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1 Introduction

Properties of optimal forecasts under mean squared error (MSE) loss include unbiasedness of the

forecast, lack of serial correlation in one-step-ahead forecast errors, serial correlation of (at most)

order h−1 in h-step-ahead forecast errors, and non-decreasing forecast error variance as the forecast

horizon grows. Although such properties seem sensible, they are in fact established under a set of

very restrictive assumptions on the forecaster’s loss function. While bias in the optimal forecast

under asymmetric loss has been established by Granger (1969, 1999) and characterized analytically

for certain classes of loss functions and forecast error distributions by Christoffersen and Diebold

(1997), failure of the remaining optimality properties has not previously been demonstrated.1

In this paper we first show that, in general, asymmetric loss and nonlinear dynamics in the data

generating process (DGP) leads to violations of standard properties that an optimal forecast must

possess. We next provide new analytical results under linear-exponential (linex) loss and a Markov

switching data generating process. Linex loss is frequently used in the literature on asymmetric

loss, c.f. Batchelor and Peel (1998), Varian (1974), Zellner (1986), Sancetta and Satchell (2004) and

Elliott and Timmermann (2004). Similarly, following Hamilton (1989), Markov switching processes

have been widely used as a way to identify nonlinear dynamics in macroeconomic and financial

time series. We show that not only can the optimal forecast be biased, but forecast errors can

be serially correlated of arbitrarily high order and both the unconditional and conditional forecast

error variance may be decreasing functions of the forecast horizon. We thus demonstrate that none

of the properties traditionally associated with tests of optimal forecasts carry over to a more general

setting with asymmetric loss and possible nonlinear dynamics in the DGP.2

Our results are of particular interest due to the revived interest in forecasting and econometric

modeling under asymmetric loss, c.f. Christoffersen and Diebold (1996, 1997), Diebold (2004),

Granger and Newbold (1986), Granger and Pesaran (2000), Nobay and Peel (2003) and Skouras

1Under asymmetric loss functions such as lin-lin and linex and assuming a conditionally Gaussian process, Christof-

fersen and Diebold (1997) characterize the optimal bias analytically. Their study does not, however, consider the

other properties of optimal forecast errors such as limited serial correlation and non-decreasing variance.
2Hoque, et al. (1988), and Magnus and Pesaran (1989 and 1991) discuss violations of the standard properties of

optimal forecasts caused by estimation error, rather than by a choice of a loss function different from MSE. In this

paper we focus on the case of zero estimation error to rule this out as a cause of apparent violations. However, we

also discuss the effect of estimation error on forecasts in Section 6.
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(2001). When coupled with common findings of nonlinearities and dynamics in higher order mo-

ments, e.g., in the form of ARCH effects, in most macroeconomic and financial time series this

means that the typical situation facing an economic forecaster may be well represented by our

stylized example.

The insights provided in the paper also have important empirical implications. For example, it is

common to test for rationality by testing for serial correlation in forecast errors.3 Our paper shows

that this implication of rationality fails to hold under even minor deviations from symmetric loss

when combined with nonlinear dynamics in the DGP, and that serial correlation can be expected

in the forecast errors from optimal forecasts under very plausible assumptions. This suggests that

many of the conclusions in the empirical literature concerning suboptimality of forecasts may be

premature.

The contributions of our paper are as follows. First, we establish conditions under which

the standard properties that an optimal forecast possesses under MSE loss fail to hold. Second,

we provide tractable, analytical results for the multi-step forecast errors under a nonlinear DGP

in common use and a popular way to represent asymmetric loss. Due to difficulties with time-

aggregation of many nonlinear processes, such as GARCH processes, this has not previously been

done. Third, we demonstrate, again through analytical results, that the “generalized forecast error”

(which is a simple transformation of the forecast error) inherits some of the standard properties

such as lack of bias and serial correlation. Finally, we provide empirical examples that demonstrate

the importance of these effects using data on stock returns and output growth and we show how

to account for the effect of parameter estimation errors on the optimal forecast.

The outline of the paper is as follows. Section 2 reviews the properties of optimal forecasts

under mean squared error loss. Section 3 provides some general results on forecast optimality

under asymmetric loss. Given the difficulty in obtaining results in very general cases, Section

4 provides detailed analytical results for a particular combination of asymmetric loss and DGP,

establishing the violation of the standard properties on (absence of) bias and serial correlation

in forecast errors. Section 5 shows which properties actually do hold for a transformation of the

forecast error known as the generalized forecast error. Section 6 discusses the impact of estimation

3The literature on forecast rationality testing is extensive. For a list of references to papers that use

the Survey of Professional Forecasters data set maintained by the Federal Reserve Bank of Philadelphia, see

http://www.phil.frb.org/econ/spf/spfbib.html.
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error on our results, and Section 7 provides empirical illustrations using data on stock returns and

GDP growth. Section 8 concludes. An appendix contains proofs.

