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Empirical tests of forecast optimality have traditionally been conducted under the assumption

of mean squared error loss or some other known loss function. This paper establishes new testable

properties that hold when the forecaster’s loss function is unknown but testable restrictions can

be imposed on the data generating process, trading off conditions on the data generating process

against conditions on the loss function. We propose flexible estimation of the forecaster’s loss

function in situations where the loss depends not only on the forecast error but also on other

state variables such as the level of the target variable. We apply our results to the problem of

evaluating the Federal Reserve’s forecasts of output growth. Forecast optimality is rejected if the

Fed’s loss only depends on the forecast error. However, the empirical findings are consistent with

forecast optimality provided that over-predictions of output growth are costlier to the Fed than

under-predictions, particularly during periods of low economic growth.
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1 Introduction

Forecasts are used extensively to guide the decisions of individuals, businesses and macroeconomic

policy-makers, so what constitutes a ‘good’ or optimal forecast is of great practical relevance.

Indeed, knowledge of the properties possessed by an optimal forecast has been used, inter alia, in

tests of the efficient market hypothesis in financial markets and in tests of the rationality of decision

makers in a variety of economic applications. Almost without exception empirical work has relied

on mean squared error (MSE) loss:

L(Yt+h, Ŷt+h,t) =
³
Yt+h − Ŷt+h,t

´2
, (1)

where L(·) is the loss function, t is the time that the forecast is computed, h is the forecast horizon,

Yt+h is the predicted variable and Ŷt+h,t is the forecast based on information available at time t.

Assuming covariance stationarity, under MSE loss the optimal forecast and the associated forecast

error satisfy a set of standard conditions (see, e.g., Diebold and Lopez, 1996):

1. The optimal forecast of Yt+h is its conditional expectation so the forecast error is conditionally

(and unconditionally) unbiased;

2. The h-step forecast error exhibits zero serial covariance beyond lag (h− 1);

3. The unconditional variance of the forecast error is a non-decreasing function of the forecast

horizon.

Unfortunately, such properties often do not provide a useful guide to empirical tests since they do

not generally hold under other loss functions (Patton and Timmermann, 2004) and the forecaster’s

loss function is unknown in most applications. This is particularly important since there are often

good reasons to believe that loss depends asymmetrically on positive and negative forecast errors

as discussed by, inter alia, Granger (1969), Varian (1974), Granger and Newbold (1986), Zellner

(1986), Weiss (1996), West, Edison and Cho (1993) and Christoffersen and Diebold (1997).

As an important case in point, consider the one-quarter-ahead forecasts of real output (Gross

Domestic Product or GDP) growth produced by the Board of Governors of the Federal Reserve −

the so-called “Greenbook” forecasts − plotted in Figure 1 against realizations of annualized real

GDP growth over the period 1968Q4 - 1999Q4, a total of 125 observations. The Federal Reserve
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does not publish how the Greenbook forecasts are constructed (though these forecasts are known

to be based on judgemental information as well as formal statistical models), nor does it publish

the loss function used, either explicitly or implicitly, in the construction of the forecasts. However,

it is known that considerable resources are devoted to the production of these forecasts and that

they are used by the Fed in the setting of monetary policy. We should therefore reasonably expect

that these forecasts contain valuable information about future GDP growth. In fact, due to the

sensitivity of these forecasts−and the information they contain about monetary policy−the Fed

only releases them with a five-year delay.

Figure 2 plots realized GDP growth against the forecast in a scatterplot. If the forecasts were

optimal under MSE loss, it follows from property 1 above that they should fall around the 45-degree

line. This property is commonly tested through a so-called Mincer-Zarnowitz (1969) regression of

realized values on a constant and the forecast, the implication being that the associated coefficients

should be zero and one, respectively. OLS parameter estimates (and standard errors) of this

regression were:

Yt+1 = 1.253
(0.451)

+ 0.710
(0.106)

Ŷt+1,t + ut+1.

R2 = 0.218

Under MSE loss, forecast optimality does not rule out heteroskedasticity in the residuals from this

regression. The only implication of optimality is that the forecast errors should follow a martingale

difference sequence with respect to the information set used by the forecaster. Autocorrelation

in the residuals, ut+1, is ruled out, however, since lagged forecast errors are generally assumed to

be part of the forecaster’s information set. This implication, and other implications, of forecast

optimality is not tested in the Mincer-Zarnowitz regression which only uses information on the mean

and correlation between the forecast, Ŷt+1,t and the realization, Yt+1, to test for unbiasedness. As

such, this regression should only be viewed as a weak (necessary but not sufficient) test of one

implication of forecast optimality under MSE loss.

Even so, a Wald test of the joint restriction on the intercept and the slope yields a χ22-statistic

of 8.57 and a p-value of 0.01. All standard errors in this paper use the heteroskedasticity and

autocorrelation robust estimator of Newey and West (1987). The test statistic and p-value obtained

when the usual OLS parameter covariance matrix is used are 8.90 and 0.01. In both cases we reject

the null of forecast optimality under MSE loss at the 0.05 level.
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This strong rejection of optimality is at first sight surprising given the incentives of the Fed

to forecast this variable well and the considerable resources devoted to its prediction. It should

be recalled, however, that the rejection was predicated on MSE loss whereas, in actuality, the

Federal Reserve’s loss function is unknown. In fact, as pointed out by Nobay and Peel (2003) and

Capistran (2006), there are strong reasons to assume that the Federal Reserve has asymmetric loss

over forecast errors rather than MSE loss.

These empirical findings therefore point towards the need for establishing tests of forecast

optimality that apply when the loss function is unknown. To this end, our paper establishes new

results that trade off restrictions on the forecaster’s loss function against restrictions on the data

generating process (DGP). For example, in situations where the conditional higher order moments of

the predicted variable are constant, we show that although the optimal forecast may well be biased,

optimal h-step-ahead forecast errors display serial dependence of at most order h−1, implying that

optimal one-step-ahead forecasts generate serially uncorrelated forecast errors. These results hold

irrespective of the shape of the loss function and offer new ways to test forecast optimality that

do not require knowledge of the specific loss function, but do require restrictions on the underlying

DGP. They will be useful in the common situation where the shape of the loss function is unknown,

but the restrictions on the DGP can be tested empirically. We present similar results that hold

when the DGP exhibits heteroskedasticity of a general unknown form and mild restrictions are

imposed on the shape of the loss function, using a new family of quantile-based tests. We are

not aware of any existing tests of forecast optimality that are robust to the loss function of the

forecaster.

An important restriction required for some of these new results is that the loss function only

depends on the forecast error. However it is quite likely that the loss also depends on factors such as

the level of the predicted variable or the value of some other state variable, c.f. Garratt et al. (2003).

For example, it may be particularly costly to over-predict GDP growth when growth is already very

low. In effect this would amount to the Federal Reserve signalling a false recovery which could lead

to an overly tight monetary policy at exactly the wrong point in time. To deal with broader classes

of loss functions, we present a new method to test forecast optimality based on a flexible model of

the loss function, which is then tested via a set of over-identifying restrictions. Indeed, the empirical

analysis suggests that this broader class of loss functions is required to maintain the assumption of

rationality for the Federal Reserve’s forecasts.
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The outline of the paper is as follows. Section 2 derives testable properties of optimal forecasts

when the loss function is unknown but testable restrictions can be imposed on the DGP. Section 3

extends our results to the case where the loss function does not exclusively depend on the forecast

error, Section 4 reports size and power results from a Monte Carlo simulation experiment and

Section 5 concludes. An appendix contains technical details and proofs.

2 Testable Implications under Unknown Loss

Suppose that a decision maker is interested in forecasting some univariate time series, Y ≡

{Yt; t = 1, 2, ...}, h steps ahead given information at time t, Ft. Let Z̃t be a (m× 1) vector of

predictor variables used by the forecaster, e.g. the Federal Reserve, and let Ft be the σ-field gen-

erated by
½³

Yt−k, Z̃ 0t−k

´0
; k ≥ 0

¾
. We will denote a generic element of Ft as Zt, and denote the

conditional distribution of Yt+h given Ft as Ft+h,t, and the conditional density as ft+h,t. Point

forecasts conditional on Ft are denoted by Ŷt+h,t and belong to Y, a subset of R, while forecast

errors are given by et+h,t = Yt+h − Ŷt+h,t. In general the objective of the forecast is to minimize

the expected value of some loss function, L(Yt+h, Ŷt+h,t), which is a mapping from realizations and

forecasts to the real line, L : R×Y→ R. An optimal forecast is thus defined as:

Ŷ ∗t+h,t ≡ argmin
ŷ∈Y

E [L (Yt+h, ŷ) |Ft] . (2)

We will use Et[.] as shorthand notation for E[.|Ft], the conditional expectation given Ft. We

also define the conditional variance, Vt [Yt+h] = E[(Yt+h − E[Yt+h|Ft])
2|Ft] and the unconditional

equivalents, E[.] and V [.]. Finally, we define μt+h,t ≡ Et [Yt+h] and σ2t+h,t ≡ Vt [Yt+h].

