
Instability of Return Prediction Models

Bradley S. Paye

Jones Graduate School of Management, Rice University

Allan Timmermann

University of California San Diego and CEPR

This Version: October 14, 2005

Abstract

This study examines evidence of instability in models of ex post predictable components in

stock returns related to structural breaks in the coe�cients of state variables such as the lagged

dividend yield, short interest rate, term spread and default premium. We estimate linear models

of excess returns for a set of international equity indices and test for stability of the estimated

regression parameters. There is evidence of instability for the vast majority of countries. We

then attempt to characterize the timing and nature of the breaks. Breaks do not generally appear

to be uniform in time: di�erent countries experience breaks at di�erent times. We do identify

a contemporaneous break for the US and UK indices in 1974. There is also some evidence of a

break for a cluster of European nations during the 1978-1982 period. These breaks may relate

to the oil price shock of 1974 and the formation of the European Monetary System in 1979.

For the majority of intenational indices, the predictable component in stock returns appears to

have diminished following the most recent break. We assess the adequecy of the break tests and

model selection procedures in a set of Monte Carlo experiments.



1. Introduction

Predictability of stock returns has been well documented in the empirical �nance literature and is

now routinely used in studies of mutual fund performance (Christopherson, Ferson and Glassman

(1998), Ferson and Schadt (1996)), tests of the conditional CAPM (Ferson and Harvey (1991), Ghy-

sels (1998)) and optimal asset allocation (Ait-Sahalia and Brandt (2001), Barberis (2000), Brandt

(1999), Campbell and Viceira (1998) and Kandel and Stambaugh (1996)). Variables commonly

used to predict stock returns include the dividend yield, the short term interest rate, and term and

default premia. Most studies assume a stable prediction model in which the coe�cients on the state

variables do not change over time.1

Recent empirical studies have, however, cast doubt upon the assumed stability of return forecast-

ing models. In a forecasting model based on the dividend and earnings yield, Lettau and Ludvigson

(2001) �nd some evidence of instability in the second half of the 1990s. Likewise, Goyal and Welch

(2003) uncover instability in return models based on the dividend yield when data from the 1990s

is added to the sample. Ang and Bekaert (2004) also �nd evidence of deterioration in predictability

patterns in US returns in the second half of the 1990s.

Signs of instability in �nancial prediction models have also emerged from studies that speci�cally

address the question of whether stock market investors could have exploited predictability to earn

abnormal returns in real time. These studies have generally found that although stock returns were

predictable ex post (or in-sample), the evidence of genuine ex ante (or out-of-sample) predictability

appears to be much weaker. Bossaerts and Hillion (1999) �nd that stock returns on a range of

US and international portfolios are largely unpredictable during an out-of-sample period (1990-

95), while Cooper, Gutierrez and Marcum (2005) conclude that the relative returns on portfolios

of stocks sorted on �rm size, book-to-market value and past returns were not ex ante predictable

during the period 1974-97.2 Marquering and Verbeek (2005) study the economic signi�cance of

predictability in both the conditional mean and conditional variance of stock returns and conclude

that the pro�tability of trading strategies they examine is concentrated in the �rst half of the sample

period. Sullivan, Timmermann and White (1999) �nd that technical trading rules cease to identify

pro�table trading strategies for the period 1986-96, although there was some evidence that they

managed to do so prior to this period.

While these studies �nd evidence of instability in return forecasting models, they do not deter-

mine the time where the return models may have changed, nor do they consider the possibility of

1An incomplete list of studies on predictability of stock returns includes Ait-Sahalia and Brandt (2001), Avramov

and Chordia (2002), Bekaert and Hodrick (1992), Bossaerts and Hillion (1999), Brandt (1999), Campbell (1987),

Campbell and Shiller (1988), Cochrane (1991), Fama and Schwert (1977), Fama and French (1988), Ferson and Harvey

(1991), French, Schwert and Stambaugh (1987), Keim and Stambaugh (1986), Lamont (1998), Lettau and Ludvigson

(2001), Lewellen (2001), Perez-Quiros and Timmermann (2000), Pesaran and Timmermann (1995), Whitelaw (1994).

Bekaert (2001) discusses recent research on predictability.
2In contrast, Avramov and Chordia (2002) report evidence of ex-ante predictability in individual stock returns

over the period 1965-1999 by using standard predictor variables but also including �rm-speci�c characteristics such

as book-to-market ratio, turnover, previous-year returns and idiosyncratic volatility.
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earlier structural breaks or the time of their occurrence. These are important issues to address since

a plausible explanation for the discrepancy between the apparent strong in-sample predictability

and the weak out-of-sample predictability is that the predictive relations are structurally unstable

and change over time. Furthermore, if �nancial prediction models are unstable, the economic signif-

icance of return predictability can only be assessed provided it is determined how widespread such

instability is both internationally and over time and the extent to which it a�ects the predictability

of stock returns.

This study investigates these questions. Using data on a sample of excess returns on international

equity indices we analyze both how widespread the evidence of structural breaks is and to what

extent breaks a�ected the predictability of stock returns. We focus on ex post or full-sample

predictability, while many earlier studies have studied ex ante predictability. There are several

advantages of this approach over an ex-ante approach that splits stock return data into estimation

and forecasting sub-samples (as is traditionally done in the literature). First, our approach allows us

to date the possible time of changes in the return prediction models. In real time it is very di�cult

to identify such breaks and their timing can only be determined with the bene�ts of hindsight,

i.e., by using the full sample of stock returns. Second, our approach is likely to have more power

to detect changes in predictable relations. In a recent paper, Inoue and Kilian (2004) show that

tests based on in-sample predictability typically have much better power than out-of-sample tests

which generally use much smaller sample sizes. Indeed, it is possible that the absence of strong

out-of-sample predictability in stock returns is entirely due to the use of relatively short evaluation

samples. By using the full sample for our analysis, we gain su�cient power to address whether this

explanation is valid or whether predictability genuinely has declined over time.

More speci�cally, we provide a systematic analysis of the stability of forecasting models using a

dataset of monthly stock returns for ten OECD countries, including all members of the G7. With

the exception of the default premium, local country forecasting variables are employed. We test

for the presence of structural breaks in stock returns and characterize the timing and nature of

the breaks. We �nd evidence of breaks for the vast majority of countries in multivariate regression

models for excess returns. Further, our results indicate that the relationship between particular

state variables and stock returns may change substantially following a break. Empirical evidence of

predictability is not uniform over time and is concentrated in certain periods. For a number of the

countries examined in our study ex post predictability appears to be substantially weaker after the

most recent break, although a few exceptions exist. Using a longer historical dataset for the UK and

US we �nd evidence of a common break around 1974-1975, which we relate to the oil price shock.

Additionally, there is some evidence of a common break a�ecting a number of European markets

during the period 1978-1982. We suggest that this break may be related to the introduction of the

European Monetary System in 1979 and the associated constraints imposed on monetary and �scal

policy in member nations.

Our focus on international indices a�ords several advantages. First, the literature on stock

return predictability is weighted toward US data with relatively few studies examining the question
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of predictability in global returns. Ang and Bekaert (2004) examine predictability for the US, UK,

Germany and France while Campbell (2003) examines predictability in 11 countries using monthly

data beginning in 1970. Hjalmarsson (2004) provides a comprehensive empirical investigation of

global stock return predictability, using panel data that include over 20,000 monthly observations

from 40 international markets, including 22 of 24 OECD nations. Rapach, Wohar and Rangvid

(2002) examine both in-sample and out-of-sample performance of return prediction models for 12

countries. Broadly, the evidence reported in these studies suggests that the return predictability

phenomenon extends to the global setting. Ang and Bekaert (2004), Rapach, Wohar and Rangvid

(2002) and Hjalmarsson (2004) conclude that the short interest rate is a robust predictor of stock

returns internationally, particularly at short horizons. The studies arrive at di�erent conclusions,

however, regarding the dividend yield as a forecasting variable. Ang and Bekaert (2004) �nd that

the dividend yield predicts returns at short horizons when used in conjunction with the short rate,

whereas Hjalmarsson (2004) concludes that there is no consistent evidence that the dividend yield

(or earnings ratio) predicts returns for OECD countries.

While these recent studies address the question of international stock return predictability, to

our knowledge this paper is the �rst to systematically address the question of whether globally

documented predictive relationships are stable over time. Hjalmarsson (2004) touches brie
y upon

this issue by presenting results from rolling regressions using a 60-month window, however, formal

tests of stability are not presented. Further, Hjalmarsson (2004) considers each regressor separately

in turn, while we consider multiple regression models. Finally, following recent developments in

breakpoint testing, we focus on occasional, large shifts in coe�cients rather than a gradual evolution

and we attempt to characterize the timing and nature of breaks, as well as investigate whether the

timing of breaks appears to be uniform across countries.

In contemporaneous research, Rapach and Wohar (2005) �nd complementary evidence of in-

stability in return regressions using US data and a broad set of forecasting variables. They apply

SupF -type tests to detect the presence of breaks and apply a method suggested by Bai and Perron

to select models (as we do). We demonstrate via simulation experiments that the �nite sample

performance of SupF -type tests can be rather poor in the presence of persistent lagged endogenous

regressors. This �nding is clearly relevant in the context of stock return regressions since `ratio'

variables such as the dividend yield and price-earnings ratio satisfy this description. Fortunately,

our simulation analysis illustrates that a recent test for instability suggested by Elliott and M�uller

(2003) possesses excellent �nite sample size properties even in the presence of persistent lagged en-

dogenous regressors. This test provides important corroboration regarding our evidence of breaks.

As further corroboration, we present results for breaks in long-horizon return regressions using cu-

mulated returns. The breaks identi�ed at the single-month horizon carry over to multiple-horizon

regression models in most cases.

The remainder of the paper is organized as follows. Section 2 introduces the breakpoint method-

ology applied in this study. Section 3 reports the outcome of Monte Carlo experiments for the small

sample performance of break tests and model selection procedures. Section 4 describes the inter-
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national returns data. Section 5 presents empirical results of tests for breakpoints and structural

stability in international equity indices. Section 6 characterizes the nature of breaks, including

the timing of the breaks, changes in the regressions coe�cients and the predictable component of

returns, and o�ers possible economic motivations for common breaks. Section 7 considers issues

of robustness as well as several extensions of the basic results. Section 8 summarizes and further

discusses our �ndings.

2. Motivation and methodology

In the context of linear regression models many empirical studies have documented the ability of a

variety of economic variables to predict stock returns (see the references in footnote 1). To apply

models of this type in practice, parameters must be estimated using historic data of returns and

predictor variables. Besides determining which variables to include, a key decision when estimating

return forecasting models is how much data to use.

Determining the sample size for the return prediction model can be very important if the coef-

�cients are not constant over time and including pre-break data will lead to biased forecasts. For

example, Brandt (1999, p. 1611) points out the importance of stability in the relation between state

variables and stock returns: \Returns and forecasting variables must have a time-invariant Markov

structure. If the relation between returns and forecasting variables is time-varying... conditional

expectations cannot be estimated with conditional sample averages."

However, there are good reasons for suspecting instability. On theoretical grounds breaks or

discrete changes in the parameters that relate security returns to state variables could arise from

a number of factors, such as major changes in market sentiments or regime switches in monetary

policies (e.g., from money supply targeting to in
ation targeting). Institutional changes or large

macroeconomic shocks that give rise to changes in economic growth or a�ect risk premia may also

cause a break in the �nancial return models. Similarly, if predictability of returns partly re
ects

market ine�ciencies and not just time-varying risk premia, then such predictive relationships should

disappear once discovered provided that su�cient capital is allocated towards exploiting them. For

example, Dimson and Marsh (1999) argue that the small-cap premium disappeared in the UK stock

market after it became publicly known. Finally, in an international context, breaks may arise as a

by-product of the ongoing globalization process, i.e., as markets become more integrated and, as in

the case of the European Union, �scal and �nancial policy constraints are introduced on member

nations. These possibilities are important both because they introduce new sources of risk and

because they fundamentally a�ect the extent to which returns are predictable.

There are also good empirical reasons to expect breaks to be important. In a thorough study of

a large set of �nancial and macroeconomic time series, many of which are commonly used as state

variables in �nancial models, Stock and Watson (1996) �nd breaks in the regression models for the

majority of the variables they consider. Andreou and Ghysels (2003, 2002) also �nd evidence of

breaks in the comovements of foreign exchange returns and the volatility dynamics of asset returns

related to the Asian and Russian �nancial crises.
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Some recent studies have considered breaks in the equity premium. Using a Bayesian framework,

Pastor and Stambaugh (2001) examine a long history of annual returns on US stocks and �nd

evidence of structural breaks in the equity premium in the form of high posterior probabilities that

breaks occurred during certain months of the sample. As pointed out by Pastor and Stambaugh,

detection of breaks in the mean of stock returns is made extremely di�cult by the very noisy

nature of stock market returns. Without conditioning (state) variables, tests for structural breaks

are unlikely to have su�cient power to identify breaks in the equity premium of an economically

interesting size even if they truly occurred. Pastor and Stambaugh deal with this problem by

assuming that there is a concurrent relationship between the level of volatility and the equity

premium. Since it is easier to identify shifts in the volatility of returns, this provides an instrument

to identify the timing of the breaks. On the other hand, the extent of a conditional risk-return trade-

o�, and even the direction of such a trade-o�, remains a contentious and active topic in empirical

�nance. While the combination of a Bayesian setup and this identifying assumption provides a way

to identify breaks, the drawback is of course that the number and timing of breaks in the equity

premium may be sensitive to the nature of prior beliefs.3

2.1. Econometric approach

The approach and focus in this paper are very di�erent from those in earlier studies. First, as

we are interested in breaks in the return forecasting models that are now widely used throughout

�nance, we test for breaks in the conditional equity premium as a function of a set of commonly used

state variables. This is an important exercise given the widespread use of these models throughout

�nance (see the references in the introduction). Furthermore, we use the estimation and model

selection framework for linear models with multiple structural breaks developed by Bai and Perron

(1998).4 This allows us to determine the number of breaks, con�dence intervals for the time of their

occurrence as well as the value of the coe�cients around the time of the breaks. By considering

instruments whose correlation with the equity premium is su�ciently strong to identify breaks we

therefore do not need to impose any identifying restrictions on our model. Of course, this approach

is also not without disadvantages and some of our results will be quite noisy given the low predictive

power typical of return prediction models.