2 Optimality properties under mean squared error loss

We are interested in studying optimal h−period ahead forecasts of some univariate time-series

process, {Yτ}, computed conditional on some information set, Ft. The information set is assumed

to include all lagged values of Yt and possibly lagged values of other variables. The conditional

distribution function of Yt+h given Ft is Ft+h,t while the associated density is ft+h,t. Generic

forecasts are denoted by Ŷt+h,t and forecast errors are et+h,t = Yt+h − Ŷt+h,t, giving rise to a

loss, L(Yt+h, Ŷt+h,t). Under mean squared error (MSE) loss, L
³
Y, Ŷ

´
= L(e) = e2. The optimal

h-period forecast computed at time t is denoted by Ŷ ∗t+h,t and its forecast error is e
∗
t+h,t.

An optimal forecast (in a population sense) is defined as the value of Ŷt+h,t that, conditional on

the information set at time t and taking the parameter values and the DGP to be known, minimizes

the expected loss:

Ŷ ∗t+h,t ≡ argmin
Ŷt+h,t

E
h
L
³
Yt+h, Ŷt+h,t

´
|Ft
i

(1)

= argmin
Ŷt+h,t

Z
L
³
y, Ŷt+h,t

´
dFt+h,t (y) . (2)

Provided that the forecast errors are covariance stationary,4 under MSE loss optimal forecasts

satisfy the following four properties (c.f. Diebold and Lopez (1996)):

1. Forecasts are unbiased (so the forecast error, e∗t+h,t, has zero mean).

2. The variance of the forecast error (e∗t+h,t) is a non-decreasing function of the forecast horizon,

h.

3. h-period forecast errors (e∗t+h,t) are not correlated with information dated by h periods or

more (Ft). Hence the h-period forecast error is at most serially correlated of order h− 1.

4. Single-period forecast errors (e∗t+1,t) are serially uncorrelated.

4This is implied by, but does not itself require, covariance stationarity of
h
Yt+h, Ŷt+h,t

i0
. For example, both Yt+h

and Ŷt+h,t could contain unit roots, but the linear combination Yt+h − Ŷt+h,t still be covariance stationary.
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These properties are easily derived under MSE loss. Suppose that Yt is covariance stationary,

and without loss of generality assume a zero unconditional mean. Wold’s representation theorem

then establishes that it can be represented as a linear combination of serially uncorrelated white

noise terms:

Yt =
∞X
i=0

θiεt−i, (3)

where εt = Yt−P(Yt|yt−1, yt−2, ...) is the projection error which is serially uncorrelated white noise,

WN(0, σ2). The h−period forecast thus becomes

Ŷ ∗t+h,t =
∞X
i=0

θh+iεt−i. (4)

This is an optimal forecast provided that εt is Gaussian or can alternatively be viewed as an optimal

linear forecast given {yt−1, yt−2, ...}. The associated forecast errors are

e∗t+h,t =
h−1X
i=0

θiεt+h−i. (5)

It follows directly that

E[e∗t+h,t] = 0,

V ar(e∗t+h,t) = σ2
h−1X
i=0

θ2i , (6)

Cov(e∗t+h,t, e
∗
t+h−j,t−j) =

⎧⎨⎩ σ2
Ph−1

i=j θiθi−j for j < h

0 for j ≥ h
.

This accounts for properties 1, 2 and 3-4, respectively.

3 Some general results

It is difficult to establish general results for the properties of optimal forecasts under non-linear

data generating processes and asymmetric loss. The reason is that the form of the DGP interacts

with the shape of the loss function in determining the optimal forecast. Assuming that L(.) only

depends on the forecast error, e = Y − Ŷ , is analytic and hence can be represented by a power

series (c.f. Rudin (1964, p. 158)), this interaction is perhaps best seen from a simple Taylor series

expansion of the loss function L(e) about the point μ :

E [L(et+h)|Ft] = L(μ) + L0 (μ) (E[et+h|Ft]− μ) +
∞X

m=2

L(m) (μ)
mX
i=0

(−1)i

i!(m− i)!
μiE[em−it+h |Ft].
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where L(m) (μ) is themth derivative of L evaluated at e = μ. Clearly all higher order moments of the

predictive density as well as higher order derivatives of the loss function will matter in determining

the optimal forecast. Conditions on both the shape of the loss function and the density function

are therefore required to obtain analytical results.

The first optimality property (unbiasedness) is a direct consequence of the first-order condition

characterizing an optimal forecast under MSE loss, i.e., Et[∂(Yt+h−Ŷ ∗t+h,t)2/∂ŷ] = −2Et

h
L(Yt+h − Ŷ ∗t+h,t)

i
=

0, so that Ŷ ∗t+h,t = Et[Yt+h], where Et[·] is short for E[·|Ft]. It need not hold for other symmet-

ric families of loss functions. For example under absolute error loss (so L(e) ∝ |e|), the optimal

forecast is the conditional median of Yt+h. This will differ from the conditional mean unless f

is symmetric. Hence double symmetry, i.e. symmetric loss and a symmetric conditional density,

ft+h,t, are required to obtain unbiasedness of the optimal forecast.5

To better understand the properties that an optimal forecast must have under more general

conditions than the standard ones, assume that the loss function, L(.), can be represented as the

sum of a symmetric component, L̃(.), and a component, ζ(.), that captures the asymmetry:

L (e) = L̃ (e) + ζ (e) .

