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Abstract
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models that allow for parameter instability generate more accurate density fore-
casts than constant-parameter models although they fail to produce better point
forecasts. Model combinations deliver similar gains in predictive performance al-
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is a specification that allows for time-varying parameters and stochastic volatility.
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1 Introduction

Parameter instability is pervasive, affecting models used to predict many commonly stud-

ied macroeconomic variables (Stock and Watson, 1996; Rossi, 2013). Although many

empirical studies of simple forecasting models have found that parameters change over

time, little is known about how best to incorporate such evidence of instability into the

model specification in order to improve on forecasting models that assume constant pa-

rameters.

Since many different methods exist for addressing model instability it is particularly

important to address if (and how) the assumed form of instability affects the models’

ability to generate accurate forecasts. A key question is whether it is best to assume

frequent, but small changes to model parameters or, conversely, to allow for rare, but

large, shifts. The familiar time-varying parameter (TVP) model of Cooley and Prescott

(1973) assumes that the parameters are subject to small shocks every period, converging

either to a steady state value (mean-reverting process) or drifting over time (random walk

process). The Markov switching (MS) model of Hamilton (1989) assumes that model

parameters switch between a small set of repeated values (states). Detectable regime

switches are typically large but do not occur every period. The change point (CP) model

of Chib (1998) also allows for regime switches but dispenses with the assumption that

regimes repeat, instead allowing the parameters within each regime to be unique.

Evaluating the impact of parameter instability on forecasting performance is important

in part because it is difficult to accurately determine the nature of such instability. As

pointed out by Elliott and Müller (2006), standard tests for model instability have power

in multiple directions and so one can generally not infer from a rejection of the null of

stable parameters, which type of model instability (e.g., drifting parameters versus regime

switching) characterizes a particular variable. However, whether one faces multiple small

breaks versus occasional large breaks could potentially have large consequences for many

economic decisions. For example, the effect on economic welfare of a government’s policy

decisions may depend on whether shifts in the underlying GDP growth rate occur suddenly

or more gradually through time.

This paper evaluates the importance for predictive performance of how parameter

instability is modeled. Our evaluation considers the accuracy of both point and density

forecasts. In an empirical analysis we apply a range of models to quarterly inflation

and real GDP growth in the U.S. Both of these series have been widely studied; see

Chauvet and Potter (2013) and Faust and Wright (2013) for recent reviews. We consider

a TVP-stochastic volatility (TVP-SV) model along with MS models with two or three

regimes and CP models with up to four different regimes. Using a mean squared error
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loss function, we find modest evidence that models that allow for parameter instability

can produce better out-of-sample point forecasts of inflation while they do not seem to

generate notable gains for the real GDP series. In contrast, we find strong evidence that

allowing for parameter instability can greatly improve on the accuracy of the density

forecasts associated with a constant-coefficient, homoskedastic model. Moreover, this

improvement is mainly due to the ability of time-varying parameter models to generate

more accurate density forecasts in the post-1984 Great Moderation sample. The best

performance is observed for the models with stochastic volatility followed by MS and CP

models with three states. Moreover, decompositions of the TVP-SV model’s performance

into separate TVP and SV components suggest that it is the ability of the models to

account for time-varying volatility dynamics that leads to the improvements over the

linear, homoskedastic benchmark.

In a recursive combination analysis that combines forecasts from the individual models

we find that equal-weighted combination, Bayesian Model Averaging and the optimal

prediction pool of Geweke and Amisano (2011) produce density forecasts that are superior

to those generated by the benchmark linear models. However, the model combinations do

not perform as well as the TVP-SV model. Plots of the recursively computed combination

weights tell a clear story. Prior to 1985, the linear and CP models receive most of the

weights in the combination. The TVP-SV model rapidly increases in importance after the

emergence of the Great Moderation, however, and receives a weight above 80% towards

the end of the sample for both the inflation and real GDP series. These results suggest that

a model that allows for gradual changes to the model parameters performs better both

in-sample and out-of-sample and highlight the importance of allowing for time-varying

volatility.

Other papers have studied the effect of structural breaks on predictability of macroeco-

nomic time series. Bauwens et al. (2014) provide a comprehensive analysis of the forecast-

ing performance of two types of change point models for a range of macroeconomic series

but do not compare TVP, MS and CP models as we do here. Giacomini and Rossi (2009)

analyze the detection and prediction of breakdowns in forecasting models, whereas Rossi

and Sekhposyan (2014) propose new regression-based tests for forecast optimality under

model instability. Rossi (2013) provides an extensive comparison of the performance of

different ways to account for model instability.

The remainder of the paper proceeds as follows. Section 2 introduces the benchmark

(constant coefficient), TVP-SV, MS and CP models considered in our study and explains

how we estimate the models. Section 3 introduces the data on inflation and real GDP

growth and presents empirical results for the out-of-sample forecasting experiment. Sec-

tion 4 discusses different model combination schemes while Section 5 concludes.
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2 Models

This section introduces the different model specifications considered in our study and

explains how they are estimated and used to generate forecasts.

Our benchmark specification is a linear model with constant coefficients. To capture

time-variation in model parameters we consider three different specifications: (i) a model

with time varying parameters and stochastic volatility (TVP-SV); (ii) a Markov switching

(MS) model; and (iii) a change point (CP) model. These specifications are all common

ways to account for parameter instability and represent very different ways to approach

the problem. Whereas the TVP-SV model lets the parameters of both the first and

second moments change every period, the MS and CP models typically identify discrete

shifts in the parameters which occur infrequently. The MS model assumes that a small

number of regimes repeat whereas the CP model assumes that the regimes are historically

unique. Both of these models allow for regime switching in the parameters governing first

and second moments. Ultimately, it is an empirical question which of these models will

perform best as their performance depends on the nature of any instabilities in the data

generating process.

2.1 Linear model

Suppose we are interested in predicting a univariate variable, yt+1, given a set of predictors

known at time t, xt. As the benchmark specification, we consider a standard linear

forecasting model with constant regression coefficients and constant volatility:

yτ+1 = µ+ β′xτ + ετ+1, ετ+1 ∼ N(0, σ2
ε), τ = 1, ..., t− 1. (1)

Here β and xτ are k × 1 vectors of regression coefficients and predictors that are specific

to each empirical application.

We assume that the parameters of (1), along with those of its competitors, are esti-

mated using Bayesian methods. Following standard practice in the Bayesian literature

(e.g., Koop, 2003), the priors for the parameters µ and β in (1) are assumed to be normal

and independent of σ2
ε [

µ
β

]
∼ N (b,V) , (2)

where all elements of b are set to zero, except for the term corresponding to the first

lag of yτ+1, which is set to 1. As for the variance-covariance matrix V, we set aside an

initial training sample of t0 observations to calibrate its parameters and use a g-prior (see
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Zellner, 1986):

V = ψ2

s2
y,t0

(
t0−1∑
τ=1

xτx
′
τ

)−1
 , (3)

where

s2
y,t0

=
1

t0 − 2

t0−1∑
τ=1

(yτ+1 − b′xτ )
2
.

The approach of calibrating some of the prior hyperparameters using statistics computed

over an initial training sample is quite standard in the Bayesian literature; see, e.g.,

Primiceri (2005), Clark (2011), Clark and Ravazzolo (2014), and Banbura et al. (2010).

In (3), the scalar ψ controls the tightness of the prior. ψ →∞ corresponds to a diffuse

prior on µ and β. Our baseline results set ψ = 10 for the inflation application, and ψ = 25

for the GDP growth rate application. The larger value of ψ used for the GDP growth

rate data reflects that this series is more volatile than the inflation data.

A standard gamma prior is assumed for the error precision of the return innovation,

σ−2
ε :

σ−2
ε ∼ G

(
s−2
y,t0
, v0 (t0 − 1)

)
, (4)

where v0 is a prior hyperparameter that controls the degree of informativeness of this

prior, with v0 → 0 corresponding to a diffuse prior on σ−2
ε . We set v0 = 0.01 in the

inflation application and v0 = 0.005 for the GDP growth rate application.

