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In situations where a sequence of forecasts is observed, a common strategy is to examine
“rationality” conditional on a given loss function. We examine this from a different perspective—
supposing that we have a family of loss functions indexed by unknown shape parameters, then given
the forecasts can we back out the loss function parameters consistent with the forecasts being rational
even when we do not observe the underlying forecasting model? We establish identification of the
parameters of a general class of loss functions that nest popular loss functions as special cases and
provide estimation methods and asymptotic distributional results for these parameters. This allows us
to construct new tests of forecast rationality that allow for asymmetric loss. The methods are applied
in an empirical analysis of IMF and OECD forecasts of budget deficits for the G7 countries. We find
that allowing for asymmetric loss can significantly change the outcome of empirical tests of forecast
rationality.

1. INTRODUCTION

That agents are rational when they construct forecasts of economic variables is an important
assumption maintained throughout much of economics and finance. Considerable effort has been
devoted to empirically testing the validity of this proposition using survey data on forecasts
in areas such as efficient market models of stock prices and foreign exchange rates, models
of the term structure of interest rates, inflation forecasting and tests of the Fisher eduation.
Interpretation of this work is tempered by the fact that properties of rational forecasts can
only be established jointly with a maintained loss function. Typically the empirical literature
has tested rationality of forecasts in conjunction with the assumption that mean squared error
(MSE) loss adequately represents the forecaster’s objectives. Under this loss function forecasts
are easy to compute through least squares methods and have well established properties such as
unbiasedness and lack of serial correlation at the single-period horizdpigbibld and Lopez

(1999. Inference about the optimality of a particular forecast series is easy and can be based
directly on the observable forecast errors which do not depend on any unknown parameters of
the forecaster’s loss function.

1. For references to numerous papers on forecast rationalitygeePhil . frb.org/econ/spf/spfbib.
html
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Mean squared error loss, albeit a widely used assumption, is, however, often difficult to
justify on economic grounds and is certainly not universally accepdednger and Newbold
(1986 p. 125) argue that “An assumption of symmetry for the cost function is much less
acceptable” (than an assumption of a symmetric forecast error density). Consequently, in
economics and finance forecasting performance is increasingly evaluated under more general
loss functions that account for asymmetries,@fanger and Newbol{L986, Zellner (1989,

West, Edison and Ch@d 993, Christoffersen and Diebol@d 996 1997 andGranger and Pesaran
(2000. Frequently used loss functions include lin—lin and linex loss which allow for asymmetries
through a single shape parameter. Under these more general loss functions, the forecast error no
longer retains the optimality properties that are typically tested in empirical work. This raises the
possibility that many of the rejections of forecast optimality reported in the empirical literature
may simply be driven by the assumption of MSE loss rather than by the absence of forecast
rationality per se Indeed, if we are not sure that the loss function is of the MSE type, a key
guestion then becomes what inference we can draw from empirical inspection of a sequence of
point forecasts.

This paper develops new methods for testing forecast optimality under general classes of
loss functions that include mean absolute error (MAE) or MSE loss as a special case. This
allows us to separate the question of forecast rationality from that of whether MAE or MSE
loss accurately represents the decision maker’s objectives. Instead our results let us test the
joint hypothesis that the loss function belongs to a more flexible family and that the forecast
is optimal? In each case the family of loss functions is indexed by a single unknown parameter.
We establish conditions under which this parameter is identified. Since first order conditions for
optimality of the forecast take the form of moment conditions, exact identification corresponds
to the situation where the number of moment conditions equals the number of parameters of the
loss function. When there are more moments than parameters, the model is overidentified and the
null hypothesis of rationality can be tested throug-test. Our approach essentially reverses
the usual procedure—which conditions on a maintained loss function and tests rationality of the
forecast—and instead asks what sort of parameters of the loss function would be most consistent
with forecast rationality. We treat the loss function parameters as unknowns that have to be
estimated and effectively “back out” the parameters of the loss function from the observed time-
series of forecast errors. These parameters are potentially of great economic interest as they
provide information about the forecaster’s objectives. For instance, if the mean forecast error
is strongly negative, it could either be that the forecaster has MSE loss and is irrational or that
loss is asymmetric and the forecaster rationally overpredicts due to higher costs associated with
positive than with negative forecast errors.

The idea of backing out the parameter values that are most consistent with an optimizing
agent’s objective function has, in a different framework, been consideretldmsen and
Singleton(1982. These authors study a representative investor with power utility and develop
methods for estimating preference parameters from the investor's Euler equations. There is a
major difference between this work and our approach, however, which has to do with the fact
that Hansen and Singleton treat consumption and asset returns as observable state variables.
When backing out the parameters of the forecaster’s loss function from a sequence of point
forecasts, this approach is less attractive, however. There is the real possibility that the forecasts
are based on a misspecified model and this may well rule out identification of the parameters of

2. In general decision problems the forecasting and decision problem cannot be separated and an examination
of the decision maker’s action rule and full density forecast is required to test rationaliBietibld, Gunther and Tay
(1998. Neither of these is, in general, observable and the vast majority of empirical data takes the form of point forecasts.
Decision rules and utility functions giving rise to the loss function entertained in this paper can be established, however;
cf. Elliott, Komunjer and Timmerman¢2004).
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the forecaster’s loss function. Excluding this possibility requires carefully establishing conditions
on the model used by the forecaster and the sense in which it may be misspecified. We develop
new theoretical results that allow us to identify the source of rejection by establishing conditions
on the decision maker’s forecasting model under which the parameters of the loss function are
identified and can be consistently estimated.

An area where asymmetric loss may play an important role is in the generation of
government budget deficit forecasts by central banks and international organizations such as
the IMF and OECD that are subject to political pressures from member countries but also
play a role in imposing budgetary discipline. In an empirical analysis of forecasts generated
by these organizations, we find evidence of systematic overpredictions of government budget
deficits. This is inconsistent with forecast rationality and MSE loss. However, when we allow
for asymmetric loss we can no longer reject forecast rationality. This suggests that unless it is
known that forecast producers such as the IMF and OECD have symmetric loss, it is important to
account for the possible effects of asymmetric loss. Furthermore, unless the forecast user happens
to have the exact same loss function as the producer of the forecast, the raw forecasts cannot
be used uncritically since they are only constructed to be optimal with respect to the forecast
producer’s loss. Knowing the direction of possible asymmetries in the loss function underlying
the observed forecast—as can be obtained by estimating the loss function parameters—is thus
important information to users of such forecasts.

The plan of the paper is as followSection2 outlines the conditions for optimality of
forecasts under a general class of loss functiBestion3 develops the theory for identification
and estimation of loss function parameters and also derives tests for forecast optimality in
overidentified modelsSection4 explores the small sample performance of our methods in a
Monte Carlo simulation experiment, whifgection5 provides an application to forecasts of
government budget deficitSection6 concludes. Technical details are provided in appendices
at the end of the paper.

2. ASYMMETRIC LOSS AND OPTIMAL FORECASTS

In this section we examine families of loss functions which nest common ones as special
cases. We study the forecasters’ optimal problem and establish conditions under which we
can identify the parameters describing the loss function from a sequence of observed rational
forecasts.

Our set-up is as follows: leK = {X; : @ — R™I me Nt = 1,...,n+ 1} be
a stochastic process defined on a complete probability sigacé, P), whereF = {F,t =
1,...,n+ 1} andF is theo-field /i = o{Xs, s < t}. Denote byY; the component of interest
of the observed vectok:, Y; € R, and interpret the remaining components as beingnan
vector of other variables. We assurvigis continuous. The distribution functiof(-) of Y;41,
its densityf (-), and the expectatio&[-] are subscripted bytato show that they are conditional
on the information sef;.2 The forecasting problem considered here involves forecasting the
variableY; s, wheres is the prediction horizon of interest,> 1. In what follows, we se$ = 1
and examine the one-step-ahead predictions of the realizatignknowing that all results can
readily be generalized to asy> 1.