Without loss of generality, assume that ζ(.) only applies to positive forecast errors:

Assumption L1: ζ = 0 for e ≤ 0, and ζ ≥ 0 for e > 0 with ζ convex and ζ 0 > 0 on a set with

probability greater than zero.

Assumption L2: L̃ (e) is convex.

The results can easily be extended to modify these assumptions. All standard asymmetric loss

functions in common use, including lin-lin and linex, can be written in this form.

Furthermore, let the data generating process for Yt+h take the form

Yt+h = μt+h,t + σt+h,tεt+h (7)

where εt+h|Ft ∼ Ft+h,t

E [εt+h|Ft] = 0, E
£
ε2t+h|Ft

¤
= 1,

5More specifically, Granger (1969) has shown that the conditional expectation of Yt+h is an optimal forecast

provided that L(e) is symmetric about e = 0 and ft+h,t is symmetric about the conditional mean and either of

two conditions hold: (1) L0(e) exists almost everywhere and is strictly increasing; or (2) ft+h,t is continuous and

unimodal.
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where μt+h,t = Et[Yt+h] and σ2t+h,t = Et[(Yt+h − μt+h,t)
2] are the conditional mean and variance

given information at time t,Ft. We shall also be making use of the following assumptions on the

DGP:

Assumption D1: εt+h has a symmetric and unimodal conditional density, ft+h,t.

Assumption D2: The conditional second moment of Yt+h is time-varying, i.e.

E[(Yt+h −E[Yt+h|Ft])2|Ft] 6= E[(Yt+h −E[Yt+h|Ft])
2] for some t, and all h <∞

Assumption D3: Yt+h exhibits declining “volatility of volatility”. That is, V
h
σ2t+h,t

i
is a

decreasing function of h.

D1 is the traditional density symmetry assumption. We use “unimodal” in the sense that

ft+h,t has a unique local maximum. Time-varying conditional variance is widely observed in both

financial and macroeconomic data, and so D2 is not a particularly strong assumption. Assumption

D3 is satisfied by many common volatility models such as the GARCH(1,1) process and the Markov

switching volatility model, as we show in the next section.

Using these assumptions we have the following result:

Proposition 1 (1) Let assumptions D1, L1 and L2 hold. Then the optimal forecast, Ŷ ∗t+h,t, is

biased.

(2) Let assumptions D1, D2, L1 and L2 hold. Then, generically E
h
e∗t+h,t|Zt

i
6= E

h
e∗t+h,t

i
for

some Zt ∈ Ft, and so the optimal forecast error is predictable using Ft.

(3) Let assumptions D2, D3 hold. Then the optimal forecast error variance need not be a weakly

increasing function of the forecast horizon, h.

This proposition, along with other results, is proved in the appendix. The assumed DGP is

non-linear in the sense that there is dynamics in the second moment of the process, as indicated

by the model in equation (7) if σt+h,t varies with t, but the conditional mean is left unrestricted.

Predictability of the forecast error, e∗t+h,t, may or may not take the form of serial correlation.

We emphasize that the conditions used to establish the results are sufficient but not necessary -

for example it is possible to construct examples where the optimal forecast is biased when both

the density and the loss function are asymmetric, so D1 fails to hold. Nevertheless, Proposition 1

establishes basic conditions under which violations of the standard properties of an optimal forecast

can be shown.
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While the first part of Proposition 1 follows readily, establishing the second and third points

requires more structure on the problem due to the interaction between higher order moments and

higher order derivatives of the loss function. Even simple types of nonlinearities and asymmetric

loss tend to lead to complicated expressions for expected loss that are difficult to evaluate. For

example, our assumptions on the signs of the derivatives, ∂Ŷ ∗/∂σ > 0 and ∂2Ŷ ∗/(∂σ∂κ) ≤ 0, are

not primitive and cannot be derived without substantially more structure on the DGP and loss

function.

The absence of a set of analytical results demonstrating the second and third points in Propo-

sition 1 poses a severe limitation to our understanding of the factors contributing to violations of

standard optimality properties of an optimal forecast, let alone their empirical relevance. For this

reason we next provide analytical results with reasonable assumptions about the forecaster’s loss

function and a non-linear data generating process (DGP) which show that each of the optimality

properties (1) - (4) cease to be valid when the assumption of MSE loss is relaxed.

4 Asymmetric loss and a nonlinear process

We establish our results in the context of the linear-exponential (linex) loss function that allows

for asymmetries:

L
³
Yt+h − Ŷt+h,t; a

´
= exp

n
a(Yt+h − Ŷt+h,t)

o
− a(Yt+h − Ŷt+h,t)− 1, a 6= 0. (8)

This loss function has been used extensively to demonstrate the effect of asymmetric loss, see e.g.