We estimate the model in (1) using a Gibbs sampler which allows us to draw from

the posterior distributions of µ, β, and σ−2
ε , given the information set available at time t,

Y t = {xτ , yτ}tτ=1. These draws are then used to compute a predictive density for yt+1:

p
(
yt+1| Y t

)
=

∫
p
(
yt+1|µ,β, σ−2

ε ,Y t
)
p
(
µ,β, σ−2

ε

∣∣Y t) dµdβdσ−2
ε . (5)

We refer the reader to an online appendix for more details on the Gibbs sampler and

computation of the integral in (5).

2.2 Time-varying parameter, stochastic volatility model

Next, we modify the constant-coefficient model in (1) to allow for continuous changes in

the regression coefficients and volatility:

yτ+1 = (µ+ µτ+1) +
(
β + βτ+1

)′
xτ + exp (hτ+1)uτ+1, uτ+1 ∼ N (0, 1), (6)

where hτ+1 denotes the log-volatility at time τ + 1. We assume that the time-varying

parameters θτ+1 =
(
µτ+1,β

′
τ+1

)
follow a zero-mean, stationary process

θτ+1 = γ ′θθτ + ητ+1, ητ+1 ∼ N (0,Q) , (7)
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where θ1 = 0 and the elements in γθ are restricted to lie between −1 and 1. The log-

volatility hτ+1 is also assumed to follow a stationary and mean reverting process:

hτ+1 = λ0 + λ1hτ + ξτ+1, ξτ+1 ∼ N
(
0, σ2

ξ

)
, (8)

where |λ1| < 1 and uτ , ηt and ξs are mutually independent for all τ , t, and s.

Our choices of priors for (µ,β′) are the same as those in (2). The time-varying param-

eter, stochastic volatility (TVP-SV) model in (6)-(8) also requires eliciting priors for the

sequence of time-varying parameters, θt = {θ2, ...,θt}, the variance covariance matrix Q,

the sequence of volatilities, ht = {h1, ..., ht}, the error precision σ−2
ξ , and the SV param-

eters γθ, λ0, and λ1. Using the decomposition p
(
θt,γθ,Q

)
= p

(
θt
∣∣γθ,Q

)
p (γθ) p (Q),

we note that (7) along with the assumption that θ1 = 0 implies

p
(
θt
∣∣γθ,Q

)
=

t−1∏
τ=1

p (θτ+1|γθ,θt,Q) , (9)

with θτ+1|γθ,θτ ,Q ∼ N (γ ′θθτ ,Q), for τ = 1, ..., t− 1. To complete the prior elicitation

for p
(
θt,γθ,Q

)
, we specify priors for Q and γθ as follows. We choose an Inverted Wishart

distribution for Q:

Q ∼ IW
(
Q, vQ (t0 − 1)

)
, (10)

with

Q = kQvQ (t0 − 1) V. (11)

kQ controls the degree of variation in the time-varying regression coefficients θτ , with

larger values of kQ implying greater variation in θτ . Our analysis sets kQ =
(
ψ/100

)2

and vQ = 10. These are more informative priors than the earlier choices and limit the

changes to the regression coefficients to be ψ/100 on average.

We specify the elements of γθ to be a priori independent of each other with generic

element γiθ
γiθ ∼ N

(
mγθ

, V γθ

)
, γiθ ∈ (−1, 1) , i = 1, ..., k. (12)

where mγθ
= 0.8, and V γθ

= 1.0e−6, implying relatively high autocorrelations.

Next, consider the sequence of log-volatilities, ht, the error precision, σ−2
ξ , and the pa-

rameters λ0 and λ1. Decomposing the joint probability of these parameters p
(
ht, λ0, λ1, σ

−2
ξ

)
=

p
(
ht|λ0, λ1, σ

−2
ξ

)
p (λ0, λ1) p

(
σ−2
ξ

)
and using (8), we have

p
(
ht
∣∣λ0, λ1, σ

−2
ξ

)
=

t−1∏
τ=1

p
(
hτ+1|λ0, λ1, hτ , σ

−2
ξ

)
p (h1) , (13)

hτ+1|λ0, λ1, hτ , σ
−2
ξ ∼ N

(
λ0 + λ1hτ , σ

2
ξ

)
.
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To complete the prior elicitation for p
(
ht, λ0, λ1, σ

−2
ξ

)
, we choose priors for λ0, λ1, the

initial log volatility h1, and σ−2
ξ from the normal-gamma family:

h1 ∼ N (ln (sy,t0) , kh) , (14)[
λ0

λ1

]
∼ N

([
mλ0

mλ1

]
,

[
V λ0

0
0 V λ1

])
, λ1 ∈ (−1, 1) , (15)

and

σ−2
ξ ∼ G

(
1/kξ, vξ (t0 − 1)

)
. (16)

We set kξ = 1.0e−04, vξ = 10, and kh = 0.1. These choices restrict changes to the

log-volatility to be only 0.01 on average and place a relatively diffuse prior on the initial

log-volatility state.

Following Clark and Ravazzolo (2014) we set the hyperparameters to mλ0
= 0, mλ1

=

0.9, V λ0
= 0.25, and V λ0

= 1.0e−4. This corresponds to setting the prior mean and

standard deviation of the intercept to 0 and 0.5, respectively, and represents uninformative

priors on the intercept of the log volatility specification and a prior mean of the AR(1)

coefficient, λ1, of 0.9 with a standard deviation of 0.01. This is a more informative prior

that matches persistent dynamics in the log volatility process.

To estimate the model in (6)-(8), again we use a Gibbs sampler that lets us compute

posterior draws for the model parameters µ, β, θt, ht, Q, σ−2
ξ , γθ, λ0, and λ1. These

draws are used to compute density forecasts for yt+1:

p
(
yt+1| Y t

)
=

∫
p
(
yt+1|θt+1, ht+1,Θ,θ

t, ht,Y t
)

×p
(
θt+1, ht+1|Θ,θt, ht,Y t

)
(17)

×p
(

Θ,θt, ht
∣∣Y t) dΘdθt+1dht+1.

Θ =
(
µ, β,Q,σ−2

ξ ,γθ, λ0, λ1

)
contains the time-invariant parameters. We refer the reader

to an online appendix for more details on the Gibbs sampler and computations of the

integral in (17).

As special cases of the general TVP-SV model we also consider models with time-

varying parameters, but constant volatility (TVP) and a model with constant mean pa-

rameters and stochastic volatility (SV). These specifications allow us to identify whether

changes in forecasting performance are mainly due to the TVP or SV components of the

model.

2.3 Markov switching model

The Markov switching (MS) regression models allow both the regression coefficients and

volatility parameters to change across a finite set of recurring regimes (states) sτ+1 ∈
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{1, ..., K}:

yτ+1 = µsτ+1 + β′sτ+1
xτ + σsτ+1uτ+1, uτ+1 ∼ N (0, 1). (18)

The state transition probabilities are given by

Pr (sτ = j| sτ−1 = i) = pij, i, j ∈ {1, ..., K} , (19)

where
∑K

j=1 pij = 1 and pij ≥ 0 for all i, j ∈ {1, ..., K}. Transition probabilities pij are

collected in a (K ×K) matrix P

P =


p11 p21 ... p1K

p12 p22 ... p2K
...

... ...
...

p1K p2K ... pKK

 . (20)

Turning to our choice of priors for this MS specification, let θi = (µi,β
′
i) be the regression

coefficients in regime i, for i = 1, ..., K. Also, let pi,. be the i−th row of P. Finally, collect

all state-dependent regression coefficients and volatilities in Ξ =
(
θ1, ...,θK , σ

−2
1 , ..., σ−2

K

)
.

Following standard practice, we assume that the state-specific regression parameters and

error precisions, θ1, ...,θK , σ
−2
1 , ..., σ−2

K , are a priori independent of the transition matrix

P:

p (Ξ,P) = p
(
θ1, ...,θK , σ

−2
1 , ..., σ−2

K

)
p (P) , (21)

with

p
(
θ1, ...,θK , σ

−2
1 , ..., σ−2

K

)
=

K∏
i=1

p
(
θi, σ

−2
i

)
. (22)

In a straightforward extension of (2) and (4) we assume that, for each regime i, the prior

distribution for the vector of regression parameters θi is normal and independent of the

error precision σ−2
i , whose prior distribution is a standard gamma:

p
(
θi, σ

−2
i

)
= p (θi) p

(
σ−2
i

)
, (23)

with

θi ∼ N (b,V) , i = 1, ..., K, (24)

and

σ−2
i ∼ G

(
s−2
y,t0
, v0 (t0 − 1)

)
, i = 1, ..., K. (25)

Finally, we assume that the individual rows of P are independent and follow a Dirichlet

distribution:

pi,. ∼ D (ei1, ..., eiK) , i = 1, ..., K. (26)
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Following Frühwirth-Schnatter (2001), we specify a prior that is invariant to relabeling the

states by setting eii = eκ and eij = e%, for all i 6= j. We choose κ = 2 and % = 1/ (K − 1).

