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Abstract

This paper develops a theoretical framework for the analysis of small-

sample properties of forecasts from general autoregressive models under

structural breaks. Finite-sample results for the mean squared forecast er-

ror of one-step ahead forecasts are derived, both conditionally and uncon-

ditionally, and numerical results for different types of break specifications

are presented. It is established that forecast errors are unconditionally unbi-

ased even in the presence of breaks in the autoregressive coefficients and/or

error variances so long as the unconditional mean of the process remains un-

changed. Insights from the theoretical analysis are demonstrated in Monte

Carlo simulations and on a range of macroeconomic time series from G7

countries. The results are used to draw practical recommendations for the

choice of estimation window when forecasting from autoregressive models

subject to breaks.
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1. Introduction

Autoregressive models are used extensively in forecasting throughout economics

and finance and have proved so successful and difficult to outperform in practice

that they are frequently used as benchmarks in forecast competitions. Due in large

part to their relatively parsimonious form, autoregressive models are frequently

found to produce smaller forecast errors than those associated with models that

allow for more complicated nonlinear dynamics or additional predictor variables,

c.f. Stock and Watson (1999) and Giacomini (2002).

Despite their empirical success, there is now mounting evidence that the pa-

rameters of autoregressive (AR) models fitted to many economic time series are

unstable and subject to structural breaks. For example, Stock and Watson (1996)

undertake a systematic study of a wide variety of economic time series and find

that the majority of these are subject to structural breaks. Alogoskoufis and Smith

(1991) and Garcia and Perron (1996) are other examples of studies that document

instability related to the autoregressive terms in forecasting models. Clements

and Hendry (1998) view structural instability as a key determinant of forecasting

performance.

This suggests a need to study the behaviour of the parameter estimates of AR

models as well as their forecasting performance when these models undergo breaks.

Despite the interest in econometric models subject to structural breaks, little is

known about the small sample properties of AR models that undergo discrete

changes. In view of the widespread use of AR models in forecasting, this is clearly

an important area to investigate. The presence of breaks makes the focus on small

sample properties more relevant: even if the combined pre- and post-break sample

is very large, the occurrence of a structural break means that the post-break sample

will often be quite small so that asymptotic approximations may not be nearly as

accurate as is normally the case.

A key question that arises in the presence of breaks is how much data to use

to estimate the parameters of the forecasting model that minimizes a loss function

such as root mean squared forecast error (RMSFE). We show that the RMSFE-

minimizing estimation window crucially depends on the size of the break as well

as its direction (i.e., does the break lead to higher or lower persistence) and which

parameters it affects (i.e., the mean, variance or autoregressive slope parameters).

In some situations the optimal estimation window trades off an increased bias
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introduced by using pre-break data against a reduction in forecast error variance

resulting from using a longer window of the data. However, in other situations the

small sample bias in the autoregressive coefficients may in fact be reduced after

introducing pre-break data if the size of the break is small or even when the break

is large provided that it is in the right direction (e.g., when persistence declines).

In the presence of parameter instability it is common to use a rolling window

estimator that makes use of a fixed number of the most recent data points, although

the size of the rolling window is based on pragmatic considerations rather than an

empirical analysis of the underlying time series process. Another possibility would

be to test for breaks in the parameters and/or error variances and only use data

after the most recent break, assuming a break is in fact detected. Alternatively, if

no statistically significant break is found, an expanding window estimator could be

used. Our theoretical analysis allows us to better understand when each of these

procedures is likely to work well and why it is generally best to use pre-break data

when forecasting using autoregressive models. First, breaks in the autoregressive

parameters need not introduce bias in the forecasts (at least unconditionally). This

tends to happen when an autoregressive coefficient declines after a break or the

break only occurs in the intercept or variance parameter. Including pre-break data

in such cases will tend to lead to a decline in RMSFE due to both a smaller squared

bias and a reduction in the variance of the parameter estimate. Furthermore, in

practice, there is likely to be a considerable error in detecting and estimating the

point of the break of the autoregressive model. This leads to a worse performance

of a post-break estimation procedure but also makes determination of the length

of a rolling window more difficult.

Several practical recommendations emerge from our analysis regarding the choice

of estimation window when forecasting from autoregressive models. First, for the

macroeconomic data examined here, in general it appears to be difficult in prac-

tice to outperform expanding or long rolling window estimation methods. Unlike

the case with exogenous regressors, forecasts from autoregressive models can be

seriously biased even if only post-break observations are used. Including pre-break

data in estimation of autoregressive models can simultaneously reduce the bias

and the variance of the forecast errors. In most applications where breaks are not

too large, expanding window methods or rolling window procedures with relatively

large window sizes are likely to perform well. This conclusion may not of course
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carry over to longer data sets, e.g. high frequency financial data with thousands

of observations, where estimation uncertainty can be reduced more effectively than

with the relatively short macroeconomic data considered here.

The main contributions of this paper are as follows. First, we present a new

procedure for computing the exact small sample properties of the parameters of AR

models of arbitrary order, thus extending the existing literature that has focused

on the AR(1) model. Our approach allows for fixed or random starting points and

considers stationary AR models as well as models with unit root dynamics. We

allow for the possibility of the AR model to switch from a unit root process to a

stationary one and vice versa. Such regime switches could be particularly relevant

to the analysis of inflation in a number of OECD countries since the first oil price

shock in early 1970’s. In addition to considering properties such as bias in the para-

meters, we also consider the RMSFE in finite samples. Second, we extend existing

results on exact small sample properties of AR models to allow for a break in the un-

derlying data generating process. We establish that one-step ahead forecast errors

from AR models are unconditionally unbiased even in the presence of breaks in the

autoregressive coefficients and in the error variances so long as the unconditional

mean of the process remains unchanged. Our results also apply to models with

unit roots. This extends Fuller (1996)’s result obtained for AR models with fixed

parameters, and generalizes a related finding due to Clements and Hendry (1999,

pp.39-42). Third, we present extensive numerical results quantifying the effect of

the sizes of the pre-break and post-break data windows on parameter bias and

RMSFE. Fourth, we undertake an empirical analysis for a range of macroeconomic

time series from the G7 countries that compares the forecasting performance of

expanding window, rolling window and post-break estimators. This analysis which

allows for multiple breaks at unknown times confirms that, at least for macroeco-

nomic time series such as those considered here, it is generally best to use pre-break

data in estimation of the forecasting model.

The outline of the paper is as follows. Section 2 provides a brief overview of

the small sample properties of the first-order autoregressive model that has been

extensively studied in the extant literature. Theoretical results allowing us to

characterize the small sample distribution of the parameters and forecast errors of

autoregressive models are introduced in Section 3. Section 4 presents numerical

results for AR models subject to breaks and Section 5 presents empirical results
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for a range of macroeconomic time series. Section 6 concludes with a summary and

a discussion of possible extensions to our work.

2. Small Sample Properties of Forecasts from Autoregressive Models

A large literature has studied small sample properties of estimates of the parameters

of autoregressive models. The majority of studies has concentrated on deriving

either exact or approximate small sample results for the distribution of α̂T and

β̂T , the Ordinary Least Squares (OLS) estimators of α and β, in the first-order

autoregressive (AR(1)) model

yt = α+ βyt−1 + σεt, t = 1, 2, ..., T, εt ∼ iid(0, 1). (1)

Analysis of the small sample bias of β̂T dates back to at least Bartlett (1946).

Early studies focus on the stationary AR(1) model without an intercept (α = 0,

|β| < 1) but have been extended to higher order models with intercepts (Sawa

(1978)) and exogenous regressors (Grubb and Symons (1987), Kiviet and Phillips

(1993, 2003a)). Assuming stationarity (|β| < 1), β̂T has been shown to have an

asymptotic normal distribution and its finite-sample distribution has been studied

by Phillips (1977) and Evans and Savin (1981). The case with a unit root, β = 1,

has been studied by, inter alia, Banerjee, Dolado, Hendry and Smith (1986), Phillips

(1987), Stock (1987), Abadir (1993) and Kiviet and Phillips (2003b).

To a forecaster, the bias in α̂T and β̂T is of direct interest only to the extent

that it might adversely influence the forecasting performance. Ullah (2003) pro-

vides an extensive discussion and survey of the properties of forecasts from the

AR(1) model. Box and Jenkins (1970) characterized the asymptotic mean squared

forecast error (MSFE) for a stationary first-order autoregressive process considering

both the single-period and multi-period horizon. Assuming a stationary process,

Copas (1966) used Monte Carlo methods to study the MSFE of least-squares and

maximum likelihood estimators under Gaussian innovations.

In practice, the conditional forecast error is of more interest than the uncon-

ditional error since the data needed to compute conditional forecasts is always

available. A comprehensive asymptotic analysis for the stationary AR(p) model

is provided in Fuller and Hasza (1981) and Fuller (1996). Using Theorem 8.5.3 in
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Fuller (1996) it is easily seen that, conditional on yT ,

MSFE(ŷT+1 |yT ) = E
£
(yT+1 − ŷT+1)2 |yT

¤
= σ2(1 +

1

T
) +

1− β2

T

µ
yT − α

1− β

¶2
+O(T−3/2).

This yields the more familiar unconditional result

MSFE(ŷT+1) = E (yT+1 − ŷT+1)2 = σ2(1 +
2

T
) +O(T−3/2).

Generalizations to AR(p) and multi-step forecasts are also provided in Fuller (1996,

pp. 443-449), where it is established that the forecast error, yT+1−ŷT+1, is unbiased
in small samples assuming εt has a symmetric distribution and E (|ŷT+1|) < ∞.
This is particularly noteworthy considering the often large small sample bias asso-

ciated with estimates of the autoregressive parameters.

3. AR(p) Model in the Presence of Structural Breaks

In parallel with the work on the small sample properties of estimates of autoregres-

sive models, important progress has been made in testing for and estimating both

the time and the size of breakpoints, as witnessed by the recent work of Andrews

(1993), Andrews and Ploberger (1996), Bai and Perron (1998, 2003), Banerjee,

Lumsdaine and Stock (1992), Chu, Stinchcombe and White (1996), Chong (2001),

Elliott and Muller (2002), Hansen (1992), Inclan and Tiao (1994) and Ploberger,

Kramer and Kontrus (1989).

Building on this work we consider the small sample problem of estimation and

forecasting with AR(p) models in the presence of structural breaks. For this pur-

pose, we consider the following AR(p) model defined over the period t = 1, 2, ..., T ;

and assumed to have been subject to a single structural break at time T1 :

yt =

(
α1 + β11yt−1 + β12yt−2 + ...+ β1pyt−p + σ1εt, , for t ≤ T1,
α2 + β21yt−1 + β22yt−2 + ...+ β2pyt−p + σ2εt, , for t > T1,

. (2)

As before εt ∼ iid(0, 1) for all t. For the analysis of the unit root case it is also

convenient to consider the following parameterization of the intercept terms, αi:

αi = µi(1− β∗i ), i = 1, 2, (3)
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where β∗i =
Pp

j=1 βij,= τ 0pβi, βi = (βi1, βi2, ..., βip)
0 and τ p is a p× 1 unit vector.

Note that −(1 − β∗i ) also represents the coefficient of yt−1 in the error correction
representation of (2).

This specification is quite general and allows for intercept and slope shifts, as

well as a change in error variances immediately after t = T1. It is also possible for

the yt process to contain a unit root (or be integrated of order 1) in one or both of

the regimes. The integration property of yt under the two regimes is governed by

whether β∗i = 1 or β
∗
i < 1. More specifically, we shall assume that the roots of

pX
j=1

λjβij − 1 = 0, for i = 1, 2, (4)

lie on or outside the unit circle.1 As µi is allowed to vary freely, the intercepts

αi = µi(1− β∗i ) are unrestricted when the underlying AR processes are stationary.
However, to avoid the possibility of generating linear trends in the yt process, the

intercepts are restricted (αi = 0) in the presence of unit roots. In the stationary

case µi represents the unconditional mean of yt in regime i. In the unit root case

µi is not identified and we have E(∆yt) = 0.