To establish properties of optimal forecasts that may be tested when the loss function of the

forecaster is unknown, restrictions on the DGP are required. We consider DGPs with dynamics in

the conditional mean and conditional variance, but no dynamics in the remainder of the conditional

distribution. These classes of DGPs are quite broad and include ARMA processes and non-linear

regressions, possibly with dynamics in the conditional variance process.

2.1 Conditional Mean Dynamics Only

Consider first the class of DGPs that satisfy the following conditional homoskedasticity condition:

Assumption D1: The DGP is such that Yt+h = μt+h,t + εt+h, εt+h|Ft ∼ Fε,h

³
0, σ2ε,h

´
, where
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Fε,h

³
0, σ2ε,h

´
is some distribution with mean zero and variance σ2ε,h, which may depend on h, but

does not depend on Ft.

The restriction of dynamics only in the conditional mean implies that the innovation term, εt+h,

is drawn from some distribution, Fε,h, which will generally depend on the forecast horizon, but is

independent of Ft and so is not denoted with a subscript t.

Following a long literature in economics and statistics, we concentrate initially on loss functions

that satisfy the following assumption:

Assumption L1: The loss function depends solely on the forecast error. That is, L (y, ŷ) =

L (y − ŷ) = L (e), ∀ (y, ŷ) ∈ R×Y.

Although assumption L1 rules out certain loss functions, many common loss functions are of

this form, for example MSE, mean absolute error (MAE), lin-lin and linex loss. Cases where the loss

depends not only on the size of the forecast error but also on the level of the predicted variable are

ruled out, however. As we show in Section 3, such cases arise in economics if the costs of prediction

errors are not the same in recessions and expansions. They could also occur in meteorology, where

under- and over-predictions may be equally costly under normal weather conditions, but may

differ under more extreme conditions. For example, underpredicting the strength of a hurricane or

tornado could be particularly costly.

Under these two assumptions we obtain the following testable implications of forecast optimality:

Proposition 1 Suppose the loss is a function solely of the forecast error (assumption L1) while

the DGP has dynamics only in the conditional mean (assumption D1). Then

1. The optimal forecast takes the form

Ŷ ∗t+h,t = μt+h,t + α∗h, (3)

where α∗h is a constant that depends on the distribution Fε,h and the loss function.

2. The forecast error associated with the optimal forecast, e∗t+h,t, is independent of all Zt ∈ Ft.

In particular, Cov
³
e∗t+h,t, e

∗
t+h−j,t−j

´
= 0 for all j ≥ h and any h > 0.

3. The variance of the forecast error associated with the optimal forecast, V (e∗t+h,t), is non-

decreasing in the forecast horizon, h.

All proofs are contained in the appendix. This proposition shows that under a testable as-

sumption on the DGP, and only one weak assumption on the loss function, the forecast errors
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associated with the optimal forecast are serially uncorrelated at lags greater than or equal to the

forecast horizon, for any error-based loss function. Given a sequence of realizations and forecasts,n³
Yt+h, Ŷt+h,t

´oT
t=1
, we may therefore test for forecast optimality without knowledge of the fore-

caster’s loss function by testing, for example, the serial correlation properties of the forecast errors.

For financial applications the assumption of constant higher-order conditional moments is clearly

too strong, but in many economic applications the assumption that all dynamics are driven by the

conditional mean may be reasonable. In these cases forecast optimality can be tested with a large

degree of robustness to the loss function of the forecaster, e.g. by testing β = 0 in regressions such

as

et+h,t = α+ β0Zt + ut+h. (4)

Note that no estimate of the conditional mean of Yt+h is required to conduct this test. This is

important since μt+h,t is generally unknown. This test exploits the result that all variables known

to have been in the forecaster’s information set − except trivially for a constant − are orthogonal

to the forecast error, which is observable without knowledge of μt+h,t.

We focus on testing for correlation though of course more generally we could test for complete

independence between et+h,t and any Zt ∈ Ft, or other implications of independence. For example,

rather than using OLS to estimate the parameters in equation (4), we could use LAD or quantile

regression, see Koenker and Bassett (1978).

The last part of the proposition reveals that optimality tests based on the variance of the forecast

error being weakly increasing in the forecast horizon require restrictive assumptions either on the

loss function (namely, that MSE loss applies) or on the DGP (i.e., dynamics in the conditional

mean only).

2.2 Conditional Mean and Variance Dynamics

We next provide results for a more general class of conditional scale-location processes that satisfy

the following assumption:

Assumption D2: The DGP is such that Yt+h = μt+h,t + σt+h,tηt+h, ηt+h|Ft ∼ Fη,h (0, 1),

where Fη,h (0, 1) is some distribution with mean zero and unit variance, which may depend on h,

but does not depend on Ft.

This class of DGPs is very broad and includes most common volatility processes, e.g. ARCH
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and stochastic volatility, see Engle (1982) and Taylor (1982). It nests those of Assumption D1, at

the cost that we must be more restrictive on the class of loss functions that we consider below.

Specifically, we shall assume that the loss function is homogenous in the forecast error:

Assumption L2: The loss function is a homogeneous function solely of the forecast error.

This assumption implies that L (ae) = g (a)L (e) for some positive function g. Commonly used

loss functions such as MSE, MAE, lin-lin, and asymmetric quadratic loss are all of this form. This

requirement is needed to ensure that the units of the forecast (e.g., cents versus dollars) do not

affect the optimal forecast beyond a scale adjustment. Although this holds for many loss functions

encountered in economics and finance, the requirement does exclude cases such as linear-exponential

loss.

With these two assumptions we obtain the following testable implications of forecast optimality:

Proposition 2 Suppose the loss function is homogenous in the forecast error (assumption L2)

while the DGP can have conditional mean and variance dynamics (assumption D2). Define the

standardized forecast error associated with the optimal forecast as d∗t+h,t = e∗t+h,t/σt+h,t. Then:

1. The optimal forecast takes the following form:

Ŷ ∗t+h,t = μt+h,t + σt+h,t · γ∗h, (5)

where γ∗h is a constant that depends only on the distribution Fη,h and the loss function.

2. d∗t+h,t is independent of any element Zt ∈ Ft. In particular,

Cov
³
d∗rt+h,t, d

∗s
t+h−j,t−j

´
= 0 for all j ≥ h and any h > 0 and all r, s for which the covariance

exists.

Although the forecast error associated with the optimal forecast will not, in general, be unbi-

ased, serially uncorrelated or homoskedastic, the forecast error scaled by the conditional standard

deviation will be independent of any Zt ∈ Ft. This implies that d∗t+h,t will be serially uncorrelated

at lags j ≥ h and homoskedastic. Forecast optimality could therefore be tested by estimating

non-parametric or flexible parametric models for the conditional mean and variance:

dt+h,t = α0 + g1(Zt; θ1) + ut+h (6)

ut+h = σu,t+hvt+h, vt+h ∼ (0, 1)

σ2u,t+h = ω0 + g2(Zt; θ2)
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If g1 and g2 are defined such that g1(z; 0) = g2(z; 0) = 0 for all z, then a test of optimality may be

obtained by testingH0 : ω0 = 1∩θ1 = θ2 = 0 so that the conditional mean of dt+h,t is time-invariant

and its conditional variance equals unity.

The above test is easily computed and does not require an estimate of μt+h,t although it re-

quires that an estimate of σ2t+h,t is available. Under certain conditions, a consistent estimate of

this conditional variance can be obtained from the observed Yt process either by means of para-

metric methods (e.g. using a GARCH-type model) or by non-parametric methods, using a realized

volatility estimator (see Andersen, et al., 2001, 2003) for example.

