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Abstract

Investors’ search for successful forecasting models leads the data gen-
erating process for financial returns to change over time which means that
individual return forecasting models can at best hope to uncover evidence
of ‘local’ predictability. We illustrate this point on a suite of forecasting
models used to predict US stock returns and propose an adaptive forecast
combination approach. Most of the time the forecasting models perform
rather poorly, but there is evidence of relatively short-lived periods with
modest return predictability. The short duration of the episodes where
return predictability appears to be present and the relatively weak degree
of predictability even during such periods makes predicting returns an
extraordinarily challenging task.

Keywords: Out-of-sample forecasting performance, predictability of
stock returns, creative self-destruction, adaptive forecast combination

1 Introduction
The possibility of predicting stock market returns has fascinated professional
investors, laymen and academics for decades. The fact that the quest is still
continuing indicates just how difficult it is to predict returns. Adding further to
this challenge, forecasters of stock returns face a moving target that is constantly
changing over time. Just when a forecaster may think that he has figured out
how to predict returns, the dynamics of market prices will, in all likelihood,
have moved on−possibly as a consequence of the forecaster’s own efforts.
Stock prices are formed as a result of the complex interaction between het-

erogenous groups of investors. At one extreme is highly informed, technically
sophisticated professional investors with access to substantial capital reserves
and financial leverage. At the other extreme is essentially uninformed individu-
als whose trades may reflect liquidity needs or Keynesian animal spirits. Returns
arise as the change in prices between adjacent dates and hence reflect revisions

∗I wish to thank participants at the IIF conference in New York, June 2007, for many
helpful comments.
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in investors’ beliefs caused by the arrival and interpretation of new information,
changes in liquidity needs and the resulting interaction among traders.
Even the most sophisticated investors have to deal with the basic premise

that they are attempting to price assets and predict returns using forecasting
models that at best can be viewed as local approximations to a complicated and
evolving market situation. Faced with such challenges, investors are led to con-
stantly search across several competing forecasting approaches and investment
strategies.
At any given point in time, investors explore a variety of approaches to fore-

cast returns and so different forecasting methods effectively compete against
each other. Moreover, the more successful a particular forecasting approach has
been in recent times, the more likely it is to have been detected and adopted by
a wider group of investors. Once enough investors adopt a particular forecasting
approach−or a set of closely correlated approaches−and put substantial money
behind it, we would expect their forecasts to start having a price impact: When
the approach predicts an asset to have unusually high future returns, this will
lead investors to acquire the underlying asset, thus pushing up its price dur-
ing the current period so that most, if not all, of the predicted future return
effectively gets incorporated in the current price.1

We would expect competition between a multitude of forecasting methods
to cause instability both in the parameter estimates associated with particular
forecasting models and also in their (relative) forecasting performance.2 Indeed,
the performance of individual forecasting methods may follow a life cycle pat-
tern. Before a particular forecasting approach is widely discovered and adopted,
it may perform quite well. Then, given a suitably long historical track record
indicating good performance, the forecasting method will become more broadly
adopted. Finally, as this learning and adoption process gets more complete and
the information in the forecasts gets incorporated into prices, the method will
cease to predict future return movements.3

How long this process of “creative self-destruction” involving model iden-
tification and adoption by market participants takes depends on several fac-
tors. Clearly the strength of the underlying prediction signal matters. If this
is weak, it will be difficult for investors to identify profit-making opportuni-
ties. In addition the duration of the profit-making opportunity−which itself is
endogenous−is important. If this is relatively short, again it speaks against the
likelihood that investors can successfully implement strategies that exploit any

1The dynamics described here is consistent with the adaptive markets hypothesis in Lo
(2004), but does not necessarily require that investors are boundedly rational.

2We intentionally refer to forecasting methods rather than models, the former comprising
aspects of the forecasting cycle such as the model specification, estimation technique and
choice of estimation window.

3The life cycle process does not rule out that a particular forecasting approach or state
variable is useful on more than one occasion. It is quite possible that an approach works more
than once, e.g. if a similar macroeconomic state repeats itself such as in the case of the oil
price shocks that occurred around 1974, 1979 or more recently in 2005. The length of the
life cycle might get shortened somewhat, however, if investors can pool recent data with data
from similar historical events which will speed up the learning process.
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predictable patterns in returns.
The process whereby investors search for the best forecasting methods is

constantly perturbed due to the regular occurrence of outside shocks to the fi-
nancial markets and the economy, reflecting changes in institutions (e.g. fiscal
or monetary policy), large macroeconomic shocks, introduction of new finan-
cial instruments, changes in trading practices and the arrival of new types of
investors (e.g. private equity and hedge funds).
Identifying intermittent predictive components in stock returns is difficult

even by means of the best modern forecasting tools and is subject to an impor-
tant trade-off. Highly adaptive methods that are capable of rapidly identifying
prediction opportunities are also likely to be sensitive to outliers and hence will
be subject to the ‘false alarm’ problem associated with type I errors in statistical
inference - in this case wrongly identifying predictability during periods where
it is genuinely absent. ‘Spurious predictability’ becomes a real concern in this
situation. Conversely, less adaptive methods may miss short-lived episodes of
predictability altogether.
This somewhat stylized picture ignores a number of complicating factors.

First, our discussion assumes that the predicted return represents a profit mak-
ing opportunity and not simply compensation for holding systematic risk and
thus a fair risk premium. Put differently, our discussion is intended to apply
to predictable return components that are not simply time-varying risk pre-
mia. Distinguishing between the two can be difficult in practice and requires
modeling and identifying the source of variations in risk premia. Indeed, if the
methods worked over long spells of time, investors were either not paying at-
tention to them (which is unlikely) or the predicted component must represent
a risk premium.
Second, given the substantial uncertainty surrounding which forecasting

method to use at any point in time, investors are likely to adopt more than
one approach. This may take the form of forecast combination strategies or
Bayesian model averaging. Our discussion applies to this situation, although
the more general issue then becomes how large a weight investors assign to
different forecasting methods and how much this varies over time.
Important implications for return predictability follow from this discussion.

Given the intense competition among informed investors acting in highly liquid
financial markets, we would expect to find that most forecasting methods have a
poor out-of-sample forecasting performance on “average” if estimated over long
spans of time.
However, a poor “average” track record need not hold uniformly through

time. There may be periods of time where one or more approaches work well,
but these spells are likely to be fairly short-lived. Indeed, the identity of the
“best” forecasting method can be expected to vary over time and there are likely
to be periods of “model breakdown” where no approach seems to work.
In what follows, Section 2 briefly reviews the existing evidence of predictabil-

ity of stock returns and instability in return forecasting models. Section 3 con-
ducts an empirical analysis of US stock market returns that we use to illustrate
the points discussed so far. Section 4 presents an alternative adaptive forecast

3



combination approach, while Section 5 concludes.