Suppose that (excess) returns at time t+1, Rett+1, depend linearly on a vector of state variables,

xt, but that the model is subject to K breaks occurring at times (T1; T2; :::; TK). This gives the

3Kim, Morley and Nelson (2000) also apply a Bayesian framework and test for a structural break in a model

of excess returns in which the equity premium responds to recurrent changes in volatility. They �nd evidence of a

structural break in the Markov switching variance process in the early 1940s, but do not �nd evidence of breaks in

the equity premium given the level of volatility.
4Computations in this paper related to the Bai and Perron (1998, 2003) methodology were carried out using

GAUSS programs made available by Bai and Perron.
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model

Rett+1 =

8>>>>>>><>>>>>>>:

�01xt + "t+1; t = 1; :::; T1

�02xt + "t+1; t = T1 + 1; :::; T2
...

...

�0Kxt + "t+1; t = TK�1 + 1; :::; TK

�0K+1xt + "t+1; t = TK + 1; :::; T

(1)

In many respects this is a simpli�ed representation of the return generating model and shifts in

the regression coe�cients, �, may well occur gradually over time rather than through the assumed

step function. Nevertheless, it can be viewed as a useful approximation to more complicated repre-

sentations of time-variation in the parameters linking the state variables to stock returns. In fact,

some of the potential sources of breaks such as shifts in economic policy regimes, large macroeco-

nomic shocks or publication of predictable patterns are likely to lead to rather sudden shifts in the

parameters of the return forecasting model. Furthermore, as pointed out by Andrews (1993), Elliott

and M�uller (2003) and Sowell (1996), tests for a single break also have power against alternatives

such as a sequence of smaller breaks, so our tests have the ability to detect instability of a more

general form.

The key objectives are of course to test for the presence of breaks, determine the number of

breaks, K, and estimate both the time of their occurrence, (T1; T2; :::; TK), as well as the parameters

around the time of the breaks, (�01; �
0
2; :::;�

0
K+1)

0.5 Bai and Perron (1998) provide a least-squares

method for optimally determining the unknown breakpoints as well as the resulting size of shifts

in the parameter values. The basic principle involves searching over the possible K-partitions

(T1; T2; :::; TK) of the data to compute the minimizer of the sum of squared residuals. For a set of

K breakpoints, (T1; T2; :::; TK) = fTjg, the coe�cient estimates �̂k;fTjg are chosen to minimize the
sum of squared residuals

ST (fTjg) =
K+1X
k=1

TkX
t=Tk�1+1

�
Rett � �̂

0
k;fTjgxt�1

�2
: (2)

The estimated break dates
�
T̂1; T̂2; :::; T̂K

�
are selected so as to satisfy�

T̂1; T̂2; :::; T̂K

�
= arg min

T1;T2;:::;TK
ST (T1; :::; TK); (3)

where the minimization is over all partitions such that Tk � Tk�1 � �T . The trimming percentage
parameter � imposes a minimum length for the time between breaks, �T . Choosing � in practice

involves a trade-o� between the ability to detect regimes of relatively short length and the desire to

avoid over�tting the data and simply identifying `outliers'. While �T in principle may take any value

greater than or equal to the number of regressors, in practice it is best to use values signi�cantly

larger than this.6 Given the estimated break dates fT̂jg, the estimated regression coe�cients �̂k are
5We adopt the convention that T0 = 1 and TK+1 = T , where T is the total number of available observations.
6Bai and Perron (2003) discuss computational and practical aspects of determining these design parameters.
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the least squares coe�cients associated with the partition comprised of the estimated break dates,

i.e., �̂k = �̂k;fT̂jg. Building on previous work in Bai (1997), Bai and Perron (1998) provide results
for obtaining con�dence intervals for the estimated breakpoints.

2.2. Testing for Breaks

Several types of hypothesis tests may be of interest when multiple breaks are allowed in the return

prediction model. For example, one may be interested in testing the hypothesis of no breaks versus

an alternative of K breaks, or in simply testing a null hypothesis of no breaks against an alternative

of at least one break. We brie
y describe the idea behind these tests.

The SupF -type test introduced by Andrews (1993) considers the null hypothesis of no breaks

versus the alternative hypothesis that there are K breaks, where K is a speci�ed number. Given

a model with K breaks, The SupF (K) test statistic is simply the supremum of a set of standard

F -statistics for testing the null hypothesis of no breaks, where the supremum is taken over the

set of possible break fractions. Bai and Perron (1998) also suggest a related test of l versus l + 1

breaks, denoted the SupF (l + 1jl) test. To perform the test, one �rst estimates a model with

l breakpoints
n
T̂1; :::; T̂l

o
and computes the resulting sum of squared residuals (SSR) from this

model. Conditional on these breakpoints one then identi�es the l + 1-th breakpoint and computes

the SSR for this larger model as well. By construction the SSR is always reduced as the number

of breaks, K, rises. Rejection of the null only occurs if the overall minimal value of the sum of

squared residuals given l + 1 breakpoints is su�ciently smaller than the sum of squared residuals

from the model with l breaks. Bai and Perron establish critical values for determining how large

the reduction in the SSR needs to be for the break to be statistically signi�cant.

Breaks may occur not simply in the regression coe�cients of the prediction model (1) but also in

the marginal distribution of the predictor variables, xt�1, themselves. We consider this possibility

by applying a testing approach suggested by Hansen (2000). Hansen derives the large sample

distributions of several test statistics for breaks allowing for structural change in the marginal

distribution of the regressors and shows that the asymptotic distributions are not invariant to

structural change in the regressors. Hansen suggests a `�xed regressor bootstrap' and shows that the

bootstrap is able to replicate the �rst-order asymptotic distributions of the test statistics. Hansen's

bootstrap approach allows for heteroskedastic error processes and lagged dependent regressors but

does not permit serial correlation in the regression errors. Results are developed only for the case

of a single break.7

2.3. The J-test for instability

As a �nal test for instability we apply the J -test suggested by Elliott and M�uller (2003). This

test statistic alleviates the need to search over high dimensions in the case of multiple breaks and

7Computations related to the Hansen (2000) methodology were carried out using Gauss programs made available

by Bruce Hansen.
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possesses good power properties for a wide class of alternatives to stability. The model considered

in Elliott and M�uller is given by

yt = X
0
t(�� + �t) + "t t = 1; :::; T (4)

where yt is a scalar, Xt is a k � 1 vector (both observed), "t is a zero mean error, and �� + �t are
unknown with �1 = 0 as a normalization. The hypotheses to be tested are

H0 : �t = 0 8t against H1 : �t 6= 0 for some t > 1: (5)

Elliott and M�uller's test has power against a broad class of breaking processes including spec-

i�cations with rare, large breaks as well as models with small, frequent breaks. Given a speci�c

member of this breaking class, they apply the theory of invariant tests to derive an optimal test of

the null hypothesis and show that any small sample optimal test statistic (against a speci�c member

of their class of breaking processes) of the hypothesis (5) is asymptotically equivalent to any other

optimal statistic (against a di�erent breaking process). Elliott and M�uller show that all optimal

test statistics converge in probability under both the null and alternative to a feasible J -test which

is asymptotically optimal under fairly general assumptions concerning the error and its relationship

with the regressors.

Speci�cs regarding the construction of the J -test are somewhat cumbersome to describe. For

the special case where breaks are restricted to the intercept and where the regression errors are seri-

ally uncorrelated, the J -test is equivalent to the Most Powerful Invariant (MPI) test in a Gaussian

unobserved component model as studied by Franzini and Harvey (1993) and Shively (1988). Con-

structing the test statistic involves creating a time series based on innovations in the standardized

regression scores and conducting arti�cial regressions of these on a type of nonlinear time trend.

The test statistic is then based on the sum of squared residuals from these regressions. We refer the

reader to Elliott and M�uller for further details. We emphasize that the test permits heteroskedas-

ticity and serial correlation, as well as weakly endogenous regressors. Regressors with stochastic

trends, however, are not permitted. As the test is designed to have power against a variety of

alternatives, it is not well-suited for model selection based on sequential tests.

2.4. Model Selection

To select the number of breaks, Bai and Perron (1998) propose a method of model selection based

on sequential application of the SupF (l + 1jl) tests. The procedure is a speci�c-to-general model
selection strategy. The process begins with a model including a small number of breaks thought to

be minimally necessary (this may be zero). Given the current number of breaks, the SupF (l+ 1jl)
test is applied and if the test results in a rejection a new break is �tted and the process repeats until

the test results in no rejection or the maximum allowable number of breaks is reached, in which case

the procedure stops and the terminal model is selected. Information criteria o�er alternatives to

the sequential method for the purposes of selecting the number of breaks and Yao (1988) suggests
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use of the Bayesian Information Criterion (BIC). We assess the relative merits of these approaches

for our application in the next section of the paper.

3. Finite Sample Performance of Breaks Tests

A primary concern in our setting is the potential for `over-�tting', i.e. spuriously �nding breaks

when truly none exist. The results underlying the test statistics discussed above rely on asymptotic

theory. For any speci�c data generating process, the adequacy of the tests in small samples must be

assessed via Monte Carlo simulation experiments. Since the sequential method of Bai and Perron

(1998, 2003) relies on a sequence of breaks tests, �nite sample size problems related to these tests

generally implies �nite sample over�tting problems using the sequential method.

Bai and Perron (2004) perform a series of simulation experiments and assess the size and power

of the various tests for breaks under a variety of data generating processes. These range from

an independent Gaussian noise process to linear processes subject to two breaks where both the

regressor and the error term are distributed heterogeneously across regimes. Also considered are

cases with serially dependent errors, although in these cases only intercept shifts are included. Bai

and Perron (2004) �nd that serial correlation and/or heterogeneity in the data or errors across

segments can induce signi�cant size distortions when low values of the trimming value � are used.

Thus, if these features are present in the data, � values of 15% or higher are recommended, depending

on the sample size and the particular features of the data. Bai and Perron �nd that the sequential

procedure performs better than statistical information criteria, particularly if heterogeneity across

segments is present. For the processes considered by Bai and Perron (2004), the tests have reasonable

power and corrections for heterogeneity and serial correlation in the residuals (when these truly

exist) improve power.

While these results provide support for application of the tests and model selection method in

our setting, the data considered in our study exhibit characteristics that di�er signi�cantly from

the data generating mechanisms considered by Bai and Perron (2004). Speci�cally, at least two of

the regressors in our study, the dividend yield and the short interest rate, are known to be highly

persistent. It is well known that the OLS estimates of highly persistent AR(1) coe�cients, while

consistent, are downward biased and have sampling distributions that di�er from the standard

setting. More recently, Cavanagh, Elliott and Stock (1995) and Stambaugh (1999) show that when

a lagged endogenous regressor follows a highly persistent AR(1) process OLS coe�cient estimates

follow a non-standard distribution and can be signi�cantly biased. Hence, when �nancial ratios

such as the dividend yield or functions of interest rates are used to predict returns the resulting

least squares coe�cients are biased although asymptotically consistent.8

8Diebold and Chen (1996) assess �nite sample performance of asymptotic and bootrap implementations of the

the SupF test for breaks as well as the asymptotically optimal AveF and ExpF variants suggested by Andrews and

Ploberger (1994). They conclude that bootstrap methods provide a better approximation relative to the asymptotic

distribution for cases with small sample sizes and/or persistent dynamics. As in Diebold and Chen, our focus is on

dynamic models. The simulatation analysis in this paper may be viewed a partial extension of the Diebold and Chen

study to the case of a dynamic regression in which the single regressor is a persistent variable which may be only
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Many recent studies examine inference in this setting and the extent to which returns are truly

predictable. Ang and Bekaert (2004), however, consider a model that includes both the dividend

and earnings yields as well as the short interest rate and �nd that the only statistically signi�cant

regressor is the short rate and its signi�cance is limited to short horizons.9 An issue that, to our

knowledge, has not been previously addressed in the literature is the whether and to what extent

this bias might introduce size distortions in tests for structural breaks. We explore via simulation

experiments the possibility of `spurious breaks' introduced by the presence of highly persistent

lagged endogenous regressors.

While persistent lagged endogenous regressors may cause size problems for the breaks tests we

employ, the power of these tests is also of concern since returns are inherently very noisy and the

instruments we consider explain only a small fraction of the variation in returns. The noisy nature

of returns data may dilute the power of tests to detect breaks and adversely impact the �nite sample

performance of information criteria for model selection purposes in the presence of breaks.

3.1. Size experiments

If the tests are over-sized, then a true null hypothesis of no breaks will be rejected more frequently

than the asymptotic theory suggests. In examining the �nite-sample size properties of the breakpoint

tests, we consider the following data generating process:

yt = �+ �xt�1 + "t; "t � N(0; �2") (6)

xt = � + 'xt�1 + �t; �t � N(0; �2�); E["t] = E[�t] = 0;
E["t�t]

�"��
= �:

Here yt is generated as a linear function of lagged xt with a Gaussian white noise error term.

The variable xt follows a �rst order autoregressive process with ' governing the persistency of the

process. Shocks to yt and xt have correlation given by the parameter �. When � = 0 the regressor

is strictly exogenous and otherwise xt�1 is a predetermined but not strictly exogenous regressor.