Let fi11 = 0’'W; be the forecast o¥;.1 conditional on the information se%; in which
6 is an unknownk-vector of parameters} € ®, with ® compact inR¥, and W, is an h-
vector of variables that atg -measurablé.When constructing optimal forecasts we assume that,

3. Upper and lower case letters denote random variables and their realizations, respectively.
4. Both the functional form off; 1 and the vectoMt are specified by the agent producing the forecést.
includes variables that are observed by the forecaster atttitneught to help forecast;, 1 and which need not be
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givenYi41 andW;, the forecaster has in mind a generalized loss fundtiaiefined by
L(p, . 0) =[o+ (1—20) - 1(Vey1 — i1 < O Yega — frpalP, 1)

wherep € N*, the set of positive integerg, € (0, 1), 0 € ® andYi4+1 — fr11 corresponds to
the forecast errot;1. We letag and pp be the unknown true values afand p used by the
forecaster. Hence, the loss function i) {s a function of not only the realization &, and
the forecastfi 1, but also of the shape parameterand p of L. Special cases df include:
(i) squared loss functioh (2, 1/2,60) = (Yir1 — fi+1)?, (i) absolute deviation loss function
L1, 1/2,0) = |Yi+1— fir1], as well as their asymmetrical counterparts obtained whgnl/2,
i.e. (i) quad—quad lossl. (2, «, #), and (iv) lin—lin loss,L(1, «, 6).° We shall takep as given
and focus on estimating.

Given pg andag, the forecaster is assumed to construct the optimal one-step-ahead forecast
of Yiy1, iy = 0*'W, by solving

Mingece E[L (po, ao, 0)]. 2

We letef | be the optimal forecast errafy, ; = Vi1 — f' 1 = Yt+1 — 0"wt, which depends

on the unknown true valuegy and«g. Optimal forecasts have properties that follow directly
from the construction of the forecasts. In the general case, the relevant optimality condition is
the one given in the following proposition. Assumptions referred to in the propositions are listed
in AppendixA and proofs are provided ikppendixB.

Proposition 1 (Optimality Condition). Under assumption$A0)—(A2), and for given
(Po, o) € N* x (0, 1) in (2), the forecast f, , is optimal if and only if

E[W (L(Yir1 — ffq < 0) — )| Yig1 — ffq P = 0. 3

Moreover, given p € N*, for any realization of W the solution f, to the orthogonality
condition (3) is unique, and the implicit functionf, = Opo ()’ W, is a continuously
differentiable one-to-one mapping frai®, 1) to R.

Propositionl shows that under fairly weak assumptionsédnW; andY;. 1, the sequence
of optimal forecast errorg(, , satisfies the moment conditionS[W;(1(ef ;; < 0) —

a0)|8t*+1|p°_1] = 0. When the forecasts are optimal, then any information must be correctly

included in f7 ; which is orthogonal to the forecast errors and the quantitygjrig(a vector

martingale difference sequence. If for givpandeg the forecaster useS)(to determinef’ ,,
then for a givenf;’, ; we can back ouo by using the same condition. However, this approach is
valid only if knowing a solution to3) allows the forecast user to identifyy andwo.

The second part of Propositidrshows that identification afg holds for fixed values ofy.
The result establishes a unique solutitjh, that in turn, knowingpp and ", ,, yields a unique
value fora. Without this relationship we would not be able to identify

In the case of a nonlinear forecasting model1 = f (6, W;), where the functionf :
® x R" — R is continuously differentiable, the expression3) Ifolds provided we repladé;
with the gradient off with respect t®, evaluated ato*, W;). If in addition f (6, W) is twice

known to the forecast user. W fails to incorporate all the relevant information or if the functional form off;_ ;
is misspecified, we say that the forecasting model is wrongly specified.

5. Linex loss is not a special case @).(We chose not to focus on linex since the expected loss does not exist
under linex loss for a wide class of distributions of the forecast egay. $tudentt with finite degrees of freedom).
Furthermore, linex loss only nests symmetric loss as a limiting case in the parameter space where loss is not defined.
Obtaining symmetry only for a parameter on the boundary creates serious estimation problems and means that linex loss
is not well-suited for our purpose.
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continuously differentiable and concave in the parametan ©, for any realization of\;, then
ft"jrl is an optimal forecast. Provided the forecasting model is identifiable, sd thatW;) =
f (62, W;) for any realization oW implies6; = 6>, we can replac&V; by the gradient off
with respect t@ in the Assumptions (A0)—(A2) and show thit ; = f (0, (x0), W) is still a
continuously differentiable one-to-one mapping fr¢dnl) to R.

Returning to the linear model, now suppose that the user of the forecast obsdrvestar
of variablesV; that were available to the forecast producer at the tffi¢ was made. Assuming
that the forecaster is rational this implies thais a subvector of\;. For given values ofxo, po)

Propositionl then ensures that the following condition holds:
E[Vi(A(Yir1 — ffq < 0) — )| Yie1 — fiq /™Y =0. 4)

Our next result shows that moment conditioAstfased on an observed subvectpof W; are
sufficient to identifywg.

Lemma 2. Under AssumptionfA0)—(A3), given p € N* and given a solution ¥, to
(3), the true valuexg € (0, 1) is the uniqgue minimum of a quadratic form

Qo(e) = EMVi(A(Yis1 — fhg < 0) — )| Yigr — ffq |7
CSTTEM(A(Yer1 — fipg < 0) —e)[Yepn — ffg P71,

where Y is a subvector of Wand S is any positive definite weighting matrix.

An important implication of the result of Lemmnis that, in order to back outg, the
forecast user does not require the full vector of variables used by the foredastent rather
a subvector of these variableg,. This is a rather strong result which grants that with only a
subvector oM; we can identify the loss function parametey; even though we cannot recover
even a subset &f* or know the full forecasting model used to generate the forecast.

In practical applications, Lemnfais particularly relevant as we would generally expect that
forecasters have access to not only publicly available information but also private information
which is outside the information set of the forecast user. For example, it is a reasonable
assumption that the IMF uses publicly available information provided by member governmentsiin
forecasting government budget deficits as well as private information gleaned from their country
visits and discussions with finance ministers. However, even with only the public information
available, the identification afj is still feasible.

Itis this practical concern that limits our focus to linear models. The results established here
continue to hold for nonlinear forecasting rules provided ¥as a subvector of the gradient of
f with respect to the paramet@revaluated ato*, W;). In the linear case this gradient simplifies
to W; and is therefore independent @f. In the nonlinear models, however, the gradient of
f with respect to® potentially depends on bot; and the entire vector of parameter values
6*. To calculateV; we would therefore need to know the forecasting moflednd its true
parameter®* as well as the values of all the variablég that were used to construct the
forecast.

There are special cases (examples of nonlinear models) in which one can proceed in the
same way as ibection3 below. If the model is partially linear and; is a subset of the linear
terms, then the gradient df with respect to9 includes the vectok;, and the orthogonality
conditions &) still hold. In other nonlinear models it is also possible that separability of the
model would allow specification of; with only partial knowledge of the model and variables.

In these cases the results below would continue to hold with the appropriate redefinitions.
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3. ESTIMATING LOSS FUNCTION PARAMETERS

We now turn to the problem of recovering the true valg@ised in the loss minimization problem
(2) assuming again that the value p§ is already known by the forecast user. If we observed
the sequencéf’, ,} of opt_imal one_—step—ahead point forecadfs, = 6*w; provided by the
forecastergg could be estimated directly from

o — EDVHIYers - fr P STEEMMA(Y i1 — ffy < O)[Yepn — 5 1P
O =

E[Vt|Ye1 — f 4P STIE[Ve[ Yeqa — £ 4P~

)

whereS= E[V;V{ (1(Yi11— %, < 0)—a0)?|Yes1— f%4[2P2]. In practice, however, we only
observe the sequen¢é; 1}, where f, 1 = 6{w andé; is an estimate of* obtained by using

the data up to timé. Letn+ 1 be the total number of periods available and assume that the first
observations are used to produce the first one-step-ahead fofecasthereare — 1 +1=T
forecasts available, startingtat= 7 + 1 and ending ah + 1 = T + . These are assumed to

be constructed recursively so that the parameter estimates use all information prior to the period
covered by the forecast. In particular, the one-step-ahead forécast of the random variable

Y:1i41 is constructed using the data fram= 1 tos = 7 + i, i.e. (Y2, wy, ..., Ye+is w’t+i_1)’

to compute an estimaéngi of 6*. The forecast of/; 1 +1 is then given byf}+i+1 = é;H Wi,
i =1,...,n— 1. Our approach allows for the possibility that the agent is recursively learning
the parameters of the forecasting model. In many macroeconomic applications with small
samples this is clearly more realistic than assuming that the agent’s learning process has been
completed.