Researchers will not always have a reliable estimate of σ2t+h,t available, and so it would be

particularly useful to establish under which conditions an optimality test can be based only on

observables. Suppose we restrict the first and second moment dynamics to be linked in a manner

consistent with the widely used “constant coefficient of variation” model:

Assumption D2’: The DGP is such that Yt+h = βσt+h,t + σt+h,tηt+h, ηt+h|Ft ∼ Fη,h (0, 1),

where β ∈ R and Fη,h is some distribution with mean zero and unit variance, which may depend

on h, but does not depend on Ft.

This “ARCH-in-mean” model is extensively used in financial applications, i.e. when the target

variable is returns and expected returns are proportional to the level of risk as measured by the

conditional standard deviation, see Engle, et al. (1987). Using this assumption, we obtain

Corollary 1 Suppose the loss function is homogenous in the forecast error (assumption L2), while

the DGP satisfies assumption D2’ for β 6= −γ∗h. Define d̂∗t+h,t ≡
³
Yt+h − Ŷ ∗t+h,t

´
/Ŷ ∗t+h,t. Then

d̂∗t+h,t is independent of any element Zt ∈ Ft. In particular, Cov
³
d̂∗rt+h,t, d̂

∗s
t+h−j,t−j

´
= 0 for all

j ≥ h and any h > 0 and all r, s for which the covariance exists.

Note that the assumption that β 6= −γ∗h is easily checked: if this is true then the optimal forecast

is identically zero for all t. Under the conditions of Corollary 1 we may test forecast optimality

without specific knowledge of the loss function or any of the moments of the DGP, by testing

that there is no serial correlation beyond lag h− 1 in d̂t+h,t =
³
Yt+h − Ŷt+h,t

´
/Ŷt+h,t, and/or that

the d̂t+h,t series is homoskedastic conditional on any Zt ∈ Ft. This could be done simply via a

regression of powers of d̂t+h,t on a constant and lags, of order greater than or equal to h, of various

powers of d̂t+h,t, or as in equation (6).
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2.3 Quantile Tests

Under the conditions of Propositions 1 or 2 it is possible to show that we can express the optimal

forecast as a conditional quantile of the variable of interest. The usefulness of this result lies in the

surprising finding that the optimal forecast is the same quantile at all points in time, though the

quantile may change with the forecast horizon and is typically unknown as it depends on the loss

function. With such a representation we can obtain an alternative test of forecast optimality using

tests of quantile forecasts, eliminating the need to estimate the conditional variance of the variable

of interest.

Proposition 3 Suppose that either (i) the loss is a function solely of the forecast error (assumption

L1) while the DGP has dynamics only in the conditional mean (assumption D1), or (ii) the loss

function is homogenous in the forecast error (assumption L2) while the DGP has dynamics in the

conditional mean and variance (assumption D2). Then:

1. The optimal forecast is such that, for all t,

Ft+h,t

³
Ŷ ∗t+h,t

´
= q∗h, (7)

where q∗h ∈ (0, 1) depends only on the distribution Fη,h and the loss function. If Ft+h,t is continuous

and strictly increasing, then we can alternatively express this as:

Ŷ ∗t+h,t = F−1t+h,t (q
∗
h) . (8)

2. Let

I∗t+h,t ≡ 1
³
Yt+h ≤ Ŷ ∗t+h,t

´
,

where 1 (A) equals one if A is true and zero otherwise. Then I∗t+h,t is independent of all Zt ∈ Ft.

In particular, I∗t+h,t − q∗h is a martingale difference sequence with respect to Ft.

Notice how assumptions on the loss function can be traded off against assumptions on the DGP.

This proposition gives rise to a new test that is applicable even though q∗h is unknown. The test

simply projects the indicator function on elements in Ft and an intercept and tests that β = 0:

It+h,t = α+ β0Zt + ut+h. (9)

Alternatively, a logit model could be used, to better reflect the binary nature of the dependent

variable, or the LR test of independence of Christoffersen (1998) could be employed to test for
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serial dependence in It+h,t. If q∗h is known, it can further be tested that α = q∗h. Even in the

common case where q∗h is unknown, the key point to notice is that the quantile test does not

require knowledge of the true values of either μt+h,t or σt+h,t. The test also does not require

knowledge of the time-varying conditional distribution, Ft+h,t, which is unknown in practice. This

can be compared to tests based on the probability integral transform of the data, Ft+h,t(Yt+h),

which should be Uniform(0,1) under the null that the forecasting model is correctly specified. Such

tests can be difficult to implement given only a sequence of point forecasts, and without knowledge

of the forecaster’s loss function or the forecaster’s information set, which is generally unobservable

to the forecast evaluator. Due to this robustness property and the minimal information required

for their implementation, we think that this new class of quantile tests of forecast optimality is

likely to find widespread use in empirical work.

Of the existing tests of forecast optimality in the literature, the one that allows for the greatest

flexibility with respect to the loss function is due to Elliott, et al. (2005). These authors derive

tests of forecast optimality when the loss function is assumed to belong to the two-parameter family

L(et+1;α, p) ≡ [α+ (1− 2α)1 (et+1 < 0)] |et+1|p , (10)

with a positive exponent p and an asymmetry parameter α, 0 < α < 1. This is very different

from the approach proposed in this section, which does not constrain the loss function to belong

to a pre-specified parametric family of loss functions. In Section 3 we suggest an extension of the

approach of Elliott, et al. (2005) for applications where assumptions L1 or L2 do not hold.

While Proposition 3 holds quite generally, it of course only applies to point forecasts. One

possible extension of our work includes establishing results for density forecasting, an area recently

considered by Garratt et al. (2003) and Campbell and Diebold (2005), although applications of such

results to empirical data will be limited since, currently, the vast majority of published forecasts

are point forecasts.

2.4 Non-homogeneous Loss or Dynamics in Higher-order Moments

The above results under unknown loss constitute an exhaustive set of testable properties in the

following sense. First, suppose that the loss function is not homogeneous (L2). Allowing for

conditional variance dynamics (as in assumption D2) then makes it difficult to obtain testable

implications of forecast optimality that are robust to the loss function. Further, when there is
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dynamics in third or higher order moments and assumption D2 fails to hold it is generally difficult

to obtain results that are easy to test even if homogeneity is imposed on the loss function. To see

this, consider the following more general DGP:

Assumption D3: The DGP is such that Yt+h = μt+h,t + σt+h,tηt+h, ηt+h|Ft ∼ Fη,t+h,t (0, 1),

where Fη,t+h,t (0, 1) is some time-varying distribution, with mean zero and unit variance, that de-

pends on Ft and possibly on h.

This class of DGPs nests those of Assumption D2, as we allow for a time-varying conditional

mean, conditional variance and other properties of the distribution (e.g., time-varying conditional

skew or kurtosis.) We obtain the following “impossibility” result:

Proposition 4 1. Suppose the DGP has conditional mean and variance dynamics (assumption

D2), but that the loss function is not homogenous in the forecast error (assumption L2 is violated).

Then:

Ŷ ∗t+h,t = μt+h,t + α∗t+h,t, (11)

where α∗t+h,t is a scalar that depends on the loss function, σt+h,t, and Fη,h.

2. Suppose the loss function is homogenous in the forecast error (assumption L2), and that the

DGP has dynamics beyond the conditional mean and variance (assumption D3). Then:

Ŷ ∗t+h,t = μt+h,t + σt+h,t · γ∗t+h,t, (12)

where γ∗t+h,t is a scalar that depends on the loss function and Fη,t+h,t.

Under the conditions for Part 1 or Part 2 of the above proposition, the forecast error associated

with the optimal loss, e∗t+h,t ≡ Yt+h − Ŷ ∗t+h,t, its standardized equivalent, d
∗
t+h,t = e∗t+h,t/σt+h,t,

and the indicator variable I∗t+h,t ≡ 1
³
Yt+h ≤ Ŷ ∗t+h,t

´
, will all, in general, be correlated with some

Zt ∈ Ft in a way that depends on the unknown loss function. Thus if the loss function is not

homogeneous, or if there are higher-order dynamics in the DGP, these objects will not generally be

useful for testing forecast optimality. In these cases it is difficult to obtain testable restrictions on

the forecast error that do not require knowledge of the shape of the loss function, even if σt+h,t is

known (or, more generally, even if Ft+h,t is known).

Of course, if the loss function and the data generating process are known, optimality properties

of the forecast can be derived directly. For example, assuming linex loss and a first-order Markov
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Gaussian mixture model, Patton and Timmermann (2004) derive the properties of the optimal

forecast and forecast errors.