Analysis of forecast errors from AR models subject to structural change have

been recently addressed by Clements and Hendry (1998,1999). However, these

authors either abstract from the problem of parameter uncertainty, or only allow

for it assuming that the parameters of the AR model remain unchanged during the

estimation period. Consider first the analysis provided in Clements and Hendry

(1998, pp.168-171), where it is assumed that parameters are known and the break

takes place immediately prior to the forecasting period. In this case the one-step

ahead forecast error is given by

yT+1 − ỹT+1 = µ2(1− β∗2)− µ1(1− β∗1) + x
0
T (β2 − β1) + σ2εT+1,

where xT = (yT , yT−1, ..., yT−p+1)0, (µ1,β1) are the parameters prior to the forecast
period, and (µ2,β2) are the parameters during the forecast period, here T + 1.

Following Clement and Hendry and noting that β∗i = τ 0pβi, it is easily verified that

yT+1 − ỹT+1 = (µ2 − µ1) (1− β∗2) + (β2 − β1)0 (xT − µ1τ p) + σ2εT+1,

1Our analysis can also allow for the possibility of yt being integrated of order two in one or

both of the two regimes. But in this paper we shall only consider the unit root case explicitly.
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and

E (yT+1 − ỹT+1) = (µ2 − µ1) (1− β∗2) + (β2 − β1)0E (xT − µ1τ p) .

In the case where yt is stationary we have E (xT − µ1τ p) = 0, and

E (yT+1 − ỹT+1) = (µ2 − µ1) (1− β∗2),

which does not depend on the size of the break in the slope coefficients, β2−β1, and
will be zero when µ2 = µ1. This is an interesting theoretical result but its relevance

is limited in practice where estimates of (µ1,β1) based on past observations need

to be used. One of the contributions of this paper might be viewed as identifying

the circumstances under which the above result is likely to hold in the presence of

estimation uncertainty.

In a related contribution Clements and Hendry (1999, pp. 39-42) consider

the effect of estimation uncertainty on the forecast error decomposition using a

first-order vector autoregressive model, and conclude estimation uncertainty to be

relatively unimportant. However, their analysis assumes that the estimation is

carried out immediately prior to the break, based on a correctly specified model

which is not subject to any breaks. The assumption that parameters have been

stable prior to forecasting is clearly restrictive, and it is therefore important that

a more general framework is considered where the effect of estimation uncertainty

can be analysed even in the presence of multiple breaks in the parameters (slope

coefficients as well as error variances) over the estimation period. In this paper we

provide such a framework in the case of AR(p) models subject to a single break

point over the estimation period. But, it should become clear that the analysis

readily extends to two or more break points.2

In particular, our interest in this paper lies in the point (or probability) fore-

cast of yT+1 conditional on ΩT = {y1, y2, ..., yT} in the context of the break point
specification (2). In the case where the post-break window size, v2 = T − T1 is
sufficiently large (v2 →∞), the structural break is relatively unimportant and the
forecast of yT+1 can be based exclusively on the post-break observations. However,

when v2 is small it might be worthwhile to base the forecasting model on pre-break

2Explicitly allowing for breaks and parameter uncertainty prior to forecasting also raises the

issue of the choice of observation window discussed in related papers in Pesaran and Timmermann

(2002, 2003).
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as well as post-break observations. The number of pre-break observations, which

we denote by v1, then becomes a choice parameter. In what follows we assume T1

is known but consider forecasting yT+1 using the past T −m+ p+ 1 observations,
m− p being the starting point of the estimation window,

yT (m− p) = (ym−p, ym−p+1, ..., yT1, yT1+1..., yT )0, (5)

with the p observations ym−p, ym−p+1, ..., ym−1 treated as given initial values.3 The
length of the pre-break window is then given by v1 = T1 −m+ 1, and the number
of time periods used in estimation is therefore v = v1+v2 = T −m+1. To simplify
the notations we shall consider values of v1 ≥ p, or m ≤ T1 − p− 1.
The point forecast of yT+1 conditional on yT (m− p) is given by

ŷT+1(m) = α̂T (m) + x
0
T β̂T (m),

where xT = (yT , yT−1, ..., yT−p+1)0, β̂T (m) =
³
β̂1T (m), β̂2T (m), ..., β̂pT (m)

´0
, τ v is

a v × 1 vector of ones, Mτ = Iν − τ v(τ 0vτ v)−1τ 0v, and

XT (m) = (yT−1(m− 1),yT−2(m− 2), ...,yT−p(m− p)) ,

so that

β̂T (m) = [X
0
T (m)MτXT (m)]

−1
X0
T (m)MτyT (m), (6)

α̂T (m) =
τ 0vyT (m)− τ 0vXT (m) β̂T (m)

v
, (7)

The one-step ahead forecast error is

eT+1(m) = yT+1 − ŷT+1(m) = σ2εT+1 − ξT (m), (8)

where

ξT (m) = [α̂T (m)− α2] + x
0
T

³
β̂T (m)− β2

´
. (9)

β2 = (β21, β22, ..., β2p)
0 and α2 = µ2

¡
1− τ 0pβ2

¢
. We consider both the uncon-

ditional and conditional mean squared forecast error given by Eε

¡
e2T+1(m)

¢
and

Eε

¡
e2T+1(m) |ΩT

¢
, respectively, where the expectations operator Eε (·) is defined

with respect to the distribution of the innovations εt. To the see how the MSFE

3Throughout the paper we shall use the notation yT (k) = (yk, ..., yT )
0.
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depends on the starting point of the estimation window, m, note that εT+1 and

ξT (m) are independently distributed and

Eε

¡
e2T+1(m) |ΩT

¢
= σ22 + Eε

¡
ξ2T (m) |ΩT

¢
. (10)

To carry out the necessary computations, an explicit expression for ξT (m) in terms

of the ε0ts is required. This is complicated and depends on the state of the process
just before the first observation is used for estimation.

For a given choice of m > p and a finite sample size T , the joint distribution of

β̂T (m) and α̂T (m) depends on the distribution of the initial values

ym−1(m− p)= (ym−p, ym−p+1, ..., ym−1)0 . (11)

We distinguish between the two important cases where the pre-break process is

stationary and when it contains a unit root.

3.0.1. Pre-Break Process is Stationary

In the case where the pre-break regime is stationary and has been in operation for

sufficiently long time, the distribution of ym−1(m− p) does not depend on m and

is given by

ym−1(m− p) ∼ N(µ1τ p, σ21Vp), (12)

where Vp is defined in terms of the pre-break parameters. For example, for p = 1,

V1 = 1/(1− β211), and for p = 2

V2 =
1

(1 + β12)
£
(1− β12)

2 − β211
¤ Ã 1− β12 β11

β11 1− β12

!
.

3.0.2. Pre-Break Process is I(1)

If the pre-break process contains a unit root, the covariance of ym−1(m − p) is no
longer given by σ21Vp and in general depends on m. Under a pre-break unit root,

β∗1 = 1 and the pre-break process is given by

∆yt =

p−1X
j=1

δ1j∆yt−j + σ1εt, for t ≤ T1, (13)

where δ1j = −
Pp

`=j+1 β1`. The distribution of initial values can now be specified in

terms of the stationary distribution of the first differences, (∆y2,∆y3, ...,∆yp), and
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an assumption concerning the first observation in the sample, y1. In what follows

we assume that y1 is given by

y1 = µ1 + ωε1, (14)

where ω will be treated as a free parameter, and ε1 ∼ N(0, 1). Using (13) and

(14) it is now possible to derive the distribution of the initial values, ym−1(m− p)
= (ym−p, ym−p+1, ..., ym−1)0, noting that

ym−i = y1 +∆y2 + ...+∆ym−i, for i = 1, 2, ..., p.

In the AR(1) case we have

∆yt = σ1εt, for t = 2, 3, ..., T1,

and in conjunction with (14) we have

ym−1 = y1 +∆y2 + ...+∆ym−1

= µ1 + ωε1 + σ1 (ε2 + ε3 + ...+ εm−1) ,

and hence ym−1 ∼ N (µ1,V1,m), where

V1,m = ω2 + (m− 2)σ21. (15)

For the AR(2) specification we have ym−1(m−2) = (ym−2, ym−1)0 ∼ N (µ1τ 2,V2,m),

where V2,m is derived in Appendix A.

3.1. OLS Estimates

Using (12) and (2) for t = m,m+ 1, ..., T , in matrix notations we have

B yT (m− p) = d+D ε, (16)

where

D = σ1

 ψp 0 0

0 Iν1 0

0 0 (σ2/σ1) Iν2

 , d =µ1
 τ p

(1− β∗1)τ v1
(µ2/µ1) (1− β∗2)τ v2

 , (17)

B =

 Ip 0 0

B21 B22 0

0 B32 B33

 . (18)
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The sub-matrices, Bij, depend only on the slope coefficients, β1 and β2 and are

defined in Appendix B. Iν1 and Iν2 are identity matrices of order ν1 and ν2, respec-

tively and ε = (εm−p, εm−p+1, ..., εT )0 ∼ N(0, Iν+p).
The form of ψp depends on whether the pre-break process is stationary or

contains a unit root. Under the former ψp is a lower triangular Cholesky factor

of Vp, namely Vp = ψpψ
0
p, where Vp is the covariance matrix of ym−1(m − p).

Appropriate expressions for Vp in the case of p = 1 and 2 are already provided in

Section 3.0.1. When the pre-break process has a unit root, ψp is given by the lower

triangular Cholesky factor of Vp,m, which is given by (15) above for p = 1 and in

Appendix A by (38) for p = 2.

Using (40) derived in Appendix B, in general we have

yT−i(m− i) = Gi(c+Hε), for i = 0, 1, ..., p, (19)

where Gi are v × (v + p) selection matrices defined by Gi = (0v×p−i
...Iν
...0v×i),

H = B−1D, and c = B−1d. In particular,

yT (m) = G0(c+Hε),

and

XT (m) =
h
G1(c+Hε),G2(c+Hε), ...,Gp(c+Hε)

i
.

Therefore, in general the (i, j) element of the product moment matrix,X0
T (m)MτXT (m) ,

is given by (c+Hε)0G0
iMτGj(c+Hε), for i, j = 1, 2, ..., p, and the jth element

of X0
T (m)MτyT (m) is given by (c+Hε)

0G0
jMτG0(c+Hε), for j = 1, 2, ..., p.

Hence, β̂T (m) =
³
β̂1T (m), β̂2T (m), ..., β̂pT (m)

´0
, is a non-linear function of the

quadratic forms (c+Hε)0G0
iMτGj(c+Hε), for i = 1, 2, ...p, and j = 0, 1, ..., p,

with known matrices H, Gi, c, and ε ∼ N(0, Iν+p). Similarly, using (7) we have

α̂T (m) = v
−1τ 0vG0(c+Hε)−v−1τ 0v

pX
i=1

Gi(c+Hε)β̂iT (m). (20)

In the AR(1) case these results simplify to

β̂T (m) =
(c+Hε)0G0

1MτG0(c+Hε)

(c+Hε)0G0
1MτG1(c+Hε)

, (21)

and

α̂T (m) = v
−1τ 0vG0(c+Hε)−v−1τ 0vG1(c+Hε)β̂T (m). (22)
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Using the above results in (6) it is now easily seen that in general β̂T (m) depends

on the ratios, µ1/σ1, σ1/σ2 and µ1/µ2 (or µ2/µ1), whilst α̂T (m) depends on all the

four coefficients, µ1, µ2, σ1, and σ2, individually. Two cases of special interest arise

when there is no mean shift in the model, and when the post-break process contains

a unit root. In both cases, as shown in Appendix B, Gic =κτ v where κ = µ when

there is no mean shift (i.e. µ1 = µ2 = µ), and κ = µ1 if there is a mean shift but

β∗2 = 1. Under either of these two special cases we have MτGic = 0, for all i, and

β̂T (m) will be a function of the quadratic terms, ε
0H0G0

iMτGjHε, which depend

only on the ratio of the error variances, σ1/σ2. These results also establish the

following proposition:

Proposition 1 Under µ1 = µ2 or if β
∗
1 < 1 and β∗2 = 1, β̂T (m) defined by (6)

does not depend on the scale of the error variances (σ21,σ
2
2) or the unconditional

means, µ1, µ2, and is an even function of ε.

This proposition plays a key role in the analysis of prediction errors below. It

is also worth noting that β̂T (m) will continue to be an even function of the errors

in the more general case where the slope coefficients and/or the error variances are

subject to multiple breaks, so long as the mean of the process remains unchanged.

This proposition does not, however, extend to the OLS estimate of the intercept,

α̂T (m). To see this, using (20) and noting that under µ1 = µ2, or if β
∗
2 = 1,

Gic =µ1τ v we have

α̂T (m) = µ1

³
1− β̂

∗
T (m)

´
+

µ
τ 0vG0Hε

v

¶
−

pX
i=1

µ
τ 0vGiHε

v

¶
β̂iT (m), (23)

where β̂
∗
T (m) =

Pp
i=1 β̂iT (m) = τ 0pβ̂T (m). It is clear that in this case α̂T (m) is an

odd function of ε, and depends on σ1, σ2 and µ1 individually.

3.2. Forecast Error Decomposition

Using (20) and (9) in (8), and recalling that α2 = µ2
¡
1− τ 0pβ2

¢
, then after some

algebra the forecast error, eT+1(m), can be decomposed as

eT+1(m) = σ2εT+1 −X1T (m)−X2T (m)−X3T (m), (24)

where

X1T (m) =

µ
τ 0vG0c

v
− µ2

¶
−

pX
i=1

µ
τ 0vGic

v
− µ2

¶
β̂iT (m), (25)
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X2T (m) =
τ 0vG0Hε

v
−

pX
i=1

µ
τ 0vGiHε

v

¶
β̂iT (m), (26)

and

X3T (m) = (xT − µ2τ p)0
³
β̂T (m)− β2

´
. (27)

The first term in this decomposition refers to future uncertainty which is indepen-

dently distributed of the other terms. The second term, X1T (m), is due to the mean

shift and disappears under µ1 = µ2 = µ. Recall that in this case v−1τ 0vGic =µ,

for all i.4 The third term, X2T (m), captures the uncertainty associated with the

unconditional mean of the process and reduces to zero if µ1 = µ2 = 0. The last

term represents the slope uncertainty and depends on whether the analysis is car-

ried out unconditionally, or conditionally on xT = (yT , yT−1, ..., yT−p+1)0, in which
case the extent of the bias will generally depend on the size of the gap xT − µ2τ p.

3.3. Unconditional MSFE

To obtain the unconditional form of eT+1(m), we first note that xT can be written

as SpyT (m), where Sp = (0p×(v−p)
...Jp), and Jp is the p× p matrix

Jp =


0 0 · · · 1

0 0 · · · 1 0
...
... · · · ...

...

0 1 · · · 0 0

1 · · · 0 0

 .

Therefore, using (19) we have

xT − µ2τ p = (SpG0c−µ2τ p)+SpG0Hε,

and X3T (m), defined by (27), decomposes further as

X3T (m) = (SpG0c−µ2τ p)0
³
β̂T (m)− β2

´
+ (SpG0Hε)

0
³
β̂T (m)− β2

´
.

4See the last section of Appendix B. Note also that X1T (m) does not disappear if β
∗
2 = τ 0pβ2 =

1, so long as µ1 6= µ2. However, under β∗2 = 1, it simplifies to

X1T (m) = (µ1 − µ2)
³
1− τ 0pβ̂T (m)

´
.
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However, under µ1 = µ2 = µ the first term of X3T (m) vanishes and we have
5

eT+1(m) = σ2εT+1 −X2T (m)−
³
β̂T (m)− β2

´0
SpG0Hε. (28)

Also under µ1 = µ2 = µ, eT+1(m), and hence Eε

£
e2T+1(m)

¤
, do not depend on the

unconditional mean of the autoregressive process.

The computation of Eε

£
e2T+1(m)

¤
can be carried out via stochastic simulations.

We have

ÊR
£
e2T+1(m)

¤
= σ22 +

1

R

RX
r=1

h
X
(r)
1T (m) +X

(r)
2T (m) +X

(r)
3T (m)

i2
,

where the terms X
(r)
iT (m), i = 1, 2, 3 can be computed using random draws from

ε ∼ N(0, Iν+p), which we denote by ε(r), r = 1, 2, ..., R. In particular,

X
(r)
1T (m) =

µ
τ 0vG0c

v
− µ2

¶
−

pX
i=1

µ
τ 0vGic

v
− µ2

¶
β̂
(r)

iT (m), (29)

X
(r)
2T (m) =

τ 0vG0Hε
(r)

v
−

pX
i=1

Ã
τ 0vGiHε

(r)

v

!
β̂
(r)

iT (m), (30)

X
(r)
3T (m) = (SpG0c−µ2τp)0

³
β̂
(r)

T (m)− β2
´
+
³
SpG0Hε

(r)
´0 ³

β̂
(r)

T (m)− β2
´
,

(31)

and β̂
(r)

iT (m) denotes the estimate of βi based on ε(r). Assuming Eε

£
e2T+1(m)

¤
exists, then due to the independence of ε(r) across r, and the fact that X

(r)
iT (m) are

also independently and identically distributed across r, we have (as R→∞)

ÊR
£
e2T+1(m)

¤ p→ Eε

£
e2T+1(m)

¤
.

The following proposition generalizes Theorem 8.5.2 in Fuller (1996, page 445)

to the case where estimation has been based on an AR(p) model which has been

subject to breaks in the slope coefficients and/or error variances.

Proposition 2: The one-step ahead forecast errors, eT+1(m), defined by (8)

from the AR(p) model, (2), subject to a break in the AR coefficients (β1 6= β2) or

a break in the innovation variance (σ21 6= σ22) are unbiased provided that:

(i) The probability distribution of ε∗ = (ε0, εT+1)0 is symmetrically distributed
around E(ε∗) = 0, and its first and second order moments exist;

5Note that in this case SpG0c =µSpτ v = µτp.
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(ii) The first-order moments of the estimated slope coefficients, β̂iT (m), exist,

namely E
¯̄̄
β̂iT (m)

¯̄̄
<∞, for i = 1, 2, ..., p;

(iii) There is no break in the mean of the process, µ1 = µ2.

Proof : Under µ1 = µ2, using (26) and (28), the prediction error can be written

as

eT+1(m) = σ2εT+1 −
³
β̂T (m)− β2

´0
SpG0Hε

−
"
τ 0vG0Hε

v
−

pX
i=1

µ
τ 0vGiHε

v

¶
β̂iT (m)

#
.

It is clear that under assumption (i) the terms σ2εT+1, β
0
2SpG0Hε, and τ

0
vG0Hε,

which are linear functions of ε∗, have mean zero and we have

Eε [eT+1(m)] = −Eε

h
β̂
0
T (m)SpG0Hε

i
+

pX
i=1

Eε

·µ
τ 0vGiHε

v

¶
β̂iT (m)

¸
.

Also under µ1 = µ2 and by Proposition 1, β̂T (m), is an even function of ε. Hence,

β̂
0
T (m)SpG0Hε, and (τ

0
vGiHε) β̂iT (m) for i = 1, 2, ..., p are odd functions of ε, and

under assumptions (i) and (ii) their expectations exist and are equal to zero by the

symmetry assumption. Therefore,

Eε [eT+1(m)] = 0.

In the case where µ1 6= µ2, β̂jT (m) is not an even function of ε, the term X1T

defined by (25) does not vanish and the prediction error given by (24), is no longer

an odd function of ε, so it will, in general, not have a zero mean. ¥
Remark: Conditions under which moments of β̂iT (m) exists in the case of

AR(1) models with fixed coefficients have been investigated in the literature and

readily extends to AR(1) models subject to breaks. For the AR(1) model under

µ1 = µ2 we have [see (21)]

β̂T (m) =
ε0H0G0

1MτG0Hε

ε0H0G0
1MτG1Hε

.

Assuming that ε is normally distributed and applying a Lemma due to Smith

(1988) to (ε0H0G0
1MτG1Hε)

−1, it is easily established that the rth moment of
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β̂T (m) exists if Rank (H
0G0

1MτG1H) = v−1 = T −m > 2r.6 Hence, β̂T (m) has a

first-order moment if T > m+ 2. To our knowledge no such conditions are known

for higher order AR processes, even with fixed coefficients.

Proposition 2 has important implications for the trade-off that exists in the

estimation bias of the slope and intercept coefficients in the AR models even in the

presence of breaks so long as µ1 = µ2 = µ. To see this notice from (22) that

E [α̂T (m)− α2] = −µ E
h
β̂
∗
T (m)− β∗2

i
.

This provides an interesting relationship between the small sample bias of the

estimator of the intercept term, E [α̂T (m)− α2], and the small sample bias of the

long-run coefficient, E
h
β̂
∗
T (m)− β∗2

i
. The estimator of the intercept term, α̂T (m),

is unbiased only if the sample mean is zero. But, in general there is a spill-over

effect from the bias of the slope coefficient to that of the intercept term.

For the AR(1) model the results simplify further and we have

E [α̂T (m)− α2] = −µ E
h
β̂T (m)− β2

i
. (32)

Since E
h
β̂T (m)− β2

i
< 0, it therefore follows that

E [α̂T (m)− α2] > 0 if µ > 0,

E [α̂T (m)− α2] ≤ 0 if µ ≤ 0.

Once again these results hold irrespective of whether β1 = β2 or not.

3.4. Conditional MSFE

As before we have

eT+1(m) = σ2εT+1 −X1T (m)−X2T (m)−X3T (m),

where XiT (m), i = 1, 2, 3, are defined by (25), (26), and (27). In computing

the conditional MSFE, defined by Eε

¡
e2T+1(m) |ΩT

¢
, we fix xT and integrate with

respect to the distribution of ε. Recall that β̂T (m) and α̂T (m) as defined in (6) and

(7) are only functions of ε and are hence not constrained by the terminal value,

6Note that H is full rank, rank(Gi) = v, and rank(Mτ ) = v − 1.
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xT .
7 To investigate the effect of parameter estimation uncertainty we therefore

draw values of ε independently of xT .

Once again the results simplify when µ1 = µ2 = µ. In this case X1T (m) =

0, X2T (m) is an odd function of ε, and assuming that the distribution of ε is

symmetric we have

Eε[eT+1(m)|ΩT ] = − (xT − µτ p)0Eε

³
β̂T (m)− β2

´
.

Suppose p = 1, so that it is easy to characterize when xT is above or below the

mean. Then

Eε [eT+1(m) | ΩT ] = − (yT − µ)Eε

³
β̂T (m)− β2

´
. (33)

Since, Eε

³
β̂T (m)− β2

´
< 0,

Eε[eT+1(m)|ΩT ] =
(
> 0 if yT > µ

≤ 0 if yT ≤ µ
, (34)

and the estimated model under-predicts if the last observation is above the uncon-

ditional mean (yT > µ), while conversely it over-predicts if the last observation is

below the unconditional mean (yT < µ). Therefore, conditional predictions tend

to be biased towards the unconditional mean of the process.

As with the unconditional MSFE, the computation of the conditional MSFE

can also be carried out by stochastic simulations. In general, for a given value of

xT , and using draws from ε ∼ N(0, Iν+p) we have

ÊR
¡
e2T+1(m) |ΩT

¢
= σ22 +

1

R

RX
r=1

h
X
(r)
1T (m) +X

(r)
2T (m) + X̃

(r)
3T (m)

i2
, (35)

where X
(r)
1T (m) and X

(r)
2T (m) are given by (29) and (30), as before, with the third

term, X̃
(r)
3T (m), now defined by

X̃(r)
3T (m) = (xT − µ2τ p)0

³
β̂
(r)

T (m)− β2
´
. (36)

Once again as R→∞, we would expect ÊR
¡
e2T+1(m) |ΩT

¢ p→ Eε

¡
e2T+1(m) |ΩT

¢
.

7This is consistent with the approach taken in calculating asymptotic results, c.f. Fuller (1996).

If we literally condition on the full path of y-values in ΩT , then β̂T (m) and α̂T (m) are of course

non-random (fixed) constants and no estimation uncertainty arises.
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4. Numerical Results

Our approach is quite general and allows us to study the small sample properties of

AR models in some detail. The existing literature has focused on the AR(1) model

without a break, where the key parameters affecting the properties of the OLS

estimators, α̂T (m) and β̂T (m), are the sample size and the persistence parameter,

β1. In our setting there are many more parameters to consider. In the absence

of a break there are now p autoregressive parameters plus the intercept, α, and

the innovation variance, σ2. Under a single break, we need to consider both the

pre- and post-break parameters - i.e. the AR coefficients (β1,β2), the intercepts

(α1,α2) and the innovation variances (σ
2
1, σ

2
2). Furthermore, how the total sample

divides into pre- and post-break periods (v1 and v2) is now crucial to the bias in

the post-break parameter estimates and to the bias and variance of the forecast

error.

To ensure that our results are comparable to the existing literature, our bench-

mark model is the AR(1) specification without a break (experiment 1 in Table 1).

We study breaks in the autoregressive parameter in the form of both moderately

sized (0.3) and large (0.6) breaks in either direction (experiments 2-4) as well as

a unit root process in the post-break (experiment 5) or pre-break (experiment 9)

period. We also consider pure breaks in the innovation variance (experiments 6

and 7), where σ changes between values of 1/4 and 1 or 4 and 1, and in the mean

(experiment 8), where µ changes between 1 and 2. For convenience the parameter

values assumed in each of the experiments are summarized in Table 1. Since our

focus is on the effect of breaks on the bias and forecasting performance of AR

models, results are presented as a function of the pre-break window size (v1) and

the post-break window size (v2). We vary v1 from zero (no pre-break information)

through 1, 2, 3, 4, 5, 10, 20, 30, 50 and 100, while the post-break window, v2, is

set at 10, 20, 30, 50 and 100.

Simulation results are presented in Tables 2-5. Results are based on 50,000

Monte Carlo simulations with innovations drawn from an IID Gaussian distribu-

tion.8 Table 2 shows the bias in β̂1 while Table 3 shows the conditional bias in the

forecast for a situation where yT is above its mean, i.e., yT = µ2+σ2.
9 To measure

8We also considered an AR(2) specification to study the effect of higher order dynamics.

Results were very similar to those reported below and are available from the authors’ web site.
9Estimated values are computed as averages across Monte Carlo simulations relative to the
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forecasting performance, Table 4 reports the unconditional RMSFE while Table 5

shows the RMSFE conditional on yT = µ2 + σ2, as functions of the pre-break (v1)

and post-break (v2) window sizes. We condition on this particular value since if

yT = µ2 the conditional bias is zero while if yT = µ2−σ2 the conditional bias takes

the same value but with the sign reversed, c.f. (33).

4.1. Bias Results

First consider the bias in β̂1. In the absence of a break, β̂1 is downward biased

with a bias that disappears as v1 and v2 increase and becomes quite small when

the combined sample v = v1 + v2 is sufficiently large.
10 Notice the symmetry of

the results in v1 and v2 which follows since (under no break) only v1 + v2 matters

for the bias.11 Once a break is introduced in the AR parameter, the bias in β̂1
continues to decline in v2 but need no longer decline monotonically as a function of

v1. The reason for this is simple: including pre-break data generated by a different

(less persistent) process introduces a new bias term in β̂1. It is only to the extent

that this term is offset by a reduction in the small sample bias of the AR estimate

that inclusion of pre-break data will lead to a bias reduction. Thus, when v2 is very

large (e.g., 50 or 100 post-break observations) the small sample bias in β̂1 based

purely on post-break observations is already quite small. In this situation, inclusion

of pre-break data will not lower the bias in β̂1. Conversely, when the post-break

sample is small (i.e., v2 = 10−20 observations), the small sample bias in β̂1 is very

large and including up to 30 pre-break observations will actually reduce the bias

under a moderately sized break. Naturally, if the break size is large (experiment

4), this effect is reduced since the true bias due to including pre-break observations

in the estimation window dominates any reduction in the small sample bias in β̂1

true post-break values. To ensure comparability across the experiments they are based on the

same random numbers.
10The bias estimates are in line with the well known Kendall (1954) approximation formula

E
³
β̂1

´
− β1 =

−(1+ 3β1)
v

+O(v−3/2), v = v1 + v2.

11Recall from (32) that in the case of Gaussian errors the bias in α̂T (m) can be exactly inferred

from the bias of β̂T (m) when there is no break in the mean. For this reason we focus our analysis

on the bias in β̂T (m).
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based solely on post-break data for all but the smallest post-break window sizes.

Interestingly, when the break is in the reverse direction (experiment 3) so that

the true value of β1 declines, including a small number of pre-break data points

leads to a reduction in the bias in β̂1 even for very large post-break windows. For

example, the bias in β̂1 is minimized by including 3 pre-break observations even

when v2 = 100. The reason is again related to the direction of the small sample bias

in β̂1. Since β̂1 is downward biased, when the break is from high to low persistence,

the (upward) bias introduced by inclusion of the more persistent pre-break data

works in the opposite direction of the small sample (downward) bias in β̂1. For this

reason the biases under a decline in β1 tend to be smaller than the biases observed

when β1 increases at the time of the break.

Under a post-break unit root (experiment 5) the bias-minimizing pre-break

window size is around 20 observations. Under a pre-break unit-root (experiment

9), bias is smallest for either v1 = 0 or v1 = 1. When a break occurs in the

innovation variance (experiments 6 and 7), the smallest bias is always achieved by

the longest pre-break windows. The only difference to the case without a break is

that the bias is no longer a symmetric function of v1 and v2. Allowing for a break in

the mean (experiment 8), the forecast error is no longer unbiased unconditionally

and the optimal pre-break window size rises to 100 irrespective of the value of v2.

Turning next to the conditional bias in the forecast, Table 3 shows that, in the

absence of a break, the bias is positive when the prediction is made conditional

on yT = µ2 + σ2, a value above the mean of the process. This is, of course,

consistent with (34) and with the sign of the bias in β̂1. In general, the results for

the conditional bias in the forecast error mirror those of the bias in β̂1, except for

the case with a break in the mean. Whereas the bias in β̂1 was reduced the larger

the value of v1 when the mean increases at the time of the break, the bias in the

forecast error is smallest when v1 = 0 and the mean increases assuming a large

post-break sample (v2 = 50 or 100).

4.2. Forecasting Performance

To measure forecasting performance for the AR(1) model, unconditional and con-

ditional RMSFE values are shown in Tables 4 and 5. Under no break the uncon-

ditional RMSFE is 1.15 for the smallest combined sample (v1 = 0, v2 = 10) and it

declines symmetrically as a function of v1 and v2. In the presence of a moderate

20



break in the AR coefficient, the unconditional RMSFE continues to decline as a

function of v2 but it no longer declines monotonically in v1, the pre-break window.

Furthermore, the unconditional RMSFE no longer converges to one - its theoretical

value in the absence of parameter estimation uncertainty - provided the ratio v1/v2

does not go to zero. For example, when v1 = v2 = 100, the unconditional RMSFE

under a moderate break in β1 is close to 1.02 as opposed to a value of 1.006 observed

in the case without a break. This difference is due to the squared bias in the AR

parameters introduced by including pre-break data points. Generally, the windows

that minimize the unconditional RMSFE tend to be longer than the windows that

minimize the bias. Increasing the window size beyond the point that produces the

smallest bias may be acceptable if it reduces the forecast error variance by more

than the associated increase in the squared bias.

A moderately sized break in β1 implies that the optimal pre-break window size

declines to 10-20 observations under the unconditional RMSFE criterion although

it remains much longer under the conditional RMSFE criterion. In both cases, the

optimal value of v1 is smaller, the larger the value of v2 and the larger the size of

the break in β1 as can be seen by comparing the results from experiments 2 and 4.

Somewhat different patterns emerge when the AR model switches from having

a unit root process to being stationary and vice versa. Under a post-break unit

root the conditional RMSFE is minimized for rather large values of v1, whereas

the unconditional RMSFE is minimized at much smaller values of v1, typically

below 10 observations. But, under the pre-break unit root scenario, the smallest

unconditional and conditional RMSFE values are produced by at most including

one or two pre-break observations.

When the post-break innovation variance is higher, it is optimal to set the pre-

break window as long as possible since this maximizes the length of the less noisy

data and thus brings down the forecast error variance without introducing a bias

in the forecast. In contrast, when the innovation variance declines at the time of

the break, the optimal pre-break window size is only long provided the post-break

window, v2, is rather short and it declines to zero for larger values of v2. Notice

how the performance of the forecast can deteriorate badly upon the inclusion of a

single pre-break data point even with quite long post-break windows. This is due

to the extra noise introduced by using pre-break data for parameter estimation.

Under a break to the mean (experiment 8), the lowest conditional and uncon-
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ditional RMSFE values are observed for the longer pre-break windows. This is

an interesting finding and holds despite the fact that additional bias is introduced

into the forecast. For example, in Table 4 the RMSFE is systematically reduced by

increasing the pre-break window, v1. In practice, breaks are likely to involve the

means as well as the slope coefficients. In such situations our results suggest that,

at least for breaks of similar size to those assumed here, it is difficult to outperform

the forecasting performance generated by a model based on an expanding window

of the data.

4.3. Forecasting Performance of Rolling, Expanding and Post-break windows

To shed light on the practical implications of our results, we next consider the out-

of-sample forecasting performance of a range of widely used estimation windows.

One way to deal with parameter instability is to use a rolling observation window.

The size of the rolling window is often decided by a priori considerations. Here

we consider a short rolling window using the most recent 25 observations and

a relatively long rolling window based on the most recent 50 observations. If

parameter instability is believed to be due to the presence of rare structural breaks,

another possibility is to only use post-break data. In some cases the timing of the

break may be known, but in most cases both the timing and the number of breaks

must be estimated. We therefore use the Bai-Perron (1998) method to test for

the presence of structural breaks and determine their timing, allowing up to three

breaks and selecting the number of breaks by the Schwarz information criterion. If

one or more breaks is identified at time t, this procedure uses data after the most

recent break date to produce a forecast for period t+1. If no break is identified, an

expanding data window is used to generate the forecast. Finally, as a third option

an expanding window is considered. This is the most efficient estimation method

in the absence of breaks and provides a natural benchmark.

We initially undertook the following simulation exercise. For each of the orig-

inal AR(1) experiments we assume a break has taken place at observation 101.

Our post-break forecast evaluation period runs from observations 111 to 150. For

this period we computed RMSFEs of the one-step ahead forecasts obtained under

different estimation windows by Monte Carlo simulation.

Panel A of Table 6 reports the results under a single break. As expected, when

a break is not present the expanding window method produces the lowest RMSFE
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values. The expanding window also performs well when the break only affects the

volatility or the mean parameter. The fact that the expanding window performs

best even when the pre-break volatility is higher than the post-break volatility can

be explained by the reduction in the variance of the parameter estimation error

due to using a very long estimation window. The finding for a break in the mean

is consistent with the simulation results in Table 4. In the experiments with a very

large change in the autoregressive parameter (experiments 4-5), the short rolling

window method produces the best performance, while the long rolling window

works best for smaller breaks (experiments 2-3) which generate a lower squared

bias.

Interestingly, the use of a post-break window with an estimated break point

does not produce the lowest RMSFE performance in any of the experiments 1-

8. A possible explanation of this finding lies in the modest power of break point

tests to detect changes in autoregressive parameters as documented by Banerjee,

Lumsdaine and Stock (1992). The only case where the post-break window method

results in the lowest RMSFE is under a pre-break unit root (experiment 9). For

this case the expanding window method performs quite poorly. This is consistent

with our simulation results which showed that the conditional and unconditional

RMSFE performance was best for very small - frequently zero - pre-break windows

under a pre-break unit root. We also modified the simulation with the pre-break

unit root to ensure that the point towards which the post-break process mean

reverts is the terminal point of the pre-break unit root process (experiment 10)

rather than simply µ2. This is likely to generate sample paths more similar to

those observed in practice, c.f. Banerjee, Lumsdaine and Stock (1992). The results

show that although the expanding window method performs relatively better, it

still does not produce the lowest RMSFE.

4.4. Multiple Breaks

So far we have focused on the case with a single structural break, but in practice

the time series process under consideration may be subject to multiple breaks. Our

procedure can readily be generalized to account for this possibility. Accordingly,

we extended our simulation experiments to allow for two breaks occurring after 50

and 100 observations, respectively. The presence of multiple breaks raises questions

concerning the process generating the breaks. Barring a general theory we consider
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two scenarios. The first scenario assumes that the two breaks lead to a shift in the

regression coefficients in the same direction so for the AR(1) model we could have

β11 = 0.6, β12 = 0.75 and β13 = 0.9. The second scenario assumes mean reversion

in the parameters which first shift away from their initial values (at the first break

date) and then revert to their original values after the second break date, so we

could have β11 = 0.6, β12 = 0.9 and β13 = 0.6. Further details of the assumed

parameter values are reported in the note to Table 6.

The results, provided in Panel B of Table 6, suggest that the expanding window

method continues to produce the lowest RMSFEs in a number of cases including

those with breaks to the volatility parameter, breaks in the mean and mean re-

version in the autoregressive coefficient. Mean-reversion across breaks in the au-

toregressive coefficient tends to favor the expanding window method relative to

the other methods since the earliest part of the sample will be similar to the final

part from which the forecast is made. Adding the earliest part of the data sample

prior to the first break therefore tends to pull the parameter estimate towards the

value prevailing at the point of the forecast. In the few cases with multiple breaks

where the expanding method does not dominate, the long rolling window method

is generally best and it is frequently better to use a long rather than a short rolling

window in the absence of a unit root.

5. Empirical Analysis

To better understand the practical implications of our theoretical analysis, we

undertook a forecasting exercise using a range of macroeconomic time series. We

considered forecasts of growth (log-first differences) in industrial production and

real GDP, the inflation rate and short interest rates for six of the seven G7 countries,

namely Canada, France, Germany, Japan, UK and the US. Italy was excluded due

to incompleteness of data. All data is quarterly and covers the period 1959-1999.

The data source is Stock and Watson (2003).

The forecasting exercise uses 25 initial observations for parameter estimation

(or 40 observations in the case of the more heavily parameterized fourth order AR

model) and considers AR(1), AR(2) and AR(4) models. All forecasts are out-of-

sample and use data up to period t to estimate the parameters of a forecasting

model that is then used to generate a forecast for period t + 1. The expanding

window uses all available data up to time t. For the rolling windows we considered
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short and long rolling windows that use the most recent 25 and 40 observations,

respectively, corresponding to roughly six and ten years of data. We also consider

the two-step post-break window method described earlier, where in the first step

we use the Bai-Perron procedure to identify the break point nearest to the forecast

date and in the second step only use post-break data to estimate the parameters

of the forecasting model.

Table 7 reports the outcome of the empirical analysis. Panel A reports RMSFE-

values for the four estimation windows assuming an AR(1) specification while

panels B and C assume AR(2) and AR(4) models. For the AR(1) models the

post-break estimation method only produces the lowest RMSFE values in one case

(Canadian inflation) out of the total of 23 cases. This happens despite the fact that

breaks are identified at some point in the majority of the series, i.e. for 21 of 23

series for the AR(1) model. The short rolling window method does marginally bet-

ter than the post-break method, generating the lowest RMSFE values in three of

23 cases, while the long rolling window does best in seven cases. However, by some

margin, the best method turns out to be the expanding window which generates

the lowest RMSFE values in 12 cases.12

The results are even stronger for the AR(2) and AR(4) models. For the AR(2)

case the expanding window produces the best forecasting performance in 17 out of

23 cases with the long rolling window doing best in the remaining six cases. The

short rolling window and the post-break window never outperform these methods.

Similarly, for the AR(4) model, the expanding window generates the lowest out-

of-sample RMSFE values in 18 cases while the long rolling window does so in the

remaining five cases.

The theory developed in this paper and our simulation results are very useful

in understanding why it is difficult to reduce the RMSFE values produced by the

expanding window method. For example, in the case of the AR(1) model, we

found evidence for many of the variables either that the persistence of the series

declined after the most recent break or - in cases with multiple breaks - that there

was mean reversion in persistence across breaks. This would explain why the long

rolling window generally performs better than the short rolling window.

12In some cases the forecasting performance of the post-break and expanding window method

is identical. This situation arises when no break point is detected so the full sample is used for

estimation by the post-break method.
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We also found that the 95% confidence interval for the time of the break fre-

quently was quite wide and exceeded 10 observations. Imprecise determination of

the time of the break can lead to a deterioration in the relative performance of

the post-break forecasting method which will either be inefficient (if the estimated

break date is later than the true date so that not all post-break data is used) or

biased (if the estimated break date is premature so pre-break observations get in-

cluded in the estimation window). In many cases the post-break window was also

rather short, only averaging between one-half and one-third of the length of the

expanding window, leading to imprecisely estimated values of the parameters of

the forecasting model.

A final reason for the better overall performance of the expanding window

estimation method over the other methods lies in the empirical importance of

breaks to the innovation variance, σ2. Experiments 6, 7, 16 and 17 in Table 6

showed that the expanding window method tends to be best under a volatility-only

break. This finding is likely to carry over to cases with breaks in other parameters

provided that the break in the volatility parameter is large relative to breaks in the

other parameters. Indeed, we often observed very large variations in the estimates

of σ across different break segments.

Overall, our results suggest that the squared bias arising from using pre-break

data in estimation of the parameters of autoregressive forecasting models subject

to breaks is less important to forecasting performance than the variance of the

parameter estimation error. This would also explain the improved performance

of the methods that use the longest estimation windows under the higher order

AR models compared to the AR(1) model since these models require estimation of

more parameters.

Another interesting finding emerging from Table 7 is that, in general, variation

in the out-of-sample RMSFE is greater across the various estimation windows than

it is across the lag order chosen for the autoregressive model estimated through the

expanding window method. A large amount of work has gone into designing meth-

ods for lag order selection. Our results suggest that the forecasting performance of

autoregressive models subject to breaks could be even more affected by the length

of the estimation window than by the autoregressive order and that a post-break

estimation method - albeit appealing in theory - is difficult to implement success-

fully in practice for dynamic models. This points to the practical importance of
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gaining a better understanding of how to best determine the length of the data

window used to estimate the parameters of the forecasting model.

6. Conclusion

This paper studied the small sample properties of forecasts from autoregressive

models subject to breaks. It is insightful to compare and contrast our results for

the AR(p) model to those reported by Pesaran and Timmermann (2003) under

strictly exogenous regressors. Assuming strictly exogenous regressors, the OLS

estimates based on post-break data are unbiased. Including pre-break data will

therefore always increase the bias so that there will always be a trade-off between a

larger squared bias and a smaller variance of the parameter estimates as more pre-

break information is used. This trade-off can then be used to optimally determine

the window size.

As we have shown in this paper, the situation can be very different for AR

models due to the inherent small-sample bias in the estimates of the parameters

of these models. In situations where the true AR coefficient(s) declines after a

break, both the bias and the forecast error variance can in fact be reduced as a

result of using pre-break data in the estimation. This is likely to be an important

reason why, empirically, it is often difficult to improve forecasting performance over

the expanding or long rolling window methods by only using post-break data. It

also explains why forecasts based on a rolling window often perform worse than

forecasts based on an expanding window of the data, particularly in cases where

a short rolling window is used. These observations were confirmed empirically in

an analysis of forecasts of GDP and industrial production growth, inflation and

interest rates for six major economies.

More generally, we find both theoretically and empirically that there are many

scenarios where the inclusion of some pre-break data for purposes of estimation

of the parameters of autoregressive models leads to lower biases and lower mean

squared forecast errors than if only post-break data is used. This can hold even

when the post-break window is large, particularly when the post-break data gener-

ating process is highly persistent and/or has a break in the mean or variance. Our

findings also indicate the possibility of a hybrid method that starts with an expand-

ing window if the data set is relatively short and then switches to a long rolling

window as the data set grows beyond a pre-specified threshold. We are currently
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investigating into the possible ways that such a threshold could be determined.

Several extensions to our results would be interesting to consider in future

work. We have focused on the case with Gaussian innovations. Ullah (2003)

observes that the bias in the forecast error is reasonably robust to skewness and

kurtosis in the innovations of the AR model while, in contrast, the mean squared

forecast error can be sensitive to higher order moments that arise in the non-

Gaussian case. Our results could easily be extended to cover the non-normal case,

for example by drawing innovations from a mixture of normals. Other possibilities

are to consider the effect of additional predictors beyond autoregressive lags, multi-

step ahead forecasts, and forecasts from vector autoregressive processes with or

without cointegrating restrictions. Our theoretical and simulation results suggest

that the empirical dominance of the expanding or long rolling window estimation

method documented in this paper for univariate autoregressive models is likely to

hold in these more complicated settings.
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Appendix A: Distribution of the Initial Values when the
Pre-Break Process is I(1)

For the AR(2) case we first note that

ym−2 = y1 +∆y2 + ...+∆ym−2,

ym−1 = y1 +∆y2 + ...+∆ym−2 +∆ym−1. (37)

This provides a decomposition of ym−i, i = 1, 2 in terms of the non-stationary level
component, y1, and stationary first differences, ∆y2,∆y3, .... The distribution of

(ym−2, ym−1) can now be derived for given assumptions concerning y1 and ∆y2.

There are many possibilities. As a simple example we consider the situation where

as in the AR(1) case y1 ∼ N(µ1,ω2) is distributed independently of ∆yt, t = 2, 3, ..,
and assume that the stationary components of ym−2 and ym−1 are started with
∆y1 = 0. Under these assumptions we have y1 = ωε1 and ∆y2 = σ1ε2 and, using

(13),

∆yt = δ11∆yt−1 + σ1εt, t = 3, 4, ..., T1,

where |δ11| < 1, thus ensuring that yt ∼ I(1). Using these relations we have

∆y2 = σ1ε2

∆y3 = δ11σ1ε2 + σ1ε3
...

∆ym−2 = δm−411 σ1ε2 + δm−511 σ1ε3 + ...+ δ11σ1εm−3 + σ1εm−2

∆ym−1 = δm−311 σ1ε2 + δm−411 σ1ε3 + ...+ δ211σ1εm−3 + δ11σ1εm−2 + σ1εm−1

Substituting these in (37) we now have

ym−2 = y1 +
σ1ε2

¡
1− δm−311

¢
1− δ11

+
σ1ε3

¡
1− δm−411

¢
1− δ11

+ ...+
σ1εm−2 (1− δ11)

1− δ11

ym−1 = y1 +
σ1ε2

¡
1− δm−211

¢
1− δ11

+
σ1ε3

¡
1− δm−311

¢
1− δ11

+ ...
σ1εm−2

¡
1− δ211

¢
1− δ11

+
σ1εm−1 (1− δ11)

1− δ11
.
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Hence

V ar(ym−1) = ω2+
σ21
Pm−2

j=1

¡
1− δj11

¢2
(1− δ11)

2

= ω2+
σ21

³
(m− 2)(1− δ211) + δ211(1− δ

2(m−2)
11 )− 2δ11(1 + δ11)(1− δm−211 )

´
(1− δ11)

2 (1− δ211)
,

V ar(ym−2) = ω2+
σ21

³
(m− 3)(1− δ211) + δ211(1− δ

2(m−3)
11 )− 2δ11(1 + δ11)(1− δm−311 )

´
(1− δ11)

2 (1− δ211)
,

Cov(ym−1, ym−2) = ω2+
σ21

³
(m− 3)(1− δ211) + δ311(1− δ

2(m−3)
11 )− δ11(1 + δ11)

2(1− δm−311 )
´

(1− δ11)
2 (1− δ211)

,

(38)

so that Ã
ym−2
ym−1

!
∼ N (µ1τ 2,V2,m) , (39)

where the elements in the 2×2 matrixV2,m are given in (38). Fixed (non-stochastic)

starting values can also be accommodated by setting ω = 0.

Appendix B: Matrix Notations

This appendix provides details of some of the derivations from the main text.

The sub-matrices Bij in (18) are given by

B21
v1×p

=



−β1p −β1,p−1 · · · −β11
0 −β1p · · · −β12
...

...
. . .

...

−β1p −β1,p−1
0 0 · · · 0 −β1p
...

... · · · 0

0 0 · · · 0


,
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B22
v1×v1

=



1 0 · · · · · · · · · · · · 0 0

−β11 1 · · · · · · 0 0
...

...
. . . · · · ...

...
... 0 0

−β1p −β1,p−1 · · · · · · −β11 1 · · · · · · 0 0

0 −β1p · · · · · · −β12 −β11 1 · · · 0 · · · 0 0
...

... · · · ...
...

...
...

. . .
...

...
...

...

0 0 · · · 0 0 0 0 · · · −β1,p−1 · · · 1 0

0 0 · · · 0 0 0 0 · · · −β1p · · · −β11 1


,

B32
v2×v1

=



0 0 · · · 0 −β2p −β2,p−1 · · · −β22 −β21
0 0 · · · 0 −β2p · · · −β23 −β22
...
...
. . .

... 0 0 · · · ...
...

0 0 · · · 0 · · · −β2p −β2,p−1
0 0 · · · 0 · · · 0 −β2p
0 0 · · · 0 · · · 0 0
...
...

... · · · ...
...

0 0 · · · 0 · · · 0 0


,

and

B33
v2×v2

=



1 0 · · · · · · · · · · · · 0 0

−β21 1 · · · · · · 0 0
...

...
. . . · · · ... 0 0

−β2p −β2,p−1 · · · · · · −β21 1 · · · · · · 0 0

0 −β2p · · · · · · −β22 −β21 1 0 · · · 0 0
...

... · · · ...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 0 · · · −β2,p−1 · · · 1 0

0 0 · · · 0 0 0 0 · · · −β2p · · · −β21 1


.

Matrix B is lower triangular with diagonal elements equal to unity and is there-

fore non-singular and we have

yT (m− p) = c+Hε,

where c = B−1d, and H = B−1D. It is now easily seen that

yT−i(m− i) = GiyT (m− p) = Gic+GiHε, (40)
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for i = 0, 1, ..., p, where Gi are v × (v + p) selection matrices defined by

Gi = (0v×p−i
...Iν
...0v×i), for i = 0, 1, 2, ..., p.

0v×p−i is a v × (p− i) matrix of zeros and G0 = (0v×p
...Iν), and Gp =

µ
Iν
...0v×p

¶
.

The deterministic components, Gic, in the expressions for yT−i(m− i) simplify
if there is no mean shift (µ1 = µ2) or if β

∗
2 = 1. To see this we first note that

Bτ v+p =

 τ p

(1− β∗1) τ v1
(1− β∗2) τ v2

 . (41a)

Also

d =

 µ1τ p

µ1(1− β∗1)τ v1
µ2(1− β∗2)τ v2

 = µ1

 τ p

(1− β∗1) τ v1
(1− β∗2) τ v2

+
 0p×1

0v1×1
(1− β∗2) (µ2 − µ1) τ v2

 ,
and using (41a)

d =µ1Bτ v+p + g,

where

g =

 0p×1
0v1×1

(1− β∗2) (µ2 − µ1) τ v2

 .
Hence

c = B−1d =µ1τ v+p +B
−1g,

When there is no mean shift, µ1 = µ2 = µ, then g = 0, and we have

Gic = GiB
−1d =µGiτ v+p = µτ v. (42)

Similarly, if µ1 6= µ2 but β∗2 = 1 we have

Gic =µ1τ v. (43)
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Table 1: Breakpoint Specifications by Experiments

Experiments µ1 µ2 β11 β12 σ1 σ2

1: No break 1 1 0.9 0.9 1 1

2: Moderate break in β1 1 1 0.6 0.9 1 1

3: Moderate break in β1 (decline) 1 1 0.9 0.6 1 1

4: Large break in β1 1 1 0.3 0.9 1 1

5: Post-break unit root 1 1 0.6 1 1 1

6: Higher post-break volatility 1 1 0.9 0.9 0.25 1

7: Lower post-break volatility 1 1 0.9 0.9 4 1

8: Break in mean (increase) 1 2 0.9 0.9 1 1

9: Pre-break unit root 1 1 1 0.6 1 1
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Table 2: Small sample bias of the OLS estimate of ββββ as a function of pre-break (v1) and post-break (v2) windows 
                
Experiment no. 1: No break  Experiment no. 4: Large break in β  Experiment no. 7: Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.370 -0.200 -0.135 -0.081 -0.039  0 -0.393 -0.214 -0.145 -0.085 -0.041  0 -0.221 -0.118 -0.082 -0.052 -0.029 
1 -0.344 -0.193 -0.132 -0.080 -0.039  1 -0.389 -0.222 -0.150 -0.089 -0.042  1 -0.326 -0.173 -0.119 -0.072 -0.036 
2 -0.315 -0.184 -0.129 -0.078 -0.039  2 -0.371 -0.217 -0.153 -0.091 -0.044  2 -0.335 -0.192 -0.133 -0.083 -0.043 
3 -0.297 -0.175 -0.125 -0.076 -0.038  3 -0.364 -0.216 -0.154 -0.092 -0.045  3 -0.327 -0.191 -0.137 -0.086 -0.046 
4 -0.278 -0.170 -0.119 -0.076 -0.038  4 -0.358 -0.220 -0.154 -0.095 -0.046  4 -0.312 -0.191 -0.135 -0.090 -0.048 
5 -0.262 -0.162 -0.116 -0.074 -0.037  5 -0.355 -0.220 -0.155 -0.098 -0.047  5 -0.298 -0.185 -0.136 -0.089 -0.049 

10 -0.202 -0.136 -0.102 -0.068 -0.035  10 -0.363 -0.233 -0.169 -0.107 -0.053  10 -0.227 -0.155 -0.122 -0.086 -0.051 
20 -0.136 -0.102 -0.081 -0.057 -0.032  20 -0.393 -0.263 -0.196 -0.127 -0.065  20 -0.149 -0.116 -0.095 -0.073 -0.049 
30 -0.102 -0.082 -0.066 -0.050 -0.030  30 -0.416 -0.292 -0.220 -0.147 -0.078  30 -0.110 -0.091 -0.076 -0.062 -0.043 
50 -0.067 -0.058 -0.049 -0.040 -0.026  50 -0.452 -0.337 -0.261 -0.183 -0.099  50 -0.071 -0.063 -0.056 -0.047 -0.035 

100 -0.036 -0.033 -0.030 -0.026 -0.020  100 -0.499 -0.402 -0.333 -0.245 -0.145  100 -0.037 -0.035 -0.033 -0.029 -0.025 
                    
Experiment no. 2: Moderate break in β  Experiment no. 5: Post-break unit root  Experiment no. 8: Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.391 -0.213 -0.144 -0.085 -0.041  0 -0.413 -0.232 -0.163 -0.102 -0.052  0 -0.365 -0.197 -0.134 -0.080 -0.039 
1 -0.376 -0.215 -0.146 -0.087 -0.041  1 -0.394 -0.230 -0.159 -0.100 -0.052  1 -0.337 -0.189 -0.129 -0.078 -0.038 
2 -0.354 -0.208 -0.147 -0.088 -0.043  2 -0.367 -0.217 -0.156 -0.099 -0.051  2 -0.309 -0.179 -0.125 -0.077 -0.038 
3 -0.340 -0.204 -0.146 -0.088 -0.043  3 -0.352 -0.211 -0.152 -0.097 -0.051  3 -0.290 -0.170 -0.122 -0.074 -0.037 
4 -0.325 -0.203 -0.143 -0.090 -0.044  4 -0.336 -0.206 -0.149 -0.095 -0.050  4 -0.272 -0.165 -0.115 -0.073 -0.037 
5 -0.315 -0.199 -0.142 -0.091 -0.045  5 -0.327 -0.201 -0.144 -0.095 -0.050  5 -0.256 -0.157 -0.111 -0.071 -0.036 

10 -0.286 -0.193 -0.143 -0.094 -0.047  10 -0.303 -0.191 -0.138 -0.089 -0.047  10 -0.196 -0.130 -0.097 -0.064 -0.033 
20 -0.271 -0.194 -0.150 -0.102 -0.055  20 -0.297 -0.191 -0.138 -0.088 -0.046  20 -0.132 -0.097 -0.076 -0.053 -0.029 
30 -0.267 -0.200 -0.157 -0.110 -0.062  30 -0.299 -0.199 -0.142 -0.090 -0.047  30 -0.099 -0.077 -0.062 -0.045 -0.027 
50 -0.269 -0.213 -0.172 -0.128 -0.074  50 -0.312 -0.216 -0.157 -0.099 -0.048  50 -0.066 -0.055 -0.045 -0.035 -0.021 

100 -0.277 -0.234 -0.201 -0.156 -0.099  100 -0.335 -0.248 -0.188 -0.119 -0.057  100 -0.035 -0.031 -0.027 -0.022 -0.015 
                    
Experiment no. 3: Moderate break in β (decline)  Experiment no. 6: Higher post-break volatility  Experiment no. 9: Pre-break unit root   

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.228 -0.124 -0.086 -0.053 -0.027  0 -0.399 -0.218 -0.147 -0.086 -0.041  0 -0.097 -0.061 -0.045 -0.031 -0.019 
1 -0.156 -0.085 -0.058 -0.035 -0.018  1 -0.341 -0.204 -0.140 -0.085 -0.040  1 0.056 0.061 0.062 0.058 0.051 
2 -0.114 -0.060 -0.040 -0.023 -0.010  2 -0.302 -0.187 -0.135 -0.083 -0.041  2 0.128 0.120 0.117 0.108 0.092 
3 -0.081 -0.037 -0.022 -0.009 -0.002  3 -0.280 -0.176 -0.130 -0.080 -0.040  3 0.168 0.160 0.151 0.141 0.121 
4 -0.058 -0.020 -0.007 -0.001 0.004  4 -0.260 -0.170 -0.123 -0.079 -0.040  4 0.196 0.185 0.177 0.164 0.142 
5 -0.037 -0.005 0.005 0.010 0.010  5 -0.245 -0.161 -0.118 -0.078 -0.039  5 0.215 0.206 0.195 0.182 0.160 

10 0.040 0.053 0.052 0.047 0.037  10 -0.198 -0.138 -0.105 -0.071 -0.037  10 0.272 0.256 0.247 0.235 0.211 
20 0.118 0.116 0.111 0.098 0.076  20 -0.150 -0.112 -0.088 -0.062 -0.035  20 0.309 0.297 0.292 0.281 0.258 
30 0.161 0.155 0.148 0.132 0.105  30 -0.118 -0.097 -0.076 -0.056 -0.033  30 0.324 0.317 0.314 0.303 0.285 
50 0.207 0.199 0.191 0.176 0.147  50 -0.085 -0.076 -0.063 -0.049 -0.030  50 0.336 0.334 0.333 0.327 0.313 

100 0.250 0.243 0.237 0.226 0.200  100 -0.048 -0.050 -0.046 -0.037 -0.025  100 0.344 0.345 0.344 0.342 0.334 

 
Note: Experiments 1 to 9 are defined in Table 1. 



 
Table 3: Bias of forecast error conditional on yT = µ2222 + σσσσ2222 

                    
Experiment no. 1:No break  Experiment no. 4: Large break in β  Experiment no. 7: Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 0.370 0.200 0.135 0.081 0.039  0 0.393 0.214 0.145 0.085 0.041  0 0.221 0.118 0.082 0.052 0.029 
1 0.344 0.193 0.132 0.080 0.039  1 0.389 0.222 0.150 0.089 0.042  1 0.326 0.173 0.119 0.072 0.036 
2 0.315 0.184 0.129 0.078 0.039  2 0.371 0.217 0.153 0.091 0.044  2 0.335 0.192 0.133 0.083 0.043 
3 0.297 0.175 0.125 0.076 0.038  3 0.364 0.216 0.154 0.092 0.045  3 0.327 0.191 0.137 0.086 0.046 
4 0.278 0.170 0.119 0.076 0.038  4 0.358 0.220 0.154 0.095 0.046  4 0.312 0.191 0.135 0.090 0.048 
5 0.262 0.162 0.116 0.074 0.037  5 0.355 0.220 0.155 0.098 0.047  5 0.298 0.185 0.136 0.089 0.049 

10 0.202 0.136 0.102 0.068 0.035  10 0.363 0.233 0.169 0.107 0.053  10 0.227 0.155 0.122 0.086 0.051 
20 0.136 0.102 0.081 0.057 0.032  20 0.393 0.263 0.196 0.127 0.065  20 0.149 0.116 0.095 0.073 0.049 
30 0.102 0.082 0.066 0.050 0.030  30 0.416 0.292 0.220 0.147 0.078  30 0.110 0.091 0.076 0.062 0.043 
50 0.067 0.058 0.049 0.040 0.026  50 0.452 0.337 0.261 0.183 0.099  50 0.071 0.063 0.056 0.047 0.035 

100 0.036 0.033 0.030 0.026 0.020  100 0.499 0.402 0.333 0.245 0.145  100 0.037 0.035 0.033 0.029 0.025 
                    
Experiment no. 2: Moderate break in β  Experiment no. 5: Post-break unit root  Experiment no. 8: Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 0.391 0.213 0.144 0.085 0.041  0 0.413 0.232 0.163 0.102 0.052  0 0.604 0.286 0.178 0.096 0.043 
1 0.376 0.215 0.146 0.087 0.041  1 0.394 0.230 0.159 0.100 0.052  1 0.583 0.284 0.178 0.098 0.044 
2 0.354 0.208 0.147 0.088 0.043  2 0.367 0.217 0.156 0.099 0.051  2 0.552 0.282 0.181 0.100 0.045 
3 0.340 0.204 0.146 0.088 0.043  3 0.352 0.211 0.152 0.097 0.051  3 0.529 0.276 0.182 0.100 0.046 
4 0.325 0.203 0.143 0.090 0.044  4 0.336 0.206 0.149 0.095 0.050  4 0.507 0.276 0.178 0.103 0.047 
5 0.315 0.199 0.142 0.091 0.045  5 0.327 0.201 0.144 0.095 0.050  5 0.486 0.269 0.178 0.103 0.047 

10 0.286 0.193 0.143 0.094 0.047  10 0.303 0.191 0.138 0.089 0.047  10 0.404 0.247 0.173 0.106 0.050 
20 0.271 0.194 0.150 0.102 0.055  20 0.297 0.191 0.138 0.088 0.046  20 0.309 0.214 0.161 0.106 0.054 
30 0.267 0.200 0.157 0.110 0.062  30 0.299 0.199 0.142 0.090 0.047  30 0.260 0.193 0.151 0.106 0.059 
50 0.269 0.213 0.172 0.128 0.074  50 0.312 0.216 0.157 0.099 0.048  50 0.208 0.169 0.140 0.106 0.064 

100 0.277 0.234 0.201 0.156 0.099  100 0.335 0.248 0.188 0.119 0.057  100 0.159 0.141 0.126 0.104 0.073 
                    
Experiment no. 3: Moderate break in β (decline)  Experiment no. 6: Higher post-break volatility  Experiment no. 9: Pre-break unit root 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 0.228 0.124 0.086 0.053 0.027  0 0.399 0.218 0.147 0.086 0.041  0 0.097 0.061 0.045 0.031 0.019 
1 0.156 0.085 0.058 0.035 0.018  1 0.341 0.204 0.140 0.085 0.040  1 -0.056 -0.061 -0.062 -0.058 -0.051 
2 0.114 0.060 0.040 0.023 0.010  2 0.302 0.187 0.135 0.083 0.041  2 -0.128 -0.120 -0.117 -0.108 -0.092 
3 0.081 0.037 0.022 0.009 0.002  3 0.280 0.176 0.130 0.080 0.040  3 -0.168 -0.160 -0.151 -0.141 -0.121 
4 0.058 0.020 0.007 0.001 -0.004  4 0.260 0.170 0.123 0.079 0.040  4 -0.196 -0.185 -0.177 -0.164 -0.142 
5 0.037 0.005 -0.005 -0.010 -0.010  5 0.245 0.161 0.118 0.078 0.039  5 -0.215 -0.206 -0.195 -0.182 -0.160 

10 -0.040 -0.053 -0.052 -0.047 -0.037  10 0.198 0.138 0.105 0.071 0.037  10 -0.272 -0.256 -0.247 -0.235 -0.211 
20 -0.118 -0.116 -0.111 -0.098 -0.076  20 0.150 0.112 0.088 0.062 0.035  20 -0.309 -0.297 -0.292 -0.281 -0.258 
30 -0.161 -0.155 -0.148 -0.132 -0.105  30 0.118 0.097 0.076 0.056 0.033  30 -0.324 -0.317 -0.314 -0.303 -0.285 
50 -0.207 -0.199 -0.191 -0.176 -0.147  50 0.085 0.076 0.063 0.049 0.030  50 -0.336 -0.334 -0.333 -0.327 -0.313 

100 -0.250 -0.243 -0.237 -0.226 -0.200  100 0.048 0.050 0.046 0.037 0.025  100 -0.344 -0.345 -0.344 -0.342 -0.334 

 
See the note to Table 2. 
 



Table 4: Unconditional RMSFE as a function of pre-break (v1) and post-break window (v2) 
                    
Experiment no. 1:No break  Experiment no. 4: Large break in β  Experiment no. 7: Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.149 1.078 1.051 1.028 1.012  0 1.125 1.070 1.048 1.028 1.012  0 1.302 1.133 1.072 1.030 1.011 
1 1.140 1.075 1.048 1.027 1.012  1 1.122 1.071 1.048 1.029 1.013  1 1.539 1.258 1.140 1.055 1.017 
2 1.127 1.072 1.047 1.026 1.012  2 1.114 1.069 1.048 1.028 1.013  2 1.576 1.310 1.171 1.070 1.021 
3 1.120 1.070 1.046 1.026 1.012  3 1.106 1.067 1.048 1.028 1.013  3 1.595 1.322 1.189 1.077 1.024 
4 1.112 1.066 1.044 1.025 1.011  4 1.101 1.066 1.047 1.028 1.013  4 1.597 1.327 1.192 1.083 1.025 
5 1.104 1.063 1.043 1.025 1.012  5 1.097 1.065 1.046 1.028 1.013  5 1.569 1.330 1.202 1.087 1.027 

10 1.075 1.051 1.037 1.023 1.011  10 1.103 1.066 1.047 1.029 1.013  10 1.481 1.291 1.196 1.095 1.032 
20 1.047 1.035 1.028 1.019 1.010  20 1.132 1.080 1.055 1.033 1.015  20 1.356 1.229 1.160 1.087 1.034 
30 1.034 1.027 1.021 1.015 1.009  30 1.163 1.099 1.068 1.039 1.018  30 1.282 1.193 1.135 1.079 1.034 
50 1.022 1.018 1.016 1.012 1.008  50 1.216 1.139 1.096 1.058 1.024  50 1.197 1.144 1.110 1.070 1.033 

100 1.011 1.010 1.009 1.008 1.006  100 1.307 1.215 1.164 1.101 1.045  100 1.106 1.086 1.074 1.053 1.031 
                    
Experiment no. 2: Moderate break in β  Experiment no. 5: Post-break unit root  Experiment no. 8: Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.128 1.071 1.048 1.028 1.012  0 1.112 1.062 1.044 1.028 1.014  0 1.149 1.078 1.050 1.028 1.012 
1 1.120 1.069 1.047 1.028 1.013  1 1.110 1.062 1.043 1.027 1.014  1 1.141 1.075 1.048 1.027 1.012 
2 1.109 1.066 1.046 1.028 1.013  2 1.105 1.059 1.042 1.027 1.014  2 1.129 1.072 1.047 1.026 1.012 
3 1.100 1.064 1.046 1.027 1.012  3 1.102 1.059 1.042 1.027 1.014  3 1.122 1.070 1.047 1.026 1.012 
4 1.092 1.061 1.044 1.027 1.012  4 1.101 1.058 1.042 1.026 1.014  4 1.115 1.066 1.044 1.025 1.011 
5 1.085 1.059 1.042 1.026 1.012  5 1.101 1.058 1.041 1.025 1.014  5 1.106 1.064 1.043 1.024 1.011 

10 1.073 1.052 1.039 1.025 1.012  10 1.115 1.063 1.042 1.026 1.013  10 1.079 1.053 1.037 1.023 1.011 
20 1.070 1.048 1.037 1.025 1.012  20 1.148 1.081 1.051 1.030 1.014  20 1.051 1.037 1.029 1.019 1.010 
30 1.074 1.051 1.038 1.025 1.013  30 1.176 1.100 1.064 1.034 1.015  30 1.039 1.030 1.023 1.016 1.009 
50 1.085 1.059 1.045 1.030 1.015  50 1.221 1.141 1.093 1.048 1.018  50 1.027 1.021 1.018 1.014 1.008 

100 1.110 1.080 1.065 1.044 1.022  100 1.308 1.227 1.166 1.087 1.030  100 1.017 1.014 1.012 1.010 1.007 
                    
Experiment no. 3: Moderate break in β (decline)  Experiment no. 6: Higher post-break volatility  Experiment no. 9: Pre-break unit root 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.117 1.054 1.035 1.021 1.010  0 1.126 1.070 1.049 1.028 1.013  0 1.072 1.037 1.026 1.016 1.008 
1 1.111 1.050 1.033 1.020 1.010  1 1.107 1.063 1.043 1.027 1.012  1 1.076 1.042 1.031 1.020 1.012 
2 1.113 1.051 1.033 1.020 1.010  2 1.097 1.057 1.041 1.026 1.012  2 1.085 1.052 1.040 1.029 1.018 
3 1.110 1.052 1.034 1.020 1.010  3 1.090 1.054 1.040 1.024 1.012  3 1.092 1.060 1.048 1.036 1.024 
4 1.114 1.053 1.035 1.021 1.011  4 1.086 1.050 1.037 1.024 1.011  4 1.098 1.067 1.055 1.042 1.029 
5 1.112 1.054 1.037 1.022 1.011  5 1.082 1.047 1.035 1.023 1.011  5 1.102 1.071 1.059 1.046 1.034 

10 1.099 1.056 1.040 1.026 1.013  10 1.072 1.040 1.030 1.020 1.011  10 1.112 1.085 1.073 1.062 1.048 
20 1.078 1.055 1.043 1.031 1.018  20 1.058 1.034 1.024 1.017 1.009  20 1.118 1.097 1.087 1.078 1.062 
30 1.069 1.055 1.045 1.034 1.021  30 1.047 1.030 1.021 1.014 1.009  30 1.118 1.105 1.096 1.084 1.073 
50 1.063 1.054 1.049 1.040 1.028  50 1.036 1.024 1.019 1.012 1.008  50 1.119 1.108 1.102 1.093 1.083 

100 1.060 1.057 1.054 1.048 1.039  100 1.022 1.017 1.014 1.010 1.006  100 1.113 1.105 1.101 1.096 1.088 

 
See the note to Table 2. 
 
 



Table 5. RMSFE conditional on yT = µ 2 2 2 2 + σσσσ2222 
                    
Experiment no. 1:No break  Experiment no. 4: Large break in β  Experiment no. 7: Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.421 1.164 1.088 1.038 1.013  0 1.342 1.153 1.086 1.039 1.013  0 1.851 1.237 1.103 1.037 1.011 
1 1.375 1.153 1.085 1.037 1.012  1 1.296 1.145 1.086 1.039 1.013  1 2.339 1.419 1.189 1.064 1.016 
2 1.329 1.142 1.079 1.036 1.012  2 1.253 1.130 1.079 1.038 1.013  2 2.375 1.477 1.222 1.078 1.019 
3 1.301 1.130 1.075 1.034 1.012  3 1.220 1.116 1.074 1.036 1.013  3 2.357 1.488 1.239 1.084 1.021 
4 1.274 1.123 1.069 1.033 1.012  4 1.198 1.109 1.068 1.036 1.013  4 2.308 1.491 1.242 1.088 1.023 
5 1.248 1.115 1.067 1.032 1.011  5 1.181 1.102 1.065 1.035 1.013  5 2.217 1.488 1.251 1.093 1.023 

10 1.165 1.085 1.053 1.028 1.011  10 1.141 1.084 1.057 1.032 1.013  10 1.927 1.408 1.234 1.099 1.028 
20 1.086 1.054 1.037 1.021 1.009  20 1.122 1.075 1.052 1.030 1.013  20 1.567 1.303 1.188 1.090 1.030 
30 1.053 1.037 1.027 1.017 1.008  30 1.117 1.074 1.051 1.030 1.013  30 1.396 1.241 1.154 1.082 1.030 
50 1.027 1.021 1.017 1.012 1.007  50 1.119 1.079 1.055 1.033 1.014  50 1.240 1.166 1.120 1.070 1.030 

100 1.011 1.009 1.008 1.007 1.005  100 1.129 1.092 1.069 1.042 1.019  100 1.111 1.090 1.075 1.053 1.028 
                    
Experiment no. 2: Moderate break in β  Experiment no. 5: Post-break unit root  Experiment no. 8: Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.352 1.154 1.086 1.039 1.013  0 1.457 1.264 1.183 1.121 1.063  0 1.507 1.189 1.098 1.041 1.013 
1 1.303 1.145 1.085 1.039 1.013  1 1.375 1.231 1.169 1.112 1.060  1 1.464 1.179 1.096 1.041 1.013 
2 1.259 1.130 1.078 1.037 1.013  2 1.318 1.198 1.148 1.099 1.056  2 1.416 1.170 1.092 1.040 1.013 
3 1.226 1.116 1.073 1.035 1.013  3 1.277 1.172 1.130 1.088 1.052  3 1.381 1.159 1.089 1.039 1.013 
4 1.199 1.108 1.067 1.035 1.012  4 1.242 1.155 1.116 1.080 1.048  4 1.352 1.152 1.083 1.038 1.013 
5 1.177 1.099 1.062 1.033 1.012  5 1.213 1.140 1.105 1.074 1.045  5 1.322 1.144 1.081 1.037 1.012 

10 1.119 1.073 1.050 1.029 1.012  10 1.141 1.098 1.075 1.055 1.035  10 1.225 1.113 1.067 1.034 1.012 
20 1.079 1.054 1.039 1.024 1.011  20 1.096 1.068 1.052 1.038 1.025  20 1.129 1.077 1.051 1.027 1.011 
30 1.064 1.046 1.034 1.022 1.011  30 1.080 1.056 1.043 1.031 1.020  30 1.088 1.057 1.040 1.023 1.010 
50 1.053 1.040 1.030 1.020 1.010  50 1.069 1.048 1.036 1.025 1.015  50 1.051 1.038 1.029 1.019 1.009 

100 1.046 1.036 1.029 1.020 1.011  100 1.066 1.045 1.033 1.021 1.011  100 1.025 1.021 1.018 1.013 1.008 
                    
Experiment no. 3: Moderate break in β (decline)  Experiment no. 6: Higher post-break volatility  Experiment no. 9: Pre-break unit root 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.161 1.066 1.039 1.021 1.009  0 1.316 1.148 1.085 1.039 1.013  0 1.088 1.043 1.028 1.016 1.008 
1 1.135 1.056 1.035 1.019 1.009  1 1.222 1.120 1.074 1.036 1.012  1 1.060 1.031 1.022 1.014 1.008 
2 1.126 1.053 1.033 1.019 1.009  2 1.172 1.100 1.066 1.034 1.012  2 1.056 1.033 1.025 1.018 1.012 
3 1.117 1.051 1.032 1.018 1.009  3 1.143 1.085 1.059 1.031 1.012  3 1.058 1.036 1.029 1.022 1.015 
4 1.115 1.050 1.032 1.018 1.009  4 1.124 1.076 1.052 1.029 1.011  4 1.059 1.039 1.032 1.025 1.018 
5 1.109 1.050 1.032 1.018 1.009  5 1.110 1.068 1.047 1.028 1.011  5 1.062 1.042 1.035 1.028 1.021 

10 1.088 1.046 1.032 1.020 1.010  10 1.072 1.045 1.033 1.022 1.010  10 1.070 1.052 1.046 1.039 1.031 
20 1.062 1.041 1.032 1.022 1.012  20 1.043 1.028 1.021 1.015 1.008  20 1.078 1.064 1.057 1.050 1.042 
30 1.051 1.038 1.032 1.024 1.015  30 1.029 1.021 1.016 1.011 1.007  30 1.081 1.070 1.064 1.057 1.049 
50 1.043 1.037 1.033 1.027 1.019  50 1.017 1.013 1.010 1.008 1.005  50 1.083 1.074 1.070 1.065 1.057 

100 1.040 1.038 1.036 1.032 1.025  100 1.007 1.006 1.006 1.004 1.003  100 1.079 1.072 1.069 1.065 1.060 

 
See the note to Table 2. 
 



 
Table 6: RMSFE-values 

 
           
A. Single break           
Experiment no. 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 

 
 

No break Moderate 
 Break in β 

Decline 
In β 

Large break 
in β 

Post-break 
unit root 

Higher post- 
break vol. 

Lower post- 
break vol. 

Increase in 
mean 

Pre-break 
unit root 

Pre-break 
unit root 

Expanding window 1.006 1.066 1.052 1.186 1.157 1.007 1.066 1.010 1.104 1.096 
Rolling window (short) 1.053 1.058 1.046 1.059 1.058 1.049 1.146 1.056 1.067 1.041 
Rolling window (long) 1.020 1.040 1.037 1.071 1.061 1.021 1.147 1.026 1.092 1.045 
Post-break window 1.011 1.086 1.058 1.133 1.115 1.124 1.104 1.021 1.051 1.072 
           
           
B. Multiple breaks           
Experiment no. 11 12 13 14 15 16 17 18 19 20 

 
 

Continued 
rise in β 

Mean- 
Reverting β 

Continued 
decline in β 

Mean-  
reverting β 

Large rise  
In β 

Volatility 
break 

Volatility 
break 

Mean 
reverting 
intercept 

Pre-break 
unit root 

Pre-break 
unit root 

Expanding window 1.038 1.028 1.033 1.011 1.120 1.035 1.006 1.003 1.026 1.026 
Rolling window (short) 1.051 1.049 1.040 1.051 1.060 1.141 1.056 1.053 1.053 1.053 
Rolling window (long) 1.024 1.039 1.017 1.036 1.041 1.140 1.027 1.023 1.058 1.058 
Post-break window 1.055 1.037 1.035 1.030 1.105 1.202 1.044 1.014 1.084 1.065 
           

 
Note: Experimental designs are described in Table 1 for experiments 1-9.  

Experiment 10 assumes mean-reversion to the end-point of the pre-break unit root process.  
Experiments 11-20 assume two breaks occurring after 50 and 100 periods.   
Experiment 11 lets the AR(1) coefficient go from 0.6 to 0.75 to 0.9.  
Experiment 12 lets the AR(1) coefficient go from 0.6 to 0.9 to 0.6. 
Experiment 13 lets the AR(1) coefficient go from 0.9 to 0.75 to 0.6.  
Experiment 14 lets the AR(1) coefficient go from 0.9 to 0.6 to 0.9. 
Experiment 15 lets the AR(1) coefficient go from 0.3 to 0.6 to 0.9.  
Experiment 16 lets volatility go from 1 to 4 to 1. 
Experiment 17 lets volatility go from 1 to 0.25 to 1.  
Experiment 18 lets the intercept go from 1 to 2 to 1.  
Experiments 19 and 20 assume unit roots before the first and after the second break with AR(1) parameters of 1, 0.6 and 1, respectively.  
Experiment 19 lets the mean of the stationary segment be independent of the terminal point of the unit root process, while experiment 20 assumes the 
stationary part of the process has a mean determined by the end-point of the unit root process. Parameters not changed in the experiments are kept at their base 
values with an AR(1) parameter of 0.9, volatility of 1 and an intercept of 1. 
 



Table 7: Out-of-sample forecasting performance 
 
 

RMSFE-values       
A. AR(1) Models Canada France Germany Japan UK US 
Expanding window       
Inflation rate 0.451 0.401 0.471 0.927 0.833 0.446 
Industrial production growth 1.712 1.599 1.825 1.710 1.977 1.494 
Real GDP growth 0.917 0.631 1.299 1.300 1.050 0.867 
Interest rate 1.291 1.179 0.548 NA 1.239 1.298 
       
Short rolling window       
Inflation rate 0.456 0.398 0.459 0.900 0.842 0.441 
Industrial production growth 1.798 1.605 1.854 1.695 2.046 1.552 
Real GDP growth 0.901 0.641 1.348 1.104 1.055 0.915 
Interest rate 1.347 1.266 0.597 NA 1.257 1.421 
       
Long rolling window       
Inflation rate 0.453 0.400 0.465 0.890 0.845 0.449 
Industrial production growth 1.723 1.599 1.846 1.683 1.988 1.513 
Real GDP growth 0.874 0.636 1.286 1.076 1.047 0.880 
Interest rate 1.300 1.176 0.551 NA 1.236 1.356 
       
Post-break window       
Inflation rate 0.437 0.418 0.540 1.037 0.933 0.477 
Industrial production growth 1.854 1.712 1.846 1.828 2.442 1.550 
Real GDP growth 0.955 0.638 1.299 1.164 1.050 0.875 
Interest rate 1.538 1.277 0.661 NA 1.385 1.508 
       
B. AR(2) Models Canada France Germany Japan UK US 
Expanding window       
Inflation rate 0.437 0.399 0.469 0.890 0.844 0.448 
Industrial production growth 1.711 1.565 1.837 1.723 2.015 1.484 
Real GDP growth 0.916 0.610 1.308 1.167 1.057 0.865 
Interest rate 1.309 1.208 0.529 NA 1.254 1.344 
       
Short rolling window       
Inflation rate 0.451 0.412 0.483 0.927 0.875 0.457 
Industrial production growth 1.815 1.622 1.906 1.743 2.144 1.571 
Real GDP growth 0.917 0.629 1.367 1.112 1.090 0.923 
Interest rate 1.397 1.294 0.587 NA 1.287 1.459 
       
Long rolling window       
Inflation rate 0.448 0.399 0.483 0.883 0.872 0.452 
Industrial production growth 1.738 1.569 1.888 1.706 2.056 1.529 
Real GDP growth 0.877 0.617 1.306 1.069 1.058 0.882 
Interest rate 1.334 1.198 0.536 NA 1.252 1.408 
       
Post-break window       
Inflation rate 0.438 0.416 0.571 1.084 1.353 0.508 
Industrial production growth 1.826 1.640 2.368 1.743 3.807 1.484 
Real GDP growth 0.938 0.610 1.308 1.201 1.057 0.865 
Interest rate 1.759 1.753 0.603 NA 1.536 1.556 
       



 
 
 

Table 7: Out-of-sample forecasting performance (continued) 
 
 

C. AR(4) Models Canada France Germany Japan UK US 
Expanding window       
Inflation rate 0.447 0.411 0.472 0.863 0.925 0.437 
Industrial production growth 1.721 1.626 1.731 1.806 2.174 1.512 
Real GDP growth 0.924 0.532 1.056 1.034 1.104 0.898 
Interest rate 1.379 1.287 0.468 NA 1.264 1.463 
       
Short rolling window       
Inflation rate 0.499 0.464 0.562 0.907 0.980 0.456 
Industrial production growth 1.897 1.740 1.867 1.790 2.388 1.718 
Real GDP growth 0.963 0.585 1.224 1.061 1.209 0.984 
Interest rate 1.544 1.488 0.523 NA 1.334 1.633 
       
Long rolling window       
Inflation rate 0.474 0.424 0.524 0.880 0.966 0.434 
Industrial production growth 1.771 1.620 1.823 1.757 2.243 1.644 
Real GDP growth 0.895 0.565 1.062 1.029 1.136 0.930 
Interest rate 1.431 1.288 0.472 NA 1.274 1.561 
       
Post-break window       
Inflation rate 0.449 0.436 0.818 1.525 4.952 0.515 
Industrial production growth 1.828 2.903 1.731 2.185 7.100 2.749 
Real GDP growth 0.924 0.532 1.056 1.034 1.816 0.898 
Interest rate 2.389 1.377 0.472 NA 2.155 3.494 
       

 


