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Abstract

Our review highlights some of the key challenges in financial forecasting
problems along with opportunities arising from the unique features of financial
data. We analyze the diffi culty of establishing predictability in an environment
with a low signal-to-noise ratio, persistent predictors, and instability in predic-
tive relations arising from competitive pressures and investors’ learning. We
discuss approaches for forecasting the mean, variance, and probability distribu-
tion of asset returns. Finally, we cover how to evaluate financial forecasts while
accounting for the possibility that numerous forecasting models may have been
considered, leading to concerns of data mining.

1 Introduction

Finance is focused on intertemporal decision making under uncertainty and so
forecasts of unknown future outcomes is integral to several areas of finance.
Asset pricing requires forecasts of future cash flows, payoffs and discount rates.
Risk management relies on forecasts of variances and covariances of returns on
portfolios that frequently comprise large numbers of assets. Countless studies
in corporate finance analyze firms’ capital budgeting decisions which in turn
depend on projected cash flows and firms’forecasts of the costs and benefits of
issuing debt and equity. A large literature in banking analyzes the possibility of
“runs”which reflects investors’forecasts of both a bank’s solvency and liquidity
as well as their expectation of other agents’(depositors’) decisions on whether
to run or stay put.
While economic and financial forecasting share many methods and perspec-

tives, some important features help differentiate the two areas. First, com-
petitive pressures and market effi ciency mean that the “signal-to-noise”ratio in
many financial forecasting problems—particularly predictability of asset returns—
is very low compared to standard forecasting problems in macroeconomics in
which the presence of a sizeable persistent component makes forecasting easier.
The presence of weak predictors with low predictive power and the resulting
importance of parameter estimation error is, therefore, the norm rather than
the exception in financial forecasting.
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Second, and related to the first point, fierce competition among asset man-
agers in the financial markets means that predictable patterns in asset returns
can be expected to self destruct as a result of investors’ attempts to exploit
predictability and the resulting adjustment in prices. The possibility of readily
trading on price forecasts makes the scope for feedback effects from forecasts
to actual outcomes stronger in finance than in other areas of economics. Model
instability is therefore particularly important to financial forecasting.
Third, overfitting and issues related to data mining have increasingly be-

come a concern in financial forecasting due to the ease with which numerous
forecasting models can be fitted to a given data set and the diffi culty of gener-
ating new and genuinely independent data sets on which to test the forecasting
performance. In particular, how should the performance of a forecasting model
be evaluated when this model is selected as the best performer among a larger
set of competing specifications? This situation generates a multiple hypothe-
sis testing problem that, if not accounted for, can lead to findings of spurious
predictability patterns and serious distortions in inference.
Fourth, while volatility forecasting also features prominently in forecasting of

macroeconomic variables—indeed the original application of ARCH models was
to UK inflation (Engle, 1982)—it is more central to finance. This is particularly
true in the area of risk management which can entail forecasting the correlations
between very large sets of variables and so gives rise to high-dimensional fore-
casting problems. Moreover, access to high-frequency data, sampled every few
seconds during trading sessions for the most liquid assets, means that measures
of “realized” variances can be constructed and used to forecast future risks.
This type of data does not, as yet, have obvious counterparts in economics
where measurements tend to be conducted at a lower frequency.
Fifth, the presence of derivatives markets such as options or credit default

swaps means that risk-neutral densities can be constructed under no-arbitrage
conditions and used to forecast the probability distribution of asset prices. Once
converted into physical probability distributions, such density estimates can be
combined with forecasts obtained from other sources. Using options data in this
manner introduces a host of complexities, however, related to having limited
cross-sectional data on liquid traded options.
Sixth, financial forecasting problems often involve well-defined loss functions

leading to optimization problems such as maximizing the expected utility from
trading for an investor with mean-variance or power utility. In turn, this in-
volves forecasting the probability distribution of portfolio payoffs or particular
moments of this distribution. Given such utility functions, it is now routine
to evaluate forecasting performance using economic measures such as certainty
equivalent returns or average realized utilities from investments strategies based
on a sequence of forecasts.
A variety of methods have been—or have the potential for being—used to

deal with these challenges in financial forecasting. For example, methods for
dealing with weak predictors and parameter estimation error such as forecast
combination and, more broadly, ensemble forecasting methods developed in ma-
chine learning are beginning to find more widespread use. Forecasting methods
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that take advantage of constraints from economic theory, e.g., by using filtering
methods to back out persistent components in expected returns and expected
dividend growth or by imposing bounds on the conditional Sharpe ratio, have
also shown promise. Our review discusses these and other strategies for improv-
ing financial forecasting performance.
Our review proceeds as follows. Section 2 introduces the basic return pre-

dictability problem. Section 3 discusses challenges encountered in financial fore-
casting problems, including weak predictors (low signal-to-noise ratios), persis-
tent predictors, model instability, and data mining. Section 4 discusses strate-
gies for dealing with these challenges. Section 5 covers volatility and density
forecasting methods, while Section 6 discusses methods for evaluating financial
forecasts, emphasizing the use of economic performance measures, and Section
7 concludes.

2 Basics of return predictability

Let rt+1 denote the excess return on a risky asset held from period t to period
t + 1, net of a risk-free rate. Ignoring frictions due to transaction costs and
restrictions on trading, under conditions of no arbitrage the following moment
condition holds:

Et[mt+1rt+1] = 0, (1)

where mt+1 is the positively-valued stochastic discount factor (pricing kernel),
see, e.g., Cochrane (2009) and Et[.] = E[.|Ωt] denotes conditional expectations
given information at time t, Ωt.

Equation (1) shows that the product of the pricing kernel and excess returns
is a martingale difference sequence and so has mean zero conditional on the
filtration generated by Ωt. Solving for expected excess returns, we have

Et[rt+1] =
−covt(rt+1,mt+1)

Et[mt+1]
, (2)

where covt(rt+1,mt+1) = Et[(rt+1 − Et[rt+1])(mt+1 − Et[mt+1])] is the condi-
tional covariance between rt+1 and mt+1. This equation shows that predictabil-
ity of excess returns is not ruled out by the absence of arbitrage. However, to be
consistent with no-arbitrage conditions, any return predictability should reflect
time variation either in the conditional covariance between excess returns and
the stochastic discount factor, covt(rt+1,mt+1) or variation in the conditional
expectation of the pricing kernel, Et[mt+1].
A key challenge to interpretation of empirical evidence on return predictabil-

ity is that the object which theory stipulates should be a martingale difference
sequence,mt+1rt+1, is itself unobserved and model dependent.1 Hence, interpre-
tations of return predictability should always bear in mind the joint hypothesis

1For example, in a consumption based asset pricing model, the pricing kernel will reflect
investors’intertemporal marginal rate of substitution between current and future consumption
and, thus, depends on the assumed utility specification.
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problem well-known from studies of market effi ciency: predictability tests are
really joint tests of market effi ciency and a correct specification of investor pref-
erences. For example, stock returns may be predictably higher during recessions
than in expansions simply because investors’marginal utility of consumption
(and, hence, risk premia) are higher during states with low growth.
By far the most commonly used prediction model in empirical studies is a

simple linear specification for the equity premium:

rt+1 = µ+ βxt + ut+1, (3)

where xt ∈ Ωt is a set of predictor variables known at time t. While the linear
forecasting model in (3) may appear to be at odds with the more general first-
order equation in (1), in fact it can be derived under quite general conditions.2

Further insights into the importance of forecasting for asset pricing can be
gleaned from the log-linearized present value model of Campbell and Shiller
(1988) which gives rise to the following approximate relation between the current
log-price, pt, and forecasts of future log-dividends, dt+1+j , and continuously
compounded returns, rt+1+j :

pt =
k

1− ρ + Et

 ∞∑
j=0

ρj [(1− ρ)dt+1+j − rt+1+j ]

 , (4)

where k and ρ are constants arising from the log-linearization.
Computing the price of a perpetual asset such as a stock therefore requires

forecasting an infinite stream of cash flows (log-dividends, dt+1+j) and discount
rates (rt+1+j). This complex task requires not only forecasting all future values
of these variables themselves, but also forecasting the future values of any other
variables used to predict cash flows and discount rates.3

Letting ∆dt+i denote the log-dividend growth rate, it follows that surprises
to returns are driven either by changes in expected future dividends or changes
in expected future returns:

rt+1 − Et[rt+1] = Et+1

∞∑
j=0

ρj∆dt+1+j − Et
∞∑
j=0

ρj∆dt+1+j

−

Et+1

∞∑
j=1

ρjrt+1+j − Et
∞∑
j=1

ρjrt+1+j

 . (5)

Noting that Et+1[•] and Et[•] represent forecasts computed conditional on in-
formation at time t + 1 and time t, respectively, deviations in realized returns
from their previously expected values must be driven by changes in dividend or

2Assuming an affi ne pricing kernel and cash flows that are formed as a linear combination
of a finite-dimensional, stationary vector autoregression, Farmer, Scmidt, and Timmermann
(2017) show that (3) can be derived from a log-linearized asset pricing model.

3This task is typically accomplished using vector autoregressions (VARs).
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return expectations. Importantly, all future values of these variables matter so
changes in forecasts of payoffs or discount rates at any future horizon should
lead to corresponding changes in returns.

3 Challenges to financial forecasting models

Researchers attempting to identify predictability in asset returns face several
challenges which we describe in this section before discussing strategies for ad-
dressing such challenges in the next section.

3.1 Challenge I: Weak predictors

A very low signal-to-noise ratio in predictive return regressions is to be expected
from market competition among asset managers and other investors who use
vast resources to vie for higher returns.
One way to model the “weak predictor”feature of financial return regressions

is to assume that the coeffi cient of the time-varying predictor in equation (3) is
local-to-zero, i.e.,

β ∝ b√
T
, (6)

for some constant, b, and a sample size, T . This approximation suggests that
prediction models have limited power even in cases with a large sample size,
T . Situations with weak predictors imply that parameter estimation error is
roughly of the same order of magnitude as the signal embedded in the pre-
dictor, implying that conventional tests of predictive performance such as that
proposed by Diebold and Mariano (1995) will have little power to detect return
predictability.
Bayesian methods have been used to counter the important effect of parame-

ter estimation error on return forecasts. By shrinking the coeffi cient estimates
towards a prior (usually centered on zero for the slope coeffi cients on time-
varying predictor variables), these methods dampen the effect of estimation
error on the forecasts. Even though such forecasts may result in biased fore-
casts, they can exploit the bias-variance trade-off in such a way as to improve
on the forecasting models’mean squared error performance.
From a variable selection perspective, weak predictors create a grey area

where inclusion of individual predictors in return regressions is surrounded by
considerable uncertainty that is unlikely to be conclusively resolved by conven-
tional model selection methods.
The diffi culty associated with establishing return predictability is countered

by the fact that even small amounts of return predictability has the potential of
translating into significant economic gains. Back of the envelope calculations by
Campbell and Thomson (2008) suggest that an (out-of-sample) R2 value as low
as 0.005 (one-half of one percent) in a monthly return regression could generate
a 40% increase in the average portfolio excess return of a mean-variance investor
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with a modest degree of risk aversion.4 See also Zhou (2010) for a discussion of
this point.

3.2 Challenge II: Persistent predictors

Many of the predictors used to forecast stock returns—notably valuation ratios
such as the dividend yield but also short term interest rates or interest rate
spreads—are highly persistent. As pointed out by Stambaugh (1999), this can
lead to biases in inference on the slope coeffi cient β in (3) provided that the
innovation in the predictor is strongly correlated with unexpected shocks to
returns.
Suppose the persistence in the predictor is captured by modeling this as a

first-order autoregression

xt = µx + ρxt−1 + vt, |ρ| < 1, vt ∼ (0, σ2
v). (7)

Assuming Gaussian innovations, Marriott and Pope (1954) and Kendall (1954)
show that there is a finite-sample bias in the estimated coeffi cient ρ̂ :

E[ρ̂− ρ] ≈ −(1 + 3ρ)

T
.