2 Evidence of Return Predictability
Beginning with a series of academic studies published in the eighties, evidence
emerged that stock returns were predictable, see e.g. Fama and Schwert (1981),
Campbell (1987), Campbell and Shiller (1988) and Fama and French (1988,
1989). This early literature was mostly concerned with the presence of ex-post
or in-sample return predictability by means of linear time-series models using
predictor variables such as the dividend yield, the price-earnings ratio, interest
rates, default premia or macroeconomic variables such as inflation.
Many of the predictor variables proposed in the early literature were sub-

sequently noticed not to produce good predictions during the bull market that
characterized a large part of the 1990s. Indeed, as noted by Lettau and Lud-
vigsson (2001), Schwert (2002) and others, return prediction models based on
valuation ratios such as the dividend yield seemed to break down. During this
period where stock prices soared, the dividend yield systematically drifted down-
wards, thus generating a negative sample correlation between returns and the
dividend yield, in stark contrast with their positive historical association.4

Studies of ex-ante (out-of-sample) return predictability have found either
that return predictability is confined to particular sub-samples (Pesaran and
Timmermann (1995)) or that it is largely absent (Bossaerts and Hillion (1999)).
Goyal and Welch (2003, 2006) have recently gone as far as arguing that none of
the conventional predictor variables proposed in the literature on stock return
predictability seems capable of systematically predicting stock returns out-of-
sample, i.e. after accounting for parameter estimation error.
This conclusion has been disputed by, inter alia, Campbell and Thompson

(2006) and Cochrane (2006) and the debate is currently not settled. One point
is certain, however: Caught between the twin challenges of low predictive power
and unstable regression coefficients, standard forecasting models find it difficult
to consistently predict stock returns over long sample periods.

2.1 Predictability and Investment Horizon

Evidence of return predictability is particularly important, economically speak-
ing, the shorter the forecast horizon. Intuitively this is easy to see: the shorter
the time interval, the more times a trading strategy can be implemented to
take advantage of any return predictability and so the greater the potential for
high annualized returns. On economic grounds we would therefore expect the
strength of return predictability to weaken, the shorter the forecast horizon.
Indeed, the evidence of return predictability at short horizons such as one

day is generally very weak. There is some evidence of negative serial correlation

4Paye and Timmermann (2006) and Rapach and Wohar (2006) report broad evidence of
breaks in a wide range of models used to predict stock returns.
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in high frequency returns. However, this is likely a reflection of market mi-
crostructure effects such as the bid-ask bounce. Consistent with the notion that
such effects account for the mean reversion observed in prices at high frequen-
cies, Avramov, Chordia and Goyal (2006) find that mean reversion at the daily
interval is strongest for the least liquid stocks. Their evidence indicates that
return predictability at high frequencies such as one day is not strong enough
to be exploited by regular traders.
The evidence of return predictability and mean reversion at horizons such

as one year or longer is not clear-cut. However, given the lack of opportunities
for repeating a particular investment strategy, it is clearly very risky to base
investments on strategies tracking return behavior at very long horizons, should
the payoffs fall short of expectations.

2.2 Instability of Return Forecasting Models

There are many reasons to expect the relation between predictor variables and
asset returns to vary over time. First, incomplete learning effects are likely to
play a role. If financial markets are not in a steady state but constantly get
perturbed, investors’ learning process will never converge. When investors act
on evidence of predictability, we would expect a successful model adopted by
one investor (e.g. a mutual fund, hedge fund or some other investment vehicle)
fairly quickly to be adopted by other investors through diffusion of information.
Depending on the functional form mapping investors’ forecasts to asset prices,
this can induce serial correlation and volatility clustering in returns.5

Second, structural changes in the underlying data generating process for
returns may ensue as a reflection of increased participation in stock markets,
availability of new low-cost investment vehicles such as index funds, exchange
traded funds (ETFs), extended trading opportunities (e.g. after-hours trad-
ing through electronic communication networks) and lower transaction costs in
many markets, including derivatives markets (e.g. options).
These considerations appear to be important in practice. In many cases,

previous ‘anomalies’ have disappeared after their existence became publicized.
For example, the evidence of a small-firm effect, originally documented in the
early eighties appears to have weakened in subsequent sample periods (Schwert
(2002)) as has the evidence of predictability of stock market returns by means of
variables such as the inflation rate (Fama and Schwert (1981)) or the dividend
yield (Fama and French (1988)).
As a further example, Sullivan, Timmermann and White (1999) find that the

apparently superior performance of a range of technical trading rules reported
by Brock, Lakonishok and LeBaron (1992) disappeared in the period after their
publication. This may be a coincidence, but it may also reflect that the Brock
et al study was published following a period where such rules performed well.
After this became public knowledge, the rules gained more widespread use and
ceased to continue to have predictive power over future returns.6

5See Guidolin and Timmermann (2007) in the context of a simple binomial model.
6The obvious alternative to this explanation, which is the subject of the study by Sullivan

5



As a final example of how predictability evolves over time and how this
can be caused by exogenous events, some studies identified oil prices as having
predictive power over stock returns during the period surrounding the oil price
shocks in 1973 and 1974. Prior to these events it would have been difficult for
investors to identify oil prices as a predictor variable of stock returns since oil
prices were fluctuating less freely. While the oil price became an important
macroeconomic state variable during the seventies, its significance has vanished
in subsequent periods, see Pesaran and Timmermann (2000).

3 Empirical Application to US Stock Returns
To illustrate the earlier points we next turn to an empirical application. We
are interested in forecasting monthly returns in the US stock market. To this
end we use returns data going back to 1959:12 and ending in 2005:12. Three
return series are considered, namely the return on value- and equal-weighted
portfolios of US stocks and the return differential between small and big shares
(as measured by their market capitalization), i.e. the SMB spread portfolio
studied by, inter alia, Fama and French (1992).
Our data source for stock returns is the Center for Research in Security

Prices (CRSP) at the University of Chicago. Returns on the SMB portfolio are
obtained from Ken French’s web site.
We use data from 1959:12 to 1969:12 as the initial estimation sample and

retain the period from 1970:01 to 2005:12 as an out-of-sample evaluation period.
Two estimation approaches are considered. The first “expanding window” ap-
proach uses recursive estimation starting with data from 1959:12 up to the time
of the forecast to generate a series of one-step-ahead forecasts. Thus, the first
forecast is generated for 1970:01, using data from 1959:12 to 1969:12. The fol-
lowing month (January 1970), the data window is expanded to also include
1970:01, the parameters of the forecasting models are re-estimated and then
used to predict stock returns for 1970:02 and so forth up to the end of the
sample.
The second, rolling window, approach uses a fixed-length window of the most

recent ten years of data (120 monthly observations) to estimate the parameters
of the forecasting models and then predicts returns next period conditional on
those parameter estimates.

