + nt + (t− nt)
× N0 − n0 + (t− nt)

N0 + t+ 1
=

n0 + nt
N0 + t

× N0 − n0 + (t− nt)

N0 + t+ 1
.

32For instance, when s = 2, the four expressions

PRL {h, l|π̂hh,t, π̂ll,t,Nt, gt=h} =
nhh,0 + fhh,t

Nh,0 + fαhl,t + fαhh,t
× nhl,0 + fhl,t

Nh,0 + fαhl,t + fαhh,t+1

PRL {l, h|π̂hh,t, π̂ll,t,Nt, gt=h} =
nhl,0 + fhl,t

Nh,0 + fαhl,t + fαhh,t
× nlh,0 + flh,t

Nl,0 + fαll,t + fαlh,t

PRL {h, l|π̂hh,t, π̂ll,t,Nt, gt=l} =
nlh,0 + flh,t

Nl,0 + fαlh,t + fαll,t
× nhl,0 + fhl,t

Nh,0 + fαhl,t + fαhh,t

PRL {l, h|π̂hh,t, π̂ll,t,Nt, gt=l} =
nll,0 + fll,t

Nl,0 + fαlh,t + fαll,t
× nlh,0 + flh,t

Nl,0 + fαlh,t + fαll,t+1

are all different. The sum of the first two probabilities gives PRL Dt+s
Dt

=(1+gh)(1+gl) | π̂hh,t, π̂ll,t, Nt, gt=h , while the sum

of the last two gives PRL Dt+s
Dt

=(1+gh)(1+gl) | π̂hh,t, π̂ll,t,Nt, gt=l .
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Subject to a transversality condition and ρ > {g∗l , g∗h}, the stock price under RL is then

SRL
t (gt = i) =

⎧⎨⎩
∞X
s=1

βs
X

α∈A(s,fhh,t+s,fll,t+s)
G∗s(f

α
hh,t+s, f

α
ll,t+s)×

×PRL

µ
I{gαt+1=gjt+1 ,gt=gi}, ..., I gαt+s=g

α
jt+s

,gαt+s−1=g
α
it+s−1

| π̂hh,t, π̂ll,t, Nt, gt = i

¶¾
·Dt

where

G∗s(f
α
hh,t+s, f

α
ll,t+s) ≡ (1 + g∗h)

(fαhh,t+s−fhh,t)+(fαlh,t+s−flh,t)(1 + g∗l )
(fαhl,t+s−fhl,t)+(fαll,t+s−fll,t)

corresponds to the s-step intertemporal marginal rate of substitution over the sample path {I{gαt+1=gjt+1 ,gt=gi},
..., I

gαt+s=g
α
jt+s

,gαt+s−1=g
α
it+s−1

}.

Generalizing Proposition 5 to show that SBL
t = SRL

t and BBL
t = BRL

t requires re-writing the BL stock

price as follows:

SBL
t (gt=i) =

⎧⎨⎩
∞X
s=1

βs
X

α∈A(s,fhh,t+q ,fll,t+q)
G∗s(f

α
hh,t+s, f

α
ll,t+s)

"
I{gαt+q=gh}

Γ (nhl,0+fhl,t+nhh,0 + fhh,t)Q
k=l,h Γ (nhk,0 + fhk,t)

×
Z 1

0

Z 1

0
π
nhh,0+f

α
hh,t+q

hh π
nhl,0+f

α
hl,t+q

hl dπhhdπhl+I{gαt+q=gl}
Γ (nll,0+fll,t+nlh,0+flh,t)Q

k=l,h Γ (nlk,0 + flk,t)

×
Z 1

0

Z 1

0
π
nlh,0+f

α
lh,t+q

lh π
nll,0+f

α
ll,t+q

ll dπlhdπll

¸¾
·Dt.

The BL price implies evaluating integrals of the form

Γ (nil,0 + fil,t + nih,0 + fih,t)Q
k=l,h Γ (nik,0 + fik,t)

Z 1

0

Z 1

0
π
nih,0+f

α
ih,t+q

ih π
nil,0+f

α
il,t+q

il dπihdπil i = l, h, ∀α ∈ A(s, fhh,t+q, fll,t+q).

Because πih + πil = 1, this remains the kernel of a bivariate beta distribution:

Γ
³
nil,0 + fαil,t + nih,0 + fαih,t

´
Q

k=l,h Γ
³
nik,0 + fαik,t

´ Γ
³
nih,0 + fαih,t+q

´
Γ
³
nil,0 + fαil,t+q

´
Γ
³
nih,0 + fαih,t+q + nil,0 + fαil,t+q

´
=

Γ
³
nil,0 + fαil,t + nih,0 + fαih,t

´
Γ
³
nih,0+f

α
ih,t

´
Γ
³
Ni,0 − nih,0+f

α
i,t − fαih,t

´ Γ
³
nih,0+f

α
ih,t+q

´
Γ
³
Ni,0-nih,0+f

α
i,t+q − fαih,t+q

´
Γ
³
nih,0 + fαih,t+q + nil,0 + fαil,t+q

´ .(36)

Equation (36) is similar to expressions appearing in the proof of Proposition 5 (see the Appendix), with t

replaced by fil,t+fih,t (the total number of recorded transitions from state i = l, h up to time t), j replaced

by fαih,t, n0 by nih,0, N0 by nil,0 + nih,0, and i by fαih,t+q − fαih,t. Therefore (36) can be written ashQfαih,t+s−fαih,t−1
q=0 nih,0 + fαih,t + q

i hQs−fαih,t+q−fαih,t−1
q=0 (Ni,0 − nih,0 + fαil,t + q)

i
Qs−1

q=0(Ni,0 + fαil,t + fαih,t + q)
,

which is the same as (35). Since, for all s ≥ 0, the RL probabilities coincide with those under the BL
predictive density for the relevant transition probabilities, it follows that SBL

t = SRL
t and BBL

t = BRL
t .
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Although the complexity of the notations increases in K, a similar logic could be applied to prove that

BL and RL asset prices coincide when the BL prior is taken to be an appropriate matrix Beta for the

general case with an m−th order Markov chain and K > 2 states.