2.5 Empirical Results

We next return to the Federal Reserve Greenbook forecasts of output growth to demonstrate the

theoretical results. This is the data shown in Figure 1. These forecasts are all one-quarter ahead

forecasts, so h = 1.

Our realized values of GDP are taken as the 2006Q1 “vintage” of the real GDP growth figures

over the sample period, obtained from the Federal Reserve Bank of Philadelphia’s web page. This

data was studied in depth by Croushore and Stark (2001). The data and a detailed description of

its construction are available at http://www.phil.frb.org/econ/forecast/reaindex.html. In Section

2.5.1 we discuss the results obtained using an earlier vintage of real GDP growth data, and show

that they are similar to those obtained using the most recent vintage.

Under the joint assumption that the Federal Reserve’s forecasts are optimal, its loss is solely a

function of the forecast error (assumption L1), and there are no dynamics beyond the conditional

mean (assumption D1) of real GDP growth, Proposition 1 shows that the Greenbook forecast errors

would be conditionally homoskedastic. We test for conditional heteroskedasticity in the Greenbook

forecast errors using Engle’s (1982) test which is based on the null that αi = 0 for all i ≥ 1 in the

regression:

e2t+1,t = α0 + α1e
2
t,t−1 + ...+ αLe

2
t−L+1,t−L + ut+1.

A test with four lags generated a p-value of 0.03, indicating the presence of conditional heteroskedas-

ticity. This suggests either that the Fed’s forecasts are sub-optimal, or that assumption D1 or L1

is violated.

Testing assumption D1 directly requires modeling the conditional mean of output growth. We

used an ARMA(1,1) model for the conditional mean, which was found to remove all significant

serial correlation, and then tested for serial correlation in the squared residuals from this model.

The p-values from this test were 0.65, 0.09 and 0.01 for lags 1, 4 and 8. These results indicate the

presence of conditional heteroskedasticity and hence suggest that D1 is an inappropriate assumption

for quarterly output growth.

The previous results suggest that we need to allow for more general dynamics in the data
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generating process for real GDP growth. For this purpose we tested assumption D2 directly on

the real GDP growth series by estimating an ARMA(1,1) model for the conditional mean and

a GARCH(1,1) model for the conditional variance, c.f. Bollerslev (1986). Simple, parsimonious,

GARCH models have been shown to work well in numerous other studies of macroeconomic and

financial time series. We tested for serial correlation in the first four powers of the standardized

residuals, and found no evidence of any serial correlation out to eight lags, suggesting that D2 may

be an appropriate assumption for this data. The generalized tests of Hong (1999) could also have

been used to test Assumption D2.

To test the joint hypothesis that forecasts are optimal, that the loss function is homogenous

in the forecast error, and that the more general assumption D2 (which allows for conditional

heteroskedasticity) holds for our GDP data, we use the result from Proposition 2 that, under these

assumptions, the forecast error associated with the optimal forecast will be of the following form:

et+1,t = γ1σt+1,t + σt+1,tηt+1 (13)

ηt+1,t|Ft ∼ Fη,1 (0, 1) .

Under the assumption of Corollary 1, the forecast Ŷt+1,t already incorporates information on the

conditional mean of Yt+1 and so an independent estimate of μt+1,t is not required in this test. If we

knew σt+1,t we could construct dt+1,t ≡ et+1,t/σt+1,t, which, under the conditions for Proposition

2, will be serially uncorrelated, conditionally homoskedastic, and have constant conditional higher-

order moments. In order to implement a test we model the conditional variance as a simple

GARCH(1,1) process, allowing for the GARCH-in-mean effects implied by Proposition 2. Of course,

the possibility remains that this model is mis-specified and that this affects our conclusions. The

GARCH-in-mean parameter, γ1, was significant (with a p-value less than 0.01), presenting further

evidence against the optimality of these forecasts under MSE loss. Simple tests for serial correlation

in the third and fourth powers of the forecast errors standardized by the GARCH estimates of

conditional variance did not reveal any evidence against assumption D2, conditional on the forecasts

being optimal and assumption L2 being satisfied.

If we could further assume that assumption D2’ holds for real GDP growth then we could employ

Corollary 1 and use the Greenbook forecasts to standardize the forecast errors. Under the joint

assumption that D2’ and L2 holds and forecasts are optimal, d̂t+1,t = (Yt+1 − Ŷt+1,t)/Ŷt+1,t should

be independent of any element in the forecaster’s information set, including past (standardized)
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forecast errors and any transformation of these. We therefore tested for serial correlation in d̂t+1,t

and d̂2t+1,t.We found no evidence of serial correlation in d̂t+1,t at any lag up to eight, but we found

significant evidence of serial correlation in d̂2t+1,t: the p-values from a Ljung-Box test with four lags

was 0.01, indicating significant serial correlation. This indicates that the joint hypothesis that D2’

holds, that loss is homogeneous in the forecast error (L2) and that the Greenbook forecasts are

optimal can be rejected.

Given the plausibility of assumption D2 for real GDP growth, and the violation of assumption

D2’, we now employ the test of forecast optimality based on Proposition 3. Rather than rely on a

(possibly mis-specified) parametric estimator of the conditional variance of the real GDP growth

series, we implement the test of forecast rationality under unknown loss using the indicator variable

It+1,t ≡ 1
³
Yt+1 ≤ Ŷt+1,t

´
. This variable should be independent of all elements of Ft under the null

of forecast rationality, and does not require any specification of the mean or variance. We consider

two parsimonious tests of this restriction, both obtained via OLS regression:

It+1,t = 0.346
(0.071)

+ 0.036
(0.016)

Ŷt+1,t + ut+1

It+1,t = 0.334
(0.095)

+ 0.039
(0.015)

Ŷt+1,t + 0.036
(0.108)

It,t−1 + ut+1.

The first regression reveals significant evidence of correlation between the indicator variable and

the forecast: the t-statistic is 2.27, which is significant at the 0.05 level. In the second regression,

when we include both the lagged indicator variable and the forecast, we find that the coefficient on

the lagged indicator is not significantly different from zero, while the coefficient on the forecast is

significant at the 0.05 level. A joint test that both coefficients are equal to zero yields a p-value of

0.06, which means that the null is not rejected at the 0.05 level but is rejected at the 0.10 level.

Since our tests revealed no evidence against assumption D2, these results constitute evidence

against the optimality of the Greenbook forecasts under any loss function that is homogeneous in

the forecast error. If, however, the Fed’s loss function does not satisfy this restriction, then these

forecasts may yet be optimal under a more general loss function. Overall, we take these regressions

and the earlier results as evidence against the optimality of the Greenbook forecasts under unknown

loss functions that are homogenous in the forecast error.
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2.5.1 Real-time Data

In addition to the 2006Q1 “vintage” of real GDP growth figures, we also consider using “real-

time” GDP figures, that is, the figures that historically would have been available to forecasters

at each point in time. Diebold and Rudebusch (1991) and Croushore and Stark (2001) discuss

the differences between using revised data versus real-time data. This data takes into account the

possible effect of measurement errors on the forecasting performance as measured historically, and

uses the fact that the Fed may have as its forecast target the initial release of GDP figures, rather

than the underlying true GDP figures, as proxied by the latest vintage data. Following studies such

as Romer and Romer (2000) and Capistran (2006), we use the second revision of the real GDP

growth figures.

The results we obtain are consistent with those reported above for the final revision. For

example, we find evidence against optimality under MSE loss using this data from the following

regression:

et+1,t = 1.046
(0.985)

− 0.300
(0.253)

Ŷt+1,t + 0.072
(0.111)

et,t−1 + ut+1

While none of the coefficients in this model are individually significant at the 0.05 level, a joint

test that all parameters equal zero yields a χ23 statistic (p-value) of 8.56 (0.04), which implies a

rejection of this restriction at the 0.05 level. We also find significant serial correlation in the real-

time forecast errors, indicating either that assumptions D1 and L1 do not hold or that the forecasts

are suboptimal. Furthermore, using the real-time data, the indicator variable regressions yielded

It+1,t = 0.362
(0.067)

+ 0.027
(0.019)

Ŷt+1,t + ut+1

It+1,t = 0.255
(0.076)

+ 0.028
(0.019)

Ŷt+1,t + 0.250
(0.087)

It,t−1 + ut+1

So for the real-time data the coefficient on the forecast is not significant while the coefficient on the

lagged indicator is now highly significant. The χ22 statistic and p-value from the second regression

are 10.07 and 0.01, so again we strongly reject optimality in conjunction with assumptions D2 and

L2.