3.1 Forecasting Models

We consider a suite of eleven forecasting models.7

The first model simply uses the prevailing mean, i.e.

rt+1 = β0 + εt+1. (1)

et al. (1999) is that the apparent success of the technical trading rules was the outcome of
data-snooping.

7These were selected as a subset of the models considered by Elliott and Timmermann
(2007). I am grateful to Gray Calhoun for research assistance with the empirical analysis.
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Here and elsewhere the error term, εt+1, is treated as white noise whose mean
cannot be predicted. The return forecast for period t+ 1 produced at time t is
thus given by t−1

Pt
τ=1 rτ under the recursive approach or by τ

−1
0

Pt
τ=t−τ0+1 rτ

under the rolling window approach, where τ0 = 120 is the window length. The
recursively estimated prevailing mean is the benchmark model considered by
Goyal and Welch (2003, 2006). When estimated using an expanding window,
this model essentially assumes ‘no predictability’ (i.e. a constant mean), while
under the rolling estimation window it incorporates a slowly changing mean.
The second forecasting model is an autoregressive (AR) specification

rt+1 = β0 +
kX

j=1

βjrt+1−j + εt+1, (2)

where k is selected to minimize the Bayes Information Criterion.
The third model is a factor-augmented AR specification which in addition

to autoregressive terms considers the inclusion of a set of common factors:

rt+1 = β0 +
kX

j=1

αjrt+1−j +

qX
j=1

βjψj,t + εt+1, (3)

where ψj,t is the jth factor and k and q are again selected to minimize the BIC.
Factors are obtained by adopting the principal components approach of Stock
and Watson (2002) to a cross-section of 131 macroeconomic time series which
begin in 1960. The factors are extracted in real time using either a recursive or
a rolling 10-year estimation window. Since these macroeconomic data only go
as far as 2003:12, our forecasts from this model stop at this date.
In view of the long literature that models stock returns as having a slowly

moving highly persistent component (e.g. Fama and French (1989)), it is natural
to consider simple adaptive approaches so two smoothing methods constitute
models four and five. Under the exponential smoothing approach the forecast,
ft+1, is generated by the recursion

ft+1 = αft + (1− α)rt, (4)

subject to the initial condition that f1 = r1. We also consider double exponential
(Holt) smoothing:

ft+1 = α(ft + λt−1) + (1− α)rt

λt = β(ft+1 − ft) + (1− β)λt−1, (5)

where f1 = 0, f2 = r2 and λ2 = (r2 − r1). For these cases, α and α and β,
respectively, are selected to minimize the sum of squared forecast errors in real
time.
The next class of forecasting models comprises a set of non-linear specifica-

tions including two logistic STAR models of the form

rt+1 = θ00ηt + dtθ
0
1ηt + εt+1 (6)
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where ηt = (1, rt)
0. Under the STAR1 model,

dt = 1/(1 + exp(γ0 + γ1rt−3)), (7)

while, under the STAR2 model,

dt = 1/(1 + exp(γ0 + γ1(rt − rt−6))). (8)

We also consider more flexible nonlinear forecasting models in the form of a
single-layer neural net model with two hidden units (n = 2)

rt+1 = θ00ηt +
nX
i=1

θig(β
0
iηt) + εt+1, (9)

as well as a two-layer neural net model

rt+1 = θ00ηt +
n2X
i=1

θig

⎛⎝ n1X
j=1

βjg(α
0
jηt)

⎞⎠+ εt+1, (10)

with two hidden units in the first layer (n1 = 2) and one hidden layer in the
second layer (n2 = 1). For both neural net models, g(.) is the logistic function
and ηt = (1, rt, rt−1, rt−2).
Nonlinear forecasting models are known to sometimes generate extreme fore-

casts. To deal with this problem we adopt an ‘insanity filter’ that constrains
such forecasts. More specifically, if the predicted change in the underlying vari-
able is greater than any of the historical changes up to a given point in time,
the forecast is replaced with a ‘no change’ forecast.
Note also that parameter estimates need no longer be consistent, nor is it

clear which properties models selected by information criteria such as the BIC
will have under regularly occurring breaks to the data generating process or
when a rolling window estimator is used.
We finally consider two approaches that build on the initial nine forecasting

methods. The ‘previous best’ approach selects that forecasting model which, at
a given point in time, has produced the best historical forecasting record, using
historical root mean squared error (RMSE) as the criterion. In the case of the
rolling window approach this works as follows:

ft+1 = fj∗,t+1,

j∗ = arg min
j=1,...,N

τ−10

τ0−1X
τ=0

(yt−τ − fj,t−τ ), (11)

where fj,t is the forecast of returns for period t produced by the jth model and
N is the number of underlying models.
Conversely, the average approach uses an equal-weighted average of the fore-

casts to predict future returns:

ft+1 = N−1
NX
j=1

fj,t+1. (12)
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3.2 Results

To illustrate the out-of-sample forecasts generated by two of the models, Fig-
ure 1 plots these for the factor-augmented autoregressive model and for the
two-layer neural net, both estimated by means of a rolling window. The two
sets of forecasts are quite different most of the time. In particular, the factor-
augmented forecasts are smoother and more persistent than those generated by
the neural net which are also subject to occasional spikes. Even so, compared
to the variation in the actual or realized returns, the range of values taken by
the forecasts is very small.
Tables 1-3 present results in the form of annualized RMSE-values for the

full out-of-sample period (1970:01-2005:12) in addition to the three subsamples
spanning the 1970s, 1980s and 1990s. Table 1 reports results for the value-
weighted portfolio under both the recursive (expanding) and rolling estimation
window. Under the recursive approach the best performance is produced by the
equal-weighted average which is marginally better than the forecasts generated
by the autoregressive, prevailing mean, exponential smoothing, two-layer neural
net and previous best models.8 At the other end of the performance spectrum,
the Holt smoothing model generates the worst out-of-sample forecasts.
Similar results are obtained under the 10-year rolling estimation window.