We conduct several di�erent experiments based on the data generating process described by

equation (6). First, we consider a simpli�ed case in which we set the parameters �; � and � equal

to zero and the variances �2" and �
2
� to unity. Note that in this case yt follows a simple Gaussian

white noise process and xt does not Granger cause yt. With these parameters �xed, we vary the

persistence parameter ' over the values 0, 0.9, 0.95 and 0.98 and the correlation parameter � between

the values 0 and -0.9. Our interest focuses on persistence values near unity since the corresponding

parameters in empirical estimates of AR(1) models for the dividend yield, short interest rate and

term spread tend to range between 0.9 and 0.99 while the non-persistent case is included as a

benchmark. Similarly, the value � = �0:9 roughly corresponds to the empirical correlation of the
errors obtained by �tting the system described by equation (6) to data for excess returns on the

predetermined rather than strictly exogenous.
9Examples of other studies that examine small sample inference with lagged endogenous regressors in the context

of predicting returns include Goetzmann and Jorion (1993), Hodrick (1992), Nelson and Kim (1993), Lamont (1998),

Stambaugh (1999), Lewellen (2004), and Campbell and Yogo (2004).
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value-weighted CRSP portfolio (as yt) and the dividend yield (as xt) over the sample period 1952:7

to 2003:12.10

In the second set of experiments, all parameters in the system described by equation (6) are

tuned to the corresponding empirical estimates obtained using the value-weighted NYSE index (as

yt) and the predictor (as xt) over the sample period 1952:7 to 2003:12. We do this in turn for the

dividend yield, short interest rate, term spread and default premium. Table 1 presents empirical

estimates of the parameters in equation (4) for each forecasting variable using US data.

Our �nal set of experiments considers `long-horizon' regressions of cumulative returns on the

lagged forecasting variables. Data continue to be generated according to equation (6), however,

we now cumulate the generated returns over a speci�ed horizon and perform the regression of the

cumulated returns series on lagged xt. For example, at the two-month horizon, the cumulated

return is de�ned as yt;2 = yt+ yt+1 and the regression is run with yt;2 as the regressand and xt�1 as

the regressor (a constant is also included). As is common in the literature, we run our regressions

using overlapping data. Since this induces serial correlation in the cumulated return series, we apply

versions of breaks tests that correct for serial correlation whenever possible.

For all experiments the sample size is set to 500, which represents a value roughly between the

number of observations in our longer dataset beginning in 1952:7 and that of our shorter dataset

beginning in 1970:1. Results are computed over 2000 simulations using GAUSS's random number

generator.

3.2. Summary of size results

Table 2 presents the results of the simulation experiments. All tests are evaluated at the ten percent

signi�cance level, and the tables report the percentage of cases in which the null hypothesis of no

breaks is rejected when there is in fact no break in the process. For the BIC and sequential method

for model selection we report the percentage of cases in which zero, one and two breaks are selected.

We evaluate the size distortions of the tests and the adequacy of model selection techniques by

comparing the results in Tables 2 with those predicted by the asymptotic theory. For instance, the

SupF (1) test applied at a 10 percent signi�cance level rejects the null of no breaks 10 percent of

the time asymptotically. We can compare this theoretical value to that obtained in the simulation

analysis. Values substantially higher (lower) than 10 percent suggest that the test is over- (under-)

sized.

Panel A presents results for the system described in the preceding section. This allows us to

explore separately the e�ects of persistence and contemporaneous correlation. First, in the baseline

case with no persistence and uncorrelated shocks, the tests are only slightly oversized. The BIC

correctly selects a model with no breaks in nearly all cases and the sequential method performs well,

selecting the true model approximately 88% of the time. As persistence is added to the system, the

size distortions increase for the SupF and UDMax tests, but only marginally. The Hansen SupF

10The assumptions of Bai and Perron (1998) do not permit unit root regressors so we only consider highly persistent

processes and not an actual unit root process.
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test with bootstrapped p-values and the J -test continue to display excellent size properties in the

presence of persistence. These results illustrate that persistence alone does not cause dramatically

oversized tests or poor model selection performance using the Bai and Perron sequential method.

When shocks are strongly negatively correlated but the regressor is not persistent, the size distortions

are again very mild. Thus, correlation without persistence also does not result in size problems or

over�tting in terms of model selection.

When we consider the case with both correlated disturbances and high persistence the distor-

tions become much larger. In the worst case, with � = 0:98 and � = �0:9 the SupF (1) test
is substantially oversized, rejecting the null around 41% of the time. The SupF (2) and UDMax

tests display even larger size distortions while the Hansen test displays smaller, but still substantial,

distortions. The J -test, however, actually displays slightly under-sized behavior under both per-

sistence and contemporaneous correlation. Thus, the behavior of the J -test fundamentally di�ers

from that of the other breaks tests considered. It is not surprising, in light of the size distortions

in the SupF -type tests, that the sequential method fares quite poorly in the presence of highly

persistent lagged endogenous regressors. By contrast, the BIC method of model selection continues

to perform well even for the most persistent processes considered. Turning to the results in Panel B,

when all system parameters are tuned to empirical estimates based on US data the size distortions

for the SupF test are largest for the dividend yield, as expected. The SupF test remains somewhat

oversized for the other forecasting variables despite the fact that the contemporaneous correlations

are relatively small in absolute value.

Before turning to the long-horizon size results (where we consider only the uncorrelated case),

we brie
y o�er intuition regarding the size distortions in the SupF -type tests. The size distortion

in the SupF tests for the dividend yield is closely related to the upward bias in the estimated

coe�cient on the yield in univariate return regressions as studied by Stambaugh (1999), Cavanagh

et al (1995) and others. Suppose for simplicity that the yield does not forecast returns so that

the true, time-invariant coe�cient on the yield is zero. The upward bias in the coe�cient on the

yield naturally translates into upward bias in the R2�statistic for the regression in �nite samples.
Now consider the classic F -test for a single break with known timing. Heuristically, the F -test

rejects when splitting the sample and estimating a di�erent coe�cient on each subsample results

in `too large' a reduction in the sum of squared residuals to be consistent with the null hypothesis.

However, in the present case splitting the sample and estimating coe�cients on each subsample

increases the upward coe�cient bias, and consequently the upward bias in R2 for each subsample.

There is thus a reduction in the sum of squared residuals due to the dependence of the Stambaugh

bias on sample size, and this causes the F -test to be oversized. Taking the supremum over a series

of F -statistics simply exacerbates this problem. The J -test performs much better precisely because

it is not based on a sample-splitting approach.

Panel C presents results for the long-horizon return regressions using cumulated returns over

horizons of two, four and six months. Since the use of overlapping observations induces serial cor-

relation in the dependent variable, it is important to robustify test statistics for serial correlation
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wherever possible. The Hansen bootstrap procedure permits heteroskedasticity but not serial corre-

lation. All other test statistics are robust to serial correlation. The size distortions for all the breaks

tests are fairly mild for the two period horizon but increase with the horizon and are substantial

when the horizon reaches six months. It is no surprise that the Hansen SupF procedure performs

extremely poorly since it is not robust to serial correlation. The �nite sample performance of the

robust tests appears to be reasonably good for short horizons but degrades over longer horizons.

The BIC model selection method also begins to degrade as the horizon increases. As noted by Bai

and Perron (2004) a weakness of information criteria for model selection with breaks is that these

criteria are not robust to serial correlation.

3.3. Power of breaks tests and model selection when there are breaks

The abundant noise in stock returns may hamper the detection of breaks. To assess the power of

breaks tests and the adequacy of the various model selection methods, we generate data from the

following process with a single breakpoint:

yt =

(
(�� � �

2)xt�1 + "t; t = 1; :::; 250

(�� + �
2)xt�1 + "t; t = 251; :::; 500

; "t � i.i.d. N(0; 1) (7)

xt = 'xt�1 + �t; �t � N(0; 1); E["t�t] = 0:

The sample size is �xed at 500 for our experiments and the single break occurs at the midpoint

of the sample. Note that this timing of the break is the most favorable possible for detection. The

parameter �� may be interpreted as the average regression coe�cient and the parameter � is the

size of the break. Both shocks are normalized to have unit variance and the shocks are uncorrelated.

We set the average regression coe�cient �� to be consistent with the R2�values suggested by the
empirical estimates of full-sample regressions without breaks. The Monte Carlo experiments address

the power of various breaks tests and the performance of various model selection methods under a

range of combinations for R2 (and hence ��), the size of the break expressed as a percentage of ��

and the parameter ' governing the persistence in xt. As in the size study results are tabulated over

2000 simulations.

3.4. Power results

Results for the power experiments are displayed in Table 3. Panels A and B present results when

R2 is 5% and 10%, respectively. All statistical tests are conducted using empirical critical values

based on 5000 simulations of the process under the null hypothesis of no break so that our results

convey size-adjusted power. First consider the case where the R2-value is 5%. While there is some

variation in the power results as the persistence of xt varies, the most dramatic variation in power

occurs as the size of the break is increased from 10% to 100% of ��: When the break is smallest

(the break is 10% of ��) the correctly sized (based on the empirical critical values under the null)

SupF (1) test detects the break only 9-11% of the time, depending on the persistence in xt. The

UDMax, Hansen and J-test statistics exhibit similar size-adjusted power. When the break is largest
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(100% of ��) the size-adjusted power of the SupF (1) test is approximately 57% for the case with

no persistence, and approximately 42% for the case with very high persistence. Both the Hansen

test and the J -test exhibit comparable power relative to the SupF (1) test. Indeed, these alternative

tests exhibit slightly higher size-adjusted power when the persistence in xt is very high. The size

adjustment is important in this regard. If the tests are not size-adjusted the J -test rejects the null

less frequently than the SupF (1) test, particularly for persistent cases. However, in such cases the

SupF (1) test is oversized while the J -test is undersized. When the test is size-adjusted it is clear

that there is little di�erence in power. Finally, the UDMax test exhibits lower power relative to the

other tests, particularly in cases with high persistence.11

Turning to the model selection results, the BIC information criterion performs extremely poorly,

incorrectly selecting a model with no breaks over 90% of the time, even for a break size of 100%.

When the break size is small the BIC selects no breaks nearly 100% of the time. Naturally, the

performance of the sequential method of Bai and Perron is closely tied to the performance of the

Bai and Perron SupF (1) test. When the break size is smallest the sequential method correctly

selects a model with one break between 11% and 15% of the time, depending on the persistence in

xt, and in the majority of cases selects a model with no breaks. While this performance is poor, it

is substantially better than the BIC, which selects no breaks essentially all of the time. When the

break size is largest the sequential method correctly selects a model with one break 55% of the time

when there is no persistence in xt and 48% of the time for the most persistent case.

The degree of signal provided by xt is increased by increasing R
2 to 10% in Panel B. As expected,

the power of all of the break tests increases relative to the preceding case. It is interesting, however,

that the increases are very modest for the smallest break size but go up as a function of the break

size. When the break size is 100%, the size adjusted power of the SupF (1) test is 70-87%, depending

on the persistence in xt. Once again, the Hansen and J -test exhibit similar size-adjusted power

while the UDMax test is less powerful for the persistent cases. The increased power of the SupF (1)

test translates to better performance for the sequential method. In the best case, the sequential

method correctly selects a model with one break 83% of the time, while the BIC correctly selects

one break 44% of the time in this case. Further, the BIC performs extremely poorly for all break

sizes under 100%. Thus, for the noisy regression models considered in this Monte Carlo study and

typical for most return models, the break size must be very large for BIC to detect the break, and

the sequential method appears to have superior power attributes in such cases.

11The break regression results discussed later in the paper suggest that breaks of 100% of the coe�cient value,

and even in excess of this, are empirically plausible. For example, in univariate regressions using the dividend yield

(reported in Panel A of Table 6) the empirical �
�� associated with a break is typically on the order of 150% to 180%.

The 1962 break associated with the short rate in the US exhibits a smaller empirical �
�� of approximately 30% so that

smaller breaks are also occasionally detected empirically.
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3.5. Summary

The preceding Monte Carlo experiments indicate several issues that plague inference regarding in-

stability in return forecasting regressions. First, substantial size problems exist when the regressor

takes the form of a persistent lagged endogenous variable. This clearly applies to the dividend yield

forecasting variable considered in this study. Fortunately the SupF -type tests and the sequential

method of Bai and Perron perform reasonably well under persistence when contemporaneous shocks

are uncorrelated. The remaining forecasting variables considered in this study appear to �t this sce-

nario, at least to an approximation. The excellent size properties of the J -test of Elliott and M�uller

(2003) suggest that this test can play an important role in con�rming the presence of instability

suggested by the Bai and Perron tests. Further, our size-adjusted power results illustrate that the

J -test does not sacri�ce much power relative to the SupF -type tests. In the empirical analysis, we

point out cases where the SupF tests reject while the J -test does not reject. We suggest that such

cases may re
ect a spurious break and must be treated with caution.

The Monte Carlo experiments also reveal the limited power of tests for breaks in `noisy' regres-

sions. Given the extremely low R2-values for univariate models of returns (see Table 4 below), one

would expect the tests to have great di�culty in detecting any instability. The BIC model selection

method performs extremely poorly when breaks are present. Put loosely, given the excessive noise

in stock return regressions, unless a structural break is extremely large this information criterion

will incorrectly select a model with zero breaks although one has truly occurred. For this reason,

we opt to use the sequential method of Bai and Perron, despite its imperfections, as this method

appears to perform better overall.

4. Data description

Ideally, our empirical study would examine evidence of breaks for a large number of international

markets using a wide variety of forecasting variables reported in the stock return predictability

literature. Since our study focuses on the possibility of occasional structural breaks a�ecting the

relationship between stock returns and standard forecasting variables, a reasonably lengthy historical

span of data is essential. Our decisions regarding the countries and sample periods examined in this

study are motivated by an attempt to balance the desire for a broad and comprehensive empirical

analysis with the competing desire for maximum data coverage. The empirical analysis focuses on

two di�erent datasets. The �rst dataset consists of monthly data for the UK and US that spans the

period from July, 1952 through December, 2003. The second dataset consists of monthly data for

ten OECD countries (including the UK and US) that spans the period from January, 1970 through

December, 2003. The �rst dataset includes as much historical information as possible at the cost of

including only two countries, while the second dataset provides a broader look at the international

evidence at the cost of spanning a substantially shorter period.

We focus on four predictor variables that are prevalent in the empirical literature on predictabil-

ity of returns. These variables are the lagged dividend yield (used, e.g., by Campbell and Shiller
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(1988), Fama and French (1988), Ferson and Harvey (1991)); the short interest rate (Fama and

French (1988), Fama and Schwert (1977), Ferson and Harvey (1991)); term spread (Campbell

(1987), Fama and French (1988), Ferson and Harvey (1991)) and default spread (Fama and French

(1988), Ferson and Harvey (1991), Keim and Stambaugh (1986)).