Finally, suppose that E(ut|xs, xw) 6= 0, s < t ≤ w so that the ut residuals
from the linear return regression (3) are correlated with past or future values
of the predictor, x, i.e., σuv = E[utvt] 6= 0. This condition obviously holds for
predictors such as the dividend-price ratio that have prices in the denominator.
Under these conditions, Stambaugh (1999, Proposition 4 and Corollary)

shows that finite-sample biases in ρ̂ translate into a finite-sample bias in β̂ :

E[β̂ − β] =
σuv
σ2
v

E[ρ̂− ρ]

=
−σuv
σ2
v

(1 + 3ρ)

T
+O(T−2). (8)

Hence, if ut and vt are uncorrelated, there will not be a problem with a finite-
sample bias in β̂. Conversely, if σuv 6= 0, the bias can be substantial. For
example, Stambaugh (1999) estimates a bias around 0.40 in a regression of
returns on the dividend yield from 1977-1996 (T = 240).5

3.3 Challenge III: Model instability

The same set of return predictor variables typically does not work for extended
periods of time; which variables get selected changes over time. No single pre-
diction model is therefore clearly superior to other models. This complicates

4This calculation ignores trading costs and slippage in prices as a result of market impact
from trading.

5Stambaugh demonstrates that Bayesian inference can yield sharper results, although such
inference will depend on the priors, assumptions about the initial observation (fixed or sto-
chastic), and stationarity assumptions for the predictor.
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the selection of a forecasting model and produces an expected loss function that
is a probability weighted average across all models.
There is a particular reason why we would expect instability to affect finan-

cial forecasts. Asset returns depend on asset prices which themselves reflect
investors’expectations of future payoffs. A release of new public information
that leads to a change in price forecasts can be expected to lead to simultaneous
shifts in prices and, if shared by the broad market, will be incorporated into
the market price with little delay.6 If the information does not lead to any shift
in risk premia, it cannot be expected to lead to improved forecasts of changes
in prices or, more precisely, excess returns. Contrast this with new information
about the state of the economy, e.g. the release of a jobs report which can
be expected to lead to more accurate forecasts of future economic growth as it
reveals more accurate information about the underlying state of the economy.
Consistent with the tendency for financial return models to “self-destruct”,

empirically the linear return prediction model in (3) has been found to be un-
stable in many empirical studies. Paye and Timmermann (2006) and Rapach
and Wohar (2006) test for parameter stability and find that the null of stability
is rejected for the most commonly used predictor variables using returns data
from the US and a range of international stock markets.7 Pastor and Stam-
baugh (2001) use a Bayesian approach to find breaks in the relation between
expected returns and return volatility.8

Farmer, Schmidt, and Timmermann (2017) present evidence from nonpara-
metric regressions which suggests that return predictability is concentrated in
a small number of “pockets”with no significant predictability in the majority
of the sample. As some of these pockets are short-lived, lasting a few weeks,
this poses a particular challenge for real-time detection of predictability and
attempts at exploiting such “pockets” to generate improved statistical and fi-
nancial performance.
Conventional time-series regressions generally have a limited ability (weak

power) to detect breaks in the regression parameters in “real time” without
lengthy delays as only few post-break observations are available. This problem is
exacerbated in cases with weak predictors whose effect gets veiled by parameter
estimation error: Detecting a shift in the parameter of a variable that only
possesses weak predictive power—and whose inclusion in the forecasting model

6McClean and Pontiff (2016) find evidence that a range of stock market anomalies, i.e., signs
of mispricing, tend to vanish after they are published in academic journals. They document
a 32% average reduction in anomalies due to publication-informed trading. Moreover, the
post-publication reduction in the magnitude of such anomalies appears to be greater in cases
with larger in-sample returns and for stocks that have less idiosyncratic risk and are more
liquid. These anomalies are easier to detect and easier to implement trading strategies to
exploit, and so we would expect them to disappear more rapidly once their existence becomes
more broadly known.

7Some of this instability may be related to state-dependent forecasting performance’Ra-
pach, Strauss, and Zhou (2010) and Dangl and Halling (2012) find evidence that return
predictability is strong around economic recessions but much weaker during expansions.

8See Rossi (2013a) for an extensive review of evidence on model instability. Rossi (2013b)
reviews the track record of exchange rate forecasting models and discusses how these are
affected by model instability.
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is questionable—is more diffi cult than if the variable had a large and highly
significant effect. To put it bluntly, accurate detection of shifts to the parameter
of a variable that generates an R2 of less than one percent is always going to be
diffi cult.
While it is a diffi cult task to detect breaks to financial forecasting models,

converting such evidence into more accurate forecasts is even more challenging.
This holds regardless of whether a break is detected through some econometric
test or is based on subjective beliefs. For example, suppose it is believed that
the election of Donald Trump as US president lead to a change in the forecasting
models, e.g., for corporate cash flows as a result of changes in expectations of
economic growth or prospects for tax reductions. In the immediate aftermath
of Trump’s election in November 2016, investors would have had very few data
points from the new “regime” and so would not have been able to accurately
estimate the parameters of the model. If not properly managed, this could
result in erratic forecasts dominated by estimation error in the early stages
after a break.

3.4 Challenge IV: Data mining and overfitting

Data mining is a concern that affects many forecasting problems. In its simplest
form it is closely linked to overfitting. To illustrate the problem, consider two
linear forecasting models, the first of which (M1) uses a set of predictors, x1t,
while the second model (M2) uses x1t in addition to a set of predictors, x2t,

M1 : yt+1 = β′1x1t + ε1t+1

M2 : yt+1 = β′21x1t + β′22x2t + ε2t+1. (9)

Suppose that the coeffi cient estimates for these models are obtained by OLS so
that

β̂1 = arg min
β1
T−1

T−1∑
t=0

(yt+1 − β′1x1t)
2,

β̂2 = arg min
β2
T−1

T−1∑
t=0

(yt+1 − β′2xt)2, (10)

where β2 = (β′21 β
′
22)′ and xt = (x′1t x

′
2t)
′. This results in two forecasts y1t+1|t =

β̂
′
1x1t and y2t+1|t = β̂

′
2xt.

Suppose that forecasting performance is measured using the same sample,
{yt+1}T−1

t=0 that is used to estimate the parameters in (10). Because M2 nests
M1, M2 will always provide a (weakly) better in-sample fit:

T−1
T−1∑
t=0

(yt+1 − β̂
′
21x1t − β̂

′
22x2t)

2 ≤ T−1
T−1∑
t=0

(yt+1 − β̂
′
1x1t)

2, (11)

where equality in (11) only holds if the second set of predictors, x2t, are or-

thogonal to the forecast errors from the first model, (yt+1− β̂
′
1x1t). This means
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that the biggest model (M2) (almost) always comes out on top with the lowest
in-sample MSE. This conclusion holds even if the bigger model can be expected
to perform worse in population than the small model (M1), perhaps due to its
inclusion of redundant predictors. In other words, (11) can hold simultaneously
with

E
[
(yt+1 − β̂21x1t − β̂

′
22x2t)

2
]
> E

[
(yt+1 − β̂

′
1x1t)

2
]
, (12)

where E[.] denotes population expectation. This overfitting effect makes data
mining tempting, but also means that great care must be exercised when evalu-
ating any improvements in forecasting performance resulting from the inclusion
of additional predictor variables.
Ferson, Sarkissian, and Simin (2003) find that the effect of data mining

for predictor variables can be exacerbated in a setup with persistent predic-
tors which introduces a spurious regression bias. Spurious regression biases can
arise if the return generating process contains a highly persistent expected re-
turn component which is correlated in finite samples with similarly persistent
predictor variables. Data mining gets reinforced by this effect as the predictors
that appear to be the best ones, and thus produce the highest R2 values, may
simply be maximizing the spurious regression bias.
Data mining concerns do not only arise in the context of time-series pre-

diction models. Harvey, Liu and Zhu (2016) undertake a throughout study of
the academic literature on factors that have been proposed to explain cross-
sectional variation in expected returns. They propose an approach for dealing
with the multiple hypothesis testing issues that arise when a large number of
factors need to be considered and suggest that new factors need to generate
t-statistics above 3.0 in order to be statistically significant after accounting for
the multiple hypothesis testing problem.

4 Strategies for addressing the challenges

This section describes a variety of strategies that have been used to address
the challenges outlined in the previous section. We start with forecast combi-
nations, turn to filtering (unobserved components) methods and approaches for
capturing model change, before covering Bayesian methods, machine learning
techniques and theory-induced constraints on the forecasting models.

4.1 Forecast combination

Forecast combination methods have been used extensively in economic forecast-
ing, but are less widespread in financial forecasting. This is somewhat surprising
given that a large literature has established substantial benefits from combining
forecasts in a wide set of areas.9

Why combine financial forecasts? One answer is that forecasters often em-
ploy many models with similar predictive performance making it diffi cult to

9See, e.g., Clements (1989) and Timmermann (2006).
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identify a single, superior model. Another reason lies in state-dependent fore-
casting performance: certain models may work well under some market condi-
tions but not in other and it can be diffi cult to tell, ex ante, which conditions
will prevail in the future. Alternatively, the forecasting environment may sim-
ply be unstable, rendering individual forecasting models’ past track records
unreliable for their future performance. A third reason is simply that of "diver-
sification": all models are misspecified and combining forecasts, e.g., by using
an equally-weighted average of forecasts, has the effect of diversifying across
model uncertainty.10

To see how forecast combination works, consider a vector of n individual
forecasts of some variable, ft+1|t = (f1t+1|t, f2t+1|t, ..., fnt+1|t)

′, where fjt+1|t is
the one-step-ahead forecast of yt+1 given information at time t, Ωt, generated
by the jth model. The simple equal-weighted forecast combination takes the
form

f ct+1|t =
1

n

n∑
j=1

fjt+1|t. (13)

This "1/n" strategy has proven highly successful in empirical applications, in-
cluding to form portfolios (DeMiguel et al. (2007)). There are no weights to
estimate from the data in this combination scheme and the weight on each
forecast does not depend on the individual forecasts’past performance.
A more general approach to forecast combination that accounts for the indi-

vidual models’past forecasting performance estimates the combination weights
from a linear regression of the outcome, yt+1, on the predictors

yt+1 = β0 +

n∑
j=1

βjfjt+1|t + εt+1. (14)

An intercept term (β0) is often included so as to ensure that the combined
forecast is (unconditionally) unbiased. If each of the individual forecasts is
believed to be unbiased, alternatively one can impose the constraints β0 = 0
and

∑n
j=1 βj = 1 in (14) so as to preserve unbiasedness of the combined forecast.