Our choices for κ and % guarantee that the Markov switching model is bounded away

from a finite mixture model. See also Frühwirth-Schnatter (2006).

To estimate the model in (18)-(20), we use a Gibbs sampler which provides a sequence

of posterior draws for the parameters of the model Ξ,P, as well as the sequence of hidden

states, st = (s1, ..., st). These draws are then used to form a density forecast for yt+1:

p
(
yt+1| Y t

)
=

∫
p
(
yt+1| st+1, s

t,Ξ,P,Y t
)
p
(
st+1| st,Ξ,P,Y t

)
(27)

×p
(
st,Ξ,P

∣∣Y t) dst+1dΞdP.

p (st+1| st,Ξ,P,Y t) is the one-step-ahead predicted probability for the hidden Markov

chain. We refer the reader to an online appendix for more details on the Gibbs sampler

for this model.

2.4 Change-point model

Finally, we consider a Change Point (CP) regression model that allows both the re-

gression coefficients and volatility parameters to change across non-recurring regimes

sτ+1 ∈ {1, 2, ...,M} :

CP : yτ+1 = µsτ+1 + β′sτ+1
xt + σsτ+1uτ+1, uτ+1 ∼ N (0, 1). (28)

Following Chib (1998), shifts to the regression coefficients and error term volatility are

captured through the integer-valued state variable st that tracks the underlying regime.

For example, a change from sτ = k to sτ+1 = k + 1 indicates that a break has occurred

at time τ + 1. The transition probability is designed so that at each point in time sτ can

either remain in the current state or jump to the subsequent state:

P =


p11 p12 0 . . . 0
0 p22 p23 . . . 0
...

...
...

...
...

. . .
... 0 pM−1,M−1 pM−1,M

0 0 . . . 0 1

 , (29)

where pk,k+1 = Pr (sτ = k + 1| sτ−1 = k) = 1− pk,k is the probability of moving to regime

k + 1 at time τ given that the regime at time τ − 1 is k.

Analogous to the MS model, let θi = (µi,β
′
i) be the regression coefficients in regime

i, for i = 1, ...,M , and collect the state-dependent regression coefficients and volatili-

ties in Ξ =
(
θ1, ...,θM , σ

−2
1 , ..., σ−2

M

)
. Again, assume that the regression parameters and
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volatilities θ1, ...,θM , σ
2
1, ..., σ

2
M , are independent of the transition matrix P

p (Ξ,P) = p
(
θ1, ...,θM , σ

−2
1 , ..., σ−2

M

)
p (P) , (30)

with

p
(
θ1, ...,θM , σ

−2
1 , ..., σ−2

M

)
=

M∏
i=1

p
(
θi, σ

−2
i

)
. (31)

Similarly, assume that the mean and variance parameters have normal-inverse Gamma

priors, respectively:

p
(
θi, σ

−2
i

)
= p (θi) p

(
σ−2
i

)
,

θi ∼ N (b,V) , (32)

σ−2
i ∼ G

(
s−2
y,t0
, v0 (t0 − 1)

)
, i = 1, ...,M.

Only the diagonal elements of P need to be specified for the CP model. The closer pii is

to 1, the longer the expected duration of regime i. We assume that each of the diagonal

elements of P follows an independent Beta distribution

pii ∼ B
(
ap, bp

)
, i = 1, ...,M − 1. (33)

Specifically, we set ap = 0.1 (t/M) and bp = 0.1. These choices reflect the belief that a

priori each regime should have the same duration which is approximately equal to t/M .

We use a Gibbs sampler to estimate the CP model (28)-(29). This yields posterior

draws for the parameters Ξ,P as well as the sequence of hidden states, st = (s1, ..., st).

These draws can be used to compute a density forecast for yt+1 conditional on M states

occurring up to time t+ 1:

p
(
yt+1| st+1 = M,Y t

)
=

∫
p
(
yt+1| st+1 = M, st,Ξ,P,Y t

)
× p

(
st,Ξ,P

∣∣Y t) dstdΞdP.
(34)

By using the predictive density p (yt+1| st+1 = M, st,Ξ,P,Y t) we implicitly assume that

no breaks will occur between the end of the estimation sample t and the end of the

forecasting horizon, t + 1. This assumption is justified by the fact that our focus is on

one-step-ahead forecasts. We refer the reader to an online appendix for more details on

the Gibbs sampler for the CP model. See Pesaran et al. (2006) for a more general setup

that allows for breaks occurring at longer forecast horizons.

3 Empirical results

This section introduces the data on inflation and real output growth considered in our

empirical application. Our focus on these particular variables is motivated in part by the
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work of Stock and Watson (1999, 2003, 2007), who find strong evidence of instability in

predictive relations for both output growth and inflation.

Next, we analyze the full-sample performance of the models described in Section 2

for the inflation and real GDP growth rate data. Finally, we turn to the out-of-sample

predictive accuracy of these models, applying a range of measures to evaluate the accuracy

of the point and density forecasts.

3.1 Data

Let πt = 400× ln (Pt/Pt−1) denote the annualized quarterly inflation rate, with Pt being

the quarterly price index for the GDP deflator. We model next quarter’s change in the

inflation rate using a backward-looking Phillips curve

∆πt+1 = µ+ β(L)ut + λ(L)∆πt + εt+1, εt+1 ∼ N
(
0, σ2

ε

)
, (35)

where ∆πt+1 = πt+1−πt is the quarter-on-quarter change in the annualized inflation rate,

and ut is the quarterly unemployment rate. µ is a constant while β(L) and λ(L) are lag

polynomials written in terms of the lag operator L. See Stock and Watson (2007) for a

similar specification.

Both the GDP deflator and the unemployment rate data are seasonally adjusted series

obtained from the Federal Reserve of St. Louis’ FRED database. In particular, Pt is the

quarterly Gross Domestic Product - Implicit Price Deflator series, and we construct a

quarterly unemployment rate series by retaining the total civilian unemployment rate

during the last month within each quarter. Our sample ranges from 1950:Q1 to 2013:Q4.

Turning to the GDP series, let zt = 400×ln (Qt/Qt−1) denote the annualized quarterly

U.S. real GDP growth rate, where Qt is the quarterly U.S. real GDP series. We model

next quarter’s GDP growth rate using an autoregressive specification

zt+1 = µ+ β(L)zt + εt+1, εt+1 ∼ N
(
0, σ2

ε

)
. (36)

Our quarterly GDP growth rate series is constructed using seasonally adjusted quarterly

U.S. real GDP data from the Federal Reserve of St. Louis database FRED and the sample

ranges from 1950:Q1 to 2013:Q4.

3.2 Full sample estimates and model comparisons

We first compare the fit of the different models over the full sample, 1950:Q1-2013:Q4,

using the first twenty years of data, 1950:Q1-1969:Q4, to train the prior hyperparameters

(that is, t0 = 80). A natural approach to model selection in a Bayesian setting is to
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compute the Bayes factor B1,0 of the null model M0 versus an alternative model, M1.

Higher Bayes factors suggest higher posterior odds in favor of M1 against M0. Specifically,

we report twice the natural log of the Bayes factors, 2 ln(B1,0). To interpret the strength of

the evidence, we follow studies such as Kass and Raftery (1995) and note that if 2 ln(B1,0)

is below zero, the evidence supports M0 over M1. For values of 2 ln(B1,0) between 0 and 2,

there is “weak evidence” that M1 is a better model than M0, whereas values of 2 ln(B1,0)

between 2 and 6, 6 and 10, and higher than 10, can be viewed as “some evidence,”

“strong evidence,” and “very strong evidence”, respectively, in support of M1 versus the

null model, M0.