The results so far demonstrated that equilibrium prices under BL and RL are identical for suitable

choices of the priors that are conjugate with respect to the dividend process. When {gt} follows a binomial
lattice, the prior should be Beta; when {gt} follows a general multinomial tree with K possible states, the

prior should be Dirichlet, a vector generalization of a Beta; when {gt} follows a first-order Markov process
with unknown transition probability matrix, the suitable prior is a matrix Beta, a further multivariate

generalization of the standard Beta. One may therefore conjecture that the use of a conjugate prior might

be at least sufficient (if not necessary) for BL and RL equilibrium prices to be identical. This conjecture

is, however, incorrect and it is easy to construct counter-examples where this does not hold.33

7.3. Heterogeneity

Our analysis has explored the implications of various learning schemes for equilibrium asset prices under

the simplifying assumption that only the learning of the ‘average’, representative agent matters. Extending

our results on the differential impact of alternative learning schemes to cover heterogeneous agents runs

into three complications. First, heterogeneity may give agents an incentive to learn from the observed

(aggregate) market outcomes. While this does not pose any principal difficulties, in practice it becomes

more difficult to characterize the equilibrium. Second, strategic incentives may emerge if a group of agents

realize that equilibrium market outcomes depend on their own beliefs and actions. Third, existing papers

focus on the effect of heterogeneity in beliefs, while other forms of heterogeneity−chiefly in preference
parameters−may matter. Results in Constantinides (1982) suggest that problems caused by heterogeneity
in beliefs get compounded with possible differences in preferences.

Heterogeneity is undoubtedly important in practice, so it is worthwhile briefly considering how our

results might be altered by such effects. Since we work with power utility, results in Rubinstein (1974)

imply that an aggregation result holds whereby a representative agent exists if all individuals populating

the economy have identical time preference parameters {ρi}Ii=1, identical coefficients of relative risk aver-
sion {γi}Ii=1, and identical beliefs.34 These are strong restrictions, not very dissimilar from imposing the

existence of a single agent. Moreover, even if one found these assumptions acceptable, it would not resolve

issues such as the no-trade theorem which implies a zero trading volume in this type of model.

Recent papers provide pointers for how investor heterogeneity may affect equilibrium asset prices.

33Under Gaussian IID dividend growth, the perceived distribution for the s−step cumulative dividend growth under BL or
RL differ for s ≥ 2. While for s = 1 the rational learner will believe that the predictive density for Dt+1/Dt is Gaussian, for

s ≥ 2 the predictive distribution of future dividend growth rates fails to be Gaussian and is instead a mixture of Gaussian

variables, with mixing weights that depend on future realizations of the dividend growth rate.
34These assumptions can be relaxed under log-utility (γ = 1), since markets are complete (learning does not affect equilibrium

outcomes in this case): aggregation would follow simply from imposing that all individuals have identical resources and time

preference parameters, see Rubinstein (1974, p. 232). Otherwise markets are complete under FI (see Cox et al. (1979)),

although they are possibly perceived as incomplete on a rational learning path (i.e. for finite T ) because the risk posed by

future variations in the price-dividend ratio is not tradable.
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Kurz et al. (2005) present a model in which the dynamics of diversity of beliefs is the primary propagation

mechanism in asset markets. In their model the distribution of the conditional probabilities of future market

states is an endogenous element of the state vector. Interestingly, this requires that each investor must

forecast the beliefs of the other investors, which is a typical Keynesian “Beauty Contest” effect. Calibrations

suggest that such a model is successful not only at matching moments of asset returns (including the equity

premium), but also can match the predictability features of US stock returns and generate stochastic

volatility. A key difference between this paper and ours is that Kurz et al. (2005) use the rational belief

principle in Kurz (1994) to model how agents use subjective models.

Dumas et al. (2005) study a filtering problem with two classes of agents that receive a public signal that

is informative about future dividend growth. One class of agents uses the correct model specification while

the other uses a misspecified model and overreacts to information, alternating between being excessively

pessimistic and optimistic. When the rational traders fail to dominate the economy, asset prices can be

strongly affected by the overconfident agents and prices become excessively volatile. Moreover, irrational

traders may survive for a long time before being driven out of the market by the rational investors−see
also Buraschi and Jiltsov (2005).

8. Conclusion

We have characterized equilibrium asset prices under three learning schemes in the context of an infinite-

horizon equilibrium model where dividends evolve on a binomial lattice and agents have power utility.

Since asset prices are a function of agents’ beliefs, the probability distribution of asset prices reflect agents’

learning.

The binomial lattice model analyzed in this paper is the standard tool used to derive the Black-Scholes

option pricing formula as the continuous time limit of a discrete time model. When learning is introduced

into the model, option prices will change because the level and volatility of the underlying asset price

change. Empirical researchers have found systematic biases when attempting to fit the Black Scholes

model to a cross-section of option prices. Guidolin and Timmermann (2003) derive option prices based on

the recursive learning model discussed here and find that the model is able to generate implied volatility

smiles. They find that option pricing models that incorporate recursive learning effects produce equally

good or better forecasts than several benchmarks provided by the empirical option pricing literature.

Although learning will disappear asymptotically in the current setting (see the discussion in Lewellen

and Shanken (2002)), it is easy to modify the setup to prevent this from happening. For example, the true

π may be subject to occasional structural breaks which would reset the learning clock so learning effects do

not die out but recur after a break (c.f. Timmermann (2001) and Beck and Wieland (2002)). Alternatively

agents may believe that the true value of π is subject to slow changes and use a rolling window rather than

an expanding window to estimate π as a means of robustifying their beliefs with respect to nonstationarities

in the fundamentals process. These extensions are trivial conceptually, but complicate the derivation of

asset prices. For example, the use of a rolling estimation window for π introduces path dependence in

agents’ beliefs and makes an analytical treatment difficult.
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Appendix A

Derivation of Equation (22). Let Xt+k be a counter that measures the number of realizations of the

high-growth state up to period t+ k:

Xt+k = Xt+k−1 + ιt+k, k ≥ 1.