Varian (1974), Zellner (1986) and Christoffersen and Diebold (1997). It is included in the family

of loss functions in Proposition 1. To see this, notice that (8) can be written as

L(e) = L̃ (e) + ζ (e)

where L̃(e) = exp {−a |e|}+ a |e|− 1 (9)

ζ (e) = (exp {ae}− exp {−ae}− 2ae)1(e > 0),

where 1(e > 0) is an indicator function equalling one if e > 0, zero otherwise.

Assuming that we may interchange the expectation and differentiation operators, the first order

8



condition for the optimal forecast, Ŷ ∗t+h,t, under linex loss takes the form

Et

⎡⎣∂L
³
Yt+h − Ŷ ∗t+h,t; a

´
∂Ŷt+h,t

⎤⎦ = a− aEt

h
exp

n
a
³
Yt+h − Ŷ ∗t+h,t

´oi
= 0. (10)

We derive analytical expressions for the optimal forecast and the expected loss using a popular

nonlinear DGP, namely a regime switching model of the type proposed by Hamilton (1989).6 Thus

suppose that {Yt} is generated by a simple Gaussian mixture model, with constant mean and

volatility driven by some underlying state process, St, that takes a finite number (k) of values:

Yt+1 = μ+ σst+1vt+1

vt+1 ∼ i.i.d. N(0, 1) (11)

St+1 = 1, ..., k.

We assume that the state indicator function, St+1, is independently distributed of all past, current

and future values of vt+1. To establish analytical results we assume that the parameters of this

DGP are known but we allow St to be unobservable, i.e. St is not adapted to Ft. The state-specific

means and variances can be collected in k× 1 vectors, μ = μι, σ2 =
¡
σ21, ..., σ

2
k

¢0, where ι is a k× 1
vector of ones. Conditional on a given realization of the future state variable, St+1 = st+1, Yt+1 is

Gaussian with mean μ and variance σ2st+1 , but future states are unknown at time t so Yt+1 can be

strongly non-Gaussian given current information, Ft.

At each point in time the state variable, St+1, takes an integer value between 1 and k. Following

Hamilton (1989), we assume that the states are generated by a first-order stationary and ergodic

Markov chain with transition probability matrix

P(st+1|st) = P =

⎡⎢⎢⎢⎢⎢⎢⎣
p11 p12 · · · p1k

p21 p22 · · ·
...

...
...

. . . pk−1k

pk1 · · · pkk−1 pkk

⎤⎥⎥⎥⎥⎥⎥⎦ , (12)

6Christoffersen and Diebold (1997) characterize analytically the optimal bias under linex loss and a conditionally

Gaussian process with ARCH disturbances. They derive analytically the optimal time-varying bias as a function

of the conditional variance. For our purposes, however, this process is less well-suited to show violation of all four

properties forecast errors have in the standard setting since this requires characterizing the forecast error distribution

at many different horizons, h. The problem is that while the one-step-ahead forecast error distribution is Gaussian

for a GARCH(1,1) process, this typically does not hold at longer horizons, c.f. Drost and Nijmann (1993).
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where each row of P sums to one. To allow for unobservable states, define a k × 1 random vector,

ξt, of zeros except for the j
th element which is equal to unity if st = j:

ξt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 0 0 · · · 0)0 for st = 1

(0 1 0 · · · 0)0 for st = 2
...

...

(0 0 · · · 0 1)0 for st = k

. (13)

It follows from this definition and (12) that E[ξt+1|ξt] = Pξt. However, when states are unobserved

this is not the relevant conditioning information set which is instead often given by past realizations,

i.e. Ft = {yt, yt−1, ..., y1}. In cases where the parameters, θ = (μ,σ2,P), are known, the unknown

state probabilities can be derived as follows. Define the vectors of conditional state probabilities as

ξ̂t|t = (Pr(st = 1|Ft;θ) Pr(st = 2|Ft;θ) Pr(st = k|Ft;θ))
0, ξ̂t+1|t = (Pr(st+1 = 1|Ft;θ) Pr(st+1 =

2|Ft;θ) Pr(st+1 = k|Ft;θ))0 and let ηt = (f(yt|st = 1,Ft−1,θ), f(yt|st = 2,Ft−1,θ), ..., f(yt|st =

k,Ft−1,θ))0 be a vector of probability densities conditional on the underlying states and past

information, Ft−1. For a given starting value, ξ̂1|0, an optimal estimate of the unknown state

probabilities can then be derived by iterating on the equations (c.f. Hamilton (1994))

ξ̂t|t =
(ξ̂t|t−1 ¯ ηt)

ι0(ξ̂t|t−1 ¯ ηt)

ξ̂t+1|t = Pξ̂t|t, (14)

where ¯ represents the Hadamard (element-by-element) product and ι is a k × 1 vector of ones.

We refer to ξ̄ as the vector of unconditional or ergodic state probabilities that solves the equation

ξ̄
0
P = ξ̄

0. Uncertainty about the parameters can be handled in a Bayesian context as we show in

Section 6.