2.5.2 The “Great Moderation”

A factor that may affect our results is the presence of a structural break in the variance of U.S. GDP

growth, known as the “great moderation”, generally thought to have occurred around 1984Q1, see
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Kim and Nelson (1999), McConnell and Perez-Quiros (2000) and Stock and Watson (2002). Breaks

such as these are widely regarded as a key source of forecast failure, c.f. Clements and Hendry

(1998, 2006). To explore this possibility, we carried out separate tests using data up to 1983Q4

(61 observations) and from 1984Q1 onwards (64 observations). The sub-sample results were very

similar to those obtained from the full sample: the Mincer-Zarnowitz tests of forecast optimality

under MSE loss yielded the following results:

Pre-1984 sample Yt+1 = 0.953
(0.655)

+ 0.692
(0.118)

Ŷt+1,t + ut+1, R2 = 0.225

Post-1984 sample Yt+1 = 1.347
(1.127)

+ 0.782
(0.381)

Ŷt+1,t + ut+1, R2 = 0.144

The χ22 statistics (p-values) that the intercepts equal zero and the slope coefficients equal one were

7.19 (0.03) and 7.66 (0.02) in the first and second sub-samples, respectively. Thus optimality under

MSE loss is rejected in both sub-samples, as well as in the full sample.

The quantile-based test for optimality under unknown, homogeneous loss yielded the following

results for the two sub-samples:

Pre-1984 sample It+1,t = 0.556
(0.108)

+ 0.025
(0.020)

Ŷt+1,t − 0.246
(0.127)

It,t−1 + ut+1

Post-1984 sample It+1,t = 0.059
(0.171)

+ 0.085
(0.058)

Ŷt+1,t + 0.288
(0.121)

It,t−1 + ut+1

The χ22 statistics (p-values) that the both slope coefficients equal zero in each regression were 6.09

(0.05) and 7.41 (0.02) in the first and second sub-samples. Again forecast optimality in conjunction

with assumptions L2 and D2 is rejected in both sub-samples, as in the full sample. The similarity

between the results in the two sub-samples and the results from the full sample of data, under

both MSE and unknown loss, provides some assurance that a structural break in U.S. GDP growth

volatility is not driving our findings.

3 Testable Implications under General Data Generating Processes

The rejection of optimality for the Greenbook forecasts reported in the previous section is surprising:

the null hypothesis is very general and covers a large class of loss functions. One might expect that

allowing for such a wide range of different loss functions would erode the power of our tests,

particularly when applied to a sequence of forecasts that we expect ex-ante to be “good”, such as
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those from the Federal Reserve. As shown in our simulation study, presented in Section 4 below,

this turns out not to be the case.

However, it might realistically be the case that the Federal Reserve’s loss function cannot

be assumed to be solely a function of the forecast error. To a conservative policy maker, over-

predictions of economic growth are likely not only to be more costly than under-predictions but

also to be disproportionately costly in periods of low growth as it may incorrectly signal a recovery

from a recession. This, in turn, is likely to lead to wrong choices in how monetary policy is set. This

points to a need for considering forecast optimality in situations where not only the forecast error

but also the level of the predicted variable matter. For such cases it is possible to construct a test

based on a flexible parametric estimate of the first-derivative of the loss function with respect to ŷ.

The first-order condition Et

h
∂L
³
Yt+h, Ŷ

∗
t+h,t

´
/∂ŷ

i
= 0 implies E

h
∂L
³
Yt+h, Ŷ

∗
t+h,t

´
/∂ŷ · Zt

i
= 0

for any Zt ∈ Ft. For notational simplicity, let

λ (y, ŷ) ≡ ∂L (y, ŷ)

∂ŷ
. (14)

We may obtain a flexible parametric estimate of λ (y, ŷ) , denoted λ (y, ŷ; θ), based on a linear

spline model, for example. To see how a linear spline could be employed to approximate the

function λ (y, ŷ), assume initially that λ = ∂L (e) /∂e, let (ζ1, ..., ζK) be the nodes of the spline

and impose that one of the nodes is zero. We impose that the spline is continuous, though not

necessarily differentiable, except possibly at zero. We could allow discontinuities in λ at the cost

of introducing more parameters to estimate.

With just a few nodes this class of loss functions is very flexible, nesting both MSE and MAE

as special cases, as well as lin-lin, the symmetric, non-convex loss function of Granger (1969), and

the class of loss functions used by Elliott, et al. (2005). If we further impose that the spline is

continuous at zero, then MSE loss is nested in the interior of the parameter space, at the cost of the

MAE and lin-lin loss functions not being nested. In this case the resulting estimated loss function

is a piecewise quadratic spline, with piecewise linear derivative, λ (e; θ) , which is continuous and

differentiable everywhere (except at the K nodes):

∂λ (e; θ)

∂e
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ1, for e ≤ ζ1

γi, for ζi−1 < e ≤ ζi, i = 2, ...,K

γK+1, for e > ζK

, (15)
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where θ =
£
γ1, γ2, ..., γK+1

¤0
. λ (e; θ) and L (e; θ) are constructed from the above specification by

imposing that λ (0; θ) = L (0; θ) = 0 and that both λ (e; θ) and L (e; θ) are continuous in e. Since

λ (e; θ) is only identified up to a multiplicative constant, some normalization is required to identify

the parameters; for example, we could impose that ΣK+1i=1 γi = 1. Further, it is important to impose

constraints on θ so that the resulting estimate of λ satisfies the assumptions required for it to be the

first derivative of some valid loss function, for example, that the loss function is weakly increasing

in the absolute value of the forecast error.

In applications where we have reason to assume that the loss from a forecast is solely a function

of the forecast error, i.e. assumption L1 is satisfied, the problem simplifies to approximating the

function λ (y − ŷ) = λ (e). In other applications, such a restriction may not be well-founded and

so no such simplification is available. In this case we must employ a more flexible specification to

approximate the function λ (y, ŷ) , or, equivalently, λ (e, y). Treating λ (e, y) rather than λ (y, ŷ)

makes it simpler to impose the required conditions on λ. We propose the following specification,

which is structured so that MSE loss is obtained when all parameters are set equal to zero:.

∂λ (e, y; θ)

∂e
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ1(y) ≡ Γ (ϕ01 + ϕ11y − lnK) , for e ≤ ζ1

γi(y) ≡
³
1−

Pi−1
j=1 γj

´
· Γ (ϕ0i + ϕ1iy − lnK) , for ζi−1 < e ≤ ζi, i = 2, ...,K

γK+1(y) = 1−
PK

j=1 γj , for e > ζK
(16)

where Γ (x) ≡ (1 + exp(−x))−1 is the logistic transformation. This specification allows y to affect

the slopes of λ, guarantees that all slopes are weakly positive, and that the sum of the slopes equals

one. Alternative ways of restricting the γi’s to be non-negative are possible of course, e.g. by

using a probit instead of the logistic function or by including additional powers of y at the cost of

having to estimate more parameters. These issues can be addressed in empirical work by means of

a sensitivity analysis with regard to the assumed form of ∂λ/∂e.

Under standard regularity conditions the parameter vector of the approximating function can

be estimated via the generalized method of moments (GMM):

θ̂T ≡ argmin
θ∈Θ

gT (θ)
0WgT (θ) (17)

gT (θ) ≡
1

T

TX
t=1

λ
³
et+h,t, Ŷt+h,t; θ

´
· Zt,

whereW is a weighting matrix and Θ is a compact set. A test of forecast optimality can be obtained

from a test of over-identifying restrictions if we ensure that we have more moment restrictions, k,
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than parameters, p:

TgT

³
θ̂T

´0
Ŵ ∗

T gT

³
θ̂T

´
⇒ χ2k−p, as T →∞. (18)

Here Ŵ ∗
T is a consistent estimate of the optimal weight matrix, c.f. Newey and McFadden (1994).

This test of forecast optimality does not rely on any restrictions on the DGP, other than standard

conditions required for GMM estimators to be consistent and asymptotically normal. It does, how-

ever, rely on the linear spline being sufficiently flexible to approximate the unknown loss function.

Thus, a rejection of forecast optimality may be due either to a true failure of forecast optimality

or to a failure of the approximation of the forecaster’s loss function.

In contrast with the analysis in Elliott, et al. (2005), our tests do not assume that the loss

function belongs to a two-parameter family, nor do we need to restrict the loss function only to

depend on the forecast error. Indeed, when the latter restriction holds, we recommend using the

quantile-based test presented in Proposition 3.