Table 1 reports the Bayes factors from such model comparisons. For both the in-

flation rate and real GDP growth series there is compelling evidence against the linear

model: in each case the models that allow for parameter instability easily beat their lin-

ear, constant-coefficient counterpart. The strongest results are observed for the SV and

TVP-SV models, with the three-state MS model and the four-state CP model ranked

second and third, respectively. Although clearly better than the linear model, there is

less support for the two-state MS and CP models and the TVP model is only marginally

better than the linear benchmark. These results suggest that it is the ability of the mod-

els to capture time-varying second moment dynamics that lead them to outperform the

linear, homoskedastic model.

To understand how different models handle parameter instability, we next present

time-series plots of the key regression coefficients and volatility parameters. Figure 1

displays the coefficient estimates for the intercept, AR(1) and lagged unemployment rate

in the inflation rate model (35). The TVP-SV estimates of these three parameters are

relatively stable over time, although they do respond to events such as the Great Recession

in 2008-2009–a period during which inflation becomes less sensitive to the unemployment

rate. We see much greater variations over time in the parameters of the three-state CP

model in particular. For this model, the inflation rate is initially not very sensitive to

variations in the unemployment rate. This changes dramatically between 1952 and 1985,

during which we see a strongly negative relation between the lagged unemployment rate

and subsequent changes in inflation. After 1985 the sensitivity of the inflation rate with

regard to the lagged unemployment rate is again close to zero. Interestingly, the sensitivity

of inflation to its own lagged value (shown in the middle panel) also changes significantly

two years into the sample. The amount of parameter instability uncovered by the MS

model falls somewhere in between that uncovered by the CP and TVP-SV models.

Turning to the full-sample estimates of inflation volatility, Figure 2 shows large differ-

ences across the three models. Though all three models identify the first two years of the

sample as a period with high conditional volatility, their subsequent volatility estimates
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are very different. Specifically, the TVP-SV model suggests that the sixties and nineties

were periods with relatively low volatility, whereas volatility was somewhat higher during

the seventies, peaking around 1975, and again around 2007. The three-state CP model

classifies the 30-year period 1953-1983 as a medium-volatility period, with low volatility

ensuing after 1985. Finally, the two-state MS model detects spikes in the conditional

volatility in 1950-52, 1956 and 1975.

The filtered state probabilities plotted in Figures 3 and 4 help explain the differences

in the dynamics of the two-state MS and three-state CP models. Unsurprisingly the

two-state MS model assigns a probability close to one to the high-volatility regime at the

beginning of the sample (1950-52) and, again, in 1975, with a probability near one-half

assigned to this state around 1987. The remainder of the time the probability assigned

to the low volatility state (state 1) is close to one. The three-state CP model assigns

a probability close to one for the first state from 1950 to 1952, and zero thereafter. It

assigns a probability close to one for the second regime in the mid fifties and again during

1975-1985. Finally, the filtered probability of being in the third state is close to one after

1995. Overall, the regimes are quite well identified by the data for both of these models.

Turning to the GDP growth rate variable, Figure 5 shows that the intercept and

AR(1) coefficient estimates are relatively stable under the TVP-SV model, whereas both

the MS and CP models suggest higher variability in these coefficients. The conditional

volatility plot in Figure 6 shows that the three-state CP model identifies a short-lived

volatility spike in the early part of the sample followed by a long-lived regime with medium

volatility from 1951-1983 and a regime with low volatility after 1984 which coincides with

the Great Moderation. Unsurprisingly, the two-state MS model that allows for recurring

states identifies more short-run dynamics in the conditional volatility than the three-state

CP model which rules out such transitions.

Figure 7 shows that the filtered state probabilities for the two-state MS model are

quite noisy for the GDP series up to around 1984. After 1984 the model mostly stays in

the low-volatility regime, main exceptions occurring around 2000 and, more pronounced,

in 2008, where volatility spiked. Clearer separation between states is obtained by the

three-state CP model. Figure 8 shows that an early high-volatility state occurs in the

first part of the sample. This state is followed by a medium-volatility state that lasts from

1952 through 1984. After 1984 the model transitions to a low volatility state.

3.3 Out-of-sample forecasting performance

We use the first twenty years of data from 1950Q1 to 1969Q4 to obtain initial parameter

estimates which are then used to predict outcomes in 1970Q1. The next period we include
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data for 1970:Q1 in the training sample and use the resulting estimates to predict the

outcome in 1970Q2. We proceed recursively in this fashion until the last observation in

the sample, producing a time series of one-step-ahead forecasts from 1970QI to 2013Q4.

3.3.1 Measures of Predictive Accuracy

We summarize the precision of the point forecasts of model m, relative to that from the

linear model, by means of the ratio of RMSFE values

RMSFEm =

√
1

t−t+1

∑t
τ=t e

2
m,τ√

1
t−t+1

∑t
τ=t e

2
LIN,τ

, (37)

where eLIN,τ and em,τ are the forecast errors associated with the linear (LIN) and alter-

native (m ∈ TV P − SV,MS,CP ) model, respectively, and t =1970Q1 and t =2013Q4

denote the beginning and end of the evaluation sample. The point forecasts used to

compute the forecast errors are obtained by averaging over the draws from the predictive

density p (yτ | Yτ−1). Values of RMSFEm below one suggest that model m produces more

accurate point forecasts than the linear, homoskedastic benchmark.

To study the evolution in the accuracy of the point forecasts, we plot the Cumulative

Sum of Squared prediction Error Difference (CSSED) proposed by Welch and Goyal (2008)

CSSEDm,t =
t∑

τ=t

(
e2
LIN,τ − e2

m,τ

)
. (38)

Positive and rising values of this measure indicate that the point forecasts generated by

model m are more accurate than those produced by the linear, constant coefficient model.

One of the advantages of our Bayesian framework is its ability to generate predictive

distributions, rather than simple point forecasts, in a manner that accounts for param-

eter estimation errors. To compare the performance of two density forecasts, following

Amisano and Giacomini (2007), Geweke and Amisano (2010), and Hall and Mitchell

(2007), we consider the average log score differential,

LSDm =
1

t− t+ 1

t∑
τ=t

(LSm,τ − LSLIN,τ ) , (39)

where LSm,τ (LSLIN,τ ) denotes model m’s (LIN’s) log predictive score computed at time

τ , i.e., the log of the outcome evaluated at the posterior predictive density. Positive values

of LSDm indicate that on average model m produces more accurate density forecasts than
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the benchmark model (LIN). We also study the cumulative log score differential between

the mth model and the LIN benchmark:

CLSDm,t =
t∑

τ=t

(LSm,τ − LSLIN,τ ) . (40)

Positive and rising values of CLSD again indicate periods where model m produces more

accurate density forecasts than the linear, homoskedastic benchmark.

3.3.2 Empirical Results

Table 2 reports estimates of these predictive accuracy measures for different sub-samples

1970-1983, 1984-2013, and for the full sample 1970-2013. These two subsamples are chosen

to coincide with the transition to the Great Moderation period which is associated with

a substantial reduction in the volatility of many macroeconomic variables, see McConnell

and Perez-Quiros (2000). The first row reports the RMSFE values for the linear model

whereas the subsequent rows report RMSFE ratios measured relative to this model. First

consider the RMSFE ratio for the inflation series. Over the full sample 1970-2013 all mod-

els that allow for instability produce more accurate point forecasts than those generated

by the linear model with RMSFE ratios ranging from 0.965 to 0.999, suggesting modest

gains in RMSFE performance of 1-3%, none of which is significantly different from zero.

The sub-sample results show that these improvements are all due to the better perfor-

mance, measured relative to the linear model, in the 1970-1983 sample whereas the models

that allow for instability actually slightly underperform over the sample 1984-2013.

Much greater, and significant, improvements are observed for the LSD estimates over

the sample 1970-2013. Interestingly, and in contrast to the RMSFE results, the improve-

ments in the LSD measure are mostly due to the post-1983 sample–a period for which all

of the LSD estimates are significantly positive–although smaller improvements are also

obtained in the 1970-1983 sample period.