4.1 Unbiasedness

We will consider an idealized h-step-ahead forecasting problem where, in addition to knowing that

the form of the DGP is the Markov switching process in (11) and (12), the forecaster is assumed

to also know the parameters of this DGP, removing estimation error from the problem. Forecasts

in this example are thus perfectly optimal and easy to construct: neither estimation error nor

irrationality is driving our results.
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Using the conditional normality of vt+h and letting ξ̂(st+h|t) be the st+hth element of the vector

ξ̂t+1|t, i.e. the probability that St+h = st+h given Ft, the expected loss is7

Et [L (et+h,t; a)] = Et

h
exp

n
a
³
Yt+h − Ŷt+h,t

´oi
− aEt [Yt+h] + aŶt+h,t − 1

=
kX

st+h=1

ξ̂(st+h|t)Et

h
exp

n
a
³
Yt+h − Ŷt+h,t

´o
|St+h = st+h

i

−a
kX

st+h=1

ξ̂(st+h|t)Et [Yt+h|St+h = st+h] + aŶt+h,t − 1

= ξ̂
0
t|tP

h exp

½
aμ− aιŶt+h,t +

a2

2
σ2
¾
− aξ̂

0
t|tP

hμ+ aŶt+h,t − 1. (15)

Differentiating with respect to Ŷt+h,t and setting the resulting expression equal to zero gives the

first order condition

1 = ξ̂
0
t|tP

h exp

½
aμ− aιŶ ∗t+h,t +

a2

2
σ2
¾
.

Solving for Ŷ ∗t+h,t we get an expression that is easier to interpret:

Ŷ ∗t+h,t = μ+
1

a
log
³
ξ̂
0
t|tP

hϕ
´
, (16)

where ϕ ≡ exp
n
a2

2 σ
2
o
. The h-step forecast error associated with the optimal forecast, denoted

e∗t+h,t, is

e∗t+h,t = σst+hvt+h −
1

a
log
³
ξ̂
0
t|tP

hϕ
´
.

This expression makes it easy for us to establish the violation of property 1 (unbiasedness) in our

setup:

Proposition 2 The unconditional and conditional bias in the optimal forecast error arising under

linex loss (8) for the Markov switching process (11)-(12) is given by:

Et

£
e∗t+h,t

¤
= −1

a
log
³
ξ̂
0
t|tP

hϕ
´

(17)

E
£
e∗t+h,t

¤
= −1

a
ξ̄
0
λh → −

1

a
log
³
ξ̄
0
ϕ
´
as h→∞

where λh ≡ log
¡
Phϕ

¢
. Thus, generically, the optimal forecast is conditionally and unconditionally

biased at all forecast horizons, h, and the bias persists even as h goes to infinity.

7All exp {·} and log (·) operators are applied element-by-element to vector and matrix arguments.
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The proof of the proposition is given in the appendix. For purposes of exposition, we present

some results for a specific form of the loss function (a = 1) and regime switching process:

μ = [0, 0]0

σ = [0.5, 2]0

P =

⎡⎣ 0.95 0.05

0.1 0.9

⎤⎦
so ξ̄ =

∙
2

3
,
1

3

¸0
.

The unconditional mean of Yt is zero, and the unconditional variance is ξ̄
0
σ2 = 1.5. This para-

meterization is not dissimilar to empirical results frequently obtained when this model is estimated

on financial data, see Section 7 for example. For this particular parameterization the optimal un-

conditional bias in e∗t+1,t is −1.17, indicating that it is optimal to over-predict. Figure 1 shows the

unconditional density of et+h,t and also plots the linex loss function. The density function has been

re-scaled so as to match the range of the loss function. This figure makes it clear why the optimal

bias is negative: the linex loss function with a = 1 penalizes positive errors (under-predictions)

more heavily than negative errors (over-predictions). The optimal forecast is in the tail of the

unconditional distribution of Yt: the probability mass to the right of the optimal forecast is only

10%. Under symmetric loss the optimal forecast is the mean, and so for symmetric distributions

the amount of probability mass either side of the forecast would be 50%. In Figure 2 we plot the

optimal unconditional bias as a function of the forecast horizon (using the steady-state weights as

initial probabilities), as well as the optimal bias when the state is known. The unconditional bias

for this case is an increasing (in absolute value) function of h and asymptotes to −1.17.

4.2 Non-decreasing variance

We next demonstrate the violation of property 2 (non-decreasing variance). Let ¯ be the Hadamard

(element-by-element) product. The result is as follows:

Proposition 3 The variance of the forecast error arising under linex loss (8) for the Markov

switching process (11)-(12) associated with the optimum forecast is given by

V ar
¡
e∗t+h,t

¢
= ξ̄

0
σ2 +

1

a2
λ0h

³³
ξ̄ι
0
´
¯ I− ξ̄ξ̄0

´
λh. (18)
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This variance need not be a decreasing function of the forecast horizon, h. In the limit as h goes

to infinity, the forecast error variance converges to the steady-state variance, ξ̄0σ2.