3.1 Empirical Results

We now apply the spline-based tests of forecast optimality to the Greenbook forecasts. As outlined

above, we use a quadratic spline for the loss function. Initially we assume that the loss function is

solely a function of the forecast error. We employ three nodes, [−2, 0, 2], which correspond to the

0.17, 0.44 and 0.70 quantiles of the empirical distribution of the forecast errors. With just three

nodes we require γi ≥ 0 for all i for λ to correspond to the first-derivative of a valid loss function.

When the number of nodes exceeds three, non-negative loss and continuity of the derivatives does

not rule out that some of the γi values associated with the middle segments are negative. However,

the central (adjacent to zero) and outermost segments must have non-negative γi values so as not

to violate these restrictions. In the estimation procedure we normalize the function by imposingP4
i=1 γi = 1.

As instruments for the moment conditions we use a constant, the contemporaneous value of the

forecast, and one lag each of the forecast error, realized GDP growth, and the derivative, λ(y, ŷ).

We thus have five moment conditions and three free parameters. The estimated loss function is

presented in Figure 3. This figure reveals that the estimated loss function is asymmetric, penalizing

negative forecast errors (over-predictions) more than positive forecast errors (under-predictions).

The average ratio of the loss from a negative forecast error to a positive error of the same magnitude,
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i.e. L (−e) /L (e) , for errors in the empirically relevant range [0, 10] is 1.44, with minimum and

maximum values of 0.52 and 2.76, respectively.

The test of forecast optimality under the estimated loss function, obtained by using the two

over-identifying moment conditions, yields a χ22-statistic (p-value) of 5.57 (0.06) . A rejection of

optimality using this test is consistent with the results in the previous section, which held for all

loss functions that are homogeneous in the forecast error. The spline-based loss functions considered

here are generally not homogeneous, and so they relax that restriction, but they are still constrained

to be functions solely of the forecast error. Nevertheless, the empirical results are conditional on

our choice of a specific number of nodes (three) used in the spline function.

To test the sensitivity of these results to the assumption of a logit specification as in equation

(16), we also implemented a probit-type specification, and obtained very similar results: the p-value

from the J-test for the probit specification of the spline model, for example was 0.05, compared

with 0.06 for the logit specification.

Finally, we estimate a more flexible specification of the Fed’s loss function, allowing the loss

function to depend on the forecast and the realization separately, rather than solely through the

forecast error. As discussed above, we model λ as a function of (e, y) rather than (y, ŷ) as it is simpler

to impose the required constraints on the former than the latter. With three nodes, this model has a

total of six free parameters, namely the intercept and slope parameters (ϕ01, ϕ02, ϕ03, ϕ11, ϕ12, ϕ13)

in the logistic specification in equation (16) compared with three in the simpler case, (ϕ01, ϕ02, ϕ03) .

We used as additional instruments one extra lag of the forecast error, realized GDP growth and

the derivative λ(y, ŷ). We plot the estimated loss function in Figure 4. To show the impact of

realized GDP growth on the loss we plot the loss as a function of the forecast error, when realized

GDP growth is fixed at its unconditional 0.25, 0.5 and 0.75 quantiles, corresponding to periods of

low, average or high economic growth. This figure shows that the level of realized GDP growth

has substantial impact on the degree of asymmetry in the loss function: during periods of high

economic growth the loss function is approximately symmetric, whereas when realized GDP growth

is at a lower level the asymmetry becomes more pronounced, and, as in the simpler model, over-

predictions are penalized more heavily than under-predictions. The average ratio of the loss from

a negative forecast error to a positive error of the same magnitude, i.e. L (−e, y) /L (e, y) , for

errors in the range [0, 10] and for real GDP growth equal to its 0.25, 0.5 and 0.75 quantiles is 3.48,

1.97 and 1.26. Thus negative errors (over-predictions) are over three times as costly to the Fed
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as positive errors (under-predictions) when GDP growth is low, whereas negative errors are only

about 25% more costly than positive errors when GDP growth is high.

Using the two over-identifying moment conditions to test the optimality of the Greenbook

forecasts based on this more flexible model yields a χ22-statistic (p-value) of 0.02 (0.99). To check

the robustnesss of this result, we extended the flexible spline model to allow not only y but also y2

to affect the slopes of λ. We implemented this model, employing an extra four lags of the forecast

errors as additional moment conditions, and found the estimated loss function to be very similar

to those in Figure 4. The p-value from the J-test of the over-identifying restrictions for this more

flexible model was 0.56, compared with 0.99 for the benchmark case.

These large p-values imply that we have no evidence against the optimality of the Federal Re-

serve’s real GDP forecasts under this flexible loss function. This finding suggests that adequate

modelling of the Federal Reserve’s loss function requires allowing both the forecast and the realiza-

tion of real GDP growth to enter separately into the loss function, rather than just through their

difference. This is an important result for future researchers studying the forecast performance and

objectives of the Federal Reserve.

Our most flexible estimated loss function is consistent with a scenario where the Federal Reserve

seeks to issue ‘conservative’ estimates of future economic growth: under-estimates are penalized less

heavily than over-estimates. This conservatism is particularly important when economic growth is

moderate or low. Issuing conservative forecasts means that actual economic growth comes in above

the forecast more often than not (actual GDP growth was greater than the predicted value in 56%

of the quarters in our sample), leading to a positive ‘surprise’.

Sorting on the predictions, ŷ, we found that for the lowest 25% of predicted values, there was

a 65% probability that the actual comes in higher than the predicted value. In comparison, for

the top 75% of predicted values, only 45% of the actual values come in above the predicted values.

This is again consistent with the forecaster attempting to avoid overpredicting output growth in

low-growth states of the world (as reflected in a current low estimate of ŷ).

4 Simulation Results

To shed light on the finite-sample properties of the tests considered so far we present the results

of a small simulation study tailored to capture properties of our data. Spline models of the loss
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function are new to the literature, and GMM estimation is known to sometimes have problems in

finite samples, see Hall (2005), and so a study of these tests in finite samples is potentially of value.

We employ a simple but representative AR(1)-GARCH(1,1) model as the data generating process

for the simulation:

Yt = 0.5Yt−1 + σtεt, t = 1, 2, ..., T

σ2t = 0.1 + 0.8σ2t−1 + 0.1σ
2
t−1ε

2
t−1 (19)

εt ∼ iid N (0, 1)

We consider three sample sizes, T = 100, 250, 1000, and two loss functions, MSE loss and an

asymmetric quadratic loss function:

L (e; a) =

⎧⎨⎩ ae2, e > 0

e2, e ≤ 0
(20)

where we set a = 1.84. Both of these loss functions are homogeneous in the forecast error, and so

by Proposition 2 we know that the optimal one-step ahead forecast will take the form

Ŷ ∗t+1,t = μt+1,t + σt+1,tγ
∗
1 (21)

Under MSE loss we have γ∗1 = 0, while under asymmetric quadratic loss we have γ∗1 = 0.25. To

gauge the power of the tests we need to construct a forecast that is sub-optimal under all loss

functions, not just MSE or some other given loss function. One such set of sub-optimal forecasts

is obtained by simply adding independent noise to the optimal forecast:

Ŷt+1,t = Ŷ ∗t+1,t + ξ�t+1 (22)

�t+1 ∼ iid N (0, 1)

This specification is representative of a number of sources of sub-optimality. For example, the noise

could come from including irrelevant variables in a prediction model, or from random “judgemental

adjustments” of a statistical forecasting model. We consider five values for the standard deviation

of the noise: ξ = 0, 0.25, 0.5, 0.75 and 1. The case of ξ = 0 corresponds, of course, to the forecast

being optimal under MSE or asymmetric quadratic loss, and can thus be used to examine the

finite-sample size of the tests.
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We study five tests of forecast optimality. The first test is the standard Mincer-Zarnowitz (1969)

test, based on the regression:

Yt+1 = β0 + β1Ŷt+1,t + ut+1

with the null hypothesis being β0 = 0∩β1 = 1. This test is appropriate for testing optimality under

MSE loss, but may over-reject forecasts that are optimal under other loss functions. For this test,

and the other two regression-based tests, we used Newey-West (1987) robust standard errors.