These seemingly contradictory results for the RMSFE measure (suggesting improve-

ments in predictive accuracy from 1970-1983 but not after 1984) versus for the LSD

measure (suggesting the reverse) are explained by the fact that the RMSFE measure only

focuses on predicting the mean whereas the LSD measure accounts for the models’ ability

to predict the full outcome distribution. In fact, the improved density forecasts after

1984 result from the models’ ability to account for the reduced volatility in the period

after the Great Moderation. In contrast, the linear model fails to capture this decline in

volatility. This is consistent with a decomposition of the Bayes factor for the TVP-SV

model into its TVP and SV parts which shows that the improvement over the linear,
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homoskedastic model predominantly arises from the SV component rather than from the

TVP component of this model.

Turning to the real GDP series, only the SV and TVP-SV models manage to reduce

the RMSFE of the linear constant-coefficient model although the modest gain (1.1%) is

deemed to be statistically significant using a Diebold-Mariano type test statistic. Stronger

results are observed for the LSD measure which shows that all of the models that allow

for parameter instability produce significantly more accurate density forecasts than the

constant-coefficient, homoskedastic benchmark. Once gain these gains in accuracy for the

density forecasts are obtained during the 1984-2013 sample.

The first three windows in Figure 9 report the cumulative SSE differentials for the

TVP–SV model, the MS models and the CP models applied to the inflation rate series.

In each case we find strong forecasting performance up to around 1985 at which point

the line flattens. All models see a deterioration in their performance relative to the linear

benchmark model in 2008/09.

Figure 10 shows a very different path for the cumulative sum of log-score differentials

for the quarterly inflation rate. In this case the models that allow for instability perform

slightly worse or as well as the constant-coefficient benchmark up to around 1984. After

this, the instability models start performing much better up to around 2006 at which point

the accuracy of their density forecasts is about as good as that of the linear benchmark.

Figure 11 shows that the TVP–SV model fitted to real GDP growth manages to pro-

duce slightly more accurate point forecasts than the linear benchmark throughout most

of the sample. In contrast, the sample period 1970-2013 sees steady underperformance of

the MS and CP models relative to the constant-coefficient benchmark’s RMSFE perfor-

mance. Very different results are obtained under the LSD measure. The cumulative sum

of log-score differentials depicted in Figure 12 shows superior density forecasting perfor-

mance of the instability models from 1985 onwards, only interrupted by brief spells of

underperformance in 1999 and, again, in 2008.

A popular approach for dealing with model instability is to use a rolling estimation

window. We also consider this approach, using a 20-year estimation window corresponding

to 80 quarterly observations. The results for the rolling window approach (shown in the

last line of Table 2) show no evidence of overall improvements in the full-sample RMSFE

performance for the inflation rate series. The rolling window approach generates some

improvements in the LSD measure (relative to the linear model) although clearly less than

the improvements seen for the better of the more formal modeling approaches. Similar

results are found for the GDP growth rate series.
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3.4 Results for longer forecast horizons

So far we have focused on forecasting results for the one-quarter-ahead horizon. However,

our approach is easily generalized to allow for an arbitrary forecast horizon, H, by using

lagged predictors xt−H to predict yt. To see how sensitive our results are to changing the

forecast horizon, Table 3 shows results for H = 4 and H = 8, corresponding to one- and

two-year forecast horizons. At the four-quarter horizon, the full-sample point forecasts

are a little better (relative to the linear, homoskedastic benchmark) for the inflation data,

but a little worse for real GDP growth. Once again, improvements in the point forecasts

are mainly due to the 1970-1983 period. Greater, and often significant, improvements in

performance are observed for the four-quarter-ahead density forecasts evaluated using the

LSD measure, although, as for the one-quarter-ahead forecasts, here the improvements

occur after 1984.

At the eight-quarter forecast horizon there is little evidence of systematic improve-

ments over the linear, homoskedastic model, except for the density forecasting results for

the SV and TVP SV models from 1984 onwards.

These results suggest that the forecasting performance of the models that account

for parameter instability and second moment dynamics is best at relatively short forecast

horizons of up to one year. These results are perhaps unsurprising given that the empirical

evidence of non-linearities associated with regime switching or time-varying volatility

tends to be weaker at longer horizons.

4 Model Combinations

Rather than attempting to identify one particular model specification that allows for

changing parameters, an alternative strategy for dealing with model instability is to fit a

variety of models and then use model combination to generate an averaged forecast.

Model combinations form weighted averages of individual prediction models using

weights that can reflect the individual models’ historical performance. The better a

model’s fit relative to its complexity, the larger its weight. We consider three commonly

used combination schemes which we next describe.

4.1 Combination Schemes

The equal-weighted pool (EWP) puts equal weights on each of the N models, Mi :

p
(
yt+1| Y t

)
=

1

N

N∑
i=1

p
(
yt+1|Mi,Y t

)
, (41)
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where {p (yt+1|Mi,Y t)}Ni=1 denotes the predictive densities specified in (5), (17), (27), and

(34).

Bayesian model averaging (BMA) uses weights that are proportional to the posterior

model probabilities:

p
(
yt+1| Y t

)
=

N∑
i=1

Pr
(
Mi| Y t

)
p
(
yt+1|Mi,Y t

)
, (42)

where Pr (Mi| Y t) denotes the posterior probability of model i, relative to all models under

consideration, computed using information available at time t, Y t :

Pr
(
Mi| Y t

)
=

Pr (Y t|Mi) Pr (Mi)∑N
j=1 Pr (Y t|Mj) Pr (Mj)

. (43)

Pr (Y t|Mi) and Pr (Mi) denote the marginal likelihood and prior probability for model

i, respectively. We assume that all models are equally likely a priori so that Pr (Mi) =

1/N . Following Geweke and Amisano (2010), we compute the marginal likelihoods by

cumulating each model’s predictive log score model after conditioning on an initial warm-

up sample.

Finally, we computes the weighted average of the predictive densities using the optimal

predictive pool (OW) proposed by Geweke and Amisano (2011):

p
(
yt+1| Y t

)
=

N∑
i=1

ω∗t,i × p
(
yt+1|Mi,Y t

)
. (44)

The (N × 1) vector of model weights ω∗t =
[
ω∗t,1, ..., ω

∗
t,N

]
is determined by solving the

following maximization problem:

ω∗t = arg max
ωt

t∑
τ=1

log

[
N∑
i=1

ωit × Sτ,i

]
, (45)

where LSτ,i is the recursively computed log-score for model i at time τ , Sτ,i = exp (LSτ,i),

and ω∗t ∈ [0, 1]N .

By recursively updating the combination weights in (42) and (45), the BMA and OW

combination methods accommodate time variations in the underlying data generating

process. This is empirically important as we shall see.

4.2 Empirical results for model combinations

Figures 13 and 14 plot the time-series evolution in the combination weights in the optimal

prediction pool. These are similar to recursively computed Bayes factors and turn out
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to be highly informative about shifts in different models’ performance over the sample.

First consider the weights on the inflation models (Figure 13). The CP model receives a

high weight in the first couple of quarters and again between 1972 and 1995 with weights

generally less than 20% thereafter. The linear model receives up to 70% of the probability

weight in the mid-seventies, but its weight declines to 15% or less after 1985. The TVP-

SV model picks up most of the remaining probability mass and so this model accounts

for more than 80% of the total weight at the end of the sample. The MS models receive

no weight during the sample.

For the real GDP growth series (Figure 14 ) the linear model is dominant most of the

time between 1972 and the late eighties, at times receiving a weight of 100%. Starting in

1985 the TVP-SV model begins to dominate the optimal prediction pool with a weight

greater than 70% in 1990, rising to 85% at the end of the sample. The CP models get a

weight around 20% from 1990-2008 and the MS models get a weight around 10% in the

last five years of the sample.

Table 4 reports out-of-sample forecasting results for the different model combination

schemes. First consider the results for the inflation rate shown in Panel A. All three

combination schemes manage to reduce the RMSFE of the linear model by 2-3 percent

with the improvements once again resulting from the 1970-1983 subperiod. Moreover, as

for the individual models, the forecasting performance of the model combinations is much

stronger based on the predictive density LSD measure. Improvements are particularly

strong in the period after the beginning of the Great Moderation and occurs for all three

combination schemes.