Here ιt+k is an indicator function taking the value one if the high growth state occurs in period t+ k, and

zero otherwise. The compound probability of a particular path of states between periods t + 1 and t + s

equals
s−1Q
k=0

jt+k{Xt+k, Nt + k −Xt+k}

j−1Q
k=0

(Nt + k)

,

where jt+k{a, b} is a selection operator that takes the value a if the high growth state occurred at time
t+ k, otherwise is b. (Nt+ k−Xt+k) increases by one each time the low growth state appears, so all paths

with the same number of low growth states between periods t + 1 and t + k have the same probability.
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Equation (22) follows since there are
¡
s
i

¢
different paths with i up-states and (s− i) down-states occurring

between t+ 1 and t+ s. 2

Proof of Proposition 1. Iterating on the Euler equation (8), from the law of iterated expectations

SFI
t = Et [Qt+1(St+1 +Dt+1)] =

TX
s=1

Et

"Ã
sY

k=1

Qt+k

!
Dt+s

#
+Et

"Ã
TY

k=1

Qt+k

!
St+T

#
.

Taking the limit as T → ∞, imposing the transversality condition limT→∞Et[(
QT

k=1Qt+k)St+T ] =0, and

dividing and multiplying by Dt, we obtain

SFI
t =

∞X
s=1

Et

"Ã
sY

k=1

Qt+k

!
Dt+s

#
= Dt

∞X
s=1

Et

"
sY

k=1

Qt+k
Dt+k

Dt+k−1

#
= ΨFI(gh, gl, π, γ, ρ)Dt.

Under power utility the pricing kernel is Qt+k = β (1 + gt+k)
−γ . Using that dividend growth follows an

i.i.d. two-point distribution, we have

ΨFI(gh, gl, π, γ, ρ) =
∞X
s=1

(1 + ρ)−s
sY

k=1

h
π (1 + gh)

1−γ + (1− π) (1 + gl)
1−γ
i
=
1 + g∗l + π (g∗h − g∗l )

ρ− g∗l − π
¡
g∗h − g∗l

¢ .
Here we used that ρ > g∗l + π (g∗h − g∗l ) guarantees that the sum converges and is positive. Since gl >

−1, it follows that Et[(1 + gt+k)
1−γ ] = 1 + g∗l + π (g∗h − g∗l ) > 0. Finally, we check if the transversality

condition limT→∞Et[
QT

k=1Qt+k St+T ] = 0 imposes additional restrictions on the parameter space. From

the definition of Qt+k and the expression for St+T , we have

Et

("
TY

k=1

Qt+k

#
St+T

)
= Et

("
βT

TY
k=1

(1 + gt+k)
−γ
#
ΨFI

TY
k=1

(1 + gt+k)
−γ Dt

)

= ΨFIDt

½
1 + g∗l + π (g∗h − g∗l )

1 + ρ

¾T

.

In the limit as T →∞, this is zero if and only if ρ > g∗l + π (g∗h − g∗l ) , as assumed.

The equilibrium risk-free rate follows from the Euler equation (9):

BFI
t = Et

£
β(1 + gt+1)

−γ¤ = (1 + gl)
−γ + π [(1 + gh)

−γ − (1 + gl)
−γ ]

1 + ρ
.

Since 1 + gt+1 is positive, ρ > −1 is necessary and sufficient to obtain a positive bond price. Under the
restriction 1+ρ > (1+gl)

−γ+π [(1 + gh)
−γ − (1 + gl)

−γ] , BFI < 1 and the risk-free rate is always positive.

But this is satisfied as 1 + ρ > 1 + g∗l + π (g∗h − g∗l ) = Et[(1 + gt+k)
1−γ]. 2

Proof of Lemma 1. The Bayes risk of δ is

Λ(π, δ) =

Z
Π

Z
Dt

L(π, δ(Dt))p(π|Dt)m(Dt)dDtdπ

=

Z
Dt

∙Z
Π
L(π, δ(Dt))p(π|Dt)dπ

¸
m(Dt)dDt =

Z
Dt

Λ(π, aj)m(Dt)dDt.

Since âj minimizes Λ(π, δ(D
j
t )), then δp = â ≡ [â0 â1 ... ât]0 also minimizes Λ(π, δ). 2
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Proof of Proposition 2. Using the Euler equation (8), taking the limit as T →∞ under the transversality

condition, we obtain

SRL
t = Dt · limT→∞

½
TP
s=1

βs
sP

i=0
(1 + g∗h)

i(1 + g∗l )
s−iPRL

¡
Di
t+s|bπt,Nt

¢¾
= Dt ·ΨRL

t (bπt, Nt; gh, gl, γ, ρ).

The bond price follows directly from (9) and using ρ > −1, 0 ≤ bπt ≤ 1:
fRLt = − lnBRL

t (bπt) = lnÃ 1 + ρ

(1 + gl)−γ + bπt £(1 + gh)
−γ−(1 + gl)

−γ¤
!
.

The final part of the result is the convergence of the infinite sum (21) or, equivalently, the existence of the

RL equilibrium. ρ > g∗l is necessary and sufficient for the equilibrium to exist when γ > 1. Indeed, when

γ > 1, g∗l > g∗h so the highest price arises when PRL
¡
D0
t+s|nt, Nt

¢
= 1. ΨRL

t =
P∞

s=1

³
1+g∗l
1+ρ

´s
converges

to
1+g∗l
ρ−g∗l

if and only if ρ > g∗l . When pricing the stock, agents must also integrate over the sequence of

degenerate distributions PRL
¡
D0
t+s|nt, Nt

¢
= 1, so ρ > g∗l is necessary and sufficient. When γ < 1, ρ > g∗h

is necessary and sufficient. In this case g∗h > g∗l , so the highest price arises when PRL
¡
Ds
t+s|nt, Nt

¢
= 1.