Having observed the sequence of forecasﬁtsl},gq“, we now construct an estimator
for g based on equatio). Given theT observationsv., ..., U'/I'+r71)/ of thed-vectorV;, we
consider a linear Instrumental Variable (1V) estimatowgfar, defined as

1y T+7r-1 5 1) a1 1 vTHr-1 . - _
. [T o T utlyen — frpalPo 1} §t [T ol — fipn < O)lyegs — frpal P 1] ©)
o7 = 5 s
T4r-1 . 17 e T4r-1 . -
[% T oty — frpalPo 1] st [% T oty — frpalPo 1}

whereSis a consistent estimate 6f The consistency result fér is as follows:

Proposition 3 (Consistency). Given p = 1, 2, letat be the linear IV estimator defined
in (6). Under Assumption@0)—(A6), &t exists with probability approaching one atd £ ao.

In other words, even with the domain @f not being compact, the linear IV estimator is
consistent for the true valug). When the forecast rule is nonline&k,is now a subvector of the
gradient of f with respectt@, V, f, evaluated at6*, W), whered* is unknown. Assuming one
can observe a subvectayrof Vy f evaluated a(ét, W), whered; is some consistent estimate of
0*, éhe results of PropositioBwould still apply by replacing; with 3; in the expressiong) for
aT.

Results on the asymptotic distribution & can be established under a set of stronger
mixing conditions’

6. Note that Assumptions (Al), (A3) and (A5) used in the proof of ProposiBioreed to be appropriately
modified.

7. For general results on asymptotic inference in the presence of parameter uncertaitysg@©96, West
and McCracker{1998, McCracken(2000 andCorradi and Swansof2002. Propositions3 and4 focus on the cases
wherepg = 1, 2. These are likely to be the cases most useful in empirical analysis as they nest MAE and MSE loss. The
results are extendable fi > 2 using the same approach.
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Proposition 4 (Asymptotic Normality). Given p = 1,2, let @t be the linear IV
estimator defined irf6). Under Assumption§A0)—(A4), (AS) and (A6)—(A7), aT exists with
probability approaching one and

TY2G7 — ag) S N(0, (S 1h*)7Y),

where S is defined after equati(B) and h* = E[V; - |Yi4+1 — ft’;1|p0‘1].

The linear IV estimatoé is asymptotically normal with asymptotic variance that does not
depend on eitheW; or 6*, both of which area priori unknown to the forecast user. Indeed,
the asymptotic variance @it is identical to that obtained with a standard GMM estimator.
This stems from the slightly faster rate at which the forecaster’s sample grows relative to the
evaluator’'s sample. The result requires that the forecaster uses a consistent estimator, but not
necessarily an optimal one.

In practice, the computation of the linear IV estimadar is done iteratively. Estimation
of &t requires a consistent estimator 8f, which in turn depends omg. S can however be
consistently estimated by replacing the population moment by a sample average and the true
parameter by its estimated value, for exam@&t) = T2 " oo (A(y1 — foa <
0) — a1)?|yie1 — fr41/2P~2, wherear is a consistent initial estimate afy, or by using
a robust estimator, such &ewey and We& (1987 estimatof Computation ofa is then
carried out by first choosing = Iqx¢ and using §) to compute the correspondirig 1. The
resulting new weight matri>é—1(&T,1) is more efficient than the previous one, which when
plugged into 6) leads to a new estimatérr 2. The last two steps can then be repeated until
aT1,j equals its previous valugr j_1. Consistent estimates of the asymptotic varianc&of
are obtained by replacing andh* in Propositior4 with their consistent estimat&&m) and
hr = T2 g lyeys — fipalPL, respectively.

In the single instrument case & 1), a1 can be interpreted as justifying biased forecasts by
adjusting the loss function to make them optifh&lowever, if indeed the forecasts are rational,
thenV; is a subvector of\; and all moment conditions must hold simultaneously. Thus a test for
overidentification whem > 1 provides a joint test of rationality of the forecasts and the more
flexible loss function. One degree of freedom is used in the estimation of the loss parémeter,
so, from the results of Propositieh we have

Corollary 5 (Rationality Test). Under the assumptions of Propositieh for a given
value p = 1,2, a joint test of forecast rationality and the flexible loss funct{@h can be
conducted with &> 1 instruments through the test statistic

1 T+r—1 - R - A\ A
J== [(thr vt[1(¥e+1 = frer < 0) = @11l¥ers — fepal® l) S

Toe-1 . . . B
: (Zt_; vt[1(Veg1 — fro1 < 0) —arllyeer — frpal® l)} ~x3 .. (7)

Tests based on an assumption of MSE loss are closely related to this tespyisainosen
to be equal to 2. The difference is that if indegl = 0.5, tests based on MSE loss impose
this restriction, whereas our test uses a consistent estimatentiich is treated as unknown.
However, ifag # 1/2 then standard tests would have power in this direction. Our use of a

8. Consistency of(@r) can be shown by an argument analogous to the one in the proof of Prop@&sition
9. Whend = 1, the estimator is independent®find a closed form solution exists. For example, whgnr= 1
andVt = 1 the estimator is simply the proportion of negative forecast errors.
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consistent test avoids this problem and controls for size if the forecaster’s loss function reflects a
different value otxg. Asymptotically there is no loss from relaxing the assumptiondpat 0.5,
but there is clearly a gain in terms of directing power in the desired direction.

Different choices oW; in the construction of our estimataf result in different asymptotic
variances, which naturally raises the question of how to optimally choose the instruments. It is
possible to show thakt is asymptotically optimal—in the sense that its asymptotic variance
is minimal—whenV; = W, i.e. when the forecast user has all the information used by the
forecaster. Outside this situation, one could attempt to use data-based methods for selection of
moment conditions using criteria such as those proposé&bbwld and Newey2001), replacing
their MSE loss with our los& in (1) evaluated at pg, aT), whereat is a consistent estimate
of ap.

4. SIMULATION RESULTS

We briefly examine the behaviour of the proposed estim&paiid test {) in a Monte Carlo
experiment. Random data samples were generated by a linear forecasting model

Yir1 = 60"W + Uy

with the vecto\k = (1, Wyr, Wt ), whereWs; ~ N(1, 1), Wy ~ N(=1, 1), 6 = [1, 0-5, 0-5]
andU; ~ N(O, 0-5). Five thousand Monte Carlo simulation experiments were undertaken for
different numbers of initial values available for estimatéhgecursively (such data are available

to the forecaster before the initial forecast is recorded), denoteg,and for different numbers

of data available for estimation a@f and testing, denoted by;. For pg = 1 recursive forecasts
were computed using quantile regression methods anggcee 2 the nonlinear least squares
estimation method dflewey and Powel1987) was used to estimaterecursively.

Panel A inTable1 examines, for various sample sizes and valuegyothe size oft-tests
testinge = ap (i.e. the true value) against two-sided alternatives for a size of 5%. Results are
reported forpg = 1 (lin—lin) and pg = 2 (quad—quad) using only a constant as an instrunent,

V; = 1. Size is well controlled overall, even wheg is far from one-half (on average). Size is

less well controlled for the quad—quad loss function. The reason for this is straightforward: for the
asymmetric models the forecast “errors” are less well balanced above and below the true value
so we obtain asymmetric small sample distributions and require a larfperthe central limit
theorem to provide a good approximatifhAdditional in-sample or out-of-sample observations
help to control the size.

Panel B employs the two time-varying instrumentg;, Wy in addition to the constant,

i.e. i = W;. Including extra instruments results in larger size distortions across the board.
The problem is again more of an issue for the quad—quad than for the lin—lin loss function.
As expected, size distortions are less of a problem when more observations are available. As
before, additional out-of-sample observations play a particularly important role in controlling
size. Problems are again greater, the furthgis from one-half.

The proposed tests for overidentification that examine whether the moment conditions are
compatible withsomeag are reported in Panel C. Size is generally well controlled although
the tests tend to be undersized rather than oversized, and departures from nominal size (5%)
are larger whenxg is further away from one-half. Wheg = 1/2, empirical size is very
close to nominal size for all samples. Increasing the sample helps, adding more out-of-sample
observations once again appearing to be more useful.