Turning to the results for real GDP growth, Panel B of Table 4 shows that none of the

model combination schemes manages to improve on the accuracy of the point forecasts

generated by the linear model. In contrast, all three approaches produce better density

forecasts than the linear model in the full sample (1970-2013) as well as in the post-1983

sample.

In general we find that the model combination results are close to, but slightly weaker

than, those generated by the best of the individual models (the TVP-SV model) at the

one-quarter horizon. This is unsurprising given that this model’s performance is so much

better than that of the other individual models and given that we are not averaging

over a very large set of models which reduces the scope of gains achievable from model

combination.

At the longer forecast horizons, H = 4, 8 quarters, the forecast combinations continue

to produce density forecasts of inflation and GDP growth that are superior relative to the

linear, homoskedastic benchmark. In some cases the forecast combinations now perform
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better than the best of the individual models (such as the TVP-SV model) that enter into

the combination.

The cumulative sum of squared forecast error differential plots for the model combina-

tions, shown in the last windows in Figures 9 and 10, show that the model combinations

perform well up to around 1985, at which point they cease producing gains in predictive

accuracy relative to the constant-coefficient model.

Figures 11 and 12 show that the model combinations initially produce poor out-of-

sample point forecasts but generate more accurate density forecasts than the constant

coefficient benchmark from 1985 onwards.

5 Conclusions

This paper compares the predictive performance of three popular approaches to account

for model instability that make very different assumptions about the nature of parameter

instability. In applications to inflation and real GDP growth forecasting we find that

accounting for parameter instability and, notably, second moment dynamics has the po-

tential to produce sizeable gains in the accuracy of the density forecasts but only modest

gains in the accuracy of the point forecasts.

Our empirical results suggest that incorporating time-varying volatility is important

for quarterly macroeconomic time-series that are affected by important shifts such as

the Great Moderation which led to a substantial reduction in macroeconomic volatility.

Although limited to two (key) macroeconomic variables, the results also suggest that SV

or TVP-SV specifications that allow for gradual (frequent) shifts in model parameters

perform better than alternative regime switching models that assume more sudden shifts

in model parameters with or without recurring states.
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Table 1. Bayes factors for different model specifications

M1 vs. M0
Inflation Real

rate GDP

TVP vs. LIN 2.278 0.840
SV vs. LIN 94.322 48.860
TVP-SV vs. LIN 93.361 48.528
MS, K=2 vs. LIN 66.402 29.862
MS, K=3 vs. LIN 78.648 32.072
CP, K=2 vs. LIN 67.920 21.233
CP, K=3 vs. LIN 71.954 31.475
CP, K=4 vs. LIN 72.770 29.128

This table reports pairwise model comparisons using twice the natural logarithm of the Bayes factor, 2 × (lnB1,0), where
B1,0 denotes the Bayes factor obtained from comparing model M1 to model M0

B1,0 =
Pr
(
Yt
∣∣M1

)
Pr (Yt|M0)

Pairwise model comparisons are listed in the first and second columns for the inflation rate and growth in real GDP,

respectively. Kass and Raftery (1995) suggest interpreting the results as follows: when 2 × (lnB1,0) is negative, the

evidence supports M0 over M1. For 2 × (lnB1,0) between 0 and 2, there is “weak evidence” that M1 is a more likely

characterization of the data than M0. Values of 2× (lnB1,0) between 2 and 6, 6 and 10, and higher than 10, can be viewed

as “some evidence,” “strong evidence,” and “very strong evidence” in support of M1 relative to M0.
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Table 2. Out-of-sample forecasting performance: RMSFE and LSD values

Panel A: Inflation rate

Models
RMSFE ratio LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

LIN 1.593 0.759 1.096 -1.949 -1.545 -1.674
TVP 0.999 0.998 0.999 0.004** 0.008*** 0.006***
SV 0.947* 1.007 0.967 -0.012 0.408*** 0.274***
TVP-SV 0.946 1.003 0.965 -0.055 0.425*** 0.272***
MS, K=2 0.953* 1.019 0.975 0.046 0.261*** 0.192***
MS, K=3 0.946* 1.016 0.969 0.061 0.305*** 0.227***
CP, K=2 0.950 1.029 0.977 0.080 0.251*** 0.196***
CP, K=3 0.963 1.026 0.984 0.075 0.270*** 0.208***
CP, K=4 0.964 1.021 0.983 0.075 0.274*** 0.210***
ROL 0.963 1.033 0.987 0.049 0.261*** 0.193***

Panel B: Real GDP growth

Models
RMSFE LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

LIN 4.919 2.233 3.331 -3.023 -2.464 -2.642
TVP 1.002 0.998 1.001 -0.000 0.004** 0.002*
SV 0.990** 0.989*** 0.990** -0.068 0.238*** 0.140***
TVP-SV 0.990* 0.987*** 0.989** -0.121 0.261*** 0.140***
MS, K=2 1.010 0.998 1.006 -0.017 0.133*** 0.085***
MS, K=3 1.009 1.004 1.008 -0.014 0.141*** 0.091***
CP, K=2 1.003 0.998 1.001 -0.018 0.098** 0.061**
CP, K=3 1.012 1.033 1.018 -0.031 0.146*** 0.090**
CP, K=4 1.021 1.048 1.029 -0.042 0.142** 0.083**
ROL 1.018 1.012 1.017 -0.051 0.076** 0.036*

The left panels of this table report the ratio between the RMSFE of model i and the RMSFE of the linear (LIN) model,
computed as

RMSFEi =

√
1

t−t+1

∑t
τ=t e

2
i,τ√

1
t−t+1

∑t
τ=t e

2
LIN,τ

,

where e2i,τ and e2LIN,τ are the squared forecast errors at time τ generated by model i and the LIN model, respectively,

and i denotes any of the models described in section 2. For the linear model in the first row, the actual RMSFE-value is

reported. Values below one for RMSFEi indicate that model i produces more accurate point forecasts than the LIN model.

The right panels in the table report the average log-score (LS) differential, LSDi =
∑t
τ=t

(
LSi,τ − LSLIN,τ

)
, where LSi,τ

(LSLIN,τ ) denotes the log-score of model i (LIN) computed at time τ and i denotes any of the models described in section

2. For the linear model in the top row, the mean of the actual log score is reported. Positive values of LSDi indicate

that model i produces more accurate density forecasts than the LIN model. All forecasts are generated out-of-sample using

recursive estimates of the models. Stars refer to Diebold-Mariano p-values for the null that a particular model generates the

same predictive performance as the benchmark LIN model. p-values are based on one-sided t-tests computed using a serial

correlation robust variance and the pre-whitened quadratic spectral estimates of Andrews and Monahan (1992). The out-

of-sample period starts in 1970:I and ends in 2013:IV. *significance at 10% level; **significance at 5% level; ***significance

at 1% level.



Table 3. Out-of-sample forecasting performance, H = 4 and H = 8

Panel A: Inflation rate, H = 4

Models
RMSFE ratio LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

LIN 2.658 0.997 1.710 -2.407 -1.878 -2.046
TVP 1.000 1.001 1.000 -0.004 0.007*** 0.003***
SV 0.905* 1.010 0.930 -0.187 0.449*** 0.247**
TVP-SV 0.907* 1.015 0.933 -0.214 0.457*** 0.243**
MS, K=2 0.923 0.976 0.936 -0.137 0.391*** 0.223**
MS, K=3 0.907 1.083 0.951 -0.081 0.380*** 0.233***
CP, K=2 0.904 1.069 0.945 -0.156 0.257*** 0.126
CP, K=3 0.897 1.044 0.933 -0.015 0.280*** 0.186***
CP, K=4 0.937 1.041 0.962 -0.087 0.347*** 0.209***
ROL 0.888 1.047 0.927 -0.152 0.255*** 0.125*

Panel B: Inflation rate, H = 8

Models
RMSFE ratio LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

LIN 3.344 1.356 2.193 -2.675 -2.011 -2.222
TVP 1.003 0.996 1.001 -0.000 0.004*** 0.003***
SV 0.986 0.980 0.984 -0.335 0.318*** 0.110
TVP-SV 0.988 0.977 0.985 -0.382 0.322*** 0.098
MS, K=2 1.015 1.002 1.012 -0.191 0.207*** 0.081
MS, K=3 1.033 1.137 1.061 -0.203 0.100 0.003
CP, K=2 1.011 0.974 1.001 -0.328 0.135*** -0.012
CP, K=3 1.009 0.964 0.997 -0.429 0.113* -0.060
CP, K=4 1.020 0.968 1.007 -0.228 0.204*** 0.067
ROL 1.002 0.940 0.986 -0.200 0.114** 0.014