ΨRL
t converges to

1+g∗h
ρ−g∗h

if and only if ρ > g∗h. Since this inequality must hold for all future periods, ρ > g∗h
is necessary and sufficient for existence of the equilibrium when γ < 1. Since

max {g∗l , g∗h} =
(

g∗h
g∗l

if γ < 1

if γ > 1
,

ρ > max {g∗l , g∗h} is necessary and sufficient for the equilibrium to exist.35 2

Proof of Proposition 3. The Euler equations under BL are

SBL
t = Eπ|Dt

{Et,π [Qt+1(St+1 +Dt+1) | Dt, π]}
BBL
t = Eπ|Dt

{Et,π [Qt+1 | Dt, π]} ,

where Et,π[·] is the expectation conditional on Dt and π. Throughout the proof we suppress the dependence

of Dt on j, the number of ‘up’ moves. Iterating on these Euler equations, we have:

SBL
t = Eπ|Dt

©
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£
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©
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,

where we used that

Et,π [p(π|Dt+k)] = p(π|Dt) ∀k ≥ 0,
35When γ = 1, g∗h = g∗l = 0, and ρ > 0 is sufficient for the equilibrium to exist since the pricing kernel simplifies to

ΨRL =
∞

s=1

βj
s

i=1

PRL Di
t+s|nt,Nt =

∞

s=1

βs =
1

ρ
= ΨFI .
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is a martingale process (c.f. Bray and Kreps (1987, p. 609)). In the limit as T →∞, from the transversality
condition limT→∞Et,π[(

QT
k=1Qt+k)St+T ] = 0, we obtain

SBL
t = DtEπ|Dt

( ∞X
s=1

Et,π

"
sY

k=1

Qt+k
Dt+k

Dt+k−1

#)
= DtEπ|Dt

[Ψt,π(gh, gl, γ, ρ)] ,

so the stock price under Bayesian learning is

SBL
t = DtEπ|Dt

"
1 + g∗l + π (g∗h − g∗l )

ρ− g∗l − π
¡
g∗h − g∗l

¢# = Dt

Z 1
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¡
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¢πj+n0−1(1− π)t+N0−n0−j−1dπ.

The equilibrium risk-free rate follows from the Euler equation for BBL
t :

BBL
t =

Z 1

0

(1 + gl)
−γ + π [(1 + gh)

−γ − (1 + gl)
−γ ]

1 + ρ
p(π|Dt)dπ =

(1 + gl)
−γ + π̂t [(1 + gh)

−γ − (1 + gl)
−γ ]

1 + ρ
.

where π̂t ≡ n0+j
N0+t

and we used that π|Dj
t ∼ beta(c, d), soZ 1

0
πp(π|Dt)dπ = E[π|Dj

t ] =
c

c+ d
.

Once again, BBL
t (j) < 1 and the risk-free rate is always positive. 2

Proof of Corollary 1. Under the RL equilibrium, the gross return on the stock index is

St+1 +Dt+1

St
=
(1 +ΨRL

t+1)Dt+1

ΨRL
t Dt

.

When γ = 1, ΨRL
t = ΨFI = 1

ρ . When γ < 1, using a result from Proposition 7 it follows that under

pessimism (π̂t < π) ΨRL
t < ΨFI , while optimism (π̂t ≥ π) leads to ΨRL

t ≥ ΨFI . When γ > 1, pessimism

implies ΨRL
t > ΨFI , while optimism means ΨRL

t ≤ ΨFI .

It is straightforward to prove that, under FI, gh > gl > −1 is sufficient for the absence of arbitrage
opportunities. The strategy of our proof therefore consists of establishing, when possible, FI bounds for

RL gross stock returns. When these bounds cannot be proved, the conditions in Corollary 1 are required

to prevent the existence of arbitrage opportunities. When γ = 1, FI and RL stock prices coincide so

that no further conditions are needed. For γ 6= 1, we study four different cases, using the definitions

π̂ut+1 ≡ 1
Nt+1

(Ntπ̂t + 1) and π̂dt+1 ≡ Nt
Nt+1

π̂t.

(a) γ < 1 and π̂t < π. ΨRL
t < ΨFI and ΨRL

t+1 is increasing in π̂t+1 (see Proposition 7), so

1 +ΨRL(π̂ut+1, Nt + 1)

ΨRL(π̂t, Nt)
(1 + gh) >

1 +ΨRL(π̂t,Nt)

ΨRL(π̂t, Nt)
(1 + gh)

=

∙
1 +

1

ΨRL(π̂t,Nt)

¸
(1 + gh) >

∙
1 +

1

ΨFI

¸
(1 + gh).

The absence of arbitrage opportunities under FI is sufficient for the right hand side of this equation to hold

under the stated assumptions, i.e. using π̂t < π and (1 + gh)
−γ < (1 + gl)

−γ :∙
1 +

1

ΨFI

¸
(1 + gh) >

1 + ρ

(1 + gl)−γ + π [(1 + gh)−γ − (1 + gl)−γ ]
>

1 + ρ

(1+gl)−γ + bπt [(1+gh)−γ − (1+gl)−γ ] ,
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However this does not hold for the left hand side of (23) so we must impose the restriction

1 +ΨRL(π̂dt+1, Nt + 1)

ΨRL(π̂t,Nt)
(1 + gl) <

1 + ρ

(1 + gl)−γ + bπt [(1 + gh)−γ − (1 + gl)−γ]
.

(b) γ < 1 and π̂t ≥ π. ΨRL
t ≥ ΨFI and ΨRL

t+1 is increasing in π̂t+1, so

1 +ΨRL(π̂dt+1, Nt + 1)

ΨRL(π̂t,Nt)
(1 + gl) <

1 +ΨRL(π̂t, Nt)

ΨRL(π̂t, Nt)
(1 + gl)

=

∙
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1
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¸
(1 + gl) ≤

∙
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1

ΨFI

¸
(1 + gl).

By arguments similar to those in (a), absence of arbitrage opportunities under FI implies their absence

under rational learning as well. However this does not hold for the right hand side of (23) and restrictions

on the parameters must be imposed.

(c) γ > 1 and π̂t < π. Since ΨRL
t > ΨFI and ΨRL

t+1 is decreasing in π̂t+1, a series of inequalities similar

to those in (b) imply that absence of arbitrage opportunities under FI is sufficient for the left hand side of

the rational learning no-arbitrage conditions to hold. This does not hold for the right hand side.

(d) γ > 1 and π̂t ≥ π. Since ΨRL
t ≤ ΨFI and ΨRL

t+1 is decreasing in π̂t+1, a series of inequalities identical

to those in (a) imply that the absence of arbitrage opportunities under FI guarantees that the right hand

side of (23) holds. This does not apply to the left hand side.