Rapach, Strauss, and Zhou (2010) is a notable exception to the relative
shortage of papers in financial forecasting that use forecast combination meth-
ods. They fit univariate forecasting models to returns on the US stock market,
using a set of predictors from Welch and Goyal (2008), and form an equal-
weighted average of these forecasts. Suppose the univariate return prediction
models take the form

rt+1 = γ0j + γ1jxjt + ujt+1, j = 1, ..., n (15)

10As a case in point, the accuracy of individual forecasts of asset returns is often reduced
by the effects of estimation error. One reason forecast combination succeeds in producing
better return forecasts is by diversifying the effect of estimation errors when these are not too
strongly correlated across forecasting models.
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Estimates of each of these regressions can be used to generate a return forecast
r̂jt+1|t = γ̂0j + γ̂jixit, which in turn can be used to form an equal-weighted
forecast

r̄EWt+1|t =
1

n

n∑
j=1

r̂jt+1|t. (16)

Empirically, Rapach et al. (2010) find that an equal-weighted combination
of quarterly forecasts from 15 univariate models of the form in (15) produces
significantly more accurate forecasts than those from a model that assumes a
constant equity risk premium and so imposes γ1i = 0 in (15).11

Elliott, Gargano, and Timmermann (2013) generalize the approach in Ra-
pach et al. (2010) to complete subset regressions that use equal-weighted av-
erages of all forecasting models that include a fixed number (k) of predictor
variables. The univariate case with a single predictor proposed by Rapach et
al. (2010) is a special case (k = 1).12 Empirically, using a similar data set as
that in Rapach et al. (2010), Elliott et al. (2013) find that equal-weighted com-
binations of forecasts from return prediction models that include a small set of
predictors—typically around two or three—perform notably better than forecasts
from individual forecasting models and also are better than univariate forecasts
like those considered by Rapach et al. (2010).
An alternative to averaging forecasts from a set of parsimonious models

is to reduce the dimensionality of the set of predictors by assuming a latent
factor structure which allows for the extraction of a small set of common factors
(diffusion indexes) that drive variation in the predictor variables. Ludvigson and
Ng (2007), Kelly and Pruitt (2013), and Neely, Rapach, Tu, and Zhou (2014)
are examples of studies that use common components to predict returns.

4.2 Filtering and unobserved components models

Investors’conditional expectations of future cash flows and discount rates are
unobserved so cannot directly be used to compute prices in (4) or track return
movements in equation (5). Assuming that prices embody investors’forward-
looking expectations, we can treat these expectations as latent variables, esti-
mates of which can be computed using filtering methods under the assumption
that the log-linearized present value model holds.
To see how this might work, let µt = Et[rt+1] be the expected return while

the expected dividend growth is denoted gt = Et[∆dt+1]. Following van Bins-
bergen and Koijen (2010), suppose that these follow AR(1) processes:

µt+1 = δ0 + δ1(µt − δ0) + εµt+1, (17)

gt+1 = γ0 + γ1(gt − γ0) + εgt+1 . (18)

11 It appears to be less important whether the mean, median, or a trimmed mean of the
forecasts is used to compute the forecast combination.
12From a theoretical perspective, Elliott et al. (2015) show that the complete subset re-

gression combination achieves variance reduction relative to a “kitchen sink” approach that
includes the full list of predictor variables.
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In turn, the realized dividend growth is expressed as its expected value, gt,
plus an unexpected shock, εdt+1 :

∆dt+1 = gt + εdt+1. (19)

Using the log-linearized present value model, van Binsbergen and Koijen (2010)
show that the log price-dividend ratio takes the form

pdt = A−B1(µt − δ0) +B2(gt − γ0), (20)

where A,B1, and B2 are functions of the underlying parameters. van Binsbergen
and Koijen show that this setup yields a state space system with the two state
equations, (17) and (18), and two measurement equations, (19) and (20), the
latter without an error term.
Using this representation, estimates of expected returns and dividend growth

rates can be computed using a Kalman filter. Empirically, van Binsbergen and
Koijen (2010) find that such filtered estimates have significant predictive power
over future returns and dividend growth. Interestingly, both dividend growth
and expected returns contain persistent components with stronger persistence
estimated for the latter.
Pastor and Stambaugh (2009) develop an approach that also treats expected

returns as a latent process. Their predictive system approach is composed of
the following state space system for the observable returns, rt+1, the observable
predictor, xt+1, and the unobserved expected return, µt+1 :13

rt+1 = µt + ut+1

xt+1 = (1− α)Ex + αxt + vt+1 (21)

µt+1 = (1− β)Er + βµt + wt+1,

where (ut+1, vt+1, wt+1) ∼ N(0,Σ). Assuming this joint dynamics, the linear
regression in equation (3) is misspecified if the predictor variable is imperfectly
correlated with expected returns, i.e., unless corr(vt+1, wt+1) = ±1, and α = β.
Conversely, with imperfect predictors the full history of both the predictors and
returns will generally matter to the conditional expectation of returns and can
be computed from a weighted sum of past innovations to these variables. Pastor
and Stambaugh (2009) develop tests for serial correlation in predictive return
regressions which can be used to detect the presence of imperfect predictors.
Moreover, they show that the sign of the correlation between residuals of the
expected and unexpected return equations can be used as a diagnostic for an
imperfect predictor.

4.3 Tracking model change

Different strategies for dealing with model instability in the area of financial fore-
casting have been considered. A simple, yet general representation of model- or
13For simplicity, we assume a univariate predictor, xt, but Pastor and Stambaugh (2009)

allow for multiple predictors.
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parameter instability is to modify (3) to allow for a time-varying slope coeffi -
cient:

rt+1 = µ+ βtxt + ut+1. (22)

Several approaches fall under this umbrella. For example, we could specify
the regression parameters as a (linear) function of observables, zt, e.g., βt =
β0 + β1zt, in which case (22) becomes

rt+1 = µ+ β0xt + β1ztxt + ut+1, (23)

see, e.g., Christopherson, Ferson and Glassman (1998) and Ferson and Schadt
(1996) for applications to evaluation of fund performance.
Alternatively, one can assume that the parameters of the linear regression

model (3) are latent variables that follow a process

βt = βt−1 + ωt, (24)

where ωt ∼ N(0, Qt). This time-varying parameter model nests (3) as a special
case if Qt = 0 for all t.14 Johannes, Korteweg, and Polson (2014) propose a
more complex version of the time-varying parameter model that allows for mean
reverting stochastic volatility and mean-reverting coeffi cients:

rt+1 = µ+ β0xt + βt+1xt +
√
V rt+1ut+1,

βt+1 = ρβt + σβεβt+1, εβt+1 ∼ iidN(0, 1) (25)

log(V rt+1) = αr + βr log(V rt ) + σrηrt+1,

Henkel, Martin, and Nardari (2011) consider Markov switching vector au-
toregressive (MSVAR) models to predict stock market returns. Let yt+1 =
(rt+1, x

′
t+1)′, so that rt+1 is the first element of the yt+1 vector. Then the

MSVAR(1) model can be written as

yt+1 = µst+1 +Ast+1yt + ut+1, (26)

where ut+1 ∼ N(0,Σst+1), µst+1 is now a column vector, Ast+1 is a state-
dependent VAR matrix, st+1 ∈ {1, 2}, and P (st+1 = j|st = i) = pij . Hence,
there is a constant probability of staying in one of the two states and both the
mean and variance shift across the states. Note that the two states repeat in this
model. This assumption is relaxed by Pettenuzzo and Timmermann (2011) who
use the Chib (1998) change-point process to predict stock returns. In particular,
they allow for K states so that st ∈ {1, ....,K} in the sample t = 1, ...., T and
assume that the same state never repeats so that the state transition probability
takes the form

P =


p11 p12 0 · · · 0
0 p22 p23 · · · 0
...

...
...

...
...

0 0 · · · pKK

 . (27)

14See Dangl and Halling (2012) for an application of this type of model to stock market
return predictability.
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This model characterizes shifts between the K states during the historical
sample. To predict future returns out-of-sample, Pettenuzzo and Timmermann
(2011) assume that the new parameters after a break are drawn from a “meta
distribution” which means that they can forecast returns out-of-sample in a
way that accounts for the possible effect of future breaks. This requires making
assumptions about the underlying stochastic process that determines both the
frequency and magnitude of future breaks.
Empirically, many of these studies find that it is important to account for

time variation in the parameters of return prediction models. Dangl and Halling
(2012) find that the random walk coeffi cients model (24) quickly adapts to
changes in the underlying return generating process. Johannes et al. (2014)
also find that it is important to generalize the standard model to allow for
time-varying coeffi cients and volatility clustering. Moreover, using the more
general models to forecast returns appears to lead to improvements in portfolio
performance. Henkel et al. (2011) find that return predictability in the stock
market is closely linked to economic recession periods and that some predictors
only have predictive power during recessions. Pettenuzzo and Timmermann
find that accounting for the effects of past breaks and the possibility of future
breaks in return prediction models can lead to significant economic gains when
the resulting forecasts are used for asset allocation decisions.
A very different approach for handling model instability is to attempt to es-

timate the size and magnitude of recent breaks affecting the forecasting model
and use this information to compute improved forecasts. To dampen the effect
of estimation error on forecast computed on short data samples in the after-
math of a break, Pesaran and Timmermann (2007) propose using both pre- and
post-break data, perhaps downweighting pre-break data to reduce biases in the
resulting parameter estimates.
Alternatively, Bayesian methods that pull parameter estimates towards an

economically reasonable prior can be used. This approach is akin to shrinking
the post-break parameter estimates towards the prior and letting the degree
of shrinkage taper off as more data points are cumulated in a new post-break
regime.
There are clear limitations from time-series approaches which tend to have

weak power to detect structural breaks. Moreover, some predictability may
reflect low-frequency movements (e.g., business cycle variation) that affect the
vast majority of firms, stocks, and countries and whose predictability can be
diffi cult to ascertain given the paucity of observations at longer horizons.
Panel forecasting methods that exploit cross-sectional information to in-

crease the power of the tests for instability can alternatively be used. Such
methods can be expected to work better if the timing of breaks across cross-
sectional units is not too heterogeneous, i.e., if breaks are common. Pool-
ing cross-sectional and time-series information in this manner appears to be
a promising venue for handling model instability in financial forecasting mod-
els.15

15See Smith and Timmermann (2017) for a recent application of this idea to a panel of stock
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4.4 Bayesian Methods

Bayesian methods provide a coherent framework for handling parameter esti-
mation error, model uncertainty and model instability. This can perhaps best
be illustrated in the context of the simple linear regression model

rt+1 = µ+ β′xt + ut+1, ut+1 ∼ N(0, σ2
u), t = 1, ..., T − 1, (28)

where xt is a vector of predictors. Denoting the conditioning data set by Zt =
{xτ , yτ}, τ = 1, ..., t, we can integrate out uncertainty about the underlying
parameters µ, β, and σ−2

u to obtain the posterior predictive density:

p(rt+1|Zt) =

∫
p(rt+1|µ, β, σ−2

u , Zt)p(µ, β, σ
−2
u |Zt)dµdβdσ−2

u . (29)

Parameter uncertainty can be handled in a two-step procedure. In the first
step, values of the parameters µ, β, σ−2

u are drawn from p(µ, β, σ−2
u |Zt) using

a Gibbs sampler. Under a set of standard normal-gamma priors, draws from
the joint posterior distribution iterate forth and back between the distributions
for the mean parameters (µ, β) and the precision parameter (σ−2

u ). Given these
parameter values, in the second step, draws from the outcome distribution are
simple to implement because, conditional on the first-step parameter values,

rt+1|µ, β, σ−2
u , Zt ∼ N(µ+ β′xt, σ

−2
u ). (30)

Model uncertainty can also readily be handled in the Bayesian framework.
Suppose there are n models of the form in (28), i.e.,

rt+1 = µj + β′jxjt + ujt+1, ujt+1 ∼ N(0, σ2
ju), t = 1, ..., T − 1, (31)

where again xit is a vector of predictors and xit 6= xjt for i 6= j. Then we can
generate a draw from the predictive density by weighting each of the n models
by their posterior probabilities given the data, p(Mj |Zt) :

p(rt+1|Zt) =

n∑
j=1

p(rt+1|Mj , Zt)× p(Mj |Zt). (32)

Here p(rt+1|Mj , Zt) is the posterior predictive density of model j which can be
computed using similar steps as in equations (29) and (30), whereas p(Mj |Zt)
can be computed using steps described in the section on Bayesian Model Aver-
aging.
As a simple application, suppose we are considering models with different

number of breaksor regimes. For example, p(rt+1|Mj , Zt) could correspond to a
model with j breaks. Then we can use equation (32) to integrate out uncertainty
about the number of breaks, weighting the posterior predictive density of model
Mj by its posterior probability.