10. This is identical to the usual result in applying the central limit theorem to Bernoulli outcomes.
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TABLE 1

Size of two-sided t-tests and J-tests (nominal 5¥a¢

A.Lin-lin (pg =1

t-test, only a constant as instrument

ng n¢ 02 04 05 06 08
50 50 0053 0059 0061 0064 0057
50 100 0066 0050 0057 0052 0060
100 50 0056 0056 0066 0066 0049
100 100 0063 0055 0057 0052 0058
100 200 0061 0053 0053 0055 0054
t-test, two instruments
ng n¢ 02 04 05 0-6 08
50 50 0144 0094 0078 0090 0098
50 100 0090 0073 0064 0072 0069
100 50 0162 0095 0083 0091 0106
100 100 0096 0076 0063 0068 0072
100 200 0077 0065 0055 0063 0065
J-test, two instruments
no n¢ 0.2 04 05 06 08
50 50 0029 0047 0049 0048 0036
50 100 0044 0048 0047 0047 0044
100 50 0033 0047 0046 0049 0033
100 100 0041 0052 0049 0047 0041
100 200 0049 0047 0048 0052 0047
B. Quad—quadpg = 2)
t-test, only a constant as instrument
ng n¢ 02 04 05 06 08
50 50 0065 0069 0071 0071 0063
50 100 0082 0062 0063 0061 0074
100 50 0063 0068 0072 0072 0065
100 100 0077 0057 0059 0057 0068
100 200 0127 0055 0057 0052 0121
t-test, two instruments
ng n¢ 02 04 05 06 08
50 50 0105 0121 0118 0120 0102
50 100 0076 0083 0087 0085 0077
100 50 0109 0120 0116 0121 0113
100 100 0080 0077 0080 0080 0073
100 200 0104 0066 0069 0066 0102
J-test, two instruments
ng n¢ 0.2 04 05 06 08
50 50 0020 0038 0043 0040 0023
50 100 0032 0044 0045 0042 0026
100 50 0026 0042 0041 0040 0022
100 100 0033 0049 0050 0046 0030
100 200 0030 0046 0051 0050 0035

Note ng is the initial sample used to estimate the parameters of the forecasting model
while ns is the size of the out-of-sample forecasting period used to test the me2el. 0
0-4, 05, 06 and 08 are the values afp, the population asymmetry parameter.

1115



1116 REVIEW OF ECONOMIC STUDIES

5. GOVERNMENT DEFICIT FORECASTS

In this section we apply our estimation methods and tools for inference to the optimality of
forecasts of government budget deficits for the G7 countries produced by two international
organizations, namely the IMF and the OECD. This application is well suited to demonstrate
our methods since, as pointed outAwtis and Marcelling “the political context in which fiscal

deficit forecasts emerge may well be one in which the costs of forecast misses are not symmetric”
(Artis and Marcelling 2001, p. 20). A similar point is made bgampbell and Ghyseld995 in

the context of an analysis of federal budget projections.

Our data comprises budget deficit forecasts, reported as a percentage of GDP, for the G7
countries and is reported as budget surpluses so that a budget deficit takes a negatitfe value.
Forecast errors are defined as realizations minus predicted values. Since almost all realizations
and predictions are negative, a positive forecast error corresponds to a larger predicted deficit
than the one that actually occurred. We refer to this as an overprediction of the budget deficit
(underprediction of the budget surplus). In all cases the data comprises current-year (published
in May each year) and year-ahead forecasts (published in October df fgggreart + 1). The
OECD data cover France, Germany, Italy and the U.K., contains between 24 and 27 data points
and goes from 1975 to 2001. The IMF sample has information on all G7 countries, goes from
1976 to 2000 and thus contains 25 observations. These are not large samples, so some caution
should be exercised in the interpretation of the results.

In our empirical tests we first assume that the loss function is lingin=€ 1). Authors
such asGranger and Newbolf1986 have argued that lin—lin loss approximates other classes of
asymmetric loss functions. For robustness we report results for four separate sets of instruments:
(i) a constant; (ii) a constant and the lagged forecast error; (iii) a constant and the lagged budget
deficit; (iv) a constant, the lagged forecast error and the lagged budget deficit. Given the small
sample size, we do not consider more than three instruments. For robustness we also conduct
empirical tests under the assumption of quad—quad lags-=(2).

5.1. Evidence of asymmetric loss

Inspection of the forecast errors showed that overpredictions of budget deficits (positive average
forecast errors) are most common—between 19 and 21 of 25 current-year IMF forecast errors
are positive for Italy, Japan, the U.K. and the U.S.—although for Canada we found evidence of
underpredictions (negative average forecast errors). Under the assumption that the loss function
is piecewise linear (lin-lin)Table2 presents the estimated asymmetry paraméfealpng with
its standard error ang-values for tests of the null hypothesis of symmetric lags¢ = 0-5. The
parameter estimates and test results are of separate economic interest since they are indicative of
the forecaster’s objectives.

First consider the current-year IMF forecasts when the model is exactly identified and a
constant is the only instrument. Five of seven countries generatimates below one-half,
one country (France) has an estimaté&?) close to one-half and another country (Canada) has
an «-estimate of @60. The null of symmetryd = 0.-5) is strongly rejected for Italy, Japan,
the U.K. and the U.S. Similar results are obtained for the 1-year-ahead IMF predictions, where
the a-estimates are significantly different from one-half for Italy, the U.K. and the U.S. In the
overidentified models with two or three instruments the current-year results tend to be even
stronger since the standard errors dotend to decline. Hence, the null of symmetric loss is
rejected withp-values less than-01 for Italy, Japan, the U.K. and the U.S. In each case the point

11. We are grateful to Massimiliano Marcellino for providing the first part of the data. The data source is the IMF's
World Economic Outlook and the OECD’s Economic Outlook.
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TABLE 2
Parameter estimates under lin—lin loss and tests of symmetry

IMF OECD
Canada France Germany Italy Japan U.K. U.S. France Germany ltaly U.K.
Current year
Inst=1 « 0-60 052 040 016 024 024 020 027 022 029 048
s.e. 010 010 010 007 009 009 008 009 008 009 010
p-value 031 084 031 000 000 000 000 001 000 002 085
Inst=2 « 0-58 054 040 014 019 020 018 028 022 028 050
s.e. 010 010 010 007 008 008 008 009 008 009 010
p-value 039 067 033 000 000 000 000 001 000 002 098
Inst=3 « 0-59 054 042 015 024 024 019 013 012 029 050
s.e. 010 010 010 007 009 009 008 007 006 009 010
p-value 039 068 040 000 000 000 000 000 000 002 099
Inst=4 « 0-59 054 040 013 020 019 017 011 011 026 049
s.e. 010 010 010 007 008 008 008 006 006 009 010

p-value 039 067 030 000 000 000 000 000 000 001 092

1-year ahead

Inst=1 « 0-54 048 044 030 040 024 024 044 032 046 052
s.e. 010 010 010 010 010 009 009 010 009 010 010
p-value 068 084 055 004 031 000 000 055 005 068 084
Inst=2 « 0-54 050 045 027 018 014 014 041 033 043 055
s.e. 010 010 010 009 008 007 o007 010 009 010 010
p-value 067 096 062 001 000 000 000 038 008 052 059
Inst=3 « 0.57 050 046 027 037 024 024 039 027 043 054
s.e. 010 010 010 009 010 009 009 010 009 010 010
p-value 050 1.00 066 001 018 000 000 024 001 052 066
Inst=4 « 0.57 050 044 027 026 017 013 035 024 043 057
s.e. 010 010 010 009 009 008 007 010 009 010 010

p-value 048 098 057 001 001 000 000 013 000 051 045

Note The four instrument sets labelled from instl to inst= 4 are the following: (i) a constant; (ii) a constant and
the lagged forecast error; (iii) a constant and the lagged budget deficit; (iv) a constant, the lagged forecast error and the
lagged budget deficit.

estimates for these four countries are bele@b0thus suggesting economically strong evidence
of asymmetry. At the 1-year horizon the null of symmetric loss continues to be rejected at or
below the 5% level for Italy, Japan, the U.K. and the U.S.

Turning to the OECD forecasts, for the current-year predictions all four countries generate
estimates of below one-half. Irrespective of the set of instruments used, the null of symmetric
loss is rejected at the 5% significance level for France, Germany and Italy although the evidence
of asymmetric loss is somewhat weaker at the 1-year horizon.