Here the best forecasting performance is delivered by the prevailing mean fol-
lowed by the autoregressive, equal-weighted average and previous best forecasts.
Again, the worst performance is produced by the Holt smoothing and STAR2
models.
Under the recursive estimation approach, the factor-augmented AR model is

able to outperform the prevailing mean but only during the 1980s. In contrast,
under the rolling window approach the prevailing mean produces the lowest
RMSE-values in all subsamples.
While the value-weighted return series is largely serially uncorrelated, the

equal-weighted returns display stronger serial correlation reflecting the less ac-
tive trading in the smaller stocks that dominate this portfolio. Table 2 shows
that some of the forecasting models are capable of identifying serial persistence
in returns. Indeed the neural net models are now best followed by the simple av-
erage and autoregressive forecasts, while the worst is again the Holt smoothing
model.
Whereas the good performance of the autoregressive model is independent

of the choice of estimation window, the absolute and relative forecasting per-
formance of the two neural nets deteriorate under the shorter rolling estimation
window. This is to be expected given the difficulty in precisely estimating the
parameters of these models.
Turning to the returns on the SMB portfolio that captures the differential

performance of small and big stocks, Table 3 shows that under the recursive

8The simple autoregressive model performs well when the lag order is selected by the BIC.
This method for selecting lag order often reduces to excluding all past returns (particularly
for the value-weighted portfolio) which explains the similarity between its performance and
that of the prevailing mean.
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estimation approach the average forecast does best overall, closely followed by
the AR model, the previous best forecast and the prevailing mean. Under the
rolling window the prevailing mean is best by some margin.
In conclusion, these results suggest that, as far as out-of-sample RMSE per-

formance is concerned, the prevailing mean is a top contender for the best overall
approach. While some forecasting models work well for certain return series and
certain subsamples, none of them appears to outperform the simple prevailing
mean on a consistent basis.

3.3 Time-varying Predictability

Our earlier discussion suggested that we should not expect a particular model’s
ability to predict stock returns to remain constant over time. In the absence
of a formal model for capturing changes in predictive accuracy, it is difficult
to tell how best to detect or monitor such time-variations. We simply resort
to present rolling window estimates of the out-of-sample R2−value using a 36-
month rolling estimation window and our recursive forecasts. Our estimates are
computed relative to the sum of squared errors associated with the prevailing
mean benchmark:

R̂2i,t−m+1:t = 1−
e0i,t−m+1:tei,t−m+1:t

ē0t−m+1:tēt−m+1:t
, (13)

where ēt−m+1:t is the m−vector of out-of-sample forecast errors associated with
the prevailing mean, ei,t−m+1:t is the m−vector of out-of-sample forecast errors
from the ith model measured between period t−m+ 1 and period t and m is
the length of the estimation window. Notice that whenever the sum of squared
forecast errors for a particular model exceeds that of the prevailing mean, the
R2−value will be negative. Hence there is a one-to-one correspondence between
out-of-sample RMSE and this R2−measure.
Figure 2 shows the sequence of R̂−estimates associated with the factor-

augmented autoregressive model and the 2-layer neural net model, assuming
m = 36. On average there is little evidence that the factor-augmented model
can predict returns in a mean squared error sense: The out-of-sample RMSE-
values hover around zero and are slightly negative most of the time. However,
there are two periods where return predictability seems to have been present,
namely during 1974-76, following the oil price shocks, and during 1983-1987.
Turning to the graph for the two-layer neural net, again most of the time this

model is unable to predict return variations. However, there is mild evidence
of predictability during 1982-85 and perhaps during a briefer period in 2000.
Despite their differences, both models identify the increasing R2 from 1980-85,
the subsequent decline until around 1988 followed by another decline in 1995
and the small increase thereafter.

10



3.4 Evaluation of Relative Forecasting Performance

To get an indication of the relative forecasting performance of the approaches
under consideration, we next computed the test statistic proposed by Giaco-
mini and White (2006). This facilitates pair-wise comparisons of out-of-sample
forecasting performance. We compare models estimated under rolling windows
which ensures that one forecasting model is not asymptotically nested by the
other.
Tables 4-6 report the results. A word of caution is necessary when interpret-

ing these results. An implication of our earlier discussion is that out-of-sample
tests of return predictability are not necessarily appropriate diagnostics for cor-
roborating in-sample (historical) predictability. The distributional properties
of most statistical tests assume a stationary setting (at least asymptotically)
which is unlikely to be a valid assumption here.
Bearing this in mind, while the worst forecasting approach, namely the Holt

smoothing method, generally is rejected against the better forecasting models, it
is also clear that the data is not very informative when it comes to distinguishing
between the best approaches. For example, the difference in the forecasting
performance of the prevailing mean versus the autoregressive, factor-augmented
or two-layer neural net models is generally not significant.
These findings suggest that it is difficult to distinguish between the average

out-of-sample mean squared error performance (computed over a fairly long data
sample) of some relatively sophisticated forecasting models and the alternative
of simply using the prevailing mean. It thus adds further evidence to the existing
literature that, in the context of linear forecasting models, has found it very
difficult to identify predictor variables with reliable out-of-sample forecasting
power.

3.5 An Alternative Criterion for Measuring Forecasting
Performance

Mean squared error performance and out-of-sample R2 are standard statistical
measures of forecast precision. However, they overlook that, ultimately, the
economic value of return forecasts hinges upon their use in investors portfolio
decisions. Other criteria for forecasting performance may well be more closely
related to the possibility of exploiting return forecasts in trading strategies that
aim to generate abnormal (risk-adjusted) profits.
Forecasts of returns in financial markets are of interest predominantly be-

cause of the possibility of exploiting such forecasts in portfolio selection rules
that enhance risk-adjusted investment performance. To be valuable, forecast
signals hence need to be implemented in profitable trading rules. Predictability
is not ‘per se’ precluded by the efficient market hypothesis, but economic theory
suggests that predictability should not offer easy ways to enhance the expected
return versus risk trade-off established by more passive, low-cost investment
strategies.
One criterion that has been adopted to this end is the sign criterion, see e.g.
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Henriksson and Merton (1981) and Pesaran and Timmermann (1992). This
looks at the ability of forecasts to correctly predict the direction of the market,
i.e. the sign of the return measured in excess of a benchmark such as the risk-
free T-bill rate. This measure has been shown to be more closely related to the
possibility of converting forecast signals into profits than standard statistical
measures such as mean squared error (Leitch and Tanner (1991)).
Table 7 shows the outcome of applying the sign test proposed by Pesaran

and Timmermann (1992) to our forecasts and realized returns, both calculated
net of the risk-free rate in the case of the value-weighted and equal-weighted
stock portfolios. A ‘zero’ indicates that the predicted excess return always has
the same sign. This represents a ‘broken clock’ forecast and hence conveys no
information. According to the sign criterion the factor-augmented AR, aver-
age, prevailing mean and previous best forecasts (ranked in that order) appear
able to predict the sign of value-weighted excess returns over the full sample.
Closer inspection of the results reveals that this occurs despite poor forecasting
performance during the 1990s.
Turning to the equal-weighted excess returns, several of the forecasting ap-

proaches perform quite well and generate a test statistic above two. This holds
for the AR, one- and two-layer neural nets, the STAR2 model, the previous best
and the average forecast. For this portfolio there is less evidence of a deteriora-
tion in the forecasting performance during the 1990s although the 1980s is the
period with the strongest evidence of sign predictability.
Finally, the exponential smoothing and one- and two-layer neural net models

produce evidence of sign predictability for the SMB portfolio returns. Moreover,
all forecasting models with exception of the prevailing mean produce evidence
of sign predictability during the 1970s. Hence there is no evidence that the sign
of SMB portfolio returns could be predicted after the publication of the small
firm effect in 1981.