International data were collected primarily from Global Financial Data. Monthly total returns

for 10 OECD countries were obtained along with the corresponding dividend yield series. The

dividend yield is expressed as an annual rate and is constructed as the sum of dividends over the

preceding 12 months, divided by the current price. For each country, a 3-month Treasury bill rate is

used as a measure of the short interest rate while the yield on a long-term government bond is used

as a measure of the long interest rate. Excess returns were computed as the total return on stocks

in the local currency less the local short rate. This provides the local-country analog of the typical

regression estimated using US data. A local country term spread is constructed as the di�erence

between the long and short local country interest rates. The �nal instrument considered is the US

default premium or quality spread, de�ned as the di�erence in yields between Moody's Baa and

Aaa rated bonds. Since local country default premia were unavailable, the US default premium

is used for each country. Data were collected for Belgium (BEL), Canada (CAN), France (FRN),

Germany (GER), Italy (ITL), Japan (JPN), the Netherlands (NTH), Sweden (SWE), the United

Kingdom (UK) and the United States (US) over the sample period 1970:1-2003:12 and for the UK

and the US over the longer sample period spanning 1952:7-2003:12.12

The US return obtained from Global Financial Data is based on the S&P 500 index, and to

explore robustness to this particular index we also obtained monthly value-weighted index returns

and the associated dividend yields for the value-weighted NYSE-AMEX-Nasdaq (NAN) composite

index and on the value-weighted NYSE index (NYSE) from the Center for Research in Security

Prices (CRSP). Returns are inclusive of dividends and are calculated in excess of a one-month

risk-free rate taken from the CRSP Risk Free Rates File and based on average prices.

5. Are there breaks in stock return regressions?

As a benchmark for the empirical analysis that follows, Table 4 presents the results of OLS regres-

sions in the absence of structural breaks. Results are presented for both univariate models and for

the multiple regression model that includes all four forecasting variables. The univariate models ex-

plain very little of the variation in excess returns. Although the maximum R2 for a univariate model

is 3.03% for the dividend yield in the UK, many of the R2-values are less than 1%. Examination of

the robust t-statistics for the univariate regressions reveals that the evidence of predictability ap-

pears stronger for the US and UK than elsewhere. Indeed, for the dividend yield these are the only

two countries for which the estimated coe�cient is statistically signi�cant at conventional levels.

12The speci�c indices to which the total return and the dividend yield series correspond are: Belgium (CBB

All-Share), Canada (Toronto SE-300), France (SBF-250), Germany (CDAX), Japan (Nikko Securities Composite),

Italy (BCI Global), the Netherlands(Netherlands All-Share), Sweden (A�arsv�arlden Return Index), the UK (FTA

All-Share), and the US (S&P 500).
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Interestingly, the US default premium appears to predict returns in a number of countries (Japan,

Sweden, UK) but the evidence that it predicts US excess returns is somewhat weak.

The predictive ability as measured by the in-sample R2-value is substantially higher for the

multiple regression models, ranging from 9.08% for the UK to 0.91% for Belgium, both over the

shorter dataset. Again, predictability appears to be strongest in the UK and US, but the dividend

yield, short interest rate, and default premium are statistically signi�cant for many of the countries

in the multivariate model.

A brief comparison of the regression results for the US S&P 500 index and the UK FTA index

across the two datasets considered provides motivation for formal tests for breaks. The samples

overlap from 1970:1 onward, so any di�erences in the regression estimates arise from the inclusion

of additional data back to 1952:7. The R2 of the multivariate regression for the UK rises from

5.14% to 9.08% for the shorter sample as the estimated coe�cients on the dividend yield, short

interest rate and term spread increase dramatically in this model. Results for the US multivariate

model show relatively little variation. However, the univariate models suggest some instability for

US data. In the case of the S&P 500 the dividend yield appears to be a stronger predictor over

the longer dataset relative to that beginning in 1970:1 as the coe�cient estimate drops from 0.32

to 0.23 while the R2 of the regression falls from 0.62% to 0.33%.

5.1. Tests for breaks and determination of the number breaks

In our implementation we allow all coe�cients to change at each break since there is no strong

reason to believe that the coe�cient on any of the regressors should be immune from shifts. The

multivariate model is therefore

Rett = �0k + �1kDivt�1 + �2kTbillt�1 + �3kSpreadt�1 + �4kDeft�1 + "t

t = Tk�1 + 1; :::; Tk; k = 1; :::;K + 1; (8)

where Rett represents the (excess) return for the international index in question during month

t, Divt�1 is the lagged dividend yield , Tbillt�1 is the lagged local country short interest rate,

Spreadt�1 is the lagged local country term spread and Deft�1 is the lagged US default premium.

The univariate regression models take the same form as equation (8) with only a single forecasting

variable included.

Table 5 presents results of various tests for structural breaks and reports the number of breaks

selected by the Bai and Perron sequential method at both the 10% and 5% signi�cance levels. The

table presents test statistics and indicates those values that are statistically signi�cant at the 5%

and 10% levels. These results set the trimming percentage, �, to 15 percent of the total sample.

This corresponds to a minimum window of 7 years and 8 months between breaks for our dataset

beginning in 1952:7 and to a minimum window of 5 years and one month between breaks for the

dataset beginning in 1970:1. We explore the implications of changing the minimum window length

in Section 7.

There is abundant evidence of structural breaks in the multivariate return prediction models.
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For all countries with the exception of Italy, and for both datasets examined, all of the tests for

breaks conclude that breaks are present at conventional signi�cance levels. In light of the simulation

results discussed in Section 3, it is reassuring that the J -test con�rms the presence of breaks in

every case with the exception of Sweden. For the longer dataset the sequential method (at the 10%

signi�cance level) selects a model with two breaks for the NYSE, S&P 500 and for the UK. A model

with one break is selected for the NAN. For the shorter dataset one break is selected for six of the

ten countries while two breaks are selected for Germany, Sweden and the US. In most cases, the

model selection results are robust to the more conservative alternative of a 5% signi�cance level for

the sequential method.

For the univariate regressions the question of stability is less clear. The SupF (1) and UDMax

tests suggest the presence of breaks for the dividend yield regressions in most cases. However, these

rejections are rarely corroborated by the J -test, and are only occasionally corroborated by the

Hansen test. As noted in the summary discussion of Section 3, these results could re
ect spurious

breaks detected using the SupF (1) and UDMax tests. We conclude that the evidence regarding

instability in the dividend yield regressions is fairly weak.

Since shocks to the remaining forecasting variables do not exhibit a strong contemporaneous

correlation with stock returns, the SupF -type tests should be more reliable for these univariate

regressions. For our longer dataset, there is fairly strong evidence of a break in the term spread

regression for US returns. This break is not detected using the shorter dataset. This suggests that

the break occurs relatively early in the sample as will be con�rmed in the next section of the paper

where we discuss the timing of breaks. There is also evidence of a break in the short interest rate

regression in the longer dataset for both the US and UK, although in this case the J -test does not

con�rm the results of the other break tests. Again the break is not identi�ed using the shorter

sample. The stability results for the default premium are the most di�cult to interpret as the

various tests fail to agree in many cases. Exceptions include Belgium, Canada, Italy and Japan, for

which all tests fail to reject, and the UK for which all tests reject the null of stability.

Finally, in a few cases where no breaks are selected using the sequential method there appears

to be evidence of multiple breaks. For the short interest rate regressions in Germany and Italy, for

example, the SupF (1) test fails to reject the null and no breaks are selected despite the fact that

the UDMax test suggests that breaks are present. As Bai and Perron (2004) note, break patterns

may arise for which a single break is di�cult to detect while there is strong evidence of two or

more breaks.13 The authors suggest that an alternative approach is to initiate the sequential model

selection process based on the UDMax test against an unknown number of breaks rather than the

SupF (1) test. Our empirical analysis thus adopts a conservative approach by applying the SupF (1)

test at the initial stage of the sequential method.

13For intuition on this case, consider a regression with only a constant as a regressor and suppose that the sample

is divided into three equally long parts. If the mean of the variable changes in the second sample but is the same in

the �rst and third sample, a model with a single break may not pick up the change, whereas a model allowing for two

breaks would identify it.
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6. Timing of breaks and changes in predictability

The hypothesis tests discussed above suggest that breaks may be an important feature of stock return

regressions. While these tests suggest that instability is statistically important, tests for stability

alone cannot reveal the economic signi�cance of breaks. Further, the timing and characterization

of breaks is important both from a forecasting perspective and for attempting to connect breaks to

important international events or changes in policies and institutions.

The multivariate regression models are likely to hold the greatest interest in practice, since these

models explain far greater variation in returns than univariate models (see Table 4). On the other

hand, with four coe�cients (and a constant) in each interval, characterizing the evolution in the

coe�cients is more di�cult than in models with a single instrument. To facilitate interpretation of

the results, we therefore �rst examine breaks in the univariate regressions. While these univariate

models are probably of limited interest to investors given their very low R2-values, we �nd that

examining the univariate case provides interesting insights into the source of the breaks identi�ed

for the multivariate model. They are also likely to have better power to detect breaks in the event

of a partial break occurring only in a subset of the regression coe�cients in the `all' model.

6.1. Dividend yield

The estimated coe�cients and standard errors for the dividend yield regression, along with the

estimated breakdates and a 90% con�dence interval for each break, are presented in Panel A of

Table 6.14 As always, caution should be exercised when interpreting the coe�cient estimates on

the dividend yield because of small sample bias, see, e.g., Campbell and Yogo (2004), Stambaugh

(1999).15 A single break was identi�ed for six of the 10 OECD countries examined, including

Belgium, France, Japan, Sweden, the UK and the US. A break was also identi�ed for each of the

US indices using the longer dataset. The break for the US portfolios appears to �t the run-up in

stock prices in the late 1990s and subsequent reversal. Interestingly, the R2-value of the regression

increases for most countries following a break in the dividend yield. In some cases the apparent

increase in predictability is substantial. For example, the R2-value for the S&P 500 vaults from

0.6% to 11.0% after the break in our shorter dataset and from 1.2% to 7% using our longer dataset.

Typically, the coe�cient is statistically insigni�cant prior to the break. Further, for those countries

where no break is identi�ed the full-sample coe�cient is insigni�cant in all cases.

The estimated breakpoint for the S&P 500 identi�ed using the shorter dataset occurs during

1996, whereas for the longer dataset the estimated break occurs in 1994. A potential source of

this discrepancy is the minimum window length imposed between breaks. Since this window is

computed as a fraction of the total sample size, the minimum window length is longer for the 1952-

14All standard errors are corrected for heteroskedasticity and serial correlation using the method of Andrews and

Monahan (1992).
15In addition to �nite sample bias problems, Ang and Bekaert (2004) �nd strong size distortions on the dividend

yield coe�cient for long return horizons while the distortions are relatively small at a short horizon of one month such

as the one used in our paper.
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2003 sample period. With a 15% trimming percentage the window length is seven years and seven

months so that a breakpoint in 1996:7 is just outside the boundary of admissible breakdates. When

we reduced the trimming window to 10% for the longer dataset a break date is estimated to occur

in 1996 for the NAN index but not for the NYSE or S&P 500 indices, which continue to exhibit

a break in late 1994. This suggests that the minimum window length is not the sole explanation

for the discrepancy in the timing of the break. In Section 7 of the paper we explore the e�ect of

considering repurchases and a total payout yield for US data. There we �nd an estimated breakdate

in late 1994, consistent with the longer sample results for the US portfolios.

6.2. Short interest rate

Panel B displays results for the short interest rate regressions with breaks. Evidence of breaks across

the 10 OECD countries using the shorter dataset is limited. A single break is estimated for three

countries (Belgium, France and Sweden) and for two of these three cases the estimated break occurs

near the end of the sample. The post-break predictability is extremely high, however, the post-break

sample is less than �ve years in length. Evidence of breaks appears stronger for the UK and US using

the longer dataset. For each of the US indices considered, there are two breakpoints which occur

in 1962 and 1974, respectively. The break dates for this model are reasonably precisely estimated

although the con�dence intervals for the second break are somewhat wider. The coe�cients on the

short rate are negative and strongly signi�cant during the �rst subinterval ending with a break in

1962.16 The coe�cient estimates diminish in absolute value during the subinterval between 1962

and 1974, although they remain signi�cant at conventional levels. Subsequent to the break in

1974, however, the estimates become insigni�cant and the predictive power of the short rate falls

dramatically. Thus for the model based on the short interest rate our results support the �nding of

a breakdown in �nancial return prediction models.

For the UK, a single break is identi�ed in 1974. The pattern in the coe�cients is similar to that

for the US, as the coe�cient on the short rate is no longer signi�cant following the break. The 1974

break in the short rate regressions for the UK and US may be related to the large macroeconomic

shocks re
ecting large oil price increases and the resulting break in the trend of US GDP found to

have occurred around this time (Perron (1989)). One possibility is that breaks in the underlying

economic fundamentals process can explain breaks in �nancial return models. There is no reason

to expect �nancial return models to be immune to breaks in economic growth since these are

likely to a�ect investors' intertemporal marginal rates of substitution and hence the process driving

risk premia. It is important to note that given the minimum window length of over �ve years a

breakpoint in 1974 is infeasible for the shorter dataset. Thus, the fact that a 1974 break is not

identi�ed more broadly using the second dataset should not be interpreted as evidence against a

widespread international break.17

16The 1962 break for the US indices occurred around the time of the Cuban Missile Crisis (October 1962), generally

viewed as a turning point in the cold war. It is possible that risk premia in the US were altered by this important

political event.
17In section 7 of the paper we formally test for a contemporaneous break in the US and UK regressions using the
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6.3. Term spread and default premium

There is only limited evidence of breaks in the univariate return models based on the local country

term spread and US default premium. A break is identi�ed in 1989 for Japan in the term spread

model. The coe�cient on the term spread is negative and statistically signi�cant prior to the 1989

break, but the sign on the coe�cient 
ips to positive (although insigni�cant) following the break.