The second test is another test of optimality under MSE loss, this time based on the forecast

errors, et+1,t ≡ Yt+1 − Ŷt+1,t,

et+1,t = β0 + β1Ŷt+1,t + β2et,t−1 + ut+1

In this case, the null hypothesis is that all parameters are equal to zero. The third test is our

new test, based on the indicator variable It+1,t ≡ 1
³
Yt+1 ≤ Ŷt+1,t

´
. This is used to test optimality

under some unknown homogeneous loss function, and is based on the regression:

It+1,t = β0 + β1Ŷt+1,t + β2It,t−1 + ut+1

As shown in Proposition 2, the indicator variable It+1,t should be independent of all Zt ∈ Ft,

although it has unknown mean. Thus the null hypothesis for this test is that β1 = β2 = 0.

The final two tests are based on spline-based estimation of the unknown loss function. The

first test assumes L (y, ŷ) = L (e) and approximates L with a quadratic spline using three nodes,

so there are three free parameters. The nodes used in the simulation are: { \Median [et|et < 0] , 0,
\Median [et|et > 0]}, where \Median is the sample median. The instruments used in the moment

conditions are a constant, the current value of the forecast, and the lagged values of the forecast

error, the predicted variable and the derivative of the loss function, λ (yielding five moments

conditions in total).

The second spline-based test allows L to depend on both y and ŷ, and approximates L with a

quadratic spline using three nodes and the specification given in equation (16), implying six free

parameters. The nodes used are the same as for the simple spline-based test. The instruments

used in the moment conditions are a constant, the current value of the forecast, and two lags each

of the forecast error, the predicted variable and the derivative of the loss function, λ (yielding eight

moments in total). All tests are conducted at the 0.05 level, and the results are presented in Table

2. We generated 3000 replications of each simulation design.
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Under MSE loss, we see that all five tests have generally satisfactory size properties. The

rejection frequencies are slightly high for T = 100, though this is commonly observed in tests based

on robust standard errors. The rejection frequencies improve as the sample size increases, though

the size of the test based on the flexible spline model (“spline 2”) remains slightly high even for

T = 1000.

Turning to the relative power of the tests, we find that, under MSE loss, the indicator-based

test has approximately the same power as the Mincer-Zarnowitz (MZ) test. This happens even

though the indicator-based test is designed to detect sub-optimality under any homogeneous loss

function and may reflect, as noted in the introduction, that the MZ regression only tests a weak

implication of forecast optimality. This interpretation is consistent with the finding that the test

based on forecast errors (“e test”) has better power than both the MZ test and the indicator-based

test since it uses additional instruments such as the lagged forecast error that can identify serial

correlation in the forecast errors. This effect is also likely to explain the good power of the two

spline tests which utilize even more conditioning variables as instruments.

Under asymmetric loss the results are quite different. Unsurprisingly, the MZ and e tests reject

the null hypothesis of optimality far more frequently than the nominal size. Even with just 100

observations, the MZ and e test reject the null hypothesis over 60% of the time. The indicator-

based test and the “spline 1” test both have good size and power properties. The more flexible

spline-based test has poor size properties for T = 100 and 250 (the empirical rejection frequencies

are 0.45 and 0.35, compared to the nominal size of 0.05), and even for T = 1000 the size is still

large (0.17).

Overall, these simulation results indicate that if the true loss function is MSE, the MZ test and

“e test” have reasonable size and power (with the latter test being more powerful than the former)

in finite samples. Both tests are slightly oversized when T ≤ 250. The indicator-based test and the

simple spline test have reasonable properties in finite samples for both MSE and non-MSE loss.

The flexible spline test appears to require large samples, T ≥ 1000, before the size of this test is

close to its nominal value, and thus rejections obtained using this test must be interpreted with

caution.

With regard to our empirical application, the simulation results lend support to our interpre-

tation of the reported findings. The reasonable finite sample size of the regression and quantile-

based tests support our rejection of the joint hypothesis of forecast optimality under conditional
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mean-variance dynamics (assumption D2) and loss that is homogenous in the forecast error (L2).

Similarly, our rejection of the simple error-based spline model and our failure to reject the more

general spline model that allows loss to depend on both the forecast error and the level of the

outcome variable is not overturned by the tendency of tests based on the latter to be over-sized.

5 Conclusion

Motivated by the surprising rejection of the optimality of the Federal Reserve’s internal forecasts

(so-called “Greenbook” forecasts) of real GDP growth under mean squared error loss, this paper

proposed new tests of forecast optimality that are applicable when the forecaster’s loss function is

unknown. Our first set of tests apply when the loss function is homogeneous in the forecast error,

and the variable of interest has dynamics in the conditional mean and variance but constant higher-

order moments. This restriction on the loss function is quite weak, while the necessary restrictions

on the data generating process can be easily tested. In particular, we propose a new set of quantile

tests that do not require knowledge of the conditional mean and variance of the predicted variable,

both of which depend on the forecaster’s (unobserved) information set.

Our second set of tests are based on flexible parametric approximations to the unknown loss

function. We found significant evidence against the optimality of the Federal Reserve forecasts

when the loss function was assumed to be a function solely of the forecast error, but when the loss

function was allowed to depend on the forecast and the realization separately we found no evidence

against optimality. Our estimates of the loss function suggest that the Fed issues ‘conservative’

estimates of economic growth: under-estimates are penalized less heavily than over-estimates. This

conservatism appears to be particularly important when economic growth is moderate or low. This

is consistent with the Federal Reserve viewing over-predictions of economic growth as being not

just more costly than under-predictions, but also disproportionately more costly in times of low

growth, perhaps because such forecasts may incorrectly signal a recovery from a recession and could

result in an overly tight monetary policy at a critical point in time.

Appendix

Proof of Proposition 1. Part 1: This result was shown by Granger (1969) and Christoffersen and

Diebold (1997). The proof is similar to our proof of Proposition 2 below.
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Part 2: Given the representation result in Part 1, we know that the forecast error associated with the

optimal forecast is e∗t+h,t = Yt+h − Ŷ ∗t+h,t = εt+h − α∗h, where α
∗
h solves minα

R
L(εt+h − α)dFε,h. Since

α∗h is constant for fixed h, we thus have e
∗
t+h,t is independent of all Zt ∈ Ft.

Part 3: Consider h > 0 and j > 0. Let

Yt+h+j = Et [Yt+h+j ] + ηt+h+j , ηt+h+j |Ft ∼ Fε,h+j
¡
0, σ2ε,h+j

¢
Yt+h+j = Et+j [Yt+h+j ] + εt+h+j , εt+h+j |Ft ∼ Fε,h

¡
0, σ2ε,h

¢
.

Let σ2ε,h <∞ and further assume that σ2ε,h+j <∞. Using again that Ŷ ∗t+h,t = Et [Yt+h]+α
∗
h, so e

∗
t+h+j,t =

ηt+h+j − α∗h+j , and e
∗
t+h+j,t+j = εt+h+j − α∗h, where α

∗
h and α

∗
h+j are constants. Thus Vt

h
e∗t+h+j,t

i
=

Vt
£
ηt+h+j

¤
= σ2ε,h+j , and Vt

h
e∗t+h+j,t+j

i
= σ2ε,h, where these moments are independent of t by assumption

D1. Note also that V
h
e∗t+h+j,t

i
= E

h
Et

h
η2t+h+j

ii
= σ2ε,h+j , and similarly V

h
e∗t+h+j,t+j

i
= σ2ε,h. Now

we seek to show that σ2ε,h+j ≥ σ2ε,h.

V
£
e∗t+h+j,t

¤
= Vt [Yt+h+j −Et [Yt+h+j ]]

= Vt [εt+h+j + (Et+j [Yt+h+j ]−Et [Yt+h+j ])]

= σ2ε,h+j + Vt [Et+j [Yt+h+j ]] + 2Covt [εt+h+j , Et+j [Yt+h+j ]−Et [Yt+h+j ]]

≥ σ2ε,h+j

= V
£
e∗t+h,t

¤
.

The first equality follows from the equality of the conditional and unconditional variance of the forecast error

under D1; the third equality follows from the fact that Et [Yt+h+j ] is constant given Ft; the weak inequality

follows from the non-negativity of Vt [Et+j [Yt+h+j ]] and Et+j [εt+h+j · φ (Zt+j)] = 0; the final equality

follows from the fact that Fε,h does not change with t. The cases where h = 0 and/or j = 0 are trivial.