Conversely, under MSE loss, the unconditional forecast error variance is constant across forecast

horizons, h:

V ar
¡
e∗t+h,t

¢
= E

h
σ2st+hν

2
t+h

i
=

kX
st+h=1

ξ̄(st+h)σ
2
st+h

E
£
ν2t+h|St+h = st+h

¤
= ξ̄

0
σ2,

where ξ̄(st+h) is the st+hth element of ξ̄.

It is also common to consider the mean squared error of the forecast. This is closely related to

the forecast error variance but differs by the squared bias. The corresponding result for the mean

squared forecast error (MSFE) is as follows:

Corollary 1 The mean-square forecast error arising under linex loss (8) for the Markov switching

process (11)-(12) associated with the optimum forecast is given by

MSFE
¡
e∗t+h,t

¢
= ξ̄

0
σ2 +

1

a2
λ0h

³³
ξ̄ι
0
´
¯ I
´
λh (19)

The MSFE need not be a decreasing function of the forecast horizon, h. In the limit as h goes to

infinity, the MSFE converges to ξ̄0σ2 +
³
1
a log

³
ξ̄
0
ϕ
´´2

.

A surprising implication of Proposition 3 is that it is not always true that V ar
³
e∗t+h,t

´
will

converge to ξ̄0σ2 from below, that is, V ar
³
e∗t+h,t

´
need not be increasing in h. Depending on the

form of P and σ2, it is possible that V ar
³
e∗t+h,t

´
actually decreases towards the unconditional

variance of Yt. Corollary 1 shows that a similar result is true for the mean-square forecast error.

Using the numerical example described above, the unconditional variance of the optimal forecast

error as a function of the forecast horizon is shown in Figure 3. For comparison the figure also

shows the optimal forecast error variance when the state is observable. It is clearly possible that

the forecast error at the distant future has a lower variance than at the near future.8 The reason for
8Using the same numerical example it can be shown that the MSFE decreases when moving from h = 1 to h = 2,

but increases with h for h ≥ 2. We do not report this figure in the interests of parsimony.
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this surprising result lies in the mismatch of the forecast objective function, L, and the variance of

the forecast error, V ar(et+h,t), which does not occur when using quadratic loss (see next section).

A similar mismatch of the objective function and the performance metric has been discussed by

Christoffersen and Jacobs (2004), Corradi and Swanson (2002) and Sentana (2005).

Using the expression for V ar
³
e∗t+h,t

´
in Proposition 3, we can consider two interesting special

cases. First, suppose that σ1 = σ2 = σ so the variable of interest is i.i.d. normally distributed with

constant mean and variance. In this case we have

V ar
¡
e∗t+h,t

¢
= ξ̄

0
ισ2 +

1

a2
log
³
ξ̄
0
ϕ
´
ι0
³³
ξ̄ι
0
´
¯ I− ξ̄ξ̄0

´
ι log

³
ξ̄
0
ϕ
´
= σ2.

And so the optimal forecast error variance is constant for all forecast horizons as we would expect.

The second special case arises when the transition matrix takes the form P = ιξ̄
0
. That is, the

probability of being in a particular state is independent of past information, so the density of the

variable of interest is a constant mixture of two normal densities and thus is i.i.d but may exhibit

arbitrarily high kurtosis. In this case we have λh = ι log
³
ξ̄
0
ϕ
´
for all h, so

V ar
¡
e∗t+h,t

¢
= ξ̄

0
σ2 +

1

a2
log
³
ξ̄
0
ϕ
´
ι0
³¡
ξ̄ι0
¢
¯ I− ξ̄ξ̄0

´
ι log

³
ξ̄
0
ϕ
´

= ξ̄
0
σ2.

Thus the optimal forecast error variance is constant for all forecast horizons. This special case

shows that it is not the fat tails of the mixture density that drives the curious result regarding

decreasing forecast error variance in our example. Rather, it is the combination of asymmetric loss

and persistence in the conditional variance. This is consistent with Proposition 1 from the previous

section.

In Proposition 1 we obtained a more general non-decreasing variance result by making the

high-level assumption that the volatility of volatility for the variable of interest is declining in h,

i.e., that V [σ2t+h,t] is decreasing in h. Below we derive the volatility of volatility for the Markov

switching process in equations (11)-(12).

Proposition 4 The volatility of volatility for the Markov switching process (11)-(12) is given by

V [V [Yt+h|Ft]] = ξ̄
0
³
Phσ2σ20Ph0 ¯ I

´
ι− ξ̄0Phσ2σ20Ph0ξ̄

and asymptotes to zero as h→∞.
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The volatility of volatility under the numerical example described above is presented in Figure

4, and clearly shows that it is decreasing with the forecast horizon.

4.3 Serial correlation in optimal forecast errors

In the standard linear, quadratic loss framework an optimal h-step forecast is an MA process of

order no greater than (h− 1). This implies that all autocovariances beyond the (h− 1)th lag are

zero. This particular property of an optimal forecast is usually tested by regressing the observed

forecast error on its own lagged values of order h and higher:

et+h,t = α0 +
nX
i=0

βiet−i,t−i−h + ut+h,t.