For the S&P 500 a break is identi�ed in 1975 in the longer dataset. The features of this break

are similar to those of the break in the short rate for the US indices above. The predictive power

of the spread thus appears to be concentrated in the early part of the sample. Again, the break

may be related to the oil price shock in 1974, as this lies well within the con�dence interval for the

breakdate.

For the regressions based on the US default premium, a single break is identi�ed for four of the

10 countries considered, including France, Sweden, the UK and the US using the shorter dataset.

The breakpoint estimated for the UK is January, 1975, which is the boundary point based on the

minimum window length of �ve years and one month for the shorter dataset. This observation

suggests that the break may in fact occur slightly earlier, and may again be related to the oil price

shock. The US break is similarly timed, although the point estimate is for May 1975, which is

within the bounds established by the minimum window length. The break in France also occurs at

roughly the same time, while the break for Sweden is estimated to occur in 1992. For all countries

the predictive ability of the default premium as measured by the regression R2-values over di�erent

subintervals appears to be concentrated in the subinterval preceding the break.

6.4. Multivariate regression models

We now turn to the multivariate regression models that include the (lagged) local country dividend

yield, short interest rate and term spread along with the US default premium. Table 7 presents

results for the multivariate regression models with breaks. A constant is always included in the re-

gressions but is not reported to preserve space. The breakpoint regressions reveal several interesting

results. Most notably, the individual regression coe�cients change substantially following a break.

While some of this variation can clearly be explained by sampling variation due to sometimes large

standard errors, this does not conceal the fact that breaks in the regression model appear to be

su�ciently large to be of substantial economic interest. Reassuringly, however, there are not many

instances where the sign of the regression coe�cient estimate changes.

While the timing of breaks varies across international markets, there does appear to be some

evidence of clustering in the estimated break dates. An estimated break date occurs for many of

the European indices between the years 1978 and 1982, including Belgium, France, Germany, the

Netherlands, and Sweden. The US does not appear to experience a break at this time while Canada

does. A break is estimated for the UK in 1976 using the shorter sample of data, however, upon

examining the longer sample the break appears to be timed in 1974 and the 1976 estimate may be

short interest rate.
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related to power issues around the boundary based on the trimming percentage. A possible catalyst

for the European breaks identi�ed around this time was the founding of the European Monetary

System in 1979. The eight original member nations agreed to hold exchange rates within certain

limits. This event presumably introduced new constraints on domestic �scal and interest rate policy.

It is noteworthy that the UK does not experience a break at this time. Indeed, the UK declined to

participate in the system of mutually �xed exchange rates adopted in 1979.

The 1987 break that occurs in the US (NYSE and S&P 500 portfolios) appears to be an isolated

break not experienced by other international markets. Finally, several countries experience breaks

in the mid 1990s, including Germany, Japan, Sweden and the US. In the following section of the

paper we discuss formal econometric tests of contemporaneous breaks across countries.

As noted earlier, previous empirical work suggest a breakdown in forecasting models in the

1990s. This work is primarily based on US data and does not attempt to time the breakpoints.

Consistent with the lower coe�cient estimates observed after the most recent break, the R2-value

was at or near its minimum after the most recent break for all of the US indices considered. While

in-sample or ex post R2�values in the range 0.15-0.25 are common before the �rst and second break,
the R2-values are near or below 0.10 after the most recent break. These values are much higher

than those typically reported in studies of ex ante predictability or even for full-sample models.

However, it should be recalled that, by construction, R2�values will generally be somewhat higher
because more parameters are used to minimize the sum of squared residuals than when no break

is assumed. Since breaks are typically not detectable in real time, the reported R2�values could
never be exploited in an ex ante investment strategy. While one should therefore not put much into

an interpretation of the observed level of these R2�values, nevertheless broad changes in these are
of considerable economic interest and are helpful in identifying patterns in ex-post predictability.

The European countries experiencing a single break between 1978 and 1981 (Belgium, France,

the Netherlands) also exhibit a lower R2-value following the break. Exceptions to the general

pattern exist, though. In particular, predictability appears to have increased following the most

recent break for several countries that experienced a break in the 1990s (e.g., Germany and Japan).

Based on the longer dataset for the UK, the R2-value following the second break in 1974 remained

quite high at 19.1% despite the fact that this was a decrease relative to the previous subinterval.

7. Robustness and extensions

This section further considers the robustness of our evidence regarding breaks in stock return re-

gressions, extends the previous results by considering long-horizon return regressions and tests for

contemporaneous breaks across blocks of countries considered in our study.18

18We thank an anonymous referee for suggesting many of inquiries addressed in this section of the paper.
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7.1. Dividends, repurchases and total payout

Our empirical evidence suggests a break in the dividend yield regression for US data in the mid

1990s. Earlier in the paper we discussed the potential of size distortions in tests for breaks in the

dividend yield regression due to the lagged endogenous regressor bias. On the other hand, one might

construct an economic argument in support of a break in the dividend yield regression arising from

the gradual substitution of repurchases for dividends as a form of payout (see, e.g., Grullon and

Michaely (2002)). More �rms have opted for repurchases as a form of returning cash to investors

and the fraction of �rms paying dividends has also declined.

The top panel of Figure 1 plots a time series of the dividend yield from 1970 - 2003 and indicates

our estimated breakpoint along with a 90% con�dence interval for the breakdate. From the mid

1980s through the 1990s, the dividend yield appears to trend downward. Our estimated breakpoint

of 1996:7 is in the midst of this period characterized by a declining dividend yield. Recent papers

including Grullon and Michaely (2002) and Boudoukh, Michaely, Richardson and Roberts (2004)

suggest that a measure of the total payout yield, including both dividends and repurchases, is a

more sensible measure of payout for asset pricing applications. Boudoukh, Michaely, Richardson

and Roberts (2004) �nd statistically and economically signi�cant predictability at short and long

horizons when the total payout yield is used instead of the dividend yield. They also �nd that while

predictability diminishes after 1985 in a predictive regression using the dividend yield, predictability

remains nearly constant when using the total payout yield.

To explore the robustness of our results for the dividend yield, we constructed a monthly total

payout series based on repurchases data as well as dividends. We obtained year-end (annual) data

for the period 1972-2003 consisting of repurchases and market capitalization values for a broad

sample of Compustat �rms.19 Repurchases are de�ned as the total expenditure on the purchase of

common and preferred stock less any reduction in the value of the net number of preferred stocks

outstanding. Although repurchases data are not available at the monthly frequency, we construct a

proxy for the monthly repurchases yield by scaling the year-end repurchases by the year-end market

capitalization value. This provides a year-end (December) repurchases yield. In the subsequent

months leading up to the next year-end update, we adjust the market capitalization value by the

total return on the S&P 500 portfolio to account for market price 
uctuations.20

The bottom panel of Figure 1 displays our constructed total payout yield. The total payout

yield does not appear to trend downward as the dividend yield does; however, there does appear to

be a downward shift (break) in the level of the series around 1991 or 1992. This may correspond

to the recession in 1991 which reduced �rms' repurchase activity. Although repurchases activity

ultimately picked up again, so did share prices, so that the level of the repurchases yield remains

below that observed over much of the 1980s.

To assess the sensitivity of our �nding of a break in the dividend yield regression to the consid-

19We thank Gustavo Grullon for providing the repurchases and market capitalization data.
20We use the S&P 500 return as a proxy for the true monthly changes in the market capitalization value for the

�rms in the Compustat sample.
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eration of repurchases we tested for breaks in a regression of excess returns on the S&P 500 on our

total payout yield measure using the sample period 1970:1 - 2003:12.21 The bottom panel of Figure

1 indicates our estimated breakpoint for the total payout regression. The Bai-Perron procedure

selects a model with a single break where the estimated breakpoint is 1994:11, which di�ers slightly

from the 1996:7 breakpoint identi�ed for the dividend yield regression over the same sample period.

Interestingly, however, the 1994:11 breakpoint is nearly identical to the breakpoint identi�ed in

dividend yield regressions for all US portfolios over the longer data sample period 1952:7 -2003:12

(see Table 6). Using the total payout yield thus helps resolve the slight discrepancy in the timing

of the break in the yield regression across the two sample periods we examine. The behavior of the

regression coe�cients before and after the break are similar in the dividend yield and total payout

yield regressions. The pre- and post- break coe�cients on the lagged total payout yield are 0.61

and 4.70, respectively, while the corresponding values for the dividend yield regression are 0.40 and

7.46.

To summarize, our results indicate that little changes regarding evidence of breaks in yield

regressions when a total payout yield is considered instead of the dividend yield. A potential source

of the break is the apparent level shift in total payout yield in the early 1990s. As Figure 1 indicates,

the 90% con�dence interval for the estimated breakdate includes this period.

7.2. Minimum distance between breaks

The estimation procedure suggested by Bai and Perron (1998) and further discussed in Bai and

Perron (2003) imposes a minimum number of periods between breaks of at least q, where q is the

number of covariates subject to instability. In practice, Bai and Perron suggest that the minimum

window should be set to a value h much greater than q. The choice of minimum window, h, is

expressed as a fraction of the total sample size as the trimming percentage � and may have important

implications for model selection. For a �xed number of breaks, larger values of h (equivalently of �)

place more limitations on the combinations of break dates considered. For example, if the sample

size is 100 and h is set to 49, then e�ectively the only time a break can occur is at observation 50.

Increasing the window length can hence sharply reduce the combinations of breakpoints allowed.

Indeed, this is an integral part of reducing the number of computations required in the e�cient

dynamic programming routine suggested by Bai and Perron (1998). The sequential testing method

that is used to select the number of breaks in the model also relies on the trimming percentage �

through its e�ect on the set of break partitions over which the supremum of F -statistics is computed.

To explore the robustness of the evidence of breaks in returns regressions to the choice of

trimming percentage (recall that the results discussed above pertain to a trimming percentage

of 15%) Table 8 presents a graphical summary of the breaks identi�ed for di�erent choices of �

ranging from 5% to 20%. Note that in the case of a trimming percentage of 20% the maximum

21Since our repurchases data begin in 1972 the total payout yield for the initial months of data is simply the dividend

yield. Repurchases formed a very small proportion of the total payout in 1970 and 1971, so this procedure introduces

minimal error in our results and makes our sample period comparable to those used in the earlier sections.
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allowable number of breaks is three. In all other cases the maximum number of breaks is set to

�ve. Several features of Table 8 are notable. First, breaks are abundant regardless of the trimming

percentage selected, indicating that the presence of breaks is not driven by a particular choice of

the trimming percentage. Second, the timing of breaks is also frequently robust to the choice of

trimming percentage. Exceptions tend to occur when the break occurs near the boundary point

for the larger trimming percentages. For example, the breakpoint identi�ed in 1994 for the US

portfolios is robust to the choice of trimming window except when the trimming window is set to

20 percent. However, in this case a break of date of 1994 is infeasible, so a break is instead �t a bit

earlier in the sample. Even if a break is technically feasible, the power of break tests declines near

the boundaries, and so it is not surprising that in these cases the timing of the estimated breakdate

shifts toward the interior of the sample. Overall, the main empirical results appear to be robust to

the particular choice of trimming percentage.

7.3. Misspeci�ed functional form and breaks

We adopt a linear functional form for the conditional expectation of excess returns. As in most

applications of linear regression in economics, there is no inherent, compelling reason why the con-

ditional expectation of excess returns need exhibit a linear form. Furthermore, the relationship

between excess returns and forecasting variables implied by economic models such as that in Camp-

bell and Cochrane (1999) is inherently nonlinear. We view the simple linear functional form as an

approximation to the true, unknown, and potentially nonlinear conditional expectation. Neverthe-

less, a concern exists regarding whether omitted nonlinearity could give rise to spurious evidence

of breaks. We note that this is fundamentally a �nite sample issue, since asymptotically, under

fairly general conditions, OLS parameter estimates for a misspeci�ed linear model are consistent for

the time-invariant `pseudo-true' values that deliver the best linear approximation to the underlying

nonlinear conditional expectation.22 However, given the highly persistent nature of the forecasting

variables considered in this study, it is natural to wonder whether omitted nonlinearity could give

rise to spurious breaks in �nite samples.

To investigate this question, we examined the robustness of our empirical evidence regarding

breaks to more 
exible speci�cations for the relation between forecasting variables and excess re-

turns. Speci�cally, for the univariate forecasting models, we considered alternative models that

included squared terms or both squared and cubed terms in the regression speci�cation. The para-

meters on the higher order terms were assumed to be time invariant. We then tested for instability

in the regression coe�cients on the linear terms in the regression. If our evidence of breaks is driven

by omitted nonlinearity, then we would expect to no longer �nd evidence of a break in the linear

terms once a su�cient number of higher-order terms have been added to the speci�cation. In fact,

we �nd that the addition of squared and cubic terms has little impact on our evidence regarding

breaks. For example, for the US portfolios we identi�ed a break in the dividend yield regression in

1994, breaks in the short interest rate regression in 1962 and 1974 and a break in the term spread

22This assumes that the parameters of the true nonlinear conditional expectation function are time invariant.
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regression in 1975. When we augment these univariate models with squared and cubic terms in the

forecasting variable, we generally continue to �nd breaks at these times in the linear coe�cient for

the augmented model. For example, for the S&P 500 the addition of squared terms in the fore-

casting variable causes no change in the number of breaks identi�ed or in the timing of the breaks,

while the addition of both squared and cubed terms in the forecasting variable only a�ects the 1962

break for the T-bill regression.23

7.4. Breaks in long-horizon return regressions

If breaks occur in the conditional relationship between excess returns and forecasting variables, then

it seems plausible that evidence of breaks should be apparent in long-horizon return regressions as

well as in the single period regressions considered heretofore. The Monte Carlo results discussed

in Section 3 of the paper suggest that the Bai and Perron methodology ultimately su�ers from

substantial size distortions as the horizon increases despite the use of tests that are robust to serial

correlation. For this reason, we report results for regressions using cumulated returns only up to

the six month horizon and we note that even at these shorter horizons results must be interpreted

with some caution. Table 9 displays the breaks identi�ed in regressions using cumulated returns for

the multivariate regression model at horizons of two, four and six months. In all cases the trimming

percentage is set to 15%, so the breaks displayed in Table 9 for cumulated returns may be compared

with those displayed in the middle panel in Table 8 for the single-month horizon.