Thus V
h
e∗t+h+j,t

i
≥ V

h
e∗t+h,t

i
∀h, j ≥ 0 if V

h
e∗t+h+j,t

i
<∞. If σ2ε,h <∞ but σ2ε,h+j is infinite then

the proposition holds trivially.
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Proof of Proposition 2. Part 1: By homogeneity,

Ŷ ∗t+h,t ≡ argmin
ŷ

Z
L (y − ŷ) dFt+h,t (y)

= argmin
ŷ

Z ∙
g

µ
1

σt+h,t

¶¸−1
L

µ
1

σt+h,t
(y − ŷ)

¶
dFt+h,t (y)

= argmin
ŷ

Z
L

µ
1

σt+h,t
(y − ŷ)

¶
dFt+h,t (y)

= argmin
ŷ

Z
L

µ
1

σt+h,t

¡
μt+h,t + σt+h,tηt+h − ŷ

¢¶
dFη,h (η)

Let us represent a forecast as Ŷt+h,t = μt+h,t + σt+h,t · γ̂t+h,t, so

Ŷ ∗t+h,t = μt+h,t + σt+h,t · argmin
γ̂

Z
L

µ
1

σt+h,t

¡
μt+h,t + σt+h,tηt+h − μt+h,t − σt+h,tγ̂

¢¶
dFη,h (η)

= μt+h,t + σt+h,t · argmin
γ̂

Z
L
¡
ηt+h − γ̂

¢
dFη,h (η)

= μt+h,t + σt+h,t · γ∗h,

where the last line follows from the fact that Fη,h is time-invariant under assumption D2.

Part 2: This result follows from noting that d∗t+h,t = ηt+h− γ∗h, where γ
∗
h is a constant for fixed h and,

by assumption D2, ηt+h is independent of all elements in Ft and has unit variance.

Proof of Corollary 1. Under assumptions D2’ and L2 we have from Proposition 2 that Ŷ ∗t+h,t =

σt+h,t (β + γ∗h) . Thus d̂
∗
t+h,t ≡ e∗t+h,t/Ŷ

∗
t+h,t =

¡
ηt+h − γ∗h

¢
/ (β + γ∗h), i.e., an affine transformation of

ηt+h. The result follows by noting that ηt+h is independent of all Zt ∈ Ft.

Proof of Proposition 3. Part 1: Under assumptions D1 and L1, or D2 and L2, we know from

Propositions 1 and 2 that Y ∗t+h,t = μt+h,t + σt+h,t · γ∗h, with σt+h,t constant under assumption D1. γ
∗
h

depends only upon the loss function and Fη,h. Now notice that Ft+h,t
³
Ŷ ∗t+h,t

´
≡ Pr

h
Yt+h ≤ Ŷ ∗t+h,t|Ft

i
=

Pr
£
μt+h,t + σt+h,tηt+h ≤ μt+h,t + σt+h,t · γ∗h|Ft

¤
= Pr

£
ηt+h ≤ γ∗h|Ft

¤
, which is constant under as-

sumption D2. If we denote q∗h ≡ Pr
£
ηt+h ≤ γ∗h|Ft

¤
, then Ŷ ∗t+h,t is the q

∗
h conditional quantile of Yt+h|Ft ∀ t.

Note that q∗h is only a function of the loss function and Fη,h.

Part 2: Since I∗t+h,t is a binary random variable and Pr
h
I∗t+h,t = 1|Ft

i
= Pr

h
Yt+h ≤ Ŷ ∗t+h,t|Ft

i
=

q∗h ∀ t, we thus have that I∗t+h,t is independent of all Zt ∈ Ft.
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Proof of Proposition 4. Part 1: Following the steps in the proof of Proposition 2, we find

Ŷ ∗t+h,t = μt+h,t + argmin
α̂

Z
L
¡
σt+h,t

¡
ηt+h − α̂

¢¢
dFη,h (η)

≡ μt+h,t + α∗t+h,t.

where α∗t+h,t depends on the loss function, L, the conditional standard deviation of Yt+h, σt+h,t, and the

distribution of the innovation, Fη,h.

2. Similarly,

Ŷ ∗t+h,t = μt+h,t + σt+h,t · argmin
γ̂

Z
L
¡
ηt+h − γ̂

¢
dFη,t+h,t (η)

≡ μt+h,t + σt+h,t · γ∗t+h,t.

Hence γ∗t+h,t will be a function of the loss function and Fη,t+h,t, the latter depending on time-varying

properties of the conditional distribution of Yt+h|Ft beyond the conditional mean and variance.
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Table 1
Summary statistics

Forecast
Realization Forecast error

Mean 3.095 2.594 0.501
Standard deviation 3.537 2.326 3.199
Skewness -0.219 -0.414 0.081
Kurtosis 4.456 4.027 3.869
Minimum -8.16 -4.70 -7.01
Maximum 15.46 8.50 10.86
Autocorrelation 1 0.257∗ 0.728∗ 0.010
Autocorrelation 2 0.198∗ 0.552∗ 0.096
Autocorrelation 3 0.075 0.446∗ -0.021
Autocorrelation 4 0.045 0.341∗ 0.067
JB statistic 12.044∗ 9.058∗ 3.530
JB p-value 0.002 0.011 0.171

Notes: This table presents basic summary statistics on the realized real GDP growth, the
Federal Reserve’s “Greenbook” forecasts of GDP growth, and the corresponding forecast errors,
over the period 1968Q4 to 1999Q4. The rows labeled “Autocorrelation j” report the jth-order
autocorrelation of the series. Autocorrelations that are significant at the 0.05 level are marked with
an asterisk. The last two rows present the Jarque-Bera (1987) test statistic and p-value, testing
the null hypothesis that the forecast errors are Normally distributed. A p-value of less than 0.05
indicates a rejection of the null hypothesis.
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Table 2
Finite-sample size and power of the tests

MSE loss Asymmetric loss
MZ test e test I test spline 1 spline 2 MZ test e test I test spline 1 spline 2

T = 100
ξ = 0 0.11 0.12 0.09 0.09 0.11 0.64 0.62 0.11 0.12 0.45
ξ = 0.25 0.23 0.39 0.24 0.70 0.70 0.65 0.73 0.23 0.54 0.69
ξ = 0.5 0.76 0.92 0.76 0.91 0.91 0.89 0.96 0.75 0.95 0.91
ξ = 0.75 0.98 1.00 0.97 0.98 0.98 0.98 1.00 0.97 1.00 0.98
ξ = 1 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.99

T = 250
ξ = 0 0.07 0.09 0.07 0.06 0.10 0.95 0.93 0.07 0.08 0.35
ξ = 0.25 0.28 0.56 0.34 0.89 0.88 0.96 0.96 0.31 0.87 0.88
ξ = 0.5 0.95 0.99 0.97 1.00 1.00 0.99 1.00 0.96 1.00 0.99
ξ = 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ξ = 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 1000
ξ = 0 0.06 0.06 0.06 0.06 0.09 1.00 1.00 0.06 0.05 0.17
ξ = 0.25 0.66 0.97 0.80 1.00 1.00 1.00 1.00 0.79 1.00 1.00
ξ = 0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ξ = 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ξ = 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: This table reports the results of a Monte Carlo study of the finite-sample properties of
the tests considered in this paper. The data generating process is a conditionally Gaussian AR(1)-
GARCH(1,1) process, and the sample sizes considered are T = 100, 250, 1000. The forecasts tested
are Ŷt+1,t = Ŷ ∗t+1,1 + ξ�t+1, where Ŷ ∗t+1,1 is the true optimal forecast and �t+1 is a standard Normal
noise term, independent of all other variables. When ξ = 0 the forecast is truly optimal, and as ξ
grows the forecast becomes increasingly contaminated with noise. Further details on the tests and
simulation design are presented in Section 4. The number of replications was 3000.
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Figure 1: Real GDP growth (annualized), and the Federal Reserve’s “Greenbook” forecasts of real
GDP growth, over the period 1968Q4 to 1999Q4.
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Figure 2: Forecast and realized real GDP growth (annualized) over the period 1968Q4 to 1999Q4,
with OLS fitted line.
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Figure 3: The estimated loss function of the Federal Reserve for real GDP growth forecasts, based
on a quadratic spline with nodes [−2, 0, 2], imposing that the loss function is solely a function of
the forecast error.
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Figure 4: The estimated loss function of the Federal Reserve for real GDP growth forecasts, based
on quadratic splines with nodes [−2, 0, 2]. This model allows the level of GDP growth to also affect
the loss function; the estimated loss function is evaluated for GDP growth equal to its 0.25, 0.5 and
0.75 quantiles.
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