market portfolios.
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4.5 Machine learning methods

New methods for conducting predictive analytics, often in the context of data
sets that have large cross-sectional or time-series dimensions, or both, have
been developed in recent years—see Hastie, Tibshirani, and Friedman (2009)
for an excellent introduction. These methods offer ways to flexibly estimate
predictive models without imposing strong assumptions on their functional form
and accounting for situations with large sets of predictors.
Key to the successful use of these methods appears to be control of their

tendency to overfit due to their flexibility. The low signal-to-noise ratio en-
countered in many financial forecasting problems raises the risk that flexible
fitting methods will simply fit noise in a given sample and be strongly affected
by estimation error, more so than simpler linear models.
As an example of one of the recent "machine learning" methods, consider

regression trees which provide piecewise (constant) approximations to an un-
known functional form by splitting the state space into a set of J disjoint regions
S1, S2, ..., SJ . Within each region, the function takes a constant value, µj , so
that

Υ(xt,ΘJ) =

J∑
j=1

µjI(xt ∈ Sj), (33)

where xt is a vector of predictor variables at time t and ΘJ = {Sj , µj}, j =
1, ..., J is the set of parameters used to carve out the state space and the values of
the constants, µj . I(xt ∈ Sj) is an indicator variable that equals one if xt ∈ Sj ,
and otherwise equals zero. Finding the optimal way to discretize the sample
space into the J regions is the tricky part, particularly if the dimension of the
vector of predictor variables, xt, is high. In contrast, once the boundaries for
the state space have been determined, the values of µj are easy to estimate
under conventional loss functions such as mean squared error (MSE) or mean
absolute error (MAE).
Individual regression trees can be "boosted" by fitting successive trees to the

residuals that remain after previous rounds of tree fitting. Specifically, boosted
regression trees proceed iteratively by partitioning the data into sub regions
given the preceding splits of the data. Trees are added with the objective of
obtaining a better fit in regions that were poorly fitted by the initial trees. With
B such boosting steps, a boosted regression tree can be obtained

fB(xt) = fB−1(xt) + Υ(xt,ΘJ,B) =

B∑
b=1

Υ(xt,ΘJ,b), (34)

where Υ(xt,ΘJ,b) is the regression tree fitted in the bth iteration. Parameter
estimates of these trees can be obtained as the solution to an optimization
problem of the form

Θ̂J,b = arg min
ΘJ,b

(yt+1 − (fb−1(xt) + Υ(xt,ΘJ,b))
2
, (35)

assuming squared error loss.
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Ensemble learning methods can be employed to address some of these con-
cerns. To reduce the risk of overfitting, shrinkage can be used so that each tree
only contributes a small amount to the overall fit. For example, using a value
of λ = 0.001, (34) can be replaced by

fB(xt) = fB−1(xt) + λΥ(xt,ΘJ,B). (36)

Replacing the conventional squared-error loss function in (35) with a mean ab-
solute error loss function T−1

∑T−1
t=0 |rt+1 − fB(xt)| can also help to provide

more robust results as the tendency to fit outliers is reduced by this loss func-
tion. Finally, subsampling methods have been shown to improve forecasting
performance.
One advantage of methods such as boosted regression trees over conventional

nonparametric methods is that they are less subject to the "curse of dimensional-
ity" and, in fact, can be used to handle cases with large-dimensional predictors.
Of course, this ability comes at a cost. First, there is no guarantee that the
method will identify a global optimum in a high-dimensional parameter opti-
mization problem. Second, this flexibility means that the risk of overfitting can
be quite large.
While machine learning methods will undoubtedly be used extensively to

"mine" financial data sets in the hope of finding empirical regularities that can
be used in trading algorithms, it is important to be aware of their limitations.
Several non-parametric and semi-parametric methods (e.g., sieve estimation)
have been accessible to researchers for a long time and have not yet become
part of applied financial researchers’toolkit. Often financial data sets have a
limited time-series span that can be dominated by rare events such as the global
financial crisis of 2007-2008 in which relationships between predictors and the
dependent variable may become unstable. While model instability will have
adverse effects on any forecasting approach, flexible methods that require large
samples to obtain accurate estimates of the conditional mean function can be
expected to be particularly strongly affected by shifts in the underlying data
generating process.

4.6 Exploiting information from economic theory to re-
strict forecasts

One way to address the adverse effects of estimation error and model uncer-
tainty is to use economic theory or priors to restrict the functional form and/or
the values of the parameters of the forecasting model. For example, Pastor and
Stambaugh (2009) use informative priors to constrain the sign of the correlation
between shocks to expected and unexpected returns in their predictive systems
analysis. Similarly, no-arbitrage constraints have been used to impose restric-
tions on dynamic Gaussian affi ne term structure models for bond returns by
Ang and Piazzesi (2003) and Sarno et al. (2016).
Pettenuzzo, Timmermann and Valkanov (2013), use economic constraints

to modify the posterior distribution of the parameters of the linear return re-
gression (3) in a way that allows the return prediction model to learn from the
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data. They consider two types of constraints, namely a constraint that imposes
non-negative equity premia and a constraint that bounds the conditional Sharpe
ratio and incorporates time-varying volatility in the predictive regression.
Note that the linear regression model in (3) does not rule out negative eq-

uity premium forecasts if unconstrained parameter estimates µ̂, β̂ are used to
generate forecasts, i.e., we could have

r̂τ+1|τ = µ̂+ β̂xτ < 0, τ = 1, ..., t− 1. (37)

Such negative forecasts of excess returns may not seem reasonable as we would
expect risk-averse investors to command a positive risk premium for holding the
stock market portfolio. To address this point, following Campbell and Thomson
(2008) suppose that the equilibrium equity premium is expected to be non-
negative, i.e.,

E[rτ+1|Ωt] = µ+ βxτ ≥ 0 for τ = 1, ..., t. (38)

Noting that the constraint in (38) must hold at all points in time, this yields t

constraints in a sample with t observations.
Alternatively, we can impose bounds on the conditional Sharpe ratio, i.e.,

the ratio of the conditional mean over the conditional volatility. To account
for time-varying volatility, the predictive regression in (3) can be modified as
follows

rτ+1 = µ+ βxτ + exp (hτ+1)uτ+1, uτ+1 ∼ N (0, 1) , (39)

where hτ+1 is the log return volatility at τ + 1. The dynamics of hτ+1 could,
for example, be specified as a random walk model, hτ+1 = hτ + ξt+1, ξt+1 ∼
N(0, σ2

ξ).
Bounds on the conditional Sharpe ratio, SRτ+1|τ = (µ + βxτ )/ exp(hτ +

0.5σ2
ζ), take the form

SRl ≤ SRτ+1|τ ≤ SRu for τ = 1, ..., t. (40)

The bounds in equation (40) indirectly restrict the parameters θ = (µ, β, σ2
ξ) as

well as the sequence of log return volatilities ht ≡ {h1, h2, ..., ht}.16
Pettenuzzo et al. (2014) assume standard Gaussian priors on the regression

parameters and use a Gibbs sampler to estimate the forecasting model in (39).
Empirically, they find that imposing economic constraints succeeds in reducing
uncertainty about model parameters and reduces the risk of selecting a poor
forecasting model. When evaluated in an out-of-sample forecasting analysis,
the constrained models improve on both statistical and economic measures of
forecasting performance.
An alternative approach advocated by Ferreira and Santa-Clara (2011) is to

disaggregate returns into cash-flow and price-related components which can then
be predicted separately. Ferreira and Santa-Clara decompose the continuously

16 In practice, PTV impose bounds on the annualized Sharpe ratio of SRl = 0, SRu = 1.
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compounded returns, rt+1, into growth in the (log-) price earnings multiple,
gmt+1, growth in log earnings, get+1, and the log dividend yield, dpt+1 :

rt+1 = gmt+1 + get+1 + dpt+1. (41)

Using this "sum of parts" approach, Ferreira and Santa-Clara forecast the
three return components assuming no change in the price-earnings multiple
so E[gmt+1] = 0 (simplest model), a 20-year moving average for growth in
earnings, and a random walk for the dividend yield.17 Their empirical results
suggest that forecasting the disaggregated return components in this manner
works well out-of-sample. One reason this approach is found to work well is
that it is akin to shrinkage towards current values (for the price-earnings mul-
tiple and the dividend yield) and a slowly moving estimate of earnings growth.
These choices reduce the effect of estimation error on the forecasts, which is an
important consideration.

4.7 Cross-validation (Out-of-sample) methods

Overfitting and data mining issues arise because of the correlation between
the forecast error and the estimation error which causes the estimated MSE in
(11) to be an underestimate of the (true) performance we would expect in a
new sample. Cross-validation methods can be used to remove this correlation.
Although these methods use the full data set, they avoid using the same data
for model fitting (and selection) and for forecast evaluation.
One version of cross-validation that is particularly popular in finance (and

in economics more broadly) is to split the sample t = 1, ..., T into an in-sample
portion t = 1, ..., R (R < T ) used for model estimation and selection and an
out-of-sample portion, t = R+ 1, ..., T , used for forecast evaluation.

To see how out-of-sample forecasting methods can help reduce concerns of
overfitting, consider the simple linear regression model

Y = Xβ + ε, ε ∼ N0, IT ), (42)

where Y and ε are T × 1 vectors of the dependent variable and regression
residuals, respectively, and the predictors have been stacked into a T ×k matrix
(X) that has been rotated and standardized so that X ′X = Ik. In this setting,
Hansen and Timmermann (2015b) show that the in-sample (IS) residual sum of
squares from the forecasting model is given by

RSSIS = ε′ε− ε′XX ′ε. (43)

To capture the separation of the estimation and evaluation samples used by out-
of-sample methods, suppose that β is estimated from an independent sample
Ỹ = Xβ + ε̃, with ε̃ ∼ N(0, IT ) being independent of ε. The resulting out-of-
sample (OoS) residual sum of squares is then given by

RSSOoS = ε′ε+ ε̃′XX ′ε̃− 2ε′XX ′ε̃. (44)
17Ferreira and Santa-Clara (2011) also consider alternative forecasting models such as a

linear regression that incorporates mean reversion in the price-earnings multiple.
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When evaluating the in-sample and out-of-sample measures of forecasting per-
formance in (43) and (44), note that the RSS computed using the true value
of β is ε′ε. Labeling this value RSStrue, from (43) the overfit from using the
in-sample measure of forecasting performance is given by

RSStrue −RSSIS = ε′XX ′ε ∼ χ2
k, (45)

see Hansen and Timmermann (2015b). This result makes intuitive sense: the
more predictors are included in the forecasting model, the greater the potential
for overfit, and the degree of overfit grows in direct proportion with the number
of predictor variables, k. The key is to notice that the quadratic form ε′XX ′ε
gets subtracted from the RSS so that estimation error wrongly contributes to
overfitting.
In contrast, from equation (44) the overfit associated with the out-of-sample

forecast evaluation scheme is (Hansen and Timmermann (2015b))

RSStrue −RSSOoS = −ε̃′XX ′ε̃+ 2ε′XX ′ε̃. (46)