Here it is assumed that ut+h,t has mean zero and is serially uncorrelated. Under MSE loss and

forecast rationality, α0 = β0 = ... = βn = 0.

Outside the standard setting with MSE loss this property need no longer hold. In particular,

we have:

Proposition 5 The h-step-ahead forecast error arising under linex loss (8) for the Markov switch-

ing process (11)-(12) is serially correlated with autocovariance

Cov
£
e∗t+h,t, e

∗
t+h−j,t−j

¤
= ξ̄

0
σ21{j=0} +

1

a2
λ0h

³¡
ξ̄ι0
¢
¯Pj − ξ̄ξ̄0

´
λh. (20)

Although this converges to zero as j goes to infinity, it can be non-zero at lags larger than h.

Using the same parameterization as in the earlier example, the autocorrelation function for

various forecast horizons is presented in Figure 5. Notice the strong autocorrelation even at lags

much longer than the forecast horizon, h. Thus the optimal forecast error in our set-up need not

follow anMA (h− 1) process and the one-step-ahead forecast error need not be serially uncorrelated

(property 3).9

It is easily verified that, under MSE loss, the autocovariance of the optimal forecast errors under

9We can again consider the two special cases: iid Normal (σ1 = σ2 = σ), and iid mixture of normals
³
P = ιξ̄

0
´
.

Following the same logic as for the analysis of forecast error variance, it can be shown that in both of these cases the

autocorrelation function equals zero for all lags greater than zero.
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the regime switching process is zero:

Cov
¡
e∗t+h,t, e

∗
t+h−j,t−j

¢
= E

£
σst+h−jσst+hνt+h−jνt+h

¤
=

kX
st+h−j=1

kX
st+h=1

ξ̄(st+h−j)ξ̂(st+h|st+h−j)σst+h−jσst+h ×

E [νt+h−jνt+h|St+h−j = st+h−j , St+h = st+h]

= 0 for j 6= 0.

Thus optimal forecast errors under MSE loss are conditionally and unconditionally unbiased,

have constant unconditional variance as a function of the forecast horizon, and are serially uncor-

related at all lags. This is because under MSE loss the optimal forecast error in this example is

simply the term σst+hνt+h, which is (heteroskedastic) white noise.

4.4 An alternative data generating process

Readers might wonder whether the results established thus far are peculiar to the regime switching

process in equation (11)-(12). This is not the case as we show here for the most widely-used model

for conditional variance, namely the GARCH(1,1) process, c.f. Bollerslev (1986):

Yt+1 = μ+ εt+1

εt+1 = σt+1vt+1, vt+1 ∼ i.i.d. N(0, 1) (21)

σ2t+1 = ω + αε2t + βσ2t ,

where ω > 0, α, β ≥ 0. We assume that (α+ β)2 + 2α2 < 1, which is sufficient for both the

unconditional second and fourth moments to exist:

E
£
σ2t+1,t

¤
=

ω

1− α− β

E
£
σ4t+1,t

¤
=

ω2 (1 + α+ β)¡
1− 3α2 − β2 − 2αβ

¢
(1− α− β)

Under linex loss the one-step-ahead optimal forecast has a bias of −(a/2)σ2t+1, and so the optimal

forecast error is e∗t+1,t = σt+1vt+1 − a
2σ

2
t+1 and

E[e∗t+1,t] =
−aω

2(1− α− β)
, (22)
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which establishes the violation of property 1 (unbiasedness). Using this equation the first order

auto-covariance of the forecast error is

Cov
¡
e∗t+1,t, e

∗
t,t−1

¢
= E[(σt+1vt+1 −

a

2
σ2t+1 +

a

2
σ2ε)(σtvt −

a

2
σ2t +

a

2
σ2ε)]

=
a2

4
(α+ β)

µ
E[σ4t ]−

ω2

(1− α− β)2

¶
(23)

=
a2ω2α2(α+ β)

2(1− (α+ β)2 − 2α2)(1− α− β)2

≥ 0.

Serial correlation is absent when α = 0 so the optimal bias does not depend on past (squared)

innovations.

For multi-step-ahead predictions we can no longer obtain closed-form expressions since the

innovations are not conditionally Gaussian. However, we are able to show that the volatility of

volatility for this process is decreasing for reasonable parameter values, suggesting that the optimal

forecast error variance can be decreasing in h for this process, using part (3) of Proposition 1. First,

note that we can write the multi-step ahead conditional variance as:

σ2t+h,t = ω

Ã
1− (α+ β)h

1− α− β

!
+ β (α+ β)h−1 σ2t,t−1 + α (α+ β)h−1 y2t

≡ ωh + βhσ
2
t,t−1 + αhy

2
t .

We then obtain

E
£
σ2t+h,t

¤
= E

£
ωh + βhσ

2
t,t−1 + αhy

2
t

¤
= ωh +

ω (αh + βh)

1− α− β
=

ω

1− α− β

E
£
σ4t+h,t

¤
= ω2h +

2ωωh (αh + βh)

1− α− β
+

ω2 (1 + α+ β)
¡
3α2h + β2h + 2αhβh

¢¡
1− 3α2 − β2 − 2αβ

¢
(1− α− β)

→ ω2

(1− α− β)2
as h→∞

In Figure 6 we plot the volatility of volatility for the above process using (ω, α, β) = (1, 0.05, 0.9),

which are common parameter values for data such as daily stock returns.