The results for the cumulated returns tend to corroborate the results for the single-month

horizon, in the sense that breaks identi�ed at the one-month horizon are frequently identi�ed at

longer horizons as well. For example, over all horizons considered a breakpoint is identi�ed in 1994

for all US portfolios using the longer dataset. The break identi�ed in the 1978-1982 range for many

European markets also appears across all horizons considered. More breaks on average are identi�ed

for the long-horizon models. It is notable that a break is identi�ed for all US indices using in the

multivariate regression model in 1962 for the two-, four- and six-month horizons. Thus there is

stronger evidence of a break in 1962 for the multivariate regression using overlapping long-horizon

returns. As noted earlier, this break may be related to the Cuban Missile Crisis and appears to

have a�ected the US market to a greater extent than the UK market. Interestingly, for all 3 US

indices a break also appears in 1979-1980 in the long horizon regressions. It is not di�cult to point

to a potential source for this break in the US: on October 6, 1979, the Federal Reserve adopted new

policy procedures that led to two recessions but also ultimately ushered in an environment of low

in
ation and relative economic stability.

There are two potential explanations for the appearance of additional breaks in the long-horizon

regressions. First, the higher signal-to-noise ratio in longer-horizon regressions may increase the

power of tests to detect breaks. Alternatively, the additional breaks may be spurious and induced

by �nite sample size distortions as documented in the Monte Carlo study of section 3. Based on

23Since the evidence regarding the timing and number of breaks is very similar to previously discussed results, we

do not separately report these results in the tables to conserve space.
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the Monte Carlo results, if the additional breaks were purely spurious, one would expect breaks to

gradually appear as the horizon is increased. Instead, it appears that many of the additional breaks

appear immediately for the two-month horizon and these are carried through to the six-month

horizon.

7.5. Tests for contemporaneous breaks across countries

Our estimates of the timing of breakdates suggest some clustering across countries in breaks in return

prediction models, i.e., that forecasting relationships undergo changes at the same or nearly the same

time. In particular, the evidence based on a country-by-country analysis suggests the possibility

of a contemporaneous break in multivariate return forecasting models for European indices during

the period 1978-1982. Additionally, there appears to be evidence of a contemporaneous break in

regressions for the US and UK, particularly for the short interest rate and term spread regressions.

This section of the paper extends the previous results by providing formal tests for the presence of

contemporaneous breaks.

Qu and Perron (2004) develop results that extend the estimation and testing framework of Bai

and Perron (1998) to multivariate equations. The Qu and Perron (2004) methodology extends

results in Bai, Lumsdaine and Stock (1998) and Bai (2000) for detecting and estimating breaks

in multivariate systems. The multivariate models with breaks are estimated using quasi-maximum

likelihood based on normal errors. Inference regarding the presence of breaks is based on SupLR-

type test statistics. The testing framework is very general and permits tests for changes in the

regression coe�cients, tests for changes in the covariance matrix of the residuals, or both. We

restrict attention to tests for changes in the regression coe�cients, since the focus of this study is

on instability in coe�cients of linear models of returns.

We test for a single contemporaneous break for the US and UK returns in the full regression

model (including all forecasting variables for each country) over the sample period 1952:7 - 2003:12.

The SupLR test statistic is 41.7 which is highly signi�cant at the 5% level. Thus, we �nd evidence of

a contemporaneous break for the US and UK. The estimated timing of the break is November, 1974

and a 90 percent con�dence interval for the break extends from December, 1973 through March,

1975, so the breakpoint is quite precisely estimated. The estimated breakpoint coincides closely

with the oil price shock of 1974-5 following the Yom Kippur War of 1973.

We additionally tested for a contemporaneous break across all markets in our study using the

sample period 1970:1 - 2003:12 and separately for just the subset including the European markets

for which a break was identi�ed in the 1978-1982 range in the country-by-country analysis (Belgium,

France, Germany, the Netherlands, Sweden). In neither case was the null hypothesis of no joint

break rejected.24

While the inability of the joint test to detect a common break for the European nations may

seem surprising, it should be noted that the extent of predictability, as measured by the full-sample

R2-value for the regression with all predictor variables (see Table 4) is quite weak for most of the

24Tests for contemporaneous breaks in the univariate models also did not result in rejections of the null.
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European nations that exhibit a break in the 1978-1982 period. Indeed, over the 1970-2003 period

the highest R2-values are for the UK and US, respectively. This may help explain why we are able

to identify a common break for the US and UK but not for the European group of nations, despite

the closely clustered breakdates as per the single-country regressions.

In moving from a single-country regression to the multi-country regression setting, the number of

parameters increases substantially. If some of the regression parameters do not change substantially

following a break, then this may dilute the ability of the multivariate test to detect a common

break. Looking at the single-country regression results with breaks (Table 7), it is clear that not

all coe�cients exhibit substantial change following a break. While one might attempt to specify

a priori which coe�cients are likely to exhibit breaks, it is di�cult to provide a �rm economic

justi�cation for such restrictions.

8. Conclusion

This study presents systematic empirical evidence of structural breaks in models of predictable

components in international stock returns based on the lagged dividend yield, short interest rate,

term spread and default premium. We �nd evidence of breaks for the vast majority of countries

in multivariate regression models for excess returns. Further, our results indicate that the rela-

tionship between particular state variables and stock returns may change substantially following a

break. Empirical evidence of predictability is not uniform over time and is concentrated in certain

periods. For a number of the countries examined in our study ex post predictability appears to be

substantially weaker after the most recent break, although a few exceptions exist. Using a longer

historical dataset for the UK and US we �nd evidence of a common break around 1974-1975, which

we relate to the oil price shock. Additionally, there is some evidence of a common break experienced

by a number of European stock markets during the period 1978-1982. We suggest that this break

may be related to the introduction of the European Monetary System in 1979 and the associated

constraints imposed on monetary and �scal policy in member nations.

The presence of structural breaks in predictive return regressions raises several economically

interesting issues. First, how should conditional expected returns be estimated in the presence of

breaks? One possibility is to use data after the most recently identi�ed break date. Pesaran and

Timmermann (2002) propose a procedure that reverses the ordering of the data in the prediction

model and estimates the model parameters using only post-break data. This method determines the

break date using a Cusum-squared test and directly addresses the question of how much historical

data to use. Such an approach is, however, unlikely to work well if the data sample after the most

recent break is very short. For this case, Pesaran and Timmermann (2004) prove that it can be

optimal to use pre-break data provided that the break is not very large (so the bias in the predictive

return regression does not get too large). They propose viewing the length of the data window used

in estimation of the conditional mean as a separate parameter that is optimally chosen to trade-o�

(squared) bias against reduction in parameter estimation error resulting from using pre-break data.

A very active strand in the �nance literature considers asset allocation problems in the pres-
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ence of predictable asset returns (see, e.g., Ait-Sahalia and Brandt (2001), Barberis (2000), Brandt

(1999), Campbell and Viceira (1998) and Kandel and Stambaugh (1996)). The predominant ap-

proach in the literature is to presume a time-invariant relationship between forecasting variables and

expected returns. Clearly, the possibility of breaks and time-variation in the conditional mean func-

tion for asset returns complicates the portfolio allocation problem. Thus, a second question is how

to adjust portfolio weights in the presence of breaks to the return forecasting equation. Answering

this question requires a full-blown model for the underlying breakpoint process since the predictive

density of future stock returns now becomes a mixture of the return distribution conditional on

no future breaks (i.e., remaining in the current regime) and the return distribution given that a

break occurs. Hence the probability of a future break must be computed and the parameters of the

return prediction model after a break must be drawn from some `meta distribution' characterizing

the parameters across the various break segments. This is best accomplished using a Bayesian

approach, but relies on distributional assumptions about the regressor variables, error terms and

the underlying breakpoint process that go beyond the present paper. These issues are addressed by

Pettenuzzo and Timmermann (2005) who �nd that structural breaks can have signi�cant e�ects on

the optimal asset allocation.
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Intercept Div. Yld.(t-1) Std. Error � Intercept T-bill(t-1) Std. Error �

NYSE(t) -0.00466 0.31742 0.04131 -0.92175 NYSE(t) 0.01428 -2.05721 0.04118 -0.01917

Div. Yld.(t) Intercept Div. Yld.(t-1) Std. Error T-bill(t) Intercept T-bill(t-1) Std. Error
0.00032 0.98846 0.00156 0.00010 0.97534 0.00052

Intercept Trm. Spd.(t-1) Std. Error � Intercept Def. Prm.(t-1) Std. Error �

NYSE(t) 0.00276 6.26948 0.04124 0.08834 NYSE(t) -0.00010 7.48732 0.04137 0.04674

Trm. Spd.(t) Intercept Trm. Spd.(t-1) Std. Error Def. Prm.(t) Intercept Def. Prm.(t-1) Std. Error
0.00003 0.94091 0.00023 0.00002 0.97213 0.00008

Table 1. Calibration of parameters for Monte Carlo simulations. The table presents estimation results for the system

A: Dividend Yield

C: Term Spread

B: Short Interest Rate

D: Default Premium

based on excess returns for the NYSE and the US forecasting variables. These parameters are subsequently used in simulations discussed in section X of the paper. For each equation in the system 
the table presents the estimated coefficients as well as the estimated standard error for the shock to the equation. The estimated contemporaneous correlation between shocks, denoted �, is also 
presented. Panels A, B, C and D present results for the dividend yield, short interest rate, term spread and default premium, respectively. The sample period is monthly 1952:7-2003:12.
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� � SupF(1) SupF(2) UDMax Hans. SupF J-Stat BIC(0) BIC(1) BIC(2) SEQ(0) SEQ(1) SEQ(2)

0 0 12.5% 15.2% 14.5% 11.3% 11.1% 99.7% 0.3% 0.0% 87.6% 12.0% 0.5%

0 0.9 14.5% 18.9% 17.9% 10.5% 10.6% 99.8% 0.3% 0.0% 85.5% 13.9% 0.7%

0 0.95 16.6% 21.1% 21.1% 11.3% 10.3% 99.7% 0.3% 0.0% 83.4% 15.5% 1.2%

0 0.98 16.5% 22.5% 20.8% 11.0% 8.2% 99.7% 0.4% 0.0% 83.6% 15.7% 0.8%

-0.9 0 13.3% 16.0% 15.3% 11.1% 11.0% 99.8% 0.2% 0.0% 86.8% 12.7% 0.5%

-0.9 0.9 21.3% 33.6% 31.1% 17.9% 8.3% 99.6% 0.5% 0.0% 78.8% 19.1% 2.2%

-0.9 0.95 27.6% 50.4% 44.4% 22.3% 5.9% 98.8% 1.2% 0.0% 72.4% 22.3% 4.9%

-0.9 0.98 41.2% 68.2% 63.7% 33.0% 6.1% 97.3% 2.7% 0.0% 58.9% 30.5% 8.6%

SupF(1) SupF(2) UDMax Hans. SupF J-Stat BIC(0) BIC(1) BIC(2) SEQ(0) SEQ(1) SEQ(2)

56.1% 81.6% 81.0% 42.6% 6.4% 96.3% 3.4% 0.3% 43.9% 35.6% 17.7%
45.0% 72.7% 69.2% 32.6% 5.1% 98.0% 2.0% 0.1% 55.1% 32.1% 10.9%
28.6% 50.3% 44.8% 20.1% 6.7% 99.2% 0.8% 0.1% 71.4% 24.2% 4.1%
42.2% 70.6% 67.1% 31.0% 4.7% 98.1% 1.9% 0.1% 57.9% 30.8% 10.1%

Horizon � SupF(1) SupF(2) UDMax Hans. SupF J-Stat BIC(0) BIC(1) BIC(2) SEQ(0) SEQ(1) SEQ(2)

2 0 16.8% 21.8% 22.2% 35.1% 12.9% 94.8% 4.7% 0.6% 83.3% 15.5% 1.3%

2 0.9 23.1% 38.1% 36.9% 52.9% 18.2% 88.1% 9.2% 2.5% 77.0% 20.7% 2.3%

2 0.95 25.1% 41.2% 39.2% 53.0% 14.5% 86.9% 10.2% 2.8% 75.0% 21.8% 3.0%

2 0.98 26.9% 44.6% 45.0% 55.7% 12.9% 85.5% 11.2% 3.1% 73.2% 23.6% 3.0%

4 0 21.2% 31.5% 36.0% 70.0% 17.7% 63.3% 20.1% 12.9% 78.8% 18.9% 2.2%

4 0.9 32.0% 55.6% 58.4% 89.0% 24.2% 34.6% 22.3% 26.8% 68.0% 26.5% 4.9%

4 0.95 34.7% 59.0% 61.9% 90.9% 20.2% 32.1% 22.7% 28.5% 65.3% 26.9% 6.9%

4 0.98 38.6% 63.6% 68.5% 91.7% 19.1% 28.5% 22.1% 29.6% 61.5% 29.7% 7.7%

6 0 24.9% 41.6% 48.1% 85.9% 17.8% 33.8% 21.0% 28.7% 75.1% 22.0% 2.6%
6 0.9 37.9% 64.6% 70.7% 97.3% 25.2% 10.6% 14.5% 30.4% 62.2% 29.9% 7.0%
6 0.95 40.5% 66.4% 74.4% 97.5% 22.6% 9.0% 13.3% 31.0% 59.6% 29.7% 8.9%
6 0.98 45.8% 74.8% 82.0% 97.7% 21.4% 6.8% 12.0% 29.0% 54.3% 31.8% 11.4%

Variable

C: Size Results for Long-Horizon Return Regressions

Div. Yld.

Short Rate

Term Spread

Default Premium

Table 2. Monte Carlo simulations results: size. The simulation experiments assess the size properties of tests for structural breaks in stock return regressions and the adequacy of 
various model selection procedures under the null of no breaks. In Panel A, the dependent variable is generated as a zero mean Gaussian white noise process. The regressor is 
generated as a zero mean stationary AR(1) process with persistence parameter �. In both cases the shocks are normalized to have unit variance and the innovations to the dependent 
variable and to the regressor have contemporaneous correlation �  of either zero or -0.9. In Panel B, the system described by equation (6) of the paper is calibrated to each regressor 
in turn, based on US data over the period 1952:7 - 2003:12 using the parameters in Table 1. Panel C presents size results for long-horizon regressions for the system described by 
equation (6). The nominal size of the tests is 10%. In all cases the sample size is 500, and results are reported for 2000 Monte Carlo replications.