Recalling that ε and ε̃ are independent so the second term has zero mean, we see
that the expectation of the overfit is negative and equals −χ2

k. Hence, parameter
estimation error serves to reduce the out-of-sample forecasting performance, as
we would expect.
Besides reducing the problem arising from individual models’ tendency to

overfit, out-of-sample forecast evaluation tests have the advantage that they can
help uncover periods in which a forecasting model produces accurate forecasts
as well as periods in which it fails to do so—see Giacomini and Rossi (2009, 2010)
and Rossi (2013). This is particularly useful in financial forecasting where we
would expect forecasting models only to work well during limited periods of
time due to competitive market pressure. Closely related to this, if the out-of-
sample forecasts are careful in using only information and forecasting methods
that were available in real time, evidence from such tests can be used to test
market effi ciency.
While out-of-sample forecast evaluation methods can be an effective way

to reduce overfitting, they are no panacea and also introduce new problems.
First, nothing prevents individual researchers—or a group of researchers, each
of whom only considers a single model—from experimenting with a multitude of
forecasting models. Picking the model with the best out-of-sample forecasting
performance distorts inference if not properly accounted for. Data mining is
not impossible in out-of-sample forecast experiments—it is just a lot harder than
when conducted in-sample. As an illustration, simple calculations in Hansen and
Timmermann (2015b) show that for a regression model with k = 4 predictors,
to achieve a rejection rate of 5% would take close to 5,000 different models in
a sample with T = 50 observations. In stark contrast, the same rejection rate
can be accomplished with a single model when based on in-sample forecasting
performance.
Second, out-of-sample tests of forecasting performance can have substan-

tially weaker power than in-sample tests. This is a straightforward implication
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of using fewer observations (T −R) to evaluate predictive accuracy than the
corresponding in-sample tests (T ). Inoue and Killian (2005) and Hansen and
Timmermann (2015a) analyze the importance of this point. For nested re-
gression models, Hansen and Timmermann (2015b) show that a standard test
statistic for out-of-sample forecasting performance can be written as the differ-
ence between two Wald statistics of the same null hypothesis, namely a test
that uses the full sample and a test that uses only a subsample. Subtracting a
test statistic in this manner clearly reduces the power of the test and so results
in less of an ability to identify predictability in out-of-sample experiments.
Third, how the sample split point that separates the in-sample and out-of-

sample periods, i.e., the value of R, is chosen may affect the results. Hansen
and Timmermann (2012) analyze the effect of data mining over the sample
split point. Let ρ ∈ (0, 1) be the in-sample fraction of the data so that Rρ =
bρT c observations are used for parameter estimation while T −Rρ observations
are used for forecast evaluation. Hansen and Timmermann show that search
over the sample split point, ρ, can lead to severe distortions in inference if not
accounted for when evaluating predictive performance. In particular, they find
that large values of ρ are more likely to be selected in experiments that choose
ρ so as to maximize conventional test statistics of out-of-sample forecasting
performance. This finding reflects the presence of the second term in (46) which
has zero mean, but will have a larger variance when the out-of-sample period is
short and so is likely to result in higher rejection rates for tests of out-of-sample
forecasting performance. This point can matter a great deal in practice: Hansen
and Timmermann (2012) find that the rejection rate for an out-of-sample test
with a nominal size of 5% can be quadrupled with only 3-4 predictor variables
as a result of inflation in the test statistic induced by mining over the sample
split point.

4.8 Accounting for the multiple hypothesis testing prob-
lem

Out-of-sample forecast evaluation methods can significantly reduce the tendency
of models to overfit which is associated with in-sample forecast evaluation. How-
ever, if many different models are being considered and this is not accounted
for when evaluating the performance of the “best” forecasting model, severe
distortions of inference on predictability may ensue.
This problem is analyzed in White (2000) who also provides an elegant

solution to it. Suppose that there are k forecasting models whose out-of-
sample mean squared error performances is measured relative to some bench-
mark (model 0) so that the mean squared error (MSE) differential of the bench-

mark relative to the kth forecasting model is given by d̄k = (T−R)−1
[∑T−1

t=R (yt+1 − f0t+1|t)
2 − (yt+1 − fkt+1|t)

2
]
.

Stacking the MSE differentials for the k models gives a vector of sample aver-
ages d̄ = (d̄1, ..., d̄k)′. Since d̄k > 0 indicates that the kth forecasting model
has outperformed the benchmark, the null hypothesis that none of the models

21



is capable of beating the benchmark takes the form

H0 : max
j=1,...,k

E[djt+1|t(β
∗)] ≤ 0, (47)

see White (2000). Note that the null hypothesis is being evaluated at the prob-
ability limit of the parameter values β∗. If all forecasting models produce as
accurate forecasts as those from the benchmark, the d̄ vector, as well as the
maximum of this vector, has a mean of zero.
To evaluate if the null in (47) is satisfied requires calculating the sam-

pling distribution of the maximum of a k dimensional vector of possibly cor-
related terms. To this end, White (2000) establishes conditions under which√

(T −R)(d̄ − E[d(β∗)]) converges to a multivariate normal distribution with
an unknown covariance matrix, Λ. This insight reduces tests of the null in (47)
to the task of evaluating whether the performance of the best forecasting model,
chosen from a set of k models, is better than one would expect by chance from
picking the maximum value drawn from a k-dimensional normal distribution
with covariance matrix Λ.

To perform this “skill versus luck”calculation, White shows that a bootstrap
that repeatedly draws resamples from the underlying forecast data can be used
to evaluate whether the performance of the best model in the actual data is
genuinely better than what one would expect as a result of having picked such
a model from a possibly large-dimensional vector of forecasts. Importantly,
this approach sidesteps the need for estimating the covariance matrix, Λ, which
could be complicated in situations where k is large.
In an empirical application of the Reality Check bootstrap, Sullivan, Tim-

mermann, and White (1999) consider the performance of 7,846 technical trading
rules applied to daily returns on stock market indexes or futures prices. Their
list of technical trading rules includes filter rules, moving averages, support and
resistance type rules, and channel breakouts. While the best technical trading
rule generates performance that is highly statistically significant when evaluated
in isolation, i.e., as if only a single model had been considered, Sullivan et al.
(1999) also find that the best trading rule fails to outperform a buy-and-hold
benchmark once one accounts for the fact that this model was selected as the
best performer from a larger set.
White (2000)’s approach has been expanded in a number of interesting direc-

tions. For example, Romano and Wolf (2005) develop a step-wise approach that
performs White’s bootstrap iteratively so as to identify all models with superior
performance over a benchmark, as opposed to only testing if there exists at least
one model that beats the benchmark. Romano and Wolf provide conditions un-
der which their step-wise approach can asymptotically select all superior models
(and eliminate inferior models) subject to controlling the family-wise error rate,
i.e., the probability of incorrectly identifying at least one forecasting model as
being superior to the benchmark.
Hansen, Lunde, and Nason (2011) develop a model confidence set approach

that identifies the subset of forecasting models that, at a given level of confi-
dence, includes the best-performing forecasting models, i.e., models whose per-
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formance is not dominated by any other models in a pairwise test, or measured
relative to the average performance of other models. Their approach involves
an equivalence test for pairwise testing that model performance is identical, and
an elimination rule for determining which model, if any, gets discarded from the
model confidence set in a given step.
Both of these approaches hold considerable promise for applications in fi-

nancial forecasting problems in which it is important to deal with the multiple
hypothesis testing problem.

5 Volatility and density forecasting

A vast empirical literature shows evidence of persistence in the volatility of
returns on a variety of asset classes (e.g., stocks, bonds, commodities, and cur-
rencies) and at different frequencies (e.g., daily, weekly, or monthly). Such
persistence implies that time variation in return volatility is predictable.18

Early empirical evidence emanated from the ARCH and GARCH models
proposed by Engle (1982) and Bollerslev (1986), respectively. GARCH models
take the form

εt+1 = σt+1|tηt+1, ηt+1 ∼ iidN(0, 1),

σ2
t+1|t = ω +

p∑
i=1

βiσ
2
t+1−i|t−i +

q∑
i=1

αiε
2
t+1−i. (48)

The recursive form of this specification means that it is straightforward to gen-
erate volatility forecasts, iterating to obtain a forecast of the h−step-ahead
volatility σ2

t+h|t from the (h− 1)-step-ahead forecast, σ2
t+k−1|t.

The GARCH(1,1) model

σ2
t+1|t = ω + (α1 + β1)σ2

t|t−1 + α1σ
2
t|t−1(η2

t − 1) (49)

has proven highly successful in many empirical applications (see Hansen and
Lunde (2005)). For this model the persistence of the conditional variance can
be measured by α1 + β1 as Et−1[η2

t − 1] = 0. It is not uncommon to find
estimates for which α̂1 + β̂1 is slightly below one, indicating a high degree
of persistency, particularly at high frequencies. This is consistent with the
presence of a strong predictive component in the second moment of the return
distribution. Assuming that α1 + β1 < 1, the steady-state (average) variance
from the GARCH process in (49) is

E[σ2
t+1|t] ≡ σ2 =

ω

1− α1 − β1

,

and a forecast of the conditional one-period variance h periods from now, given
current information, can be computed as

σ2
t+h|t ≡ Et[σ2

t+h] = σ2 + (α1 + β1)h−1(σ2
t+1|t − σ2), h ≥ 1.

18See Andersen et al. (2006) for an excellent review of volatility forecasting methods.
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Regime switching models offer an alternative way of capturing persistence in
volatility. Consider the simple regime-switching model with a state-dependent
mean and volatility:

rt+1 = µst+1 + σst+1ηt+1, ηt+1 ∼ iidN(0, 1), (50)

where µst+1 and σst+1 are the mean and volatility in state st+1. As in the
literature on return predictability, typically it is assumed that there is a small
set of possible states, i.e., st+1 ∈ {1, 2, ...,K} for a small value of K. For
K = 2 there are only two possible states—often identified as high- and low-
volatility states when these models are fitted to asset returns. Persistence in
the level of volatility can be modeled by assuming that st+1 follows a first-order
homogeneous Markov chain

Pr(st+1 = j|st = i) = pij . (51)

The Markov chain is persistent provided that p11 +p22 > 1 in the case with two
states. Time-variation in the persistence of return volatility can be captured by
using dynamic state transition probabilities of the form

Pr(st+1 = j|st = i, zt) = pij(zt), (52)

where pij(zt) could be specified as a logit or probit function so as to ensure that
pij(zt) ∈ [0, 1].
GARCH and Markov switching models can be used to capture features of

financial data such as fat tails (kurtosis) and skew. For example, time-varying
skews can be incorporated into the GARCH model by allowing positive and
negative shocks to have a different effect on future volatility as captured by the
threshold GARCH model of Glosten, Jagannathan, and Runkle (1993):

σ2
t+1|t = ω + α1ε

2
t + λε2

t I(εt < 0) + β1σ
2
t|t−1, (53)

where I(εt < 0) is an indicator variable that takes a value of one if εt < 0, and
otherwise equals zero.
Similarly, the return distribution generated by the MS model in (50) with

two states will be skewed provided that µ1 6= µ2.
GARCH and Markov switching specifications such as (48) and (50) are

"adaptive" in that they do not predict the initial large shock, i.e., an outlier in
εt+1 that is not preceded by a large value of εt. However, once such a shock
has occurred, these models will elevate their forecast of next periods’variance
using a decay rate that reflects mean reversion provided that α1 + β1 < 1 in
the GARCH model (49) or pii < 1 in the MS model in (51). This property,
coupled with the persistence of the underlying volatility process, accounts for
the empirical success of these classes of models when used to model volatility of
asset returns.
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5.1 Realized volatility

Realized volatility models make use of data sampled at a higher frequency than
that typically used to estimate GARCH models. For example, a realized volatil-
ity model could be based on data sampled every five minutes during the market
opening hours of the trading day, whereas a GARCH model typically uses daily
returns data.19 To see how realized volatility models work, suppose that changes
in log-prices, dpt, evolve according to an arithmetic random walk process with
constant drift µ and time-varying volatility σt :

dpt = µdt+ σtdWt, (54)

where dWt are increments to an underlying Wiener process. The volatility of
asset returns over some interval [t−1, t] is unobserved but can be approximated
by sampling returns on a discrete grid of points t−1 < τ0 < τ1 < .... < τN = t.
This gives rise to the realized variance20

RVt =

N∑
j=1

(dpτj − dpτj−1)2. (55)