Panel C: Real GDP growth, H = 4

Models
RMSFE LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

LIN 5.651 2.579 3.833 -3.167 -2.664 -2.824
TVP 1.001 1.000 1.001 -0.005 0.003*** 0.000
SV 0.975*** 0.982*** 0.977*** 0.022 0.258*** 0.183***
TVP-SV 0.971*** 0.981*** 0.974*** 0.016 0.276*** 0.194***
MS, K=2 1.036 1.051 1.041 -0.017 0.128*** 0.082***
MS, K=3 1.042 1.064 1.049 -0.027 0.120*** 0.073***
CP, K=2 1.043 1.077 1.053 -0.040 0.071 0.036
CP, K=3 1.062 1.111 1.077 -0.080 0.079 0.028
CP, K=4 1.073 1.139 1.094 -0.095 0.104* 0.041
ROL 1.051 1.102 1.067 -0.074 0.032 -0.002

Panel D: Real GDP growth, H = 8

Models
RMSFE LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

LIN 6.118 2.859 4.181 -3.245 -2.657 -2.844
TVP 0.999 1.002 1.000 0.006 -0.000 0.002
SV 0.962*** 0.974** 0.966*** -0.033 0.185** 0.115**
TVP-SV 0.952*** 0.968** 0.957*** -0.048 0.195** 0.118**
MS, K=2 1.018 1.046 1.027 -0.008 0.013 0.006
MS, K=3 1.015 1.049 1.026 -0.007 0.006 0.002
CP, K=2 1.008 1.001 1.006 -0.013 0.019** 0.009
CP, K=3 1.019 0.991* 1.010 -0.040 0.026* 0.005
CP, K=4 1.043 1.024 1.037 -0.078 0.014 -0.016
ROL 1.029 1.098 1.051 -0.053 -0.056 -0.055

The left panels of this table report the ratio between the RMSFE of model i and the RMSFE of the linear (LIN) model,

computed as RMSFEi =

√
1

t−t+1

∑t
τ=t e

2
i,τ

/√
1

t−t+1

∑t
τ=t e

2
LIN,τ , where e2i,τ and e2LIN,τ are the squared forecast

errors at time τ generated by model i and the LIN model, respectively, and i denotes any of the models described in section

2. For the linear model in the first row, the actual RMSFE-value is reported. Values below one for RMSFEi indicate

that model i produces more accurate point forecasts than the LIN model. The right panels in the table report the average

log-score (LS) differential, LSDi =
∑t
τ=t

(
LSi,τ − LSLIN,τ

)
, where LSi,τ (LSLIN,τ ) denotes the log-score of model i

(LIN) computed at time τ and i denotes any of the models described in section 2. For the linear model in the top row,

the mean of the actual log score is reported. Positive values of LSDi indicate that model i produces more accurate density

forecasts than the LIN model. All forecasts are generated out-of-sample using recursive estimates of the models. Stars

refer to Diebold-Mariano p-values for the null that a particular model generates the same predictive performance as the

benchmark LIN model. p-values are based on one-sided t-tests computed using a serial correlation robust variance and the

pre-whitened quadratic spectral estimates of Andrews and Monahan (1992). The out-of-sample period starts in 1970:I and

ends in 2013:IV. *significance at 10% level; **significance at 5% level; ***significance at 1% level.



Table 4. Out-of-sample forecasting performance for the model combinations

Panel A: Inflation rate, H = 1

Combination scheme
RMSFE ratio LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

Equal weighted combination 0.953* 1.006 0.971* 0.081* 0.241*** 0.190***
Bayesian model averaging 0.972 1.005 0.983 0.061 0.347*** 0.256***
Optimal prediction pool 0.963 1.002 0.976 0.012 0.362*** 0.251***

Panel B: Inflation rate, H = 4

Combination scheme
RMSFE ratio LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

Equal weighted combination 0.924* 1.000 0.942 0.036 0.281*** 0.203***
Bayesian model averaging 0.995 1.010 0.999 -0.011 0.344*** 0.231***
Optimal prediction pool 0.948* 1.005 0.962 0.001 0.364*** 0.248***

Panel C: Inflation rate, H = 8

Combination scheme
RMSFE ratio LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

Equal weighted combination 1.005 0.986 1.000 -0.041 0.163*** 0.098**
Bayesian model averaging 1.008 1.016 1.010 -0.012 0.133** 0.087**
Optimal prediction pool 1.001 0.993 0.999 -0.035 0.206*** 0.129***

Panel D: Real GDP growth, H = 1

Combination scheme
RMSFE LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

Equal weighted combination 1.003 0.997 1.001 -0.016 0.133*** 0.086***
Bayesian model averaging 1.005 0.996 1.002 -0.010 0.190*** 0.126***
Optimal prediction pool 1.003 0.987* 0.998 -0.044 0.208*** 0.128***

Panel E: Real GDP growth, H = 4

Combination scheme
RMSFE LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

Equal weighted combination 1.025 1.030 1.026 -0.004 0.130*** 0.088***
Bayesian model averaging 1.000 0.982*** 0.994 -0.008 0.271*** 0.182***
Optimal prediction pool 0.985* 0.982*** 0.984** -0.000 0.270*** 0.184***

Panel E: Real GDP growth, H = 8

Combination scheme
RMSFE LSD

1970-1983 1984-2013 1970-2013 1970-1983 1984-2013 1970-2013

Equal weighted combination 1.004 1.005 1.004 -0.005 0.055*** 0.036***
Bayesian model averaging 1.007 0.986** 1.000 -0.010 0.165** 0.110**
Optimal prediction pool 0.988** 0.979*** 0.985*** -0.035 0.183*** 0.114***

Left panels in this table report the RMSFE of the equal-weighted model combination scheme, the optimal predictive pool

of Geweke and Amisano (2011), or Bayesian Model Averaging computed relative to the RMSFE for the linear (LIN) model:

RMSFEi =

√
1

t−t+1

∑t
τ=t e

2
i,τ

/√
1

t−t+1

∑t
τ=t e

2
LIN,τ , where e2i,τ and e2LIN,τ are the squared forecast errors at time τ

generated by model combination i and the LIN model, respectively, and i refers to one of the model combination schemes.

Values of the RMSFEi ratio below one indicate that model combination i produces more accurate point forecasts than the

LIN model. The right panels report the average log-score (LS) differential, LSDi =
∑t
τ=t

(
LSi,τ − LSLIN,τ

)
, where LSi,τ

(LSLIN,τ ) denotes the log-score of model combination i (the LIN model), computed at time τ , and i denotes either the

equal-weighted model combination scheme, the optimal predictive pool of Geweke and Amisano (2011), or Bayesian Model

Averaging. Positive values of LSDi indicate that model combination i produces more accurate density forecasts than the

LIN model. All forecasts are generated out-of-sample using recursive estimates of the models and combination weights.

Stars refer to Diebold-Mariano p-values for the null that a particular model combination generates the same predictive

performance as the benchmark LIN model. p-values are based on one-sided t-tests computed with a serial correlation

robust variance, using the pre-whitened quadratic spectral estimates of Andrews and Monahan (1992). The out-of-sample

period starts in 1970:I and ends in 2013:IV. *significance at 10% level; **significance at 5% level; ***significance at 1%

level.