B: Size Results for Process Tuned to Emprical Estimates

A: Size Effects of Persistence and Contemporaneous Correlation



� SupF(1) UDMax Hans. SupF J-Stat BIC(0) BIC(1) BIC(2) SEQ(0) SEQ(1) SEQ(2)

0 10 9.7% 10.7% 9.6% 11.0% 99.8% 0.2% 0.0% 87.9% 11.4% 0.6%

0 25 13.8% 13.6% 12.8% 14.3% 99.5% 0.5% 0.0% 84.6% 14.6% 0.8%

0 50 20.6% 20.5% 21.4% 20.8% 98.8% 1.2% 0.0% 76.8% 21.9% 1.4%

0 100 57.1% 56.1% 60.9% 56.8% 89.3% 10.7% 0.1% 41.0% 55.2% 3.9%

0.95 10 10.1% 11.6% 10.1% 9.7% 99.7% 0.3% 0.0% 84.2% 14.3% 1.4%

0.95 25 12.1% 12.3% 12.2% 11.9% 99.7% 0.4% 0.0% 81.6% 17.0% 1.5%

0.95 50 17.5% 18.2% 18.4% 19.3% 98.9% 1.2% 0.0% 73.6% 24.6% 1.9%

0.95 100 50.2% 50.1% 53.3% 51.3% 90.3% 9.7% 0.0% 44.8% 50.8% 4.4%

0.98 10 10.6% 11.4% 11.3% 11.4% 99.5% 0.6% 0.0% 83.6% 15.2% 1.2%

0.98 25 11.5% 11.9% 12.5% 12.4% 99.8% 0.2% 0.0% 81.6% 17.0% 1.5%

0.98 50 15.7% 15.7% 17.3% 17.1% 98.8% 1.2% 0.0% 74.2% 24.0% 1.9%

0.98 100 41.8% 39.5% 45.5% 45.4% 91.3% 8.8% 0.0% 48.1% 47.9% 4.1%

� SupF(1) UDMax Hans. SupF J-Stat BIC(0) BIC(1) BIC(2) SEQ(0) SEQ(1) SEQ(2)

0 10 10.4% 10.3% 10.8% 10.6% 99.3% 0.7% 0.0% 87.3% 11.8% 1.0%

0 25 14.8% 13.8% 15.6% 15.2% 99.5% 0.6% 0.0% 82.6% 16.8% 0.7%

0 50 33.8% 31.4% 35.5% 34.3% 95.7% 4.4% 0.0% 60.1% 37.1% 2.8%

0 100 87.3% 84.7% 89.0% 85.0% 55.9% 44.1% 0.1% 12.5% 82.6% 4.9%

0.95 10 11.2% 11.5% 11.4% 11.1% 99.5% 0.6% 0.0% 83.3% 15.5% 1.3%

0.95 25 16.3% 16.0% 16.5% 17.1% 99.5% 0.6% 0.0% 77.3% 21.2% 1.6%

0.95 50 32.9% 30.4% 33.9% 33.0% 97.0% 3.0% 0.1% 64.6% 32.4% 3.0%

0.95 100 79.5% 66.0% 82.9% 80.1% 62.8% 37.1% 0.1% 16.5% 76.2% 7.2%

0.98 10 11.8% 11.9% 11.6% 10.3% 99.7% 0.4% 0.0% 82.8% 15.8% 1.4%

0.98 25 14.4% 14.5% 14.6% 14.3% 99.2% 0.9% 0.0% 77.0% 21.6% 1.4%

0.98 50 26.7% 24.9% 28.9% 28.3% 96.3% 3.7% 0.1% 63.6% 33.7% 2.7%

0.98 100 70.3% 67.1% 72.7% 70.0% 71.1% 28.8% 0.2% 23.7% 69.7% 6.4%

Table 3. Monte Carlo simulation results: size-adjusted power. This table reports the results of 2,000 simulation experiments with a single break. The dependent variable is 
generated as a function of a single driving variable, which itself follows an AR(1) process with persistence �. The specific data generating process is described in the 
equations below.  In all cases the sample size is 500 observations and the break occurs at the midway point of the sample. The second column of the tables indicates the break 

size as a percentage of the average coefficient, which is tuned to the corresponding R2-value. The table reports the frequency of cases that various break tests reject at the 10% 
significance level and reports model selection outcomes using both the BIC model selection criteria and the sequential method of Bai and Perron (1998) at the 10% level of 
significance. All tests are conducted using  empirical critical values based on 5,000 simulations under the null of no break so the results indicate the size-adjusted power of the 
tests.

A: R 2  = 5%

B: R 2  = 10%
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R 2 Beta SE R 2 Beta SE R 2 Beta SE R 2 Beta SE
NYSE (52:7 -) 0.71% 0.33 0.16 1.00% -1.77 0.68 1.15% 4.62 1.90 0.36% 7.18 5.96
NYSE/AMEX/NASDAQ 0.71% 0.34 0.18 1.06% -1.90 0.71 1.22% 4.95 2.03 0.37% 7.58 6.18
S&P 500 0.62% 0.32 0.17 1.09% -1.88 0.68 1.11% 4.64 1.96 0.20% 5.45 5.81
UK (FTA) 2.79% 0.70 0.35 0.14% -0.70 0.86 0.39% 1.93 1.64 0.68% 12.77 6.55

BEL (70:1 - ) 0.02% 0.04 0.17 0.05% -0.43 1.12 0.08% 1.67 2.71 0.30% 7.55 7.66
CAN 0.05% 0.09 0.27 0.97% -1.59 0.95 0.54% 2.78 2.03 0.15% 5.36 9.96
FRN 0.07% 0.08 0.17 0.27% -1.07 1.09 0.69% 4.05 2.62 0.03% 3.09 8.48
GER 0.14% 0.20 0.26 0.42% -2.05 1.62 0.15% 2.03 2.40 0.29% 8.33 6.87
ITL 0.23% -0.31 0.32 0.06% -0.43 0.95 0.15% 2.03 2.37 0.00% -0.48 12.50
JPN 0.63% 0.55 0.41 0.00% 0.02 1.60 0.14% 2.32 3.34 1.18% 16.04 6.32
NTH 0.21% 0.13 0.16 0.44% -1.62 1.06 0.31% 2.02 1.47 0.41% 9.30 7.34
SWE 0.20% 0.20 0.22 0.19% 0.94 1.35 0.00% 0.22 2.17 1.06% 18.71 12.19
UK 3.03% 0.76 0.47 0.00% 0.11 1.05 0.37% 1.73 1.75 1.59% 21.25 8.21
US (S&P 500) 0.33% 0.23 0.20 0.58% -1.50 0.86 1.27% 4.81 2.24 0.65% 10.41 7.27

R 2 Div. Yld. SE Int. Rate SE Term Spd. SE Def. Prm. SE
NYSE 4.26% 0.46 0.18 -4.05 1.07 0.40 1.96 17.33 7.90
NYSE/AMEX/NASDAQ 4.43% 0.48 0.20 -4.31 1.12 0.48 2.09 18.38 8.37
S&P 500 3.91% 0.47 0.19 -3.88 1.07 0.85 2.03 14.42 7.97
UK (FTA) 5.14% 0.84 0.32 -3.94 1.52 -1.97 1.77 26.14 9.69

BEL 0.91% 0.16 0.26 -2.82 2.24 -1.21 3.68 14.22 10.05
CAN 3.07% 0.44 0.32 -4.88 1.72 -3.39 3.33 18.07 10.46
FRN 1.15% 0.35 0.36 -3.11 2.88 -0.03 4.84 6.47 13.17
GER 1.69% 0.60 0.37 -5.66 2.83 -2.28 3.31 7.52 9.21
ITL 0.37% -0.30 0.32 -0.20 1.19 1.66 3.03 1.93 12.81
JPN 2.17% 0.67 0.46 -2.37 1.97 -2.02 3.55 20.82 8.45
NTH 2.29% 0.53 0.27 -7.43 3.26 -6.24 3.94 9.16 9.99
SWE 1.29% -0.05 0.28 0.62 1.95 2.95 3.15 20.88 16.24
UK 9.08% 2.44 0.98 -12.04 4.10 -9.15 3.34 20.58 11.34
US 3.90% 0.83 0.37 -6.02 1.97 -2.08 3.23 14.14 8.68

B: Multiple Regression Model

Table 4. Full-sample regression results with no breaks. The dependent variable is local country returns in excess of the local Treasury bill rate. For each country the forecasting variables are local country 
measures lagged one-month with the exception of the default premium, which is the US default premium for all countries. Standard errors to the right of each coefficient are computed using standard errors 

corrected for heteroskedasticity and serial correlation. R2-statistics are also provided for each regression. In the top portion of each panel, results are reported over the sample period 1952:6 - 2003:12 for the 
NYSE, NYSE/AMEX/NASDAQ, S&P 500 and UK (FTA) portfolios. In the bottom portion of each panel results are reported over the shorter sample period 1970:1 - 2003:12 for 10 OECD portfolios.

Dividend Yield Short Interest Rate Term Spread US Default Premium
A: Univariate Regression Models



NYSE NAN S&P 500 UK (FTA) BEL CAN FRN GER ITL JPN NTH SWE UK US

SupF(1) 25.31 a 22.74 a 25.28 a 4.85 10.56 b 8.45 11.69 a 8.29 6.15 11.06 b 9.04 10.58 b 14.42 a 15.98 a

UDMax 25.31 a 22.74 a 25.28 a 23.14 a 10.56 b 8.45 11.69 b 8.35 9.16 11.06 b 14.67 a 10.58 b 14.42 a 15.98 a

Hansen SupF 10.91 b 11.80 a 15.04 a 19.72 b 14.13 a 6.51 7.77 5.06 5.44 15.63 a 8.19 9.25 7.82 11.29 b

J-Stat -9.53 -8.97 -13.73 b -8.31 -11.08 -5.21 -8.59 -9.95 -9.18 -10.54 -12.58 -11.18 -9.92 -11.55
# Breaks (10%) 1 1 1 0 1 0 1 0 0 1 0 1 1 1
# Breaks (5%) 1 1 1 0 0 0 1 0 0 0 0 0 1 1

SupF(1) 13.66 a 13.01 a 14.92 a 17.95 a 12.65 a 4.87 12.14 a 8.61 8.06 9.25 9.51 17.47 a 2.88 9.07
UDMax 14.52 a 14.08 a 14.92 a 21.94 a 12.65 a 9.92 12.14 a 10.50 b 12.45 b 9.25 9.51 17.47 a 6.97 9.52
Hansen SupF 19.40 a 18.26 a 12.48 a 30.59 a 8.33 6.02 9.33 11.70 a 7.80 16.38 b 10.77 b 15.82 a 11.42 13.09
J-Stat -8.48 -8.15 -10.39 -11.45 -11.92 -6.50 -10.84 -8.96 -11.05 -12.31 -11.10 -11.63 -7.92 -9.62
# Breaks (10%) 2 2 2 1 1 0 1 0 0 0 0 1 0 0
# Breaks (5%) 1 1 2 1 1 0 1 0 0 0 0 1 0 0

SupF(1) 13.93 a 12.70 a 16.59 a 8.60 7.64 3.00 6.43 8.38 6.99 10.76 b 9.38 6.38 9.63 9.80
UDMax 13.93 a 12.70 a 16.59 a 8.60 10.33 5.15 6.46 8.38 8.58 10.76 b 9.38 6.53 9.63 9.80
Hansen SupF 14.75 a 13.18 a 15.04 a 4.94 5.09 3.64 5.56 8.82 6.86 12.54 b 8.17 11.22 b 23.62 b 14.37 b

J-Stat -13.06 b -11.74 -13.72 b -6.33 -10.25 -5.63 -11.13 -8.71 -12.29 -11.94 -13.48 b -13.31 b -6.79 -15.15 a

# Breaks (10%) 1 1 1 0 0 0 0 0 0 1 0 0 0 0
# Breaks (5%) 1 1 1 0 0 0 0 0 0 0 0 0 0 0

SupF(1) 6.38 6.46 6.21 9.80 5.44 6.62 9.96 b 7.57 5.49 4.18 8.22 10.47 b 12.31 a 16.91 a

UDMax 11.52 b 11.58 b 11.35 b 10.46 b 9.65 8.69 9.96 7.57 8.14 5.80 8.22 10.47 b 12.31 a 16.91 a

Hansen SupF 5.79 5.86 5.27 -10.03 7.21 9.27 11.07 9.94 6.53 4.96 12.45 11.87 41.72 a 11.12 b

J-Stat -12.90 b -12.72 -13.58 b -17.74 a -12.63 -8.02 -11.00 -13.01 b -10.96 -10.40 -17.46 a -13.18 b -18.64 a -9.89
# Breaks (10%) 0 0 0 0 0 0 1 0 0 0 0 1 1 1
# Breaks (5%) 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SupF(1) 22.30 a 20.03 a 24.31 a 44.11 a 27.09 a 29.39 a 26.89 a 24.49 a 11.46 22.55 a 41.73 a 20.63 a 20.40 28.57 a

UDMax 27.13 a 27.95 a 27.12 a 46.40 a 27.09 a 29.39 a 26.89 a 24.49 a 18.17 b 22.55 a 41.73 a 29.09 a 22.04 32.85 a

Hansen SupF 31.64 a 29.11 a 35.11 a 97.53 a 33.31 a 30.03 a 23.14 a 23.87 a 14.31 23.88 b 35.93 a 27.66 a 37.82 a 33.61 a

J-Stat -34.12 a -33.67 a -33.544 a -39.09 a -38.24 a -30.54 b -30.79 a -37.13 a -22.17 -30.69 a -50.25 a -26.53 -38.00 a -38.01 a

# Breaks (10%) 2 1 2 2 1 1 1 2 0 1 1 2 1 2
# Breaks (5%) 1 1 1 2 1 1 1 2 0 1 1 2 1 2

Note: Superscripts a and b represent statistical significance at the 5% and 10% levels, respectively.