These results suggest that the IMF and OECD systematically overpredict government
budget deficits. This is consistent with a loss function that penalizes underpredictions more
heavily than overpredictions. The point estimatesaobuggest strong asymmetries in the
loss function both from an economic and a statistical point of view. For some countries they
indicate that underpredictions of budget deficits are viewed as up to three times costlier than
overpredictions.
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5.2. Tests of forecast rationality

The shape parameters of the loss function provide important information about the forecaster’s
objectives. Ultimately, however, we are interested in testing whether the IMF and OECD
forecasts are consistent with rationality. To test this, and to investigate what is driving our
empirical results, we first conduct our tests under the assumption of symmetric loss. This is the
null hypothesis that has been maintained throughout the literature, so it seems a natural starting
point for our analysis. We can test this hypothesis by impogiegl,/2 and examining thé-test

(7) which follows axg-distribution under this restriction.

The outcome of the joint tests of rationality amd= 1/2 is reported in Panel A dfable3.

The null hypothesis is rejected at the 5% level in exactly half of the tests (44 out of 88 cases). In
the IMF data there is strong evidence against the composite null hypotheses for Italy, Japan, the
U.K. and the U.S., while the OECD data leads to rejections of the null in the current-year data
for France, Germany and Italy and, in the 1-year forecasts, for Germany.

Since the rejection of symmetric loss and forecast rationality may well be due to the
symmetry assumption, we next test whether forecast rationality gets rejected once we allow for
asymmetric losso{ # 1/2). The results—shown in Panel B tdble3—are very interesting and
in complete contrast to those found in Panel A. There is only very weak evidence against the
composite null hypothesis of forecast rationality and a loss function belonging to the famnily (
Overall there are only six cases where the null gets rejected at the 5% significance level. The only
cases where two instrument sets lead to a rejection for the same country are Japan (1-year IMF
forecasts) and France (current-year OECD forecasts). Comparing the results in Panels A and B
it appears that the systematic rejections of the composite null hypothesis of symmetric loss and
forecast optimality can be attributed to asymmetric loss in the current-year forecasts for Italy,
Japan, the U.K. and the U.S., and, in the case of 1-year forecasts, for Italy, the U.K. and the U.S.

To check the robustness of our findings with respect to the assumed shape of the loss func-
tion and to consider a family of loss functions that embeds MSE Ttadde4 reports empirical
results for the quad—quad loss function. In the current-year IMF forecasts the joint hypothesis of
MSE loss and rationality (Panel A) is strongly rejected for Italy, Japan, the U.K. and the U.S. This
null gets rejected for France, Germany and lItaly in the current-year OECD forecasts. At the 1-
year horizon the evidence against the null hypothesis is even stronger and the null gets rejected in
the IMF data for Canada, France, Italy, Japan, the U.K. and the U.S., and, in the OECD data, also
for Germany. Overall, the null continues to get rejected at the 5% level in nearly half of all tests
(42 of 88 cases). Allowing for asymmetric quadratic loss (Panel B), the evidence against rational-
ity is far weaker. The null gets rejected at the 5% level for the current-year data only in a single
case. Atthe 1-year horizon, the null is strongly rejected by the IMF predictions only in three cases
and in a single case in the OECD data. In total the nullis only rejected at the 5% level in five cases.

Overall our conclusions thus appear to be robust with respect to the assumed class of loss
functions. This is fortunate since, in the absence of a more detailed analysis of the political
pressures facing the international organizations, it is difficult to choose one class over the other.
Consistent with our findings under lin—lin loss, the tests of forecast rationality are significantly
changed once we allow for asymmetric loss. While the joint null hypothesis of MSE loss and
forecast rationality is strongly rejected in a large number of cases, there is far weaker evidence
against this null under asymmetric quadratic loss.

6. CONCLUSION

This paper provided theory for identification and estimation of the parameters of loss functions
applicable to situations where time-series data on point forecasts is available but the underlying
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TABLE 3
Tests of the joint hypothesis of lin—lin loss and forecast rationality
IMF OECD
Canada France Germany Italy Japan U.K. U.S. France Germany ltaly U.K.

A. Symmetric (MAE) loss Current year
Inst=1 J-stat 104 004 104 2150 927 927 1406 704 1205 504 004

p-value 031 084 031 000 000 000 o000 001 000 002 085
Inst=2 J-stat 082 041 262 2622 1661 1441 1822 602 1230 671 152

p-value 067 081 027 000 000 000 000 005 000 003 047
Inst=3 J-stat 091 017 075 2393 867 928 1477 3437 4039 603 042

p-value 063 092 069 000 001 001 000 000 000 005 081
Inst=4 J-stat 093 041 349 3016 1481 1676 2014 4390 4385 895 251

p-value 082 094 032 000 000 000 000 000 000 003 047

1-year ahead

Inst=1 J-stat 017 004 037 416 104 927 927 037 372 017 004
p-value 068 084 055 004 031 000 000 055 005 068 084
Inst=2 J-stat 313 258 216 635 2302 2806 2842 131 309 044 429
p-value 021 028 034 004 000 000 000 052 021 080 012
Inst=3 J-stat 406 010 057 591 206 901 978 364 938 050 043
p-value 013 095 075 005 036 001 o001 016 001 078 081
Inst=4 J-stat 424 306 331 649 1468 2197 3347 702 1312 060 525
p-value 024 038 035 009 000 000 000 007 000 090 015
B. Allowing for asymmetric loss Current year
Inst=2 J-stat 012 024 172 079 217 166 118 001 055 159 152
p-value 073 063 019 037 014 020 028 094 046 021 022
Inst=3 J-stat 020 000 006 062 023 042 052 565 381 089 042
p-value 066 099 081 043 063 052 047 002 005 035 052
Inst=4 J-stat 021 024 246 127 197 220 149 656 412 213 250
p-value 090 089 029 053 037 033 048 004 013 034 029

1-year ahead

Inst=2 J-stat 206 257 1.93 025 665 318 442 056 006 004 402
p-value 009 011 016 061 001 007 004 045 081 083 005
Inst=3 J-stat 362 010 038 008 034 049 058 223 290 009 025
p-value 006 075 054 078 056 048 045 013 009 076 062
Inst=4 J-stat 376 306 301 033 788 456 535 477 428 019 471
p-value 015 022 022 085 002 010 o007 009 012 091 009

Note The four instrument sets labelled from instl to inst= 4 are the following: (i) a constant; (ii) a constant and
the lagged forecast error; (iii) a constant and the lagged budget deficit; (iv) a constant, the lagged forecast error and the
lagged budget deficit.

model used by the forecaster is unknown. We also provided test statistics that can be used
when testing the composite null that loss belongs to a general family of loss functions and that
information is used efficiently in the computation of the forecasts.

Our estimator and test statistics are easy to compute and should find a number of practical
applications. Once the limitations and restrictiveness of MSE loss are acknowledged, it clearly
becomes more attractive to allow for more general classes of loss when testing forecast
rationality. Most often the forecast producer’s loss function is unobserved and a reasonable
approach will not want to impose too much structure on this unknown loss function. Since the
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TABLE 4
Tests of the joint hypothesis of quad—quad loss and forecast rationality
IMF OECD
Canada France Germany Italy Japan U.K. U.S. France Germany Italy U.K.

A. Symmetric (MSE) loss Current year
Inst=1 J-stat 249 095 027 366 251 1881 456 164 965 420 041

p-value 011 033 061 006 011 000 003 020 000 004 052
Inst= 2 J-stat 237 110 112 653 7719 4475 1014 143 1144 1209 434

p-value 031 058 057 004 000 000 001 049 000 000 O11
Inst= 3 J-stat 273 241 025 2497 263 1446 1204 900 4033 659 004

p-value 025 030 088 000 027 000 000 OO0 OO0 004 098
Inst= 4 J-stat 320 241 123 2572 1869 3181 2466 4167 4209 2139 439

p-value 036 049 075 000 000 000 000 000 000 000 023

1-year ahead

Inst= 1 J-stat 252 172 044 686 065 174 344 014 665 042 001
p-value 011 019 051 001 042 019 006 071 001 052 094
Inst= 2 J-stat 656 7.38 101 15783 11664 1234 1298 226 554 098 376
p-value 004 002 060 000 000 000 000 032 006 061 015
Inst= 3 J-stat 1117 426 010 14302 093 116 335 045 1676 096 008
p-value 000 012 095 000 063 056 019 080 000 062 096
Inst=4 J-stat 1142 823 121 15490 1426 1244 1580 762 2148 116 526
p-value 001 004 075 000 000 000 000 005 000 076 015
B. Allowing for asymmetric loss Current year
Inst= 2 J-stat 011 000 103 058 290 266 167 019 095 155 411
p-value 074 098 031 045 009 010 020 066 033 021 004
Inst= 3 J-stat 005 1.89 018 296 003 007 191 324 293 087 002
p-value 083 017 067 009 085 079 017 007 009 035 089
Inst= 4 J-stat 032 191 113 298 407 305 330 685 314 153 419
p-value 085 039 057 023 013 022 019 003 021 047 012