Figure 1. Coefficient estimates for the quarterly inflation rate
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This figure plots the estimated coefficients for the inflation rate model over the sample 1950Q1-2013Q4. The top panel

plots estimates of the intercept, the middle panel plots estimates of the AR(1) term, and the bottom panel plots estimates

of the coefficient on the lagged unemployment rate. The solid blue line tracks the linear model, the red dashed line tracks

the TVP-SV model, the green dashed/dotted line tracks the Markov switching model with two regimes, and the dashed

light blue line tracks the change point model with three regimes.
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Figure 2. Volatility estimates for quarterly inflation
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This figure plots volatility estimates for the inflation series over the sample 1950Q1-2013Q4. The Blue solid line tracks the

linear model, the red dashed line tracks the TVP-SV model, the green dashed/dotted line tracks the MS model with two

regimes, and the dashed light blue line tracks the CP model with three regimes.
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Figure 3. Filtered state probabilities for the two-state MS model fitted to
quarterly inflation
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This figure plots the time series of filtered state probabilities for the two-state Markov switching model fitted to the quarterly

inflation series over the sample 1950Q1-2013Q4.
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Figure 4. Filtered state probabilities for the three-state CP model fitted to
quarterly inflation
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This figure plots the time series of filtered state probabilities for the three-state change point model fitted to the quarterly

inflation series over the sample 1950Q1-2013Q4.
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Figure 5. Coefficient estimates for quarterly growth in real GDP
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This figure plots the estimated coefficients for real GDP growth over the sample 1950Q1-2013Q4. The top panel plots

estimates of the intercept and the bottom panel plots estimates of the AR(1) term. The solid blue line refers to the linear

model, the dashed red line refers to the TVP-SV model, the dashed/dotted green line refers to the Markov switching model

with two regimes, and the dashed light blue line refers to the change point model with three states.
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Figure 6. Volatility estimates for real GDP growth
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This figure plots volatility estimates for quarterly growth in real GDP over the sample 1950Q1-2013Q4. The Blue solid line

tracks the linear model, the red dashed line tracks the TVP-SV model, the green dashed/dotted line tracks the MS model

with two regimes, and the dashed light blue line tracks the CP model with three regimes.
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Figure 7. Filtered state probabilities for the two-state MS model fitted to real
GDP growth
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This figure plots the time series of filtered state probabilities for the two-state Markov switching model fitted to real GDP

growth over the sample 1950Q1-2013Q4.
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Figure 8. Filtered state probabilities for the three-state CP model fitted to real
GDP growth

Real GDP growth -- Prob of regime # 1

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

F
ilt

er
ed

 p
ro

b

0

0.2

0.4

0.6

0.8

1

Real GDP growth -- Prob of regime # 2

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

F
ilt

er
ed

 p
ro

b

0

0.2

0.4

0.6

0.8

1

Real GDP growth -- Prob of regime # 3

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
F

ilt
er

ed
 p

ro
b

0

0.5

1

This figure plots the time series of filtered state probabilities for the three-state change point model fitted to real GDP

growth over the sample 1950Q1-2013Q4.
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Figure 9. Cumulative sum of squared forecast error differentials: Quarterly
inflation
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This figure shows the sum of squared forecast errors generated by the linear model model minus the sum of squared forecast

errors generated by a set of alternative models, CSSEDi,t =
∑t
τ=t

(
e2LIN,τ − e

2
i,τ

)
. Values above zero indicate that a

model generates better performance than the linear benchmark, while negative values suggest the opposite. Each panel

displays results for different types of models, with TVP-SV models in the top left panel, MS models in the top right

panel, CP models in the bottom left panel, and the model combinations in the bottom right panel. Shaded areas indicate

NBER-dated recessions.
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Figure 10. Cumulative sum of log-score differentials: Quarterly inflation
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Notes: This figure shows the sum of log predictive scores generated by a set of alternative model specifications minus the sum

of log predictive scores generated by the linear model, CLSDi,t =
∑t
τ=t

(
LSi,τ − LSLIN,τ

)
. Values above zero indicate

that a model generates more accurate forecasts than the linear benchmark, while negative values suggest the opposite.

Each panel displays results for different types of models, with TVP-SV models in the top left panel, MS models in the top

right panel, CP models in the bottom left panel, and model combinations in the bottom right panel. Shaded areas indicate

NBER-dated recessions.
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Figure 11. Cumulative sum of squared forecast error differentials: Real GDP
growth

1970 1975 1980 1985 1990 1995 2000 2005 2010

∆
 c

um
ul

at
iv

e 
S

S
E

-150

-100

-50

0

50
TVP-SV

1970 1975 1980 1985 1990 1995 2000 2005 2010

∆
 c

um
ul

at
iv

e 
S

S
E

-150

-100

-50

0

50
MS, K=2
MS, K=3

1970 1975 1980 1985 1990 1995 2000 2005 2010

∆
 c

um
ul

at
iv

e 
S

S
E

-150

-100

-50

0

50
CP, K=2
CP, K=3
CP, K=4

1970 1975 1980 1985 1990 1995 2000 2005 2010

∆
 c

um
ul

at
iv

e 
S

S
E

-150

-100

-50

0

50
Bayesian model averaging
Optimal prediction pool
Equal weighted combination

This figure shows the sum of squared forecast errors generated by the linear model model minus the sum of squared forecast

errors generated by a set of alternative models, CSSEDi,t =
∑t
τ=t

(
e2LIN,τ − e

2
i,τ

)
. Values above zero indicate that a

model generates better performance than the linear benchmark, while negative values suggest the opposite. Each panel

displays results for different types of models, with TVP-SV models in the top left panel, MS models in the top right

panel, CP models in the bottom left panel, and the model combinations in the bottom right panel. Shaded areas indicate

NBER-dated recessions.
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Figure 12. Cumulative sum of log-score differentials: Real GDP growth

1970 1975 1980 1985 1990 1995 2000 2005 2010

∆
 c

um
ul

at
iv

e 
lo

g 
sc

or
e

-10

-5

0

5

10

15

20

25
TVP-SV

1970 1975 1980 1985 1990 1995 2000 2005 2010

∆
 c

um
ul

at
iv

e 
lo

g 
sc

or
e

-10

-5

0

5

10

15

20

25
MS, K=2
MS, K=3

1970 1975 1980 1985 1990 1995 2000 2005 2010

∆
 c

um
ul

at
iv

e 
lo

g 
sc

or
e

-10

-5

0

5

10

15

20

25
CP, K=2
CP, K=3
CP, K=4

1970 1975 1980 1985 1990 1995 2000 2005 2010

∆
 c

um
ul

at
iv

e 
lo

g 
sc

or
e

-10

-5

0

5

10

15

20

25
Bayesian model averaging
Optimal prediction pool
Equal weighted combination

Notes: This figure shows the sum of log predictive scores generated by a set of alternative model specifications minus the sum

of log predictive scores generated by the linear model, CLSDi,t =
∑t
τ=t

(
LSi,τ − LSLIN,τ

)
. Values above zero indicate

that a model generates more accurate forecasts than the linear benchmark, while negative values suggest the opposite.

Each panel displays results for different types of models, with TVP-SV models in the top left panel, MS models in the top

right panel, CP models in the bottom left panel, and model combinations in the bottom right panel. Shaded areas indicate

NBER-dated recessions.
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Figure 13. Probability weights on different classes of models in the optimal
prediction pool: Quarterly inflation
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This figure plots recursively calculated weights on different classes of models in the predictive pool for the quarterly inflation
series. The weights are computed by solving the minimization problem

w∗
t = arg max

wt

t−1∑
τ=1

log

[
N∑
i=1

wit × Sτ+1,i

]

where N = 7 different models are considered, and the solution is found subject to w∗
t belonging to the N−dimensional unit

simplex. Sτ+1,i denotes the time τ + 1 recursively computed log score for model i, i.e., Sτ+1,i = exp (LSτ+1,i). Dark blue

bars show the weights on the linear model in the optimal prediction pool, light blue bars show the weights assigned to the

TVP-SV model, yellow bars show the weights on the MS models, and maroon bars show the weights assigned to the CP

models.
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Figure 14. Probability weights on different classes of models in the optimal
prediction pool: Real RGDP growth
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This figure plots recursively calculated weights on different classes of models in the predictive pool for real GDP growth.
The weights are computed by solving the minimization problem

w∗
t = arg max

wt

t−1∑
τ=1

log

[
N∑
i=1

wit × Sτ+1,i

]

where N = 7 different models are considered, and the solution is found subject to w∗
t belonging to the N−dimensional unit

simplex. Sτ+1,i denotes the time τ + 1 recursively computed log score for model i, i.e., Sτ+1,i = exp (LSτ+1,i). Dark blue

bars show the weights on the linear model in the optimal prediction pool, light blue bars show the weights assigned to the

TVP-SV model, yellow bars show the weights on the MS models, and maroon bars show the weights assigned to the CP

models.
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