When γ < 1, (a) - (b) imply that on a rational learning path where optimism and pessimism can

alternate, the condition in the corollary should be imposed and checked at all nodes of the binomial lattice.

(c) and (d) have the same implication when γ > 1. 2

Proof of Proposition 4. Under the assumed transversality condition, the BL stock price is36

SBL
t = DtEπ|Dt

( ∞X
s=1

Et,π

"
sY

k=1

Qt+k
Dt+k

Dt+k−1

#)

= Dt

∞X
s=1

Z 1

0

"
sX

i=0

βs (1 + g∗l )
s−i (1 + g∗h)

i

µ
s

i

¶
(1− π)s−iπi

#
p(π|Dt)dπ

= Dt

∞X
s=1

sX
i=0

βs (1 + g∗l )
s−i (1 + g∗h)

i
Z 1

0

µ
s

i

¶
(1− π)s−iπi

× Γ(N0 + t)

Γ(j + n0)Γ(t+N0 − n0 − j)
πj+n0−1(1− π)t+N0−n0−j−1dπ.

The integral is Z 1

0

µ
s

i

¶
Γ(N0 + t)

Γ(j + n0)Γ(t+N0 − n0 − j)
πj+i+n0−1(1− π)t+N0+s−n0−j−i−1dπ

=

µ
s

i

¶
Γ(N0 + t)

Γ(j + n0)Γ(t+N0 − n0 − j)

Z 1

0
πj+i+n0−1(1− π)t+N0+s−n0−j−i−1dπ

=

µ
s

i

¶
Γ(N0 + t)

Γ(n0 + j)Γ(N0 + t− n0 − j)

Γ(j + i+ n0)Γ(t+N0 + s− n0 − j − i)

Γ(N0 + t+ s)
,

36Throughout, we suppress the dependence of Dt on j (the number of ‘up’ moves).
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since
R 1
0 π

j+i+n0−1(1− π)t+N0+s−n0−j−i−1dπ is a beta function βf(c, d) and βf(c, d) = Γ(c)Γ(d)/Γ(c+ d).

The last line is the probability function of a beta-binomial distribution with parameters (s,N0 + t,N0 +

t− n0 − j). Defining PBL(Dt+s) as this discrete probability distribution,

PBL(Dt+s = (1 + gl)
t+s−j+i(1 + gh)

j+iD0)

=

µ
s

i

¶
Γ(N0 + t)

Γ(n0 + j)Γ(N0 + t− n0 − j)

Γ(j + i+ n0)Γ(t+N0 + s− n0 − j − i)

Γ(N0 + t+ s)
,

the equilibrium stock price under BL can be written as:

SBL
t (j) = Dj

t

" ∞X
s=1

sX
i=0

βs (1 + g∗l )
s−i (1 + g∗h)

i PBL(Di
t+s)

#
. 2

Proof of Proposition 5. Comparing PRL to the expression for PBL, the only difference between the

asset price under rational and Bayesian learning arises from the terms

µ
s

i

¶
×

i−1Q
k=0

(n0 +
Pt

j=1 I{gj=gh} + k)
s−i−1Q
k=0

(N0 − n0 + t−
Pt

j=1 I{gj=gh} + k)

s−1Q
k=0

(N0 + t+ k)

and the ratios of gamma products

Γ(N0 + t)

Γ(n0 + j)Γ(N0 + t− n0 − j)

Γ(j + i+ n0)Γ(t+N0 + s− n0 − j − i)

Γ(N0 + t+ s)
.

While these terms may appear to be very different, notice that

Γ(N0 + t)

Γ(n0 + j)Γ(N0 + t− n0 − j)

Γ(j + i+ n0)Γ(t+N0 + s− n0 − j − i)

Γ(N0 + t+ s)

= [(t+N0 + s− n0 − j − i− 1)× (t+N0 + s− n0 − j − i− 2)× ...× (N0 + t− n0 − j)]

× [(n0 + j + i− 1)× (n0 + j + i− 2)× ...× (n0 + j)]

(N0 + t+ s− 1)× (N0 + t+ s− 2)× ...× (N0 + t)

=

∙
i−1Q
k=0

(n0 +
Pt

k=1 I{gk=gh} + k)

¸ ∙
s−i−1Q
k=0

(t− n0 −
Pt

k=1 I{gk=gh} + k)

¸
Qs−1

k=0(N0 + t+ k)
,

where we used
Pt

k=1 I{gk=gh} = j. Hence PRL {Dt+s} = PBL(Dt+s) and the BL stock price is

SBL
t = Dj

t

" ∞X
s=1

sX
i=0

βs (1 + g∗l )
s−i (1 + g∗h)

i PRL(Dt+s)

#
.

The second part of the proof follows from noting that the above factorization does not work if a non-beta

prior is used. 2

Proof of Proposition 6. We need to establish conditions under which the compound probability of i

up-states and s− i down-states under the rational learning rule exceeds the probability under the adaptive
learning rule. This holds when

µ
s

i

¶
·

i−1Q
k=0

(nt + k)
s−i−1Q
k=0

(Nt − nt + k)

s−1Q
k=0

(Nt + k)

>

µ
s

i

¶
·

i−1Q
k=0

nt
s−i−1Q
k=0

(Nt − nt)

s−1Q
k=0

Nt

, i = 0, ..., s.
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Dividing through by the expression on the right hand side and taking logarithms, we get

i−1X
k=0

ln

µ
1 +

k

nt

¶
+

s−i−1X
k=0

ln

µ
1 +

k

Nt − nt

¶
−

s−1X
k=0

ln

µ
1 +

k

Nt

¶
> 0.