1-year ahead

Inst= 2 J-stat 258 309 082 1.95 434 379 366 218 022 002 375
p-value 011 008 036 016 004 005 006 014 064 088 005
Inst= 3 J-stat 352 124 002 191 039 008 017 033 233 000 003
p-value 006 027 090 017 053 078 068 057 013 096 086
Inst= 4 J-stat 351 483 098 249 762 548 439 748 402 004 525
p-value 017 009 061 029 002 006 011 002 013 098 007

Note The four instrument sets labelled from instl to inst= 4 are the following: (i) a constant; (ii) a constant and
the lagged forecast error; (iii) a constant and the lagged budget deficit; (iv) a constant, the lagged forecast error and the
lagged budget deficit.

vast majority of work in the empirical forecasting literature has maintained MSE loss, many
empirical results need to be revisited using methods such as those advocated here.

APPENDIX A. ASSUMPTIONS AND NOTATION
Notation

Givenpg € N*, foreveryt, 7 <t < T+t — 1, and any®, ap) € © x (0, 1), we letGi1(0) = Vi L(Yr41 — 0'We <
0)[Yip1 — 0'We [P~ Hi1(0) = VeI — 0'We [P0~ L and My 16, @) = Giy1 — egHi41, and denote by 1,
ht+1 andmy_ 1, respectively, their realizations. Further, wedgt ht andmt denote the sample means®f, 1, Hi+1
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and M 1, respectivelyj.e. gr = T~1 Zgj:_ﬂ gs, h T-1 Zg*:_ﬂ hs andmr = T-1 Zg*f_ﬂ ms, and we
denote byg, h andm the expected values @1, Ht+1 and Mt+1, respectlvely To shorten the notation, wites: 6

we add a “hat” to all the above quantltle:e we use the notatloGH_l (67), Ht+1 (hT) and Mt+1 (). Also, we let
0= E[Gt+1] h= E[Ht+1] and = E[MHl] Similarly, wherp = 6* we add a “star” tdG¢ 4 1, Hy+1 andM;4 1 and
their sample meanse we use the notatloﬁBH_l (gT) Ht+1 (h ) and Mt+1 (m’{). In that case, the expected values
are denoted* = E[G l] h* = E[H 1] andm* = E[M t+1]

Assumptions . (A0) © is a compact subset &" and6* is interior to ©, i.e.0* € é;
(A1) the h-vector W (with the first component 1) is such that, giveg g N*, for any 0* € o, E[Wt|Yi41 —
0% W | p0*1] # 0 element by element anc{‘EltWt’] exists and is positive definite;
(A2) forevery t,r <t < T + ¢ — 1, the density of ¢, 1 conditional onZ; is strictly positive,.e. for every ye R,
ft y) >0;
(A3) the d-vector Yis a subvector of the h-vector{Wd < h) with the first component 1 and there exists a constant
K > Osuchthatforeverytr <t<T+7-1, |WI|2 WtVVt <K,as.—P;
(A4) forevery t,r <t < T + 1 — 1, 4 is a consistent estimator 6f, with6* € G < é;
(A5) the stochastic processdst} and {W;} are strictly stationary andyx-mixing with mixing coefficien& of size
—r/r —1),r > 1 and, given p € N¥, there exist soméy > 0 and Ay > O such thatsugcg E[(Yi+1 —
0'Wp)2T+Y)(Po~D] < Ay < oo and someyy > 0and Ay > Osuch that B|W; |27 HW)] < Ay < oo;
(A5’) the stochastic processg¥;} and {W;} are strictly stationary andx-mixing with mixing coefficient of size
—r/(r —2),r > 2, and, given p € N*, there exist somay > 0 such thatsupce E[(Y41 — 0'Wp)& (Po—D] <
Ay < oo and someAy > Osuch that W |2 ] < Ay < o0;
(A6) forevery t,r <t < T+t —1, the density of it 1 conditional onF; is boundedi.e. there exists some € 0 such
thatsup,cg fO(y) < C < oo;

(A7) for some smalk, & € (0,1): (i) 7272 /T — oo and(ii) sup, <y <741 tY2 756 — 6%) £ 0,ast > oo and
T — oo.

APPENDIX B. PROOFS

Proof of Propositioril. ~ We first show thatJ) is a necessary condition for optimality cblfjrl = 0*W. From Q)
we know tha®* € @ is a solution to mipee X(0), whereX (0) = E[Zt41(8)] andXiy1(0) = [eo+(1—200) 1(Yi 11—
W < 0)]\Yt+1 — 6"W;|Po. The functionZ;1(6) is continuously differentiable o®\ A1, whereAr 1 = {0 €
O : Yiy1 = 0'W}. Let VgZ1(0) be the gradient ofS;1(0) on ©\A¢,1. By the law of iterated expectations
2(0) = E{E11[Zt41(0)]}, so thatVyE(0) = E{VypZ11(0)Et11[10 € A[ DI} + E{VgZt11(0)Er1[1(0 €
Ar11)]}, whereEq1[1(0 € At+1)] = 1andE¢;11[100 € Ai+1)] = 0. Hence 2 (0) is continuously differentiable
on © and we havevy £(0) = (1 — 200)E[Vel(Yy1 — O'We < 0)|Yeq1 — 0'WE[PO] + poE[W (L(Ypy1 — O'WE <
0) — ag)|Yr41 — 0'Wk [Po~1]. Note thatVy 1(Yy 11 — 0'Wr < 0) = Wi - §(8’Wk — Ye41), wheres is the Dirac function,
so thatE[W; - §(0'Wt — Yii1) - [Yip1 — 6'Wt|P0] = 0, for any non-zergpg. Thus,

VoZ(0) = PoEMWE(L(Ypq1 —0'WE < 0) — ag)[Yypq — 0/ We[Po~ 1. (8)

For given values ofyg, pg € N*, andag, ag € (0, 1), if 6* € & is the minimum ofZ(9), theng* is a solution to
Vo Z(6*) = 0 (cf. Theorem 3.7.13 ischwartz(1997, vol. 2, p. 168)),.e. (3) holds for fthl = 6* W, which com-
pletes the necessity part of the proof. We now derive a set of sufficient condition$ for® to be a solution to the
minimization problemZ). We know thav* is a strict local minimum of= (9) on & if Vo Z(6*) = 0 andAgy = (0%) is
positive definite (sees.g.Theorem 3.7.13 ischwartz(1997, vol. 2, p. 169)). The first order conditidvy = (0*) = 0 is
implied by the orthogonality conditior8). We now show that\gg = (9*) is positive definite. By an argument similar to
that above we have

ApgT(0) = POEIEW, - 8(0'Wk — Yei1) - [Yeiq — 6'We PO~
+Po(Po — DEMWEW[arg + (1 — 200) (Y11 — 6'Wh < 0)][ Y41 — 6/ Wh|PO~2). 9