4 An Adaptive Forecast Combination Approach
Our empirical results suggest that no single forecasting model consistently out-
performs the simple prevailing mean over long periods of time and that any re-
turn predictability is, at best, short-lived and likely to deteriorate fairly quickly.
Forecasting approaches that always use the same model are therefore unlikely
to be successful. Rather than sticking to a single forecasting model, we will
therefore consider a forecast combination approach.
Before introducing our adaptive combination approach, we briefly review

some alternative methods for dealing with model instability in a forecasting
context.
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4.1 Methods Dealing with Instability in Forecasting Mod-
els

Several approaches have been proposed to deal with the instability found in the
parameter estimates and performance of many forecasting models. Clements
and Hendry (1999, 2006) provide a taxonomy and analysis of this area.9

One approach is to identify specific historical breaks (e.g., Pesaran and Tim-
mermann (2002), Lettau and van Nieuwerburgh (2006) and Pesaran, Pettenuzzi
and Timmermann (2006)). Common to variants of this approach is that they
seek to test for discrete breaks in real time and estimate the parameters of the
forecasting models either on the post-break data alone (if the break is large or
the most recent break happened a long time ago) or some combination that
weights post-break data more than pre-break data (Pesaran and Timmermann
(2007)).
A second approach which does not require identifying the dates and size of

the breaks was proposed by Clements and Hendry (1999) and reviewed, more
recently, by Hendry (2005). This uses intercept corrections or, in the context
of vector equilibrium correction models, differencing of the forecasting model.
This approach has the potential to account for sizeable forecast errors following a
structural break and thus to catch up with the data generating process following
a levels shift.
A third approach tracks gradual shifts in coefficients which are subject to

small changes each period, e.g. by using a time-varying parameter model.
One example is provided by Mamaysky, Spiegel and Zhang (2006) who use
the Kalman filter to track time-variations in the ability of fund managers to
outperform their benchmark on a risk-adjusted basis as measured by the funds’
alphas. This approach only attempts to identify a predictable return compo-
nent indirectly through the managers’ ability to select assets and outperform
their benchmark on a persistent basis (see Brown and Goetzmann (1995) for a
discussion of performance persistence).
A fourth approach uses regime switching models. These assume that ‘history

repeats’ in the sense that the parameters only shift between a small set of pos-
sible states. In particular, the underlying data generating process is subject to
discrete shifts governed either by some latent variable (as in Hamilton (1989)) or
by means of observable threshold variables (see Terasvirta (2006) for a survey).
Ang and Bekaert (2002), Perez-Quiros and Timmermann (2000) and Guidolin
and Timmermann (2005) are examples of these models applied to predict stock
market returns.
A fifth approach uses exponentially weighted moving averages of the data to

estimate model parameters, putting greater weight on more recent observations
and reducing the effect of past data, more so the further back in time this occur.
A sixth approach is to use rolling estimation windows. The idea is to use

only the most recent τ0 observations to estimate the parameters of the best
forecasting model and exclude data further back in time than this estimation

9Rapach and Wohar (2006) and Paye and Timmermann (2006) provide empirical evidence
of model instability in the context of stock returns.
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window. The approach is easy to implement and is very popular in practice.
One problem with this approach is that there is no theory for how to select the
length of the rolling window, nor is it clear that one can come up with a data
generating process for which this is the optimal strategy to use.
Finally, it has been argued that forecast combination methods provide a

way to hedge against model instability (Hendry and Clements (2002) and Tim-
mermann (2006)). Breaks are likely to affect the individual forecasting models
to different degrees and so a combined forecast may well provide more robust
performance in the presence of breaks.
We next describe our simple adaptive forecast combination approach which

uses rolling windows both to estimate model parameters and select the forecast-
ing model.

4.2 A Simple Adaptive Combination Approach

To be successful, an adaptive forecasting approach must search for and monitor
local predictability patterns in returns and, if these can be identified, attempt
to exploit them before they disappear. In as far as possible, the approach must
also be robust to the effects of parameter estimation error and uncertainty about
choosing among individual forecasting models. There are many ways this can
be done; we just consider a simple approach here. Because identification of the
single best individual model is surrounded by considerable noise, we restrict
our attention to using either the combined (equal-weighted) forecast or the
prevailing mean forecast. Individual forecasting models are used as “testers”
that can detect short-lived periods with return predictability.
First, we use a rolling window of m observations to calculate a backward-

looking estimate of the out-of-sample R2 over the previous m periods. We
then check if any of the individual recursively estimated forecasting models
produces an estimate, R̂2, above a certain threshold, R2min. If this condition
fails, the forecast is set equal to the prevailing mean which effectively represents
the benchmark.10 If the condition is satisfied and the combined forecast has a
positive out-of-sample R2−value (computed using the same rolling window), we
use the combined forecast.
We consider different lengths of the selection window m = 18, 36, 60 and

120 months, while the threshold R2min−value is set to {0, 0.01, 0.02, 0.05, 0.10}.
Before interpreting the empirical results, note the trade-off in selecting the

hurdle value, R2min. If R2min is set too low (i.e. at zero), it is more likely
that periods with spurious predictability are identified. On the other hand,
periods with genuine predictability are less likely to be ignored. Setting the
threshold too high has the reverse effect of increasing the probability of selecting

10The idea of letting the forecasting model change over time is of course not novel. Pesaran
and Timmermann (1995, 2000) and Swanson and White (1995) use model selection methods
recursively over time to select the forecasting model that optimizes a penalized likelihood
function. What appears to be new is to introduce a threshold for the R2−value and only
produce predictions other than the prevailing mean during periods where this threshold is
exceeded.
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periods with genuine predictability, but also reduces the proportion of times
when predictability is deemed to be present.
A similar trade-off holds with regard to the choice of the length of the eval-

uation window, m. The shorter this is, the noisier estimates of R2 will be and
hence the higher the risk of wrongly identifying non-existent predictability. On
the other hand, the shorter the window, the better the approach will be at iden-
tifying temporary, fleeting predictability patterns. These may be missed by a
long window which, conversely, offers more stable estimates of the out-of-sample
R2.
Results from the adaptive forecast combination approach are reported in