Given the absence of a closed-form expression for the multi-step ahead conditional density in

the GARCH case, we do not examine the autocorrelations for multi-step ahead forecasts or the

forecast error variance as a function of forecast horizon for the GARCH example. Again this serves

to show how difficult it is, in general, to characterize the moments of multi-step forecast errors

under asymmetric loss and nonlinear DGPs.
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5 Properties of a “generalized forecast error”

We demonstrated in the previous sections that all the properties of optimal forecasts established

under MSE loss can be violated under asymmetric loss and a nonlinear DGP. In this section we

establish the properties that a simple transformation of the optimal forecast error−known as the

generalized forecast error−must have.

Following Granger (1999) and Patton and Timmermann (2005), the generalized forecast error,

ψ∗t+h,t, is defined from the first-order condition of the loss function

ψ∗t+h,t ≡
∂L
³
Yt+h − Ŷ ∗t+h,t; a

´
∂Ŷt+h,t

(24)

which in the linex case simplifies to

ψ∗t+h,t = a− a exp
n
aσst+hνt+h − log

³
ξ̂
0
t|tP

hϕ
´o

. (25)

The generalized forecast error is thus related to the “generalized residual” of Gourieroux, et al.

(1987) and Chesher and Irish (1987), and can be alternatively interpreted as the “score” at time

t+h, evaluated using the forecaster’s loss as opposed to the likelihood function. Clearly a correctly

specified density model is a prerequisite for computing good (point) forecasts. The generalized

forecast error exploits the property of an efficient forecast that, at the optimum, there can be no

gain from changing the forecast by an amount that is a function of variables in the forecaster’s

current information set. For example, if bias is traded off against variance in the forecaster’s loss

function, at the optimum a reduction in one component due to a change in Ŷt+h,t must exactly be

offset by an increase in the other component. It is easy to establish that, although the forecast

error, e∗t+h,t, need not be mean zero, the generalized forecast error, ψ
∗
t+h,t, has mean zero:

Et

£
ψ∗t+h,t

¤
= a− a

³
ξ̂
0
t|tP

hϕ
´−1

Et

£
exp

©
aσst+hνt+h

ª¤
= a− a

³
ξ̂
0
t|tP

hϕ
´−1

ξ̂
0
t|tP

h exp

½
a2

2
σ2
¾

= 0,

and E
£
ψ∗t+h,t

¤
= 0 by the law of iterated expectations. Thus the generalized forecast error has

conditional and unconditional mean zero for all forecast horizons.

Turning to the second optimality property, while we saw that the variance of the optimal

forecast error need not be non-decreasing with the forecast horizon, thus violating the second
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standard optimality property, the unconditional expected loss will always be non-decreasing in the

forecast horizon. The expected loss corresponds exactly to the forecast error variance under MSE

loss, but not generally.

Proposition 6 Under linex loss (8) and the regime switching process (11)-(12) the unconditional

expected loss is

E
h
L
³
Yt+h, Ŷ

∗
t+h,t; a

´i
= ξ̄

0
λh → log

³
ξ̄
0
ϕ
´
as h→∞.

For the numerical example used above, Figure 7 shows the expected loss as a function of the

forecast horizon. As expected it is a non-decreasing function of h.

For the third property, we saw that in a non-linear framework, optimal h−step forecast errors

need not follow an MA(h − 1) process. However, the generalized forecast error will display serial

correlation of, at most, (h− 1)th order:

Proposition 7 The generalized forecast error from an optimal h-step forecast made at time t under

the regime switching process (11)-(12) and assuming linex loss (8) has the following autocovariance

function:

Cov
£
ψ∗t+h,t, ψ

∗
t+h−j,t−j

¤
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a2 + a2
Pk

st=1
ξ̄(st)

¡
ι0stP

hϕ
¢−2 ¡

ι0stP
hϕ4

¢
j = 0

−a2 + a2
Pk

st−j=1
ξ̄(st−j)

³
ι0st−jP

hϕ
´−1

×Pk
st=1

ξ(st|st−j)
¡
ι0stP

hϕ
¢−1 · ¡ϕ0 ¯ ¡ι0stPh−j¢¢Pjϕ

0 < j < h

0 j ≥ h

where ϕ4 ≡ exp
©
2a2σ2

ª
.

Using the numerical example above, Figure 8 presents the autocorrelation function for the

optimal generalized forecast error. As implied by Proposition 6, the autocorrelations are non-zero

for j < h and equal zero when j ≥ h.

An alternative approach to evaluate the optimality of a forecast that is often used is based on

the so-called probability integral transform proposed, in this context, by Rosenblatt (1952). This

is simply the one-step forecast cdf associated with a given model evaluated at the observed data
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point. If the model is correctly specified, these probability