Consider the foIIowing two cases separate;jy = landpg > 1. Whenpg = 1 thenAgg Z(0) = E[WtWt 8(0'W —
YeyD)] = E[WW - (9 Wt)], where ft is the density ofY;;1 conditional onZt. By (A2) ft > 0 and by (A1)
E[WtVVt] is positive deflnlte giving the result. For amy € 6 the matrix Agg X(0) is positive definite, therefore it
is positive definite ap*. Whenpg > 1, Agg=(©) = po(po — DE{WLW - Et[(eo + (1 — 200)1(Yry1 — O'We <
0)[Yi11 — 0'We|PO~2]}, with Et[(crg + (1 — 200)1(Y41 — 0'We < 0)[Yy11 — 0'We|Po~2] > 0,as. — P, for any
(ag, 0) € (0,1) x ©. So by this and (A1) for ever§ € © the matrixAgg X (0) is positive definite, then so must it be
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for 6*. Thus anyft"jk1 = 6*W; which satisfies the moment conditioB) (s a solution to 2), which completes the suf-
ficiency part of the proof. We now use the implicit function theorem to show that for any realizatih, ¢fie function
ft*+l = fpg (@)’ Wt defined implicitly by @) is a one-to-one mapping from the set of asymmetry parameiets to the
set of forecast®. Given pg = 1, 2, definepp,(a, 6) = E[Wi(1(Yi+1 — 0'Wt < 0) — &)[Yi41 — 0'W;|Po—1] so @)
is @pg (g, 0*) = 0. The functiongp, : (0,1) x © — RK is continuously differentiable o0, 1) x ®, and we have
dppy(a, 0)/0a = —E[Wt[Yi4q — 9’Wt|90*1], anddgpy(a, 0)/30 = Agg X(0), whereAgg X () is as in ). For every
ap € (0,1), theRK x RK-matrix d9pg (g, 0%)/36 is non-singular, given thakgg X (™) is positive definite. We can now
apply the implicit function theorem (Theorem 3.8.55phwartz(1997, vol. 2, p. 185)) to show that for everyy € (0, 1)
there exists an open intervely containingag and an open se&bg containingd™, Gg = {6 € 6 : |0 — 6% < 8g}
with 8o > 0, such that for every € Eg, the equationpp,(«,#) = 0 has a unique solutioi in Gg, and the
function® = 6p,(a) defined implicitly by pp, (o, 6py(@)) = 0 is continuously differentiable fronkg to Go with
Ay (@)/dar = —[dgpy (@, Opy (@))/301 7L - dgpy (@, Opg (@) /0, i.e.

d6py (@)/dat = [Agg B (Bpg ()]~ LE[WE| Y41 — Bpg () We| PO~ 1. (10)

We now extend the previous implicit function argument by continuity to the entire open int@\al. Let G =
Uaoe(o’l) Gop. G being a union of open sets is an open subse®oHence, we have shown that givey € N*,

for everyag € (0, 1), the equatiop, (g, 6) = 0 has a unique solutia#* in G and the implicit functiord* = 6p, ()

is continuously differentiable front0, 1) to G with dfp,(«)/da as given in 10). In particular, for any realization of
W, the function ft"jrl = Gpo(ao)/V\/t is continuously differentiable fron0, 1) to R. Finally, we show thabp, («) is

a one-to-one mapping (or bijective) froff, 1) to G. It is surjective by construction, so we only need to show that
it is injective on(0, 1), i.e. Opy(a1) = Opy(ap) impliesay = ap. If Opy(eg) = Opy () then from @) we know 0=
(ap—a1) E[W \Yt+1—9p0(a2>/vw [Po—1] which, by (A1), impliesy; = a». Using identifiability of a linear forecast rule,
we know that for any realization &%, there exists a uniqu&* € G such thatft’;1 = 0*W,, hence by using the previous
result there is a uniqugy € (0, 1) such thatft’fFl = Gpo(ao)’wt. This completes the proof of Propositién ||

Proof of Lemm&. If S (and hencﬁl) is positive definite, then by using convexity we have tigfa) =
m* S~ 1m* admits a unique minimum 0, 1). It follows directly thate* = (h*'S~1h*)~1(h*'S~1g*). We need to
verify thata™ lies in (0, 1). First, we show that* € (0, 1) holds if all the elements of th-vector\; are strictly positive,

i.e.t > 0,a.s. — P. Inthat case we have g G?k+1 < Ht*+l’ a.s. — P, so that 0< g* < h*. Using (A1) we know that

0 < g* sinceV, is a subvector of\;. Knowing thatS—1 is positive definite, we then have® g’ S~1g* < g¥ S 1h*
< h* S~1h*. Hencex* > 0. Also, for alla € (0, 1), Qo(a) > 0 so that the reduced discriminant@f(«) is negative.
Henceh* S 1g* < /h*S-1h*g¥S—1g* < h*S 1h* soa* < 1. So, ifV; > 0, thena* € (0, 1). Now consider a
case where the first element\df is a constant 1 and there exists some constanO such thavt > —c- 14, a.s. — P,
where } is ad-vector of ones. This inequality is implied by (A3). Now, consider the rotation ofithector\t,

- 1 0
Vt:KVt:< ¢ lgg )Vt,

where nowV; = KV; > 0,a.s. — P. As K is positive definite(K ~1)’S1K ~1 is positive definite ifS~1 is positive
definite. Now, note that
o EDVEYep — ff 1P (KD SR IBI A (Vs — fy

EMVEYVes1 — ff P71V (K1Y STIKTLE[V Vg1 — ff 41 PO~

<O)Yeg1 — ff P07

o

s

so if «* is the minimum ofQq(«) thena* is also a minimum of the quadratic for@(a), with Q(a) = E[Vk(1(Y11 —

ff g <0 —a)|Yey1 — ft*+l\pO‘l]’(K‘1)/5‘1K‘1_E[\7t(1(Yt+1 — 11 < 0) —)Yiqn — 4P~ 1. From the
results above we then know that € (0, 1) sinceVt > 0, a.s. — P. Hence, under (A0)—(A3)Qo(x) is uniquely
minimized ate™® € (0, 1). We now show that is also a minimum ofQg(«): given concavity 0fQq(«), any solution
to the first order condition & h* S~1h* — ¢h*S~1g* = h* S~Im* is a minimum ofQq(«). We know that if\ is a
subvector oM (A3) thenh* = 0 (A1). Moreover,S~1 is non-singular, st S~Im* = 0 impliesm* = 0. We know
from (3) thatag satisfiesm* = 0, soag is a minimum ofQq(«). By uniqueness, we conclude thas = «*, which
completes the proof. ||

Proof of Propositior8.  First we show tha8 is positive definite. Giverpg € N*, we haveS = E[M* Mt*’ =

t+17t+
EIVEV{ (A(Yep1— iy < 0)—a)?|Yp1— f;;l\ZPo—Z], so that for everg e RY we havet’St = E[£/ ViV E(L(Yyp1 —
ffq < 0 — @)?Yey1 — f412P072]. Note that(1(Ya — fyy < 0) — )2y — 74[2P0"2 > 0,as. — P, s0
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'S =0= £'KV/E =0,as.— P = &E[WV/]¢ = 0. The positive definiteness & W W{] (A1) impliesE[V; V{] is
positive definite, hen(:e’E[VtVt ]& = 0= & = 0, which shows thaB is positive definite. Recall frondf that we have
&1 = (" S hy) =R S1Gr. To showar L |t is sufficient to show that (ifit — h > 0 and (ii)gr — g - 0.
Then, by using Lemma&, the consistency o8, S £ S, the positive definiteness & (and thus ofS‘1), (A1) and
(A3) which ensure thah # 0 and§ # 0, and the continuity of the inverse function (away from zero), we have that
aT R ag.

By the triangle inequality we havét — g*| < |61 — §1 + 1§ — g*| and|h — h*| < At — A+ A — h*|. We first
show that a§ — oo, |§T — §| Lo and|ht — A Lo by using a law of large numbers (LLN) fermixing sequences
(e.g.Corollary 3.48 inWhite (2001)). From Theorem 3.49 ifVhite (2001) measurable functions of mixing processes
are mixing of the same size. Hence, by (AB)}, {Hi+1} and{Gt41} area-mixing of size—r/(r — 1) withr > 1.
Note that ifé; were constructed with a rolling windowe. as a function of a constant number of past observations,
then Theorem 3.35 iWhite (2001 would apply and we could also say thk}, {Ht+1} and {Gyy1} are strictly
stationary. LetSy = min(3y, dw)/2 > 0. By (A5), the Cauchy—Schwartz inequality, and usBgV;|2F +0H)] <
E[W]20+3H)], we know that for anyt, 7 <t < T + 17 — 1, E[[Hy1l HH] < (EQVIZPPHDY2(E[(Yeqq —
frp 2T HR(PO=DNY2 (B[ 2R Y2 max(L, {supyep El(Yi41 — 6/ W2 HoH)(Po=D131/2) - Hence
EllFal M1 < maxd, Af?ymaxt, AY?) < oo, for anyt, = < t < T+t — 1. Similarly, letsg =
min(sy, sw)/2 > 0. We then haveE[|Gt+1|f+‘*G1 < (EIMLMYy — fipg < O P26 nYV2(E[(Yryg —
fi )2 +96)(Po—D)1/2 and, sinceE[|Vi1(Yi41 — frp1 < 0020 H06)] < E[W|20+a)), by the same reasonlng
as previously, we gi[|Gt+1|r+5G] < oo, for anyt, t < t < < T+t —1. Hence|§T — @l L 0 and|hT — h\ i 0
asT — oo. Next we need to show thad — g*J — 0 andlh — h*| - 0 ast — oo. We treat the two casgyy = 1
and pg = 2 separately. Whepg = 1 we haveh = h*. By the triangular and Cauchy—Schwartz inequalities, we have
0-0*2 < T L T EIVUZIEIA (Y1 — ft+1 <0)— L(Ypy1— 4 < 0)?) Foreveryt,r <t < T+7,we