It is easily verified that this expression is positive when i is either very large (“close to s”) or very small

(“close to zero”). Also, the expression is monotonically decreasing as a function of i for i < (s− 1)nt/Nt,

and increases for i > (s− 1)nt/Nt. Both sides of the first inequality sum up to one and the left hand side

has larger probability mass in the tails, so it follows that the probability distribution over the proportion

of up-states under RL is a mean-preserving spread relative to the probability distribution under AL. 2

Proof of Proposition 7. Consider the RL pricing kernel,

ΨRL(π̂t, Nt) ≡
∞X
s=1

βs
sX

i=0

(1 + g∗h)
i(1 + g∗l )

s−iPRL (i|bπt, Nt) =
∞X
s=1

βs(1 + g∗l )
s

sX
i=0

αiPRL (i|bπt, Nt) ,

where α ≡ 1+g∗h
1+g∗l

and PRL (i|bπt, Nt) ≡ PRL
¡
Dt+s = (1 + gh)

i(1 + gl)
s−i|bπt, Nt

¢
. Clearly, α T 1 if and only

if γ S 1. Fix s ≥ 1, so
sX

i=0

αiPRL (i|bπt, Nt) = E
£
αi|bπt, Nt

¤
,

where i is the number of up moves of the dividend out of a total of s steps. i is a realization of a random

variable with discrete distribution {PRL (i|bπt, Nt)}Ti=0.
When γ < 1, α > 1 so αi is strictly increasing in i. For bπ0t > bπt, E £αi|bπ0t,Nt

¤
> E

£
αi|bπt, Nt

¤
, and

ΨRL(π̂0t, Nt) =
∞X
s=1

βs(1 + g∗l )
sE
£
αi|bπ0t, Nt

¤
>

∞X
T=1

βs(1 + g∗l )
sE
£
αi|bπt, Nt

¤
= ΨRL(π̂t, Nt).

The RL pricing kernel is therefore monotonically increasing in π̂t. Conversely, when γ > 1, α < 1 and αi

is strictly decreasing in i. It then follows that ΨRL(π̂0t, Nt) < Ψ
RL(π̂t, Nt), as claimed.

To establish convexity of ΨRL(π̂t, Nt), we need to show that

π̂tΨ
RL(π̂u) + (1− π̂t)Ψ

RL(π̂d) > ΨRL
³
π̂tπ̂

u + (1− π̂t)π̂
d
´
= ΨRL (π̂∗) = ΨRL (π̂t) ,

where π̂d = π̂t − 1
Nt
and π̂u = π̂t +

1
Nt
. The last equality follows from

π̂∗ = π̂tπ̂
u + (1− π̂t)π̂

d =
nt
Nt

nt + 1

Nt
+

Nt − nt
Nt

nt − 1
Nt

=
nt
Nt

∙
nt + 1

Nt
+

Nt − nt
Nt

− 1

Nt

¸
= π̂t.

To verify the inequality, notice that

π̂tΨ
RL(π̂u) =

∞X
s=1

βs
sX

i=0

(1+g∗h)
i(1+g∗l )

s−i
∙
π̂t
nt + i

nt

Nt − nt − 1
Nt − nt + s− i− 1

¸
PRL(i|π̂t),

(1− π̂t)Ψ
RL(π̂d) =

∞X
s=1

βs
sX

i=0

(1+g∗h)
i(1+g∗l )

s−i
∙
(1− π̂t)

nt-1

nt + i-1

Nt-nt+s-i

Nt-nt

¸
PRL(i|π̂t).
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Adding these together, we have

π̂tΨ
RL(π̂u) + (1− π̂t)Ψ

RL(π̂d) =
∞X
s=1

βs
sX

i=0

(1 + g∗h)
i(1 + g∗l )

s−iPRL(i|π̂t)

×
∙
π̂t
nt + i

nt

Nt − nt − 1
Nt − nt + s− i− 1 + (1− π̂t)

nt − 1
nt + i− 1

Nt − nt + s− i

Nt − nt

¸
.

The probability distribution

P̆RL(i|π̂t) ≡ PRL(i|π̂t)
∙
nt + i

nt

Nt − nt − 1
Nt − nt + s− i− 1 +

nt − 1
nt + i− 1

Nt − nt + s− i

Nt − nt

¸
can be shown to represent a mean-preserving spread of PRL

t (j|π̂t):

sX
i=0

"£
π̂tπ̂

u
t + (1− π̂t)π̂

d
t

¤
Nt + i

Nt + s

#
P̆RL
t (i|π̂t)

= π̂t

sX
i=0

∙
π̂utNt + i

Nt + s

¸µ
s

i

¶Qi
k=0(nt + k + 1)

Qs−i−1
k=0 (Nt − nt + k − 1)Qs

k=0(Nt + k)

+ (1− π̂t)
sX

i=0

"
π̂dtNt + i

Nt + s

#µ
s

i

¶Qi
k=0(nt + k − 1)

Qs−i−1
k=0 (Nt − nt + k + 1)Qs

k=0(Nt + k)
= π̂tπ̂

u
t + (1− π̂t)π̂

d
t = π̂t.

This has the same mean as PRL(j|π̂t). However, the term∙
π̂t
nt + i

nt

Nt − nt − 1
Nt − nt + s− i− 1 + (1− π̂t)

nt − 1
nt + i− 1

Nt − nt + s− i

Nt − nt

¸
is greater than one when i is either close to zero or s and is otherwise less than one, showing that probability

mass is shifted from the center of the distribution to the tails. Further calculations show that as long as i is

small, P̆RL
t (i|π̂t) > PRL

t (i|π̂t). Likewise, it is possible to show that when i is large, P̆RL
t (i|π̂t) > PRL

t (i|π̂t).
Since π̂tΨ

RL(π̂ut ) + (1 − π̂t)Ψ
RL(π̂dt ) is an infinite sum involving terms such as

Ps
i=0(1 + g∗h)

i(1 +

g∗l )
s−iP̆RL(i|π̂t), the function h(i) = (1 + g∗h)

i(1 + g∗l )
s−i (i ≤ s) is increasing and convex in i, and

P̆RL
t (i|π̂t) is a mean preserving spread of PRL

t (i|π̂t). Moving probability mass to the good states (1 + g∗h)

thus more than compensates shifting mass to the bad states (1 + g∗l ) and the result follows from

π̂tΨ
RL(π̂u) + (1− π̂t)Ψ

RL(π̂d) =
∞X
s=1

βs
sX

i=0

(1 + g∗h)
i(1 + g∗l )

s−iP̆RL(i|π̂t) >

>
∞X
s=1

βs
sX

i=0

(1 + g∗h)
i(1 + g∗l )

s−iPRL(i|π̂t) = ΨRL(π̂t).