We would expect RVt to be a somewhat noisy estimate of the underlying
volatility for small values of N . However, because the realized variance can be
viewed as a noisy proxy of the unobserved (underlying) volatility process, one
can imagine using it as the basis for a forecasting equation

RVt+1 = α+

J∑
j=1

βjRVt+1−j + εt+1. (56)

A notable example of this model that has been extensively used in empirical
work is the HAR-RV model proposed by Corsi (2009). Corsi proposes projecting
the daily integrated volatility (σ̃2

t+1) on lagged values of daily (RV
d
t ), weekly

(RV wt ), and monthly (RV
m
t ) realized volatility estimates:

σ̃2
t+1 = α+ βdRV

d
t + βwRV

w
t + βmRV

m
t + κt+1, (57)

where, for example, RV wt = 1
5 (RV dt +RV dt−1 +RV dt−2 +RV dt−3 +RV dt−4) is the

weekly average realized volatility. Using past realized volatilities at different
frequencies often improves the predictive power over a model that only includes
a few lags of the daily realized volatility measure.
Alternatively, RVt can be added as an additional covariate to GARCH mod-

els or modeled jointly with the log-variance from a GARCH process to get a
model such as

log σ2
t+1|t = ω + β log σ2

t|t−1 + γRVt,

logRVt = δ0 + δ1 log ht|t−1 + δ2 logRVt−1 + vt (58)

19See, e.g., Ait-Sahalia et al. (2005) for an analysis of how often data should be sampled
when it is affected by market microstructure noise.
20Properties of the estimated realized variance such as consistency are discussed by Hansen

and Lunde (2011).
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as proposed by Hansen et al. (2012).21

High frequency data on price movements gives researchers the ability to
better decompose total volatility into separate continuous volatility and jump
volatility components. This can be important for forecasting purposes because
the two components possess very different time-series properties. Notably, jump
volatility tends to be much less persistent than continuous volatility. See Ander-
sen, Bollerslev and Diebold (2007) and Patton and Shephard (2015) for examples
of this approach.
Some studies suggest an important role in volatility forecasting for implied

volatility measures extracted from options data. For example studies such as
Blair, Poon and Taylor (2001) find that once information in implied volatilities
is used to predict future volatility, there is little or no additional information in
high-frequency return movements.

5.2 Stochastic volatility

GARCH models such as (48) assume that volatility is driven by past and current
shocks to returns which are observable and, thus, can be estimated by maximum
likelihood methods subject to assumptions on the value of the initial volatility
state. Stochastic volatility models instead assume that the volatility process is
affected by a sequence of volatility-specific shocks, ζt.
The basic stochastic volatility model takes the form

rt+1 = µ+ exp(ht+1)ηt+1, ηt+1 ∼ iidN(0, 1), (59)

where the log-volatility at time t + 1, ht+1, can be modeled as a stationary,
mean-reverting process:

ht+1 = λ0 + λ1ht + ζt+1, ζt+1 ∼ iidN(0, σ2
ζ) (60)

for |λ1| < 1. The shocks ητ and ζs are mutually independent for all values of τ
and s. It is also not uncommon to impose that λ0 = 0 and λ1 = 1, which turns
(60) into a driftless random walk model.
Kim et al. (1998) develop methods for estimation of stochastic volatility

models. The presence of a volatility-specific shock sequence ζs in (60) means
that conventional maximum likelihood methods cannot be used for estimation.
Instead, the Gibbs sampler can be used to obtain draws from the joint posterior
distribution p(µ, ht, λ0, λ1, σ

−2
ζ ), where ht = (h1, ..., ht). With these in place,

one can obtain draws from the predictive density

p(rt+1|Ωt) =

∫
p(rt+1|ht+1, µ, h

t, λ0, λ1, σ
−2
ζ ,Ωt)

×p(ht+1|µ, ht, λ0, λ1, σ
−2
ζ ,Ωt) (61)

×p(µ, ht, λ0, λ1, σ
−2
ζ |Ωt)dµdh

t+1dλ0dλ1dσ
−2
ζ ,

21Paye (2012) finds that univariate specifications of monthly stock market volatility such
as (56) are diffi cult to beat in out-of-sample forecast comparisons when compared to models
that add a variety of macroeconomic predictor variables to the forecasting equation.

26



where p(rt+1|ht+1, µ, h
t, λ0, λ1, σ

−2
ζ ,Ωt) is the predictive density conditional on

the model parameters, including the value of the log-volatility, p(ht+1|µ, ht, λ0, λ1, σ
−2
ζ ,Ωt)

captures shifts in the future log-volatility, ht+1, away from the current log-
volatility, ht, and p(µ, ht, λ0, λ1, σ

−2
ζ |Ωt) measures the effect of parameter un-

certainty. Equation (61) can be used to generate draws from the predictive
density of returns which can, in turn, be used to compute optimal portfolio
weights or to evaluate functions of the conditional return distribution.
As in the case of GARCH models or similar volatility specifications, ob-

servable predictors can also be added to the stochastic volatility model. See,
e.g., Pettenuzzo et al. (2016) for a mixed data sampling (MIDAS) approach
that adds predictor variables to the SV specification in (60) and Ghysels, Sinko,
and Valkanov (2007) and Andreou, Ghysels and Kourtellos (2011) for broader
summaries of MIDAS models.

5.3 Multivariate volatility models and copulas

Portfolio allocation and risk management problems involve modeling and fore-
casting the joint distribution of a possibly very large set of asset returns. A
number of approaches have been developed to capture predictable time varia-
tion both in the probability distribution of individual assets’returns as well as
in their joint distribution. Consider how to model the returns on an n×1 vector
of asset returns, rt+1, using a conditional scale-location model

rt+1 ∼ N(µt, Ht+1|t). (62)

The multivariate dynamic conditional correlation model of Engle and Shep-
pard (2001) and Engle (2002) takes the form

Ht+1|t = Dt+1|tRt+1|tDt+1|t, (63)

where Dt+1|t is a diagonal n×n matrix with time-varying volatilities whose ith
diagonal element, h1/2

iit+1|t, can be generated from a univariate GARCH process
of the form

hiit+1|t = ωi +

pi∑
p=1

αipε
2
it+1−p +

qi∑
q=1

βiqhiit+1−q|t−q. (64)

The matrix Rt+1|t captures time-varying correlations and is modeled by Engle
and Sheppard (2001) as

Rt+1|t = (Q∗t+1|t)
−1Qt+1|t(Q

∗
t+1|t)

−1, (65)

where Q∗t+1|t is a diagonal matrix with individual elements q
1/2
iit+1|t and Qt+1|t

follows a GARCH-type dynamic equation

Qt+1|t = (1−
J∑
j=1

αj −
K∑
k=1

βk)Q̄+

J∑
j=1

αjεt+1−jε
′
t+1−j +

K∑
k=1

βkQt+1−k|t−k.
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As in the univariate case, αj measures the news impact of past shocks, while
βk captures persistence in correlations.
Scale-location models capture dynamics in the return distribution through

movements in the first two moments (mean and variance). A more general
approach is provided by modeling changes in the dependencies between re-
turns through their copulas. In particular, under weak conditions it follows
from Sklar’s Theorem (Sklar, 1959) that the joint return distribution of rt+1 =
(r1t+1, r2t+1, ..., rnt+1) can be decomposed into its univariate marginal distri-
butions P1(r1t+1), ..., Pn(rnt+1) and a copula, C, that incorporates the joint
distribution of the n marginal distributions:22

P (rt+1) = C(P1(r1t+1), ..., Pn(rnt+1)). (66)

In a predictive context, it is appropriate to use a conditional copula represen-
tation of the form (Patton, 2013):

Pt+1|t(rt+1) = Ct+1|t(P1t+1|t(r1t+1), ..., Pnt+1|t(rnt+1)). (67)

To estimate copula models, one can adopt a two-stage approach which, first,
estimates the conditional marginal distributions Pjt+1|t(r1t+1), j = 1, ..., n, us-
ing, e.g., a GARCH model and, second, uses the resulting probability integral
transforms Pjt+1|t(r1t+1) as inputs into the conditional copula model Ct+1|t.

5.4 Density forecasting

Forecasts of the entire probability distribution of the outcome—density forecasts—
are becoming increasingly common to use. The simplest class of models is the
conditional scale-location models in (62) which only require modeling the condi-
tional mean and volatility functions, at least under the assumption of Gaussian
shocks. Within this class of models, GARCH and Markov switching specifi-
cations such as (48) and (50) have been fairly dominant, although stochastic
volatility models such as (60) are also popular.
The assumption of (conditionally) Gaussian innovations can of course easily

be relaxed. For example, one can use a skewed t-distribution (Hansen (1994))
to capture skews and fat tails. Semi-nonparametric density methods have also
been proposed, see, e.g., Gallant and Tauchen (1989). These can use hermite
polynomials to add flexibility to a conditional scale-location model and take the
form

pt+1|t(rt+1) =
1

cσt+1|t

(
m∑
i=0

ωiη
i
t+1|t

)2

φ(ηt+1|t),

where φ(.) is the standard Gaussian density function, ηt+1|t = (rt+1−µt+1|t)/σt+1|t

is the standardized residual, and c =
∫ (∑m

i=0 ωiη
i
t+1|t

)2

φ(ηt+1|t)dηt+1|t is a

normalization factor which ensures that the density integrates to one. When

22Copulas have some distinct advantages such as being invariant under increasing and con-
tinuous transformations of the marginal distributions.
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m = 0, the standard Gaussian density is recovered as a special case, while higher
values of m adds flexibility to the density specification.

5.4.1 Bayesian Approaches

Bayesian approaches used typically require fully specifying the underlying fore-
casting model and so will generate a predictive density as part of the analysis.
For example, this is the case for the stochastic volatility model in equation (61).
Density forecasting is another area in which forecast combination has found

good use. Geweke and Amisano (2011) propose to construct optimal pools of
density forecasts. Let pit|t−1 be the conditional density forecast of yt from the
ith model, given information at time t − 1. Given a sample of data, {yt},
t = 1, ..., T , Geweke and Amisano propose to choose weights ω = (ω1, ..., ωn)′

so as to maximize the sample log predictive score function

ω = arg max
ω
T−1

T∑
t=1

ln

(
n∑
i=1

ωipit|t−1(yt)

)
. (68)

Geweke and Amisano consider combinations of a variety of GARCH and hid-
den Markov normal mixture models (corresponding to different specifications,
pit|t−1) and find that the optimal pool often yields interior solutions to (68)
putting considerable weight on at least two different density models, as opposed
to assigning all or almost all weight to a single model.
Bayesian model averaging (BMA) is another useful technique that can be

used to combine density forecasts. The BMA density forecast can be computed
as a weighted average of n individual density forecasts

pBMA(yt+1|Zt) =

n∑
i=1

p(yt+1|Mi, Zt)p(Mi|Zt), (69)

where p(Mi|Zt) is the posterior probability for model i given the data, Zt. Using
Bayes rule, this, in turn, can be computed from

p(Mi|Zt) =
p(Zt|Mi)p(Mi)∑n
j=1 P (Zt|Mj)p(Mj)

, (70)

where p(Mi) is the prior probability of (density) model Mi, while p(Zt|Mi) is
known as the marginal likelihood of model i. This is given by

p(Zt|Mi) =

∫
p(Zt|θi,Mi)p(θi|Mi)dθi, (71)

where p(θi|Mi) is the prior density of model i’s parameters and p(Zt|θi,Mi) is
the likelihood of the data, given the parameters under the ith model.