haveE{[1(Ye41— fir1 < 0) = 1(Yey1— f%4 < 012} = E{Et[L( ft+1 Yir1 < fipn) +1fia < Yiga < fE D1

whereEt[1(f# ; < Yiq1 < ft+1) +1(fi1 < Yerr < il =1 3! *,Wt fe(y)dyl <16t — 0%] - [We| - supyer fe(y).
By (A3) and (A6)|g—g*12 < T[T EW [ZIEN6 —6*(1-K -C < K3.C. T~ L[ +7 =L E[16, — 0% |1, which
shows that when, for evetyr t < T+r —1,6 is a consistent estimate 6f (A4), |§ — g*| — 0 ast — co. Hence,

whenpg = 1, we have shown thatr £ a9 as bothr — oo andT — oo. Whenpo = 2, by the triangular and Cauchy—
Schwartz inequalitiesh — h*| < T=* Y71 EMW £, — fiialll LS T =L EV - (W - 16 — 6] <

K2.T 1ZT+T LE[6 — 0*1, so that by the same argument as prewouisiyL h*| — 0 ast — oco. Moreover,
10— 0% < K- T L HEM(Y ) < Yigr < firn) Vs — fipal+ EMRCfen < Yiga < f5 DIV — £ 10
By the Cauchy-Schwartz inequality, (A4) and (AEI?:)[l(ftJrl Yir1 < ft+1)|Yt+1 - ft+1|] (E[1( le <
Yir1 < firnDY2max, Al/z) foranyt, t <t < T+ t — 1. As previously, by (A3) and (A6) we have
E[L(f ;) < Yig1 < fre0)] < K-C-EQId —60*(I so that§—g* 2 < K3.C-max(1, Ay)- T~ L E[Id —0%]],

and so§ — g*| — 0 ast — oo when (A4) holds. Hence, fapg = 2 we havexT 14 ag, as bothr — oo andT — oo,
which completes the proof. ||

Proof of Propositiord.  To show thafT 1/2(a@1 — ag) is asymptotically normal, note
VTGt —ag) = (W S 7R STHVT I + VT + VT iy — h— mé)). (11)

The idea then is to show that the second and third terms in the curly brackets@je We first show that the
second term in the curly brackets @§1). A mean value expansion aroumd yields 0 = Tm* = /T —
EIT-1 071 0M41/00) VT (@ — 6%)], where for event, T <t < T +1 — 1, we havefy = ctfy + (1 —
ct)0* with ¢t € (0,1) and whereMtH denotes the value of;; obtained wherp = 6. We now show that

T-Y2 5 1N 1/06) 6 — 6%) B 0ast — 00 andT — oo: we have

_ T+r-1 ~ N
TV @M1/060) B

12Tl g2 v 1/2—¢ 5
=‘T 12y, TUEOMy/00)tEE G - 6%)
_ T+r-1 ~ . _
<SUB T4t 127G — 0T Y2 30 7" (oM 1 /001 2H),

Note that (A2), (A3) and (A5 imply E(sup,c¢ 10Mi41/86]) < oo, so that, for any given > 0, by (A7) and
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Chebyshev’s inequality we have

_ THr-1 - _ — THr-1
P(T Uzzt:r |aNig /00 ]t Y22 > v) < E(sup, g 10Mi11/80) /v - T UZZt:r t—1/2+e
< E(sup, g 1Mi11/80]) /v - (T/e172)12 0

ast — oo andT — oo. Hencey/ T — 0 ast — oo andT — oo. The third term in the curly brackets i17) is

op(1) provided thatM; satisfies a certain Lipshitz condition (given below) a?nd—> o0* forallt > 7, ast — oo. This
follows because for any givep> 0 ande > 0, there exists; > 0 such that

liMe 700 PWTIT™ Z”Tf 1’\4t+l—m T 12”; ! 1t+1|>n)

<lime 1500 PWTIT th:tT Mt+l_m T 12 tr t+1|>n,SUD;<t<T+z 1|9t—9 | <60)
+|imr T—o0 P(SUp[<t<T+r 1|9t —0%| > 8¢)
<hime T oo PWTIT AT Mg — = T3S I ME | > 0, sUp o1 16 — 071 < 80),

where the last inequality uses (A4). Now, tgt(d;) = SURG, —p* | <, r<t<T+r—1rt+1(ét)' where for alld € & we let

Me41(0) = Myt — Mg — Al - (0 —09)1/16 — 0%, (12)

whereA¥ . is defined as

t+1
Al =VEW 80 WE — Yip1) - [ Vg1 — 0% W P2
+(Po — DIEW[erp + (1 — 200)1(Ye1 — 0% We < O)][Ye1 — 0%/ W| P02,

Then, by the definition of;11(6)
T+r-1 T+r-1
VTIT™ 12 Mpyp —m—T7 12 M|

1 T+r-1
<ﬁ”?2t:r Ay B —6") — E[At+1(9t—9*)]‘

1 T4+r-1 A PO
+ = @0l — 6% + ElrgGold - e*u}

1 THr-1 5
< ﬁ{ T Zt:r |AT 1 — EIA{ 11SUR T 4o—1 16 — 67

7 (S0) + ECTGe))Isup <ra o116t — 9*|}a.s. - P.

Using standard arguments for stochastic equicontinuity such as those givedriews(1994), we can show that for any

0 e ® re+1(0) L 0ast — 6*,sothatt(5;) L 0 with probability one, WhICh by the dominated convergence theorem
ensureE(r1(87)) — 0 asé; — 0. Next, we show that locally at arfy* O the sample mean QﬁH_l} converges

in probability to its expected value. By (ABwe know that for everg* e é, {A t+l} is strictly stationary and-mixing
with « of size—r/(r — 2) withr > 2 (see Theorems 3.35 and 3.4Qithite (2001). (A2), (A3) and (A3) moreover
imply E(supxcg |A 1|'+f) <oo, forallt,z <t <T+7— 1 Usmg the weak LLN for-mixing sequences(g.
Corollary 3.48 inWhite (2001)) then givesT — 12”" 1 A* = E[A} y1] asT — oo, locally ato*, for all
0* € . Then, by using the Markov inequality I, o P(f\T 1ZT“ My ——1-1y et Ml > 1,

SUR <t <T4r-1 16 — 6*| < 8;) = 0 and the third term in1(1) is op(l) ast — oo andT — oo. Next we use
the central limit theorem (CLT) for strictly stationary anemixing sequencese(g. Theorem 5.20 inWhite (2001) to

show thatﬁm’.f. E, N (0, S). Using Theorems 3.35 and 3.49\ivhite (2001), which together show that time-invariant
measurable functions of strictly stationary and mixing sequences are strictly stationary and mixing of the same size,
we know by (AB) that {M t*+1} is strictly stationary and-mixing with mixing coefficient of size-r/(r — 2),r > 2.

The Cauchy-Schwartz inequality and (ASnply ETIM;", 1|"] < (E[Vt1Z Y2 (E[(Yi41 — f, P& (Po=Dpl/2 ¢

(ENVEIZ DY2 max(L, {Supyee EL(Yip1 — 0/Wo)Z Po-DL/2) < A for A = max(d, Al/z) max1, AY?) > 0,

A < oo. The CLT .g.Theorem 5.20 itwhite (2001)) then ensures

YT = VT (g — b -ag) S N0, S). (13)
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The remainder of the asymptotic normality proof is similar to the standard case: the positive definit@‘e]ssﬁnfg S
andht B h* ast — oo andT — oo, together with (AL) and (A3), ensure that' S—Th* = 0 andh; S~thr #0
with probability one, so by using/T (&1 — ag) = (A} §~h7)~1hr S~LH{V/Tmk + op(1)}, the limit result in (.3) and
the Slutsky theorem we hawéT (&1 — ag) 4 N0, (¥ S~1h*)~1), which completes the proof. ||
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