When γ = 1, the proof is trivial since ΨRL(bπt) = 1
ρ , so Ψ

RL
t is a constant that does not depend on bπt and

therefore is convex.

When γ > 1, (1 + g∗h) < (1 + g∗l ) so bπ0t > bπt shifts probability mass from the good to the bad state.

Therefore ΨRL
t decreases in bπt. Since π̂tΨRL(π̂u)+ (1− π̂t)ΨRL(π̂d) is an infinite sum involving terms such

as
Ps

i=0(1+g
∗
h)

s(1+g∗l )
s−iP̆RL(i|π̂t), the function h(i) = (1+g∗h)i(1+g∗l )s−i (i ≤ s) is decreasing and convex

in i, and P̆RL(i|π̂t) is a mean preserving spread of PRL(i|π̂t). It follows that moving probability mass to the
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‘good’ states more than compensates shifting mass to the ‘bad’ states so that π̂tΨ
RL(π̂u)+(1−π̂t)ΨRL(π̂d) >

ΨRL(π̂t). 2

Proof of Proposition 8. Returns can be expressed as

rFIt+s ≡ ln
Ã
SFI
t+s +Dt+s

SFI
t+s−1

!
= ln

∙
(1 +ΨFI)Dt+s

ΨFIDt+s−1

¸
= k + ln(1 + gt+s),

where k ≡ ln
³
1+ΨFI

ΨFI

´
is a nonlinear function of the FI price-dividend ratio. Let Cov(·) denote the

covariance under the true (but unknown) probability measure π. Now

Cov(rFIt+s, r
FI
t ) = Cov [ln(1 + gt+s), ln(1 + gt)] = 0 ∀j ≥ 1,

since the dividend growth rate is assumed to be independently distributed over time, and, for independently

distributed variables, X,Y , E(g(X)h(Y )) = E(g(X))E(h(Y )) for the functions g(·) and h(·) that we are
using. Analogously,

Cov
£
(rFIt+s)

2, (rFIt )2
¤
= Cov

³
[ln(1 + gt+j)]

2, [ln(1 + gt)]
2
´
= 0 ∀j ≥ 1.

Hence under FI, there is neither serial correlation nor heteroskedasticity in stock returns.

Under RL, stock returns can be expressed as:

rRLt+s ≡ ln
Ã
SRL
t+s +Dt+s

SRL
t+s−1

!
= ln(1 +ΨRL

t+s)− lnΨRL
t+s−1 + ln(1 + gt+s),

where ΨRL
t+s = Ψ

RL(π̂t+s, Nt+s). Furthermore

Cov(rRLt+s, r
RL
t ) = Cov

£
ln(1 +ΨRL

t+s), ln(1 +Ψ
RL
t )

¤
− Cov

£
ln(1 +ΨRL

t+s), lnΨ
RL
t−1
¤

+Cov
£
ln(1 +ΨRL

t+s), ln(1 + gt)
¤
− Cov

£
lnΨRL

t+s−1, ln(1 +Ψ
RL
t )

¤
+Cov

£
lnΨRL

t+s−1, lnΨ
RL
t−1
¤
− Cov

£
lnΨRL

t+s−1, ln(1 + gt)
¤

since Cov [ln(1 + gt+s), ln(1 + gt)] = Cov
£
ln(1 +ΨRL

t ), ln(1 + gt+s)
¤
= Cov[lnΨRL

t−1, ln(1 + gt+s)] = 0. For

all j, π̂t+s is positively correlated with π̂t:

π̂t+s =
nt+s
Nt+s

=
nt +

Ps
i=1 I{gt+i=gh}
Nt+s

=
nt

Nt
Nt+s
Nt

+

Ps
i=1 I{gt+i=gh}
Nt+s

=
1

Nt+s

"
Ntπ̂t +

sX
i=1

I{gt+i=gh}

#
.

This implies that

Cov(π̂t+s, π̂t) = E

"
Nt

Nt + s
π̂2t +

π̂t
Nt + s

sX
i=1

I{gt+i=gh}

#
− π2

=
Nt

Nt + s
E[π̂2t ] +

s

Nt + s
π2 − π2 >

Nt

Nt + s
π2 +

s

Nt + s
π2 − π2 = 0.

Unbiasedness of π̂t ensures that E[π̂t] = π, π̂t =
t
i=1 I{gi=gh}

Nt
and

Ps
i=1 I{gt+i=gh} are independent

by construction. By Jensen’s inequality, E[π̂2t ] > {E[π̂t]}2 = π2. Since ΨRL
t is a monotonic function

of π̂t, and the transformations ln(1 + Ψ
RL
t+s) and ln(Ψ

RL
t+s) are monotonically increasing, it follows that

Cov
£
ln(1 +ΨRL

t+s), ln(1 +Ψ
RL
t )

¤
and Cov

h
ln(1 +ΨRL

t+j), lnΨ
RL
t−1

i
are nonnegative. Furthermore, Cov[ln(1+
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ΨRL
t+s), ln(1+ gt)] is positive when γ < 1, and negative when γ > 1. In general Cov(rRLt+s, r

RL
t ) will therefore

be nonzero.