Table 5. Tests for breaks and model selection. The table presents test statistics for various hypothesis tests regarding the occurrence of breaks in the regression model for U.S. and international 
excess stock returns. The test statistics reported include the SupF(1) test, the UDMax test of Bai and Perron (1998), the SupF(1) test with bootstrap critical values corrected for heteroskedasticity 
as suggested by Hansen (2002) and the J-test of Elliott and Muller (2003). The Bai and Perron and Hansen SupF(1) test statistics differ generally since the former is computed using a HAC 
covariance estimator. See the appendix for further details regarding the various tests. The trimming percentage for the SupF  tests is set at 15% of the sample size. The table also reports the number 
of breaks selected based on the sequential method suggested by Bai and Perron (1998, 2003) at both the 10% and 5% significance levels.

A: Sample period 1952:7 - 2003:12 B: Sample period 1970:1 - 2003:12
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Breakpoint

Portfolio R 2 Beta S.E. R 2 Beta S.E.

NYSE (52:7 - ) 1.5% 0.60 a 0.22 [92:8  94:11  95:4] 6.7% 2.88 a 0.74

NYSE/AMEX/NASDAQ 1.5% 0.61 a 0.23 [92:8  94:12  95:4] 6.5% 3.38 a 0.98

S&P 500 1.2% 0.55 a 0.21 [92:10  94:12  95:3] 7.5% 3.55 a 0.90

UK (FTA) 2.8% 0.70 0.35

BEL (70:1 - ) 1.2% -0.30 0.19 [ 70:1  81:10  82:6] 2.9% 0.71 a 0.30

CAN 0.0% 0.09 0.27
FRN 1.6% 0.56 b 0.33 [78:8  82:11  86:8] 1.4% 0.60 a 0.25
GER 0.1% 0.20 0.26
ITL 0.2% -0.31 0.32
JPN 0.1% -0.18 0.42 [82:9  89:11  90:12] 3.6% 4.49 a 1.85
NTH 0.2% 0.13 0.16
SWE 0.2% 0.23 0.32  [70:1  80:8  81:10] 2.2% 0.96 a 0.33
UK 4.2% 1.09 0.78 [91:4   92:7  99:2] 8.4% 1.71 a 0.43
US 0.6% 0.40 0.28 [96:6   96:7   96:8] 11.0% 7.46 a 1.93

Breakpoint Breakpoint

Portfolio R 2 Beta S.E. R 2 Beta S.E. R 2 Beta S.E.

NYSE (52:7 - ) 11.6% -16.79 a 3.61 [61:3  62:9  64:11] 13.8% -11.76 a 2.97 [73:3  74:8  81:7] 0.3% -0.94 0.98

NYSE/AMEX/NASDAQ 11.6% -16.79 a 3.60 [61:1  62:9  64:10] 13.9% -12.05 a 3.06 [73:2  74:8 81:10] 0.3% -1.11 1.06

S&P 500 12.1% -17.82 a 4.24 [61:7  62:9  64:12] 14.8% -11.78 a 2.88 [73:4   74:8   81:1] 0.3% -0.97 0.98

UK (FTA) 12.5% -9.12 a 2.19 [73:1  74:10  82:8] 0.4% 1.25 1.08

BEL (70:1 - ) 5.2% -5.67 a 1.74 [74:10  81:8  83:12] 0.2% 0.97 1.27

CAN 1.0% -1.59 b 0.95

FRN 0.7% -1.97 1.25 [98:4  98:5  98:7] 9.5% -30.43 a 8.91

GER 0.4% -2.05 1.62

ITL 0.1% -0.43 0.95

JPN 0.0% 0.02 1.60

NTH 0.4% -1.62 1.06
SWE 0.1% 0.65 1.34 [98:5  98:6  98:7] 14.2% -69.00 a 16.55
UK 0.0% 0.11 1.05
US 0.6% -1.50 b 0.86

Note: The superscripts a and b indicate statistical significance at the 5% and 10% levels.

Subinterval 1 Subinterval 2

Table 6. Univariate regression models with breaks. This table presents the estimated coefficients and associated heteroskedasticity and autocorrelation consistent standard errors 
during each subinterval identified using the sequential breakpoint method of Bai and Perron (1998) for regressions of US and international excess stock returns on each univariate 
predictor variable in turn. We only display results for the portfolios where at least one breakpoint was identified. The minimum window length was set to 15% of the total sample size 
in all cases. For each breakpoint identified, the squared brackets present the estimated breakdate as well as the lower and upper bounds of a 90% confidence interval for this 
estimate.

A: Dividend Yield

B: Short Interest Rate

Subinterval 1 Subinterval 2 Subinterval 3



Breakpoint

Portfolio R 2 Beta S.E. R 2 Beta S.E.

NYSE (52:7 - ) 8.1% 18.49 a 4.22 [72:10  75:5  86:3] 0.2% 1.75 2.31

NYSE/AMEX/NASDAQ 8.0% 18.61 a 4.36 [72:4  75:5  87:1] 0.3% 2.19 2.52

S&P 500 8.7% 18.91 a 3.97 [72:10  75:5  84:1] 0.2% 1.77 2.36

UK (FTA) 0.4% 1.93 1.64

BEL (70:1 - ) 0.1% 1.67 2.71

CAN 0.5% 2.78 2.03

FRN 0.7% 4.05 2.62

GER 0.1% 2.03 2.40

ITL 0.2% 2.03 2.37

JPN 1.5% -6.22 a 3.07 [83:8  89:11  94:12] 0.6% 8.12 7.72

NTH 0.4% 2.01 1.87

SWE 0.0% 0.22 2.17

UK 0.4% 1.73 1.75

US 1.3% 4.81 a 2.24

Breakpoint

Portfolio R 2 Beta S.E. R 2 Beta S.E.

NYSE (52:7 - ) 0.4% 7.18 5.96

NYSE/AMEX/NASDAQ 0.4% 7.58 6.18

S&P 500 0.7% 12.77 b 6.55

UK (FTA) 0.2% 5.45 5.81

BEL (70:1 - ) 0.3% 7.55 7.66

CAN 0.1% 5.36 9.96

FRN 8.4% 67.55 25.57 [74:12  77:3  82:4] 0.1% -4.52 8.66

GER 0.3% 8.33 6.87

ITL 0.0% -0.48 12.50

JPN 1.2% 16.04 z 6.32

NTH 0.4% 9.30 7.34

SWE 5.4% 39.38 z 12.63 [88:9  92:9  96:10] 1.3% -42.47 37.53

UK 28.2% 226.81 z 76.88 74:11  75:1  79:10] 0.3% 8.04 5.55

US 18.6% 92.27 z 20.43 [74:1  75:5  77:11] 0.1% 3.53 6.622

Note: The superscripts a and b indicate statistical significance at the 5% and 10% levels.

Table 6. Univariate regression models with breaks (continued).

Subinterval 1 Subinterval 2

C: Term Spread

D: US Default Premium

Subinterval 1 Subinterval 2



Portfolio R 2 Beta S.E. Breakpoint R 2 Beta S.E. Breakpoint R 2 Beta S.E.

 NYSE 9.5% [87:6  87:7  87:8] 20.5% [94:12  95:3  96:10] 9.5%
     Div. Yield 0.60 a 0.25 9.04 a 3.16 3.69 a 1.07
     T-Bill Rate -5.81 a 1.22 -26.52 a 12.26 -12.22 7.79
     Spread 1.25 a 2.68 -17.54 13.84 -16.03 b 9.26
     Def. Prem. 29.03 b 9.24 -105.50 64.74 -36.63 38.78

NYSE/AMEX/NASDAQ 9.6% [87:6  87:7  87:9] 7.3%
     Div. Yield 0.62 a 0.26 3.04 a 1.13
     T-Bill Rate -6.06 a 1.29 -19.02 a 8.18
     Spread 0.81 2.73 -23.27 a 10.75
     Def. Prem. 30.60 a 9.62 -40.15 b 22.31

S&P 500 9.5% [87:6  87:7  87:8] 21.3% [94:12  95:3  96:9] 9.9%
     Div. Yield 0.56 a 0.23 9.75 a 3.52 4.16 a 1.19
     T-Bill Rate -5.71 a 1.16 -28.06 a 13.68 -13.79 9.06
     Spread 1.64 2.57 -18.95 15.15 -16.15 11.08
     Def. Prem. 27.29 a 8.67 -123.11 b 69.22 -49.16 44.70
UK (FTA) 7.7% [65:10  67:1  67:6] 29.1% [73:5  74:11  75:1] 19.1%
     Div. Yield 0.63 0.43 0.73 a 0.33 4.31 a 1.10
     T-Bill Rate -8.44 a 4.59 -20.61 a 2.82 -16.80 a 4.93
     Spread -0.57 9.74 -24.18 a 5.27 -13.87 a 4.38
     Def. Prem. 15.12 21.34 95.15 a 36.24 3.18 9.00

BEL 9.8% [79:10  81:10  81:12] 7.3%
     Div. Yield 1.07 b 0.57 2.63 a 0.77
     T-Bill Rate -15.23 a 5.15 -10.59 a 4.09
     Spread -1.52 13.05 -10.72 b 5.62
     Def. Prem. 15.11 14.95 -16.40 14.15
CAN 14.9% [77:4  78:1  78:9] 8.2%
     Div. Yield 1.67 1.27 2.39 a 0.60
     T-Bill Rate -15.19 10.28 -11.36 a 2.75
     Spread -3.64 16.17 -9.15 a 3.78
     Def. Prem. 35.14 26.23 9.80 9.72
FRN 18.2% [77:4  78:1  79:6] 2.4%
     Div. Yield 3.09 a 0.82 1.12 a 0.54
     T-Bill Rate -33.94 a 8.64 -5.23 3.73
     Spread -30.76 a 8.69 -6.39 6.14
     Def. Prem. 30.04 27.32 -12.79 14.23

Note: The superscripts a and b indicate statistical significance at the 5% and 10% levels.

Subinterval 1 Subinterval 2 Subinterval 3

Table 7. Multivariate regression models with breaks. This table presents the estimated coefficients and standard errors for the multivariate return model including the dividend
yield, short interest rate, term spread and default premium regressors during each subinterval identified using the sequential breakpoint method of Bai and Perron (1998).
Standard errors are heteroskedasticity and autocorrelation consistent. The minimum window length was set equal to 15% of the total sample size. For each breakpoint identified,
the squared brackets present the estimated breakdate as well as the lower and upper bounds of a 90% confidence interval for this estimate.



Portfolio R 2 Beta S.E. Breakpoint R 2 Beta S.E. Breakpoint R 2 Beta S.E.
GER 11.3% [81:6  82:12  83:2] 9.2% [92:11  94:7  94:9] 11.9%
     Div. Yield 1.00 b 0.51 2.72 a 1.02 1.73 1.78
     T-Bill Rate -3.70 2.66 -16.14 a 6.75 -37.77 11.16
     Spread 8.50 a 4.23 -28.65 a 11.63 4.29 16.09
     Def. Prem. 25.03 a 8.95 53.53 a 21.83 -127.87 a 47.43
ITL 0.4%
     Div. Yield -0.30 0.32
     T-Bill Rate -0.20 1.19
     Spread 1.66 3.03
     Def. Prem. 1.93 12.81
JPN 5.6% [96:4  96:5  96:6] 12.7%
     Div. Yield 1.17 a 0.49 17.74 a 5.77
     T-Bill Rate -10.22 a 3.46 -119.59 a 50.97
     Spread -7.32 a 3.62 70.70 a 26.38
     Def. Prem. 30.88 a 8.74 -79.72 b 46.44
NTH 22.4% [79:6  81:8  82:1] 5.4%
     Div. Yield 1.51 a 0.40 1.71 a 0.55
     T-Bill Rate -28.11 a 5.37 -5.31 4.23
     Spread -27.82 a 6.26 3.43 5.57
     Def. Prem. 52.88 a 12.59 -43.59 a 16.58
SWE 25.6% [78:9  78:12  79:7] 7.0% [90:5   92:9  93:2] 9.8%
     Div. Yield 6.14 a 1.04 -0.07 0.33 4.21 a 1.67
     T-Bill Rate -35.39 a 6.80 1.52 7.54 2.93 4.07
     Spread -20.32 a 6.61 0.04 9.94 6.19 7.60
     Def. Prem. 56.50 a 17.21 44.24 b 24.34 -106.57 a 53.46
UK 29.1% [76:4  76:9  79:7] 6.7%
     Div. Yield 2.75 1.76 2.65 a 0.94
     T-Bill Rate -26.93 a 9.58 -9.18 a 4.34
     Spread -29.21 a 12.65 -7.09 b 3.98
     Def. Prem. 147.72 a 46.30 -0.85 7.97
USA 14.2% [87:6   87:7  87:10] 26.9% [94:2  94:5  96:6] 9.8%
     Div. Yield 1.416 a 0.489 11.539 a 3.521 3.789 a 1.05
     T-Bill Rate -8.499 a 2.077 -38.469 a 14.974 -16.851 a 7.75
     Spread -0.46 3.267 -27.991 b 16.292 -20.542 a 8.92
     Def. Prem. 33.009 a 9.634 -90.25 62.684 -51.941 43.43

Note: The superscripts a and b indicate statistical significance at the 5% and 10% levels.

Table 7. Multiple regression model with breaks (continued).

Subinterval 1 Subinterval 2 Subinterval 3
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Figure 1. Dividend yield versus total payout yield. The top panel of the figure plots the 
monthly dividend yield series for the US over the sample period 1969:12 – 2003:12 and 
indicates the estimated breakpoint in a regression of excess returns for the S&P 500 on 
the lagged dividend yield. The bottom panel plots the monthly total payout yield 
constructed as described in Section 7 of the paper, along with the estimated breakpoint in 
a regression of excess returns for the S&P 500 on the lagged total payout yield. In both 
panels, the estimated breakpoint is indicated by a solid line, while dashed lines indicate a 
90% confidence interval for the breakpoint. The vertical axis is measured in percentage 
points. 
 

 