Table 8. The first column shows the hurdle value, R2min, used in selecting the
forecast. If this is not exceeded by any model, the forecast is simply set equal to
the prevailing mean. The second column shows the proportion of periods where
the threshold was exceeded. Naturally this proportion declines as the threshold
value is increased. Moreover, for the smallest threshold value, R2min = 0, the
exceedance rate increases as a function of the window length while the reverse
pattern is observed for the higher hurdle values R2min = 0.05 or 0.10. In fact,
when the threshold is set as high as 0.10, the prevailing mean is adopted 100%
of the time under the 120-month window. This makes sense since it is difficult
to generate this high an R2−value over lengthy periods of time.
The third column reports root mean squared errors under the prevailing

mean. These vary across different lengths of the evaluation window because the
beginning of the out-of-sample period is 1970 plus the length of the initial eval-
uation window used to compute the R2−value, e.g. mid-1971 for an 18-month
window and 1980 for a 120-month window. Finally, the fourth column reports
the corresponding RMSE-values under the adaptive forecast combination ap-
proach.
In the majority of cases (i.e. across different selection windows andR2−thresholds),

the adaptive combination approach is capable of producing forecasts with lower
RMSE-values than the prevailing mean. The best results are generated un-
der either the short windows of 18 or 36 months or the longest window of 120
months.
Figure 3 shows the forecasts assuming a selection window of 36 months and

an R2min−value of 0.02. During a three-year period from 1978-1981 and a five-
year in the mid-nineties there was not sufficiently strong evidence of return
predictability and so the adaptive combination forecasts fall back on the pre-
vailing mean. At other times, however, the adaptive combination forecasts can
differ substantially from the prevailing mean value.
Changing the selection window to 120 months, as we do in Figure 4, has a

large effect on the forecasts. Reflecting the ‘model breakdown’ during the 1990s,
the forecasts always fall back on the prevailing mean after 1993. In other words,
no single model managed to produce forecasts that, over a 10-year period, had
an out-of-sample R2−value above 0.02.
Figures 5-7 illustrate the selection of the combined forecast for different

lengths of the window used to compute the out-of-sample R2−value, again us-
ing a cutoff value R2min = 0.02. When this window is very short (18 months),
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Figure 5 shows that periods where the approach identifies return predictability
sometimes are very short-lived. Increasing the selection window from 18 to 36
months, Figure 6 shows that the adaptive approach tends to identify fewer but
longer blocks of time with return predictability. Moreover, under the longest
120-month window Figure 7 shows that, with few exceptions, the combined
forecast gets selected most of the time between the early 1980s and 1995. Con-
sistent with the earlier comments on weaker evidence of return predictability in
the 1990s, the prevailing mean dominates after this period.
These findings indicate the potential for adaptive combination approaches

based on the principle that return predictability is likely to be short-lived. Dif-
ferent approaches could well be used, so more evidence is required to see how
general this finding is.

4.3 Statistical Significance

The empirical evidence should be interpreted cautiously in the absence of a the-
ory for the small-sample distribution of the rolling window estimates of the
out-of-sample R2−values. Complicating interpretation of these statistics is,
first, that the underlying forecasts are generated using recursively estimated
parameter estimates. Moreover, the rolling window estimates of R2 are, by con-
struction, serially dependent and so any inference would have to account for
this feature. Finally, the alternative hypothesis of intermittent predictability is
non-standard, so power is also an issue.
There is clearly a need to develop a distributional theory, e.g. by means of

the probability distribution for the out-of-sample R2−estimate measured over
relatively short sample periods. To get a first idea of the distribution of the
RMSE-values reported in Table 8, we use a simple parametric bootstrap ap-
proach which first estimates an AR(1) model to the individual forecasts (with
persistence parameter φ̂j for the jth forecast, fj,t+1), saves the residuals and
generates pseudo-random forecasts

fbj,t+1 = φ̂jf
b
j,t + ε̂bj,τ ,

where the b superscript refers to the bootstrap number and ε̂bjτ is the randomly
selected residual for period τ ∈ [1, T ], T being the sample size.11 This setup
breaks the link between the forecasts and actual returns while it preserves the
basic persistence and volatility properties of the data. We use 1,000 bootstrap
simulations to generate test statistics for the RMSE-value of the adaptive com-
bination method. Finally, we order the bootstrapped values in descending order
to obtain the 95% critical values.
Column 5 of Table 8 presents the results from this analysis. The boot-

strapped 95% critical values for the RMSE-statistic, exceed the RMSE-value of
the prevailing mean for the lowest hurdle value, R2min = 0, but generally fall
as the hurdle rate is increased. This is explained by the less frequent use of

11Since a separate value of τ is drawn for each value of t+ 1, the notation τ(t+ 1) is more
precise.
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the combined forecast and the resulting narrowing of the sample distribution of
RMSE-values.
Using these critical values, all or all but one of the windows generate signif-

icantly smaller RMSE-values than can be attributed to randomness when the
hurdle value is set at or below R2min = 0.05, while no window does so for the
highest hurdle rate of R2min = 0.10.
Notice the contrast between these findings and the earlier results based on

the Giacomini-White test which considered average out-of-sample forecasting
performance and failed to find evidence that the individual forecasts outper-
formed the prevailing mean. It is easy to explain these differences since our
adaptive combination approach does not consider the average forecasting per-
formance of individual models but instead looks for temporary predictability as
identified by a multitude of forecasting approaches.

5 Conclusion
What makes predictability of financial returns so difficult is that it is influenced
by market participants’ own attempts to identify and exploit any purported
predictability and so constantly evolves over time. Just as Heisenberg’s un-
certainty principle implies that a scientist’s attempts to increase the accuracy
with which he can measure the position of an object leads to a corresponding
decline in the precision with which the object’s momentum can be measured,
investors’ efforts to exploit predictability patterns lead to their self-destruction.
As a consequence, there is a sense in which the stronger (i.e. easier to detect)
the evidence of past return predictability, the greater the expected decline in
future predictability, as predictability patterns get more rapidly incorporated
into current market prices.
How can investors then utilize forecasts from return prediction models that

(i) only generate weak evidence of predictability and (ii) do not work most of
the time but on some occasions produce valuable signals? A crucial component
in any answer to this question is to get some indication of when different models
produce valuable forecasts and when they fail to do so, e.g. in the form of a
real-time monitoring system tracking how reliable the forecasts have been over
a recent period.
Our empirical findings suggest that most of the time stock returns are not

predictable, but there appear to be pockets in time with modest evidence of
local predictability. Interestingly, none of the forecasting models appears able
to predict returns during the sustained bull market during the second half of the
1990s. The adaptive forecast combination approach responds to this dearth of
predictability by not attempting to identify time-varying components in stock
returns during this period and hence avoids making mistakes that could have
proved costly if implemented in an investment strategy.
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Figure 1: Out-of-sample forecasts of value-weighted returns, 1970-2005.
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Figure 2: 36-month rolling window estimates of out-of-sample R2, 1970-2005.

22



1970 1975 1980 1985 1990 1995 2000 2005 2010
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 

 
prevailing mean
Adaptive

Figure 3: Out-of-sample return forecasts from the adaptive combination ap-
proach, assuming a 36-month window.
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Figure 4: Out-of-sample return forecasts from the adaptive combination ap-
proach, assuming a 120-month window.
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Figure 5: Periods with return predictability identified by the adaptive forecast
combination approach (18-month window).
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Figure 6: Periods with return predictability identified by the adaptive forecast
combination approach (36-month window).
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Figure 7: Periods with return predictability identified by the adaptive forecast
combination approach (120-month window).
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Table 1: Root Mean Squared Error Performance (value-weighted portfolio)

Window Strategy Model 1970-2005 1970s 1980s 1990s
Recursive Prevailing Mean 15.87 16.91 16.69 13.60

Autoregressive 15.92 17.08 16.69 13.60
Factor-augmented AR 16.11 16.90 16.04 13.71
Exp. Smoothing 15.94 17.03 16.74 13.59
Holt Smoothing 16.41 17.60 17.31 13.91
STAR_1 16.22 17.26 17.23 13.93
STAR_2 16.55 18.25 17.38 13.94
One Layer NN 16.00 17.19 16.70 13.62
Two Layer NN 15.92 17.13 16.44 13.63
Previous Best Model 15.88 17.22 16.04 13.71
Equal-weighted Avg. 15.80 16.87 16.46 13.59

Ten Year Rolling Prevailing Mean 15.93 16.93 16.73 13.62
Autoregressive 16.01 17.17 16.77 13.63
Factor-augmented AR 16.28 16.96 16.77 13.62
Exp. Smoothing 16.31 17.34 17.14 14.08
Holt Smoothing 18.36 19.12 19.36 16.63
STAR_1 16.91 17.85 18.25 13.66
STAR_2 17.39 19.62 17.12 14.82
One Layer NN 16.50 17.57 17.17 13.86
Two Layer NN 16.32 17.36 16.93 13.66
Previous Best Model 16.02 17.08 16.77 13.62
Equal-weighted Avg. 15.98 16.95 16.66 13.76

Note: This table reports out-of-sample RMSE-values generated by a set of return forecasting 
models estimated using either recursive (expanding window) estimation or rolling window estimation.
Returns are measured monthly and computed for a value-weighted portfolio of US stocks.



Table 2: Root Mean Squared Error Performance (equal-weighted portfolio)

Window Strategy Model 1970-2005 1970s 1980s 1990s
Recursive Prevailing Mean 20.03 23.54 18.74 16.03

Autoregressive 19.64 23.32 18.14 15.40
Factor-augmented AR 20.11 23.94 17.72 15.51
Exp. Smoothing 20.29 23.94 18.93 16.21
Holt Smoothing 21.74 25.67 20.10 17.32
STAR_1 20.14 24.39 18.41 15.51
STAR_2 19.79 23.72 18.26 15.62
One Layer NN 19.48 23.67 17.57 15.67
Two Layer NN 19.26 22.95 17.58 15.67
Previous Best Model 19.80 23.81 18.14 15.40
Equal-weighted Avg. 19.57 23.33 17.93 15.56

Ten Year Rolling Prevailing Mean 20.18 23.72 18.89 16.14
Autoregressive 20.03 23.71 18.91 15.55
Factor-augmented AR 20.71 24.67 18.91 15.55
Exp. Smoothing 20.57 24.12 19.09 16.42
Holt Smoothing 22.86 26.39 20.66 18.27
STAR_1 20.99 23.94 21.85 15.52
STAR_2 20.51 24.32 18.36 16.37
One Layer NN 20.24 23.48 18.14 16.09
Two Layer NN 20.64 23.44 18.16 16.35
Previous Best Model 20.76 24.13 20.05 15.94
Equal-weighted Avg. 19.88 23.46 18.25 15.69

Note: This table reports out-of-sample RMSE-values generated by a set of return forecasting 
models estimated using either recursive (expanding window) estimation or rolling window estimation.
Returns are measured monthly and computed for an equal-weighted portfolio of US stocks.



Table 3: Root Mean Squared Error Performance (SMB portfolio)

Window Strategy Model 1970-2005 1970s 1980s 1990s
Recursive Prevailing Mean 11.44 11.81 8.15 10.10

Autoregressive 11.35 11.73 8.14 9.97
Factor-augmented AR 11.77 11.77 8.18 9.98
Exp. Smoothing 11.53 11.88 8.26 10.30
Holt Smoothing 13.08 13.44 9.16 11.18
STAR_1 11.72 12.91 8.15 9.99
STAR_2 11.77 12.04 8.20 10.07
One Layer NN 11.63 12.11 8.42 10.05
Two Layer NN 11.53 12.03 8.19 10.17
Previous Best Model 11.37 11.79 8.14 9.97
Equal-weighted Avg. 11.27 11.75 8.10 9.99

Ten Year Rolling Prevailing Mean 11.53 11.90 8.34 10.11
Autoregressive 11.86 11.95 8.35 10.16
Factor-augmented AR 12.25 12.55 8.38 10.16
Exp. Smoothing 11.92 11.84 8.28 10.27
Holt Smoothing 13.29 12.75 9.15 11.49
STAR_1 12.57 12.47 8.39 10.28
STAR_2 12.92 12.54 8.37 10.13
One Layer NN 12.56 12.46 8.56 10.57
Two Layer NN 12.23 12.21 8.20 10.24
Previous Best Model 12.70 12.66 8.36 10.45
Equal-weighted Avg. 11.92 11.86 8.16 10.11

Note: This table reports out-of-sample RMSE-values generated by a set of return forecasting 
models estimated using either recursive (expanding window) estimation or rolling window estimation.
Returns are measured monthly and computed for the Small minus Big (SMB) portfolio tracking
return differentials between small and big stocks.



Table 4: Pair-wise comparison of out-of-sample Mean Squared Error Performance (value-weighted portfolio)

AR Factor- Exp Holt STAR1 STAR2 One Layer Two Layer Previous Equal. Wht
augm. AR Smoothing Smoothing NN NN Best Average

Prev Mean 0.246 0.894 0.061 0.000 0.001 0.002 0.004 0.032 0.560 0.722
AR 0.594 0.077 0.000 0.001 0.002 0.011 0.082 0.969 0.776
Factor 0.062 0.000 0.001 0.002 0.010 0.060 0.498 0.776
Exp Smoothing 0.000 0.058 0.020 0.466 0.986 0.166 0.022
Holt Smoothing 0.015 0.139 0.002 0.001 0.000 0.000
STAR_1 0.346 0.153 0.035 0.001 0.001
STAR_2 0.059 0.022 0.004 0.002
One Layer NN 0.026 0.022 0.005
Two Layer NN 0.114 0.039
Previous Best 0.750

Note: This table reports p-values associated with pair-wise comparisons of out-of-sample MSE forecasting performance using the Giacomini-
White (2006) test statistic. Small values indicate that the null of equal forecasting performance is rejected. Results are computed over the period
from 1970-2005.



Table 5: Pair-wise comparison of out-of-sample Mean Squared Error Performance (equal-weighted portfolio)

AR Factor- Exp Holt STAR1 STAR2 One Layer Two Layer Previous Equal. Wht
augm. AR Smoothing Smoothing NN NN Best Average

Prev Mean 0.500 0.625 0.188 0.001 0.292 0.456 0.909 0.509 0.154 0.267
AR 0.226 0.046 0.000 0.199 0.200 0.741 0.371 0.037 0.360
Factor 0.549 0.000 0.395 0.757 0.609 0.685 0.295 0.093
Exp Smoothing 0.000 0.581 0.875 0.305 0.910 0.621 0.014
Holt Smoothing 0.045 0.000 0.000 0.015 0.001 0.000
STAR_1 0.490 0.252 0.700 0.722 0.107
STAR_2 0.296 0.814 0.489 0.033
One Layer NN 0.376 0.121 0.270
Two Layer NN 0.867 0.214
Previous Best 0.003

Note: This table reports p-values associated with pair-wise comparisons of out-of-sample MSE forecasting performance using the Giacomini-
White (2006) test statistic. Small values indicate that the null of equal forecasting performance is rejected. Results are computed over the period
from 1970-2005.



Table 6: Pair-wise comparison of out-of-sample Mean Squared Error Performance (Small minus Big (SMB) portfolio)

AR Factor- Exp Holt STAR1 STAR2 One Layer Two Layer Previous Equal. Wht
augm. AR Smoothing Smoothing NN NN Best Average

Prev Mean 0.292 0.142 0.373 0.036 0.258 0.194 0.050 0.141 0.191 0.296
AR 0.168 0.761 0.014 0.452 0.172 0.016 0.105 0.359 0.647
Factor 0.447 0.031 0.573 0.256 0.083 0.444 0.465 0.455
Exp Smoothing 0.006 0.498 0.145 0.017 0.148 0.402 0.951
Holt Smoothing 0.548 0.484 0.152 0.026 0.632 0.010
STAR_1 0.797 0.993 0.735 0.607 0.454
STAR_2 0.572 0.292 0.875 0.175
One Layer NN 0.124 0.866 0.003
Two Layer NN 0.630 0.129
Previous Best 0.357

Note: This table reports p-values associated with pair-wise comparisons of out-of-sample MSE forecasting performance using the Giacomini-
White (2006) test statistic. Small values indicate that the null of equal forecasting performance is rejected. Results are computed over the period
from 1970-2005.



Table 7: Sign tests for return forecasts

Model Full Sample 1970s 1980s 1990s

Value-weighted returns
Prevailing Mean 2.04 -0.62 2.56 0.00
Autoregressive 1.64 -1.06 2.32 0.00
Factor-augmented AR 2.49 1.68 2.57 -1.01
Exp. Smoothing 1.82 -0.52 2.12 0.00
Holt Smoothing 0.63 0.03 -0.28 -0.94
STAR_1 1.93 0.65 1.63 -0.35
STAR_2 1.58 0.14 1.75 -0.28
One Layer NN 0.80 0.85 1.75 -2.56
Two Layer NN 0.76 1.04 1.93 -2.31
Previous Best Model 2.02 0.05 2.57 -1.01
Equal-weighted Avg. 2.45 0.68 1.91 0.51

Equal-weighted returns
Prevailing Mean 0.81 1.48 -0.94 0.00
Autoregressive 3.45 1.66 1.89 2.06
Factor-augmented AR 1.96 -0.38 2.49 1.58
Exp. Smoothing 1.34 1.23 -0.94 0.17
Holt Smoothing 1.93 1.23 1.35 0.96
STAR_1 0.80 -0.75 0.34 1.38
STAR_2 2.06 1.83 0.83 -0.93
One Layer NN 2.70 0.06 2.66 1.20
Two Layer NN 3.00 0.84 2.66 1.20
Previous Best Model 3.11 1.04 1.89 2.06
Equal-weighted Avg. 2.29 0.84 1.07 0.76

SMB portfolio returns
Prevailing Mean -1.39 -1.34 0.00 0.00
Autoregressive 1.82 3.04 -0.64 0.45
Factor-augmented AR 1.70 3.23 -0.64 -0.27
Exp. Smoothing 2.68 4.17 0.97 -0.24
Holt Smoothing 1.72 1.55 0.88 1.06
STAR_1 1.49 3.23 -0.64 0.06
STAR_2 1.19 3.05 -1.24 0.05
One Layer NN 2.09 3.07 0.37 0.20
Two Layer NN 2.57 3.98 0.20 0.26
Previous Best Model 1.72 2.85 -0.64 0.45
Equal-weighted Avg. 1.69 2.85 -1.23 0.90

Note: This table reports the value of the Pesaran-Timmermann (1992)
test statistic for sign predictability which is asymptotically normally
distributed. 
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Table 8: Out-of-sample root mean squared error (RMSE) performance of the adaptive 
forecast combination approach versus the prevailing mean.

window hurdle hurdle RMSE RMSE Bootstrapped
length value exceedance prevailing mean adaptive model 95% value
18 months 0.00 0.52 15.759 15.709 15.896

0.01 0.52 -- 15.709 15.882
0.02 0.50 -- 15.716 15.872
0.05 0.39 -- 15.728 15.814
0.10 0.20 -- 15.725 15.716

36 months 0.00 0.57 15.945 15.901 15.959
0.01 0.57 -- 15.904 15.928
0.02 0.51 -- 15.918 15.919
0.05 0.28 -- 15.876 15.904
0.10 0.16 -- 15.917 15.891

60 months 0.00 0.69 15.447 15.453 15.552
0.01 0.60 -- 15.456 15.539
0.02 0.50 -- 15.472 15.533
0.05 0.31 -- 15.423 15.484
0.10 0.09 -- 15.458 15.442

120 month 0.00 0.86 15.454 15.419 15.462
0.01 0.54 -- 15.420 15.454
0.02 0.41 -- 15.412 15.454
0.05 0.18 -- 15.463 15.454
0.10 0.00 -- 15.454 15.454

Note: The hurdle value is the minimum value of the rolling-window estimate of R-squared
used to identify periods with return predictability. Hurdle exceedance is the percentage of
periods where at least one forecasting model produces an R-squared higher than the
hurdle value. Bootstrapped 95% values report the critical values for the RMSE-statistic 
which the RMSE must fall below in order to indicate return predictability.
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