This result also holds for transformations of rRLt+s and rRLt , g(rRLt+s), that lend themselves to a Taylor series

expansion. Consider a first-order Taylor expansion of g(rRLt+s) around π :

g(rRLt+s) ≈ g(rRLt+s(π)) +
∂g(rRLt+s(π))

∂rRLt+s

∂ΨRL
t+s(π̂t+s)

∂π̂t+s

1

1 +ΨRL
t+s(π̂t+s)

(π̂t+s − π)

−
∂g(rRLt+s−1(π))

∂rRLt+s−1

∂ΨRL
t+s−1(π̂t+s−1)

∂π̂t+s−1

1

ΨRL
t+s−1(π̂t+s−1)

(π̂t+s−1 − π).

g(rRLt ) can be similarly expressed by means of π̂t and π̂t−1. Using this, we get

Cov
£
g(rRLt+s), g(r

RL
t )

¤
≈ Gj,0

1

1 +ΨRL
t+s(π̂t+s)

1

1 +ΨRL
t (π̂t)

Cov(π̂t+s, π̂t)

−Gj,−1
1

1 +ΨRL
t+s(π̂t+s)

1

ΨRL
t−1(π̂t−1)

Cov(π̂t+s, π̂t−1)

−Gj−1,0
1

ΨRL
t+s−1(π̂t+s−1)

1

1 +ΨRL
t (π̂t)

Cov(π̂t+s−1, π̂t)

+Gj−1,−1
1

ΨRL
t+s−1(π̂t+s−1)

1

ΨRL
t−1(π̂t−1)

Cov(π̂t+s−1, π̂t−1)

where Gj,i ≡
∂g(rRLt+j)

∂rRLt+j

∂ΨRL
t+j

∂π̂t+j

∂g(rRLt+i)

∂rRLt+i

∂ΨRL
t+i

∂π̂t+i
. Since Cov(π̂t+j , π̂t+i) ≥ 0, in general Cov(g(rRLt+j), g(rRLt )) 6= 0.

Next consider Cov
£
(rRLt+s)

2, (rRLt )2
¤
when Cov(rRLt+s, r

RL
t ) > 0. Applying the Lyapunov inequality,©

E
£
|rRLt+s · rRLt |2

¤ª 1
2 ≥ E

£
|rRLt+s · rRLt |

¤
so

E
£
(rRLt+s)

2(rRLt )2
¤
≥
©
E
£
|rRLt+s · rRLt |

¤ª2 ≥ ©E £rRLt+s · rRLt ¤ª2
.

The last inequality follows from the Cauchy-Schwarz inequality. Therefore,

Cov
£
(rRLt+s)

2, (rRLt )2
¤
= E

£
(rRLt+s)

2(rRLt )2
¤
−E[(rRLt+s)

2]E[(rRLt )2]

≥
¡
E
£
rRLt+s · rRLt

¤¢2 −E[(rRLt+s)
2]E[(rRLt )2]

=
¡
E
£
rRLt+s · rRLt

¤¢2
+
¡
E[rRLt+s]E[r

RL
t ]
¢2
-
¡
E[rRLt+s]E[r

RL
t ]
¢2
-E[(rRLt+s)

2]E[(rRLt )2]

Since g(x) = x2 is convex, Jensen’s inequality implies that:

E[(rRLt+s)
2]E[(rRLt )2] ≥ {E[rRLt+s]}2{E[rRLt ]}2 =

¡
E[rRLt+s]E[r

RL
t ]
¢2
,

so that

Cov
£
(rRLt+s)

2, (rRLt )2
¤
≥

¡
E
£
rRLt+s · rRLt

¤¢2
+
¡
E[rRLt+s]E[r

RL
t ]
¢2 − 2 ¡E[rRLt+s]E[rRLt ]

¢2
=

©
E
£
rRLt+s · rRLt

¤
−E[rRLt+s]E[r

RL
t ]
ª2

+2E
£
rRLt+s · rRLt

¤
E[rRLt+s]E[r

RL
t ]− 2

¡
E[rRLt+s]E[r

RL
t ]
¢2

=
¡
Cov[rRLt+s, r

RL
t ]
¢2
+ 2E[rRLt+s]E[r

RL
t ]Cov[rRLt+s, r

RL
t ]

= Cov[rRLt+s, r
RL
t ]

©
Cov[rRLt+s, r

RL
t ] + 2E[rRLt+s]E[r

RL
t ]
ª
.
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Clearly, when E[rRLt+s] and E[rRLt ] have the same sign and Cov
£
rRLt+s, r

RL
t

¤
> 0 it follows that Cov[(rRLt+s)

2,

(rRLt )2] > 0. 2

Proof of Proposition 9. Proposition 7 showed that, for γ < 1, ΨRL
t (π̂t) is an increasing and convex

function of π̂t. Therefore,

E[SRL
t ] = E[ΨRL

t (π̂t) ·Dt]

= E[ΨRL
t (π̂t)]E[Dt] +Cov

£
ΨRL
t (π̂t),Dt

¤
> E[ΨRL

t (π̂t)]E[Dt] > Ψ
RL
t (E[π̂t])E[Dt] = Ψ

FIE[Dt] = E[SFI
t ].

The first inequality follows from the fact that when ΨRL
t (π̂t) is strictly increasing in π̂t and π̂t is positively

correlated with Dt, Cov
£
ΨRL
t (π̂t),Dt

¤
> 0; the second inequality follows from an application of Jensen’s

inequality to the strictly convex function ΨRL
t (π̂t).

Variances can be ranked as follows:

V ar

∙
ln

µ
(1 +ΨFI)Dt

ΨFIDt−1

¶¸
= V ar [ln(1 + gt)] < V ar

"
ln

Ã
(1 +ΨRL

t (π̂t))Dt

ΨRL
t−1(π̂t−1)Dt−1

!#

= V ar [ln(1 + gt)] + V ar

"
ln

Ã
1 +ΨRL

t (π̂t)

ΨRL
t−1(π̂t−1)

!#
+

+2Cov

"
ln(1 + gt), ln

Ã
1 +ΨRL

t (π̂t)

ΨRL
t−1(π̂t−1)

!#
.

This holds since Cov
h
ln(1 + gt), ln

³
1+ΨRL

t (π̂t)

ΨRL
t−1(π̂t−1)

´i
> 0 because ln(1 + gt) and ln

³
1+ΨRL

t (π̂t)

ΨRL
t−1(π̂t−1)

´
are both

monotonically increasing functions of gt. 2
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Figure 1. Perceived probability distribution of the proportion of up-states as a function of 
the forecast horizon {i}  under  adaptive and rational learning.  The belief is initialized at

10
6ˆ =tπ .
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Figure 2. Rational learning pricing kernel  Ψ 100),ˆ( t
RL π as a function of tπ̂ for γ = ½ and γ

= 1½. For comparison the full information rational expectation (FI) pricing kernels RIΨ  are 
also plotted. The figures assume %,4  %,6 −=+= lh gg %6 and  0.6, == ρπ .
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