As can be seen from this description, the list of requirements for implement-
ing BMA forecasts can be quite involved. First, one must have a set of models,
M1, ...,Mn. For each of these models, one must be able to compute p(Mi|Zt) in
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(71) which can be time consuming for many types of models. Prior model proba-
bilities, p(M1), ..., p(Mn) are also needed—these are often set to 1/n—as are priors
for the model parameters for each of the models, p(θ1|M1), ..., p(θn|Mn).23

5.4.2 Extracting densities from option prices

Market prices on derivatives such as options provide a special opportunity to
obtain density estimates. Specifically, using a cross-section of options with iden-
tical expiration date, T , but different strikes, X, one can compute option-implied
density estimates. Let rf denote the riskfree rate, while ST is the price of the
underlying asset at time T . Then the price of a call option at time t < T is
given by

Ct(T,X) = e−rf (T−t)
∫ ∞

0

(ST −X, 0)ft(ST )dST , (72)

where ft(ST ) is the option-implied risk-neutral density for ST and Ft(ST ) is the
corresponding CDF. An estimate of ft(ST ) can be obtained by differentiating
the expression for Ct(T,X):

ft(ST ) = erf (T−t) ∂
2Ct(T,X)

∂X2

∣∣∣∣
X=ST

. (73)

A variety of approximation methods exist for estimating ft(ST ), e.g., using a
butterfly spread of options with neighboring strike prices:

ft(Xn) ≈ erf (T−t)
(
Ct(T,Xn+1)− 2Ct(T,Xn) + Ct(T,Xn−1)

(∆X)2

)
. (74)

Complications arise when using data from options markets in this manner.
First, the above formulas allow us to estimate the risk-neutral densities from
option prices. Such densities are different from the density under the physi-
cal measure. Under assumptions about the process driving the underlying asset
price and investor risk aversion (in incomplete markets), formulas can be derived
that link the physical and risk-neutral probability distributions; see Christof-
fersen et al. (2013) for a thorough review and discussion of this topic. Second,
options on many securities are often not very liquid, making it diffi cult to get a
broad cross-section from which option-implied densities can be estimated from
equations such as (73). Measurement errors due to market microstructure effects
and illiquid markets can also introduce biases in implied volatility estimates—see
Christensen and Prabhala (1998) and Poon and Granger (2003).

23Avramov (2002) uses BMA to a combination of 214 possible model specifications obtained
as the exhaustive set of combinations of 14 different predictors. Avramov computes the
economic (utility) loss from ignoring model uncertainty and finds that this can be sizeable.
He also finds that BMA forecasts are more robust than forecasts from individual models.
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6 Evaluating financial forecasts

Evaluation of forecasts plays an important role in finance due to the presence
of well-defined utility or loss functions that can be used to assess predictive ac-
curacy. Another factor that plays a role is the relative ease with which financial
forecasts can be exploited in investment strategies. Whereas it can be diffi cult
to measure the impact on economic welfare of small improvements in the ac-
curacy of macroeconomic forecasts, it is usually easier to compute the effect
of increased predictive accuracy on trading profits. The conventional tool for
doing so is what is usually referred to as "back tests", i.e., simulated real-time
trading results based some a financial forecasting approach.24

6.1 Economic versus statistical loss

Ait-Sahalia and Brandt (2001) discuss how determining an investor’s optimal
portfolio weights can be viewed as a prediction problem given the investor’s
utility function, u, and a budget constraint relating future wealth, Wt+1 =
ω′tRt+1, to portfolio weights, ωt, and a vector of gross asset returns, Rt+1.25

Suppose the investor chooses portfolio weights, ωt to maximize

ω∗t = arg max
ωt

Et [u (ω′tRt+1)] , (75)

where ω′tι = 1 for ι = (1, 1, ..., 1)′. Assuming mean-variance preferences with
coeffi cient of absolute risk aversion A ≥ 0

Et[u(Wt+1)] = Et[Wt+1]− A

2
V art(Wt+1) ≡ µt −

A

2
Σt,

the optimal portfolio weights are a non-linear function of the first and second
moments of the wealth distribution:26

ωt = Σ−1
t ι

AWt − ι′Σ−1
t µt

AWtι′Σ
−1
t ι

+
Σ−1
t µt
AWt

, (76)

see Ait-Sahalia and Brandt (2001). To evaluate (76), one option is to use plug-
in estimates of µt and Σt. This is not a very desirable strategy, however, as
it ignores estimation error. A more desirable strategy is to parameterize the
investor’s portfolio choice ω(xt, β) as a function of a set of predictors known at
time t, xt and parameters, β.
To keep the solution feasible and allow for multiple predictor variables, Ait-

Sahalia and Brandt propose using a single-index specification ω(xt, β) = ω(x′tβ).
Deriving the first-order condition from the optimization problem in (75), we have

E [u′ (Wt(ω(x′tβ)′Rt+1)Rt+1) |xt] = 0. (77)

24There is also a literature on evaluation of volatility forecasts which we do not focus on
here; see, e.g., Patton (2011).
25For simplicity, we assume initial wealth of Wt = 1.
26This expression assumes there is no risk-free asset available.
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This equation can be used to estimate the parameters of the portfolio policy
function by means of the GMM estimation method, using functions of the data,
g(xt) to convert (77) into sample moment restrictions.
In situations where ωt is of suffi ciently low dimension to allow for a grid

search, simple numerical methods can be used to determine the investor’s op-
timal portfolio weights given a predictive distribution of returns, p (Rt+1|Ωt).
To see how this works, consider the optimal asset allocation of an investor with
power utility function who can choose between a risk-free asset and a risky stock
market portfolio with gross returns of Rft+1 and Rt+1, respectively:

U (ωt, Rt+1) =
[(1− ωt)Rft+1 + ωtRt+1]

1−A

1−A , (78)

where A is now the investor’s coeffi cient of relative risk aversion. The investor
chooses ωt to solve the optimal asset allocation problem

ω∗t = arg max
ωt

∫
U (ωt, Rt+1) p (Rt+1|Ωt) drt+1. (79)

The integral in (79) can be numerically approximated using J draws from the
predictive distribution

ω̂t,i = arg max
ωt

1

J

J∑
j=1

{
[(1− ωt)Rft+1 + ωtRt+1]

1−A

1−A

}
. (80)

For example, in a frequentist setting a GARCH model could be used as the pre-
dictive distribution from which to make draws. This procedure would typically
condition on the parameter estimates. In a Bayesian setting, one could draw
from the posterior predictive distribution such as (61) to account for parameter
uncertainty.

6.2 Economic versus statistical loss

Using economic rather than purely statistics loss functions in the forecast eval-
uation step can make a substantial difference. Kandel and Stambaugh (1996)
provide a range of illustrative examples showing situations where seemingly
weak return predictability can have important economic consequences, e.g., in
portfolio allocation problems.
Empirically, Cenesizoglu and Timmermann (2012) consider the performance

of a range of forecasting models with time-varying mean and volatility. The
parameters of all models are estimated recursively and forecasting performance
is measured out-of-sample. For the economic loss function, the forecasts are
used to select optimal portfolio weights either under mean-variance preferences
or under power utility and performance is evaluated using these utility functions.
Cenesizoglu and Timmermann (2012) find that it is common for return pre-

diction models to produce higher out-of-sample mean squared forecast errors
than a model with a constant equity premium, yet simultaneously add economic
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value when their forecasts are used to guide portfolio decisions. For sure, there
is generally a positive correlation between a return prediction model’s out-of-
sample MSE performance and its ability to add economic value. However, this
relation tends to be weak and only explains a small part of the cross-sectional
variation in different models’ability to generate economic value in the out-of-
sample analysis.
These results suggest that underperformance along conventional measures

of forecasting performance such as root mean squared forecast errors contain
only limited information on whether return prediction models that allow for
a time-varying mean or variance will help or hurt investors when these return
forecasts are used to guide portfolio decisions.

7 Conclusion

As the cost of fitting an ever-larger number of increasingly sophisticated and flex-
ible forecasting models to financial data sets declines, the ability of researchers to
separate spurious patterns from genuine predictability becomes harder. Recent
advances in dealing with the multiple hypothesis testing problem underlying
the data mining problem offer some promise, although they often require revis-
iting the entire list of predictors that have been considered in the literature—as
opposed to considering individual predictors in isolation—which can be a costly
exercise for individual researchers.27

We are likely to see in future research a close contest between increasingly
powerful forecasting methods with the ability to find predictive patterns even
in settings with low signal-to-noise ratios and more sophisticated methods for
dealing with overfitting and data mining. Ideally, economic theory will play an
important role in this contest, helping researchers to identify robust predictabil-
ity patterns, but also bearing in mind that sometimes predictive modeling is
ahead of theory and it may not always be clear how to pinpoint from theory
which variables should possess predictive power over the outcome of interest.
Data limitations reduce the accuracy of financial forecasts in many situa-

tions. For example, our ability to predict variation in asset returns at the busi-
ness cycle frequency using, e.g., slow-moving predictors such as interest rate
spreads or valuation ratios, is ultimately limited by the small number of busi-
ness cycles observed in historical data. Similarly, the tendency of predictable
patterns in returns to self-destruct as a result of competitive pressures means
that there are limits on how informative historical data will be for predicting
future returns.
These points make many financial forecasting problems both challenging

and fascinating. However, because the potential payoffs from uncovering even
small degrees of predictability are so high, undoubtedly finance will remain
an innovative and fast-paced arena for developing and testing new forecasting
methods.
27See Sullivan et al. (1999) for a study of technical trading rules and Harvey et al. (2015)

for a study of factors for explaining cross-sectional variation in expected returns.

33



References

[1] Aït-Sahalia, Y., and M. W. Brandt, 2001, Variable selection for portfolio
choice. Journal of Finance 56:1297—351.

[2] Aït-Sahalia, Y., P.A. Mykland, and L. Zhang, 2005, How often to sample
a continuous-time process in the presence of market microstructure noise.
Review of financial studies 18.2: 351-416

[3] Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold.
2006. Volatility and correlation forecasting. Handbook of economic fore-
casting 1:777—878.

[4] Andersen, T.G., T. Bollerslev, and F.X. Diebold, 2007, Roughing it up:
Including jump components in the measurement, modeling, and forecasting
of return volatility. The review of economics and statistics 89, 4, 701-720.

[5] Andreou, E., E. Ghysels, and A. Kourtellos, 2011, Forecasting with mixed-
frequency data. In M. Clements and D. Hendry (eds.), Oxford Handbook
of Economic Forecasting, 225—45. Oxford University Press.

[6] Ang, A. and M. Piazzesi, 2003, A no-arbitrage vector autoregression of
term structure dynamics with macroeconomic and latent variables. Journal
of Monetary Economics 50(4), 745 —787.

[7] Avramov, D., 2002, Stock return predictability and model uncertainty.
Journal of Financial Economics 64:423—58.

[8] Blair, B.J., S-H Poon, and S.J. Taylor, 2001, Forecasting S&P 100 volatil-
ity: The incremental information content of implied volatilities and high-
frequency index returns. Journal of Econometrics. 105, 1, 5-26.

[9] van Binsbergen, J.H., and R. Koijen, 2010, Predictive regressions: a
present-value approach. Journal of Finance 65, 4, 1439-1471.

[10] Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedastic-
ity. Journal of Econometrics 31, 307—27.

[11] Campbell, J.Y., and R.J. Shiller, 1988, The dividend-price ratio and expec-
tations of future dividends and discount factors. Review of financial studies
1, 3, 195—228.

[12] Campbell, J.Y., and S.B. Thompson, 2008, Predicting excess stock returns
out of sample: can anything beat the historical average? Review of Finan-
cial Studies 21, 4, 1509—1531.

[13] Cenesizoglu, T. and A. Timmermann, 2012, Do return prediction models
add economic value? Journal of Banking & Finance 36, 11, 2974- 2987.

[14] Chib, S., 1998. Estimation and comparison of multiple change point models.
Journal of Econometrics 86, 221—241.

34



[15] Christensen, B.J. and N.R. Prabhala, 1998, The Relation between Implied
and Realized Volatility. Journal of Financial Economics 50, 2, 125—50.

[16] Christoffersen, P., K. Jacobs, and B. Chang, 2013, Forecasting with Op-
tion Implied Information. Handbook of Economic Forecasting, edited by
G. Elliott and A. Timmermann, Volume 2, Chapter 10, 581-656. Elsevier.

[17] Christopherson, J., Ferson, W., Glassman, D., 1998. Conditioning man-
ager alphas on economic information: Another look at the persistence of
performance. Review of Financial Studies 11, 111-142.

[18] Clemen, R.T., 1989, Combining forecasts: A review and annotated bibli-
ography. International journal of forecasting 5, 4, 559—583.

[19] Cochrane, J.H., 2009, Asset Pricing (Revised Edition). Princeton university
press.

[20] Corsi, F. 2009, A simple approximate long-memory model of realized
volatility. Journal of Financial Econometrics 7, 2, 174-196.

[21] Dangl, T., and M. Halling. 2012. Predictive regressions with time-varying
coeffi cients. Journal of Financial Economics 106, 157—81.

[22] DeMiguel, V., L. Garlappi, and R. Uppal, 2007, Optimal versus naive di-
versification: How ineffi cient is the 1/N portfolio strategy?. Review of Fi-
nancial studies 22,5: 1915-1953.

[23] Diebold, F. X., and R. S. Mariano. 1995. Comparing predictive accuracy.
Journal of Business & Economic Statistics 13:253—63.

[24] Elliott, G., A. Gargano, and A. Timmermann. 2013. Complete subset re-
gressions. Journal of Econometrics 177:357—73.

[25] Elliott, G., A. Gargano, and A. Timmermann, 2015, Complete subset re-
gressions with large-dimensional sets of predictors. Journal of Economic
Dynamics and Control 54:86—110.

[26] Engle, R.F., 1982, Autoregressive conditional heteroscedasticity with esti-
mates of the variance of united kingdom inflation. Econometrica, 987—1007.

[27] Engle, R.F., 2002, Dynamic conditional correlation: A simple class of mul-
tivariate generalized autoregressive conditional heteroskedasticity models.
Journal of Business & Economic Statistics 20, 339—50.

[28] Engle, R. F., and K. Sheppard, 2001, Theoretical and empirical properties
of dynamic conditional correlation multivariate GARCH. working papers
8554, National Bureau of Economic Research.

[29] Farmer, L., L. Schmidt, and A. Timmermann, 2017, Pockets of predictabil-
ity. Unpublished manuscript, University of Virginia, Chicago, and UCSD.

35



[30] Ferreira, M.A., and P. Santa-Clara, 2011, Forecasting stock market returns:
The sum of the parts is more than the whole. Journal of Financial Eco-
nomics 100, 3, 514-537.

[31] Ferson, W.E., and Schadt, R.W., 1996, Measuring fund strategy and per-
formance in changing economic conditions. Journal of Finance 51, 425-461.

[32] Ferson, W.E., S. Sarkissian, and T.T., Simin, 2003, Spurious regressions in
financial economics?. Journal of Finance 58.4, 1393-1413.

[33] Gallant, A.R., and G. Tauchen, Seminonparametric Estimation of Condi-
tionally Constrained Heterogeneous Processes: Asset Pricing Applications.
Econometrica 57, 1091-1120.

[34] Geweke, J., and G. Amisano. 2011. Optimal prediction pools. Journal of
Econometrics 164:130—41.

[35] Ghysels, E., A. Sinko, and R. Valkanov, 2007, MIDAS regressions: Further
results and new directions. Econometric Reviews 26:53—90.

[36] Giacomini, R., and B. Rossi. 2009. Detecting and predicting forecast break-
downs. Review of Economic Studies 76:669—705.

[37] Giacomini, R., and B. Rossi. 2010. Forecast comparisons in unstable envi-
ronments. Journal of Applied Econometrics 25:595—620.

[38] Glosten, L.R., R. Jagannathan, and D.E. Runkle. 1993, On the relation
between the expected value and the volatility of the nominal excess return
on stocks. Journal of finance, 48, 5, 1779-1801.

[39] Hamilton, J.D. 1989. A new approach to the economic analysis of nonsta-
tionary time series and the business cycle. Econometrica, 357—84.

[40] Hansen, B.E., 1994, Autoregressive Conditional Density Estimation. Inter-
national Economic Review 35, 705-730.

[41] Hansen, P. R., Z. Huang, and H. Shek, 2012, Realized GARCH: A joint
model for returns and realized measures of volatility. Journal of Applied
Econometrics 27, 877-906.

[42] Hansen, P. R., and A. Lunde. 2005. A forecast comparison of volatility mod-
els: does anything beat a GARCH (1, 1)? Journal of applied econometrics
20:873—89.

[43] Hansen, P.R, and A. Lunde, 2011, Forecasting volatility using high fre-
quency data. The Oxford Handbook of Economic Forecasting, Oxford:
Blackwell, 525-556.

[44] Hansen, P. R., A. Lunde, and J. M. Nason. 2011. The model confidence
set. Econometrica 79:453—97.

36



[45] Hansen, P. R., and Timmermann, A., 2012, Choice of sample split in out
of-sample forecast evaluation. Unpublished manuscript, UNC Chapel Hill
and UCSD.

[46] Hansen, P.R., and A. Timmermann, 2015a, Equivalence Between Out-of-
Sample Forecast Comparisons and Wald Statistics. Econometrica 83 (6),
2485-2505.

[47] Hansen, P.R. and A. Timmermann, 2015b, Comment. Journal of Business
and Economic Statistics 33:1, 17-21.

[48] Harvey, Campbell R., Y. Liu, and H. Zhu, 2016, . . . and the cross-section
of expected returns. Review of Financial Studies 29, 1, 5-68.

[49] Hastie, T., R. Tibshirani, J. Friedman, 2009, The elements of statistical
learning, vol. 2. Springer.

[50] Henkel, S.J., J.S. Martin, and F. Nardari, 2011, Time-varying short-horizon
predictability. Journal of Financial Economics 99, 3, 560-580.

[51] Inoue, A., and L. Kilian, 2005, In-sample or out-of-sample tests of pre-
dictability: Which one should we use? Econometric Reviews 23:371—402.

[52] Johannes, M., A. Korteweg, and N. Polson, 2014, Sequential learning, pre-
dictability, and optimal portfolio returns. Journal of Finance 69, 2, 611-644.

[53] Kandel, S., and R. F. Stambaugh. 1996. On the predictability of stock
returns: An asset-allocation perspective. Journal of Finance 51:385—424.

[54] Kelly, B., and S. Pruitt, 2013, Market expectations in the cross-section of
present values. The Journal of Finance 68, 5, 1721-1756.

[55] Kendall, M.G., 1954. Note on bias in the estimation of autocorrelation.
Biometrika 41, 403-404.

[56] Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: Likeli-
hood inference and comparison with arch models. The Review of Economic
Studies 65(3), 361—393.

[57] Ludvigson, S.C., and S. Ng., 2007, The empirical risk—return relation: A
factor analysis approach. Journal of Financial Economics 83, 1, 171-222.

[58] McLean, R.D., and J. Pontiff, 2016, Does Academic Research Destroy Stock
Return Predictability? Journal of Finance 71, 1, 5-32.

[59] Marriott, F.H.C., Pope, J.A., 1954. Bias in the estimation of autocorrela-
tions. Biometrika 41, 390-402.

[60] Neely, C. J., Rapach, D. E., Tu, J., & Zhou, G., 2014, Forecasting the
equity risk premium: the role of technical indicators. Management Science
60, 7, 1772-1791.

37



[61] Pastor, L., and R.F. Stambaugh, 2001, The equity premium and structural
breaks. Journal of Finance 56, 1207-1245.

[62] Pastor, L., and R.F. Stambaugh, 2009, Predictive systems: living with
imperfect predictors. Journal of Finance 64, 4,1583—1628.

[63] Patton, A.J., 2011, Volatility forecast comparison using imperfect volatility
proxies. Journal of Econometrics 160, 1, 246-256.

[64] Patton, A.J. 2013, Copula methods for forecasting multivariate time series.
Handbook of economic forecasting vol. 2, 899-960.

[65] Patton, A.J., and K. Sheppard, 2015, Good volatility, bad volatility: Signed
jumps and the persistence of volatility. Review of Economics and Statistics
97, 3, 683-697.

[66] Paye, B.S., 2012, Déjà vol’: Predictive regressions for aggregate stock
market volatility using macroeconomic variables. Journal of Financial Eco-
nomics 106, 3, 527-546.

[67] Paye, B.S., and A. Timmermann. 2006. Instability of return prediction
models. Journal of Empirical Finance 13:274—315.

[68] Pesaran, M.H., and A. Timmermann, 2007, Selection of estimation window
in the presence of breaks. Journal of Econometrics 137:134—61.

[69] Pettenuzzo, D., and A. Timmermann, 2011, Predictability of stock re-
turns and asset allocation under structural breaks. Journal of Econometrics
164:60—78.

[70] Pettenuzzo, D., A. Timmermann, and R. Valkanov, 2014, Forecasting Stock
Returns under Economic Constraints. Journal of Financial Economics 114,
517-553.

[71] Pettenuzzo, D., A. Timmermann, and R. Valkanov, 2016, A MIDAS Ap-
proach to modeling first and second moment dynamics. Journal of Econo-
metrics 193, 2, 315-334.

[72] Poon, S-H., and C.W.J. Granger, 2003, Forecasting volatility in financial
markets: A review. Journal of Economic Literature XLI, 478-539.

[73] Rapach, D.E., and M.E. Wohar, 2006, Structural breaks and predictive re-
gression models of aggregate us stock returns. Journal of Financial Econo-
metrics, 4, 2, 238—274.

[74] Rapach, D.E., J.K. Strauss, and G. Zhou, 2010, Out-of-sample equity pre-
mium prediction: combination forecasts and links to the real economy.
Review of Financial Studies 23, 2, 821—862.

[75] Romano, J., Wolf, M., 2005. Stepwise multiple testing as formalized data
snooping. Econometrica 73,4, 1237-1282.

38



[76] Rossi, B. 2013a, Advances in Forecasting under Instability. Chapter 21,
pages 1203-1324 in G. Elliott and A. Timmermann (eds.) Handbook of
Economic Forecasting vol 2B. North-Holland.

[77] Rossi, B. 2013b, Exchange rate predictability. Journal of Economic Litera-
ture 51:1063—119.

[78] Sarno, L., P. Schneider, and C. Wagner (2016). The economic value of
predicting bond risk premia. Journal of Empirical Finance 37, 247—267.

[79] Sklar, M., 1959, Fonctions de repartition ‘a n dimensions et leurs marges.
Universite Paris 8.

[80] Smith, S., and A. Timmermann, 2017, Detecting Breaks in Real Time: A
Panel Forecasting Approach. Unpublished Manuscript

[81] Stambaugh, R. F. 1999. Predictive regressions. Journal of Financial Eco-
nomics 54:375—421.

[82] Sullivan, R., A. Timmermann, and H. White, 1999, Data-snooping, tech-
nical trading rule performance, and the bootstrap. Journal of Finance 54,
5, 1647-1691.

[83] Timmermann. A., 2006, Forecast combinations. Handbook of economic
forecasting vol. 1, 135—196.

[84] Welch, I., and A. Goyal, 2008. A comprehensive look at the empirical per-
formance of equity premium prediction. Review of Financial Studies 21,4,
1455-1508.

[85] White, H. 2000. A reality check for data snooping. Econometrica 68:1097—
126.

[86] Zhou, G. , 2010, How much stock return predictability can we expect from
an asset pricing model? Economics Letters 108, 184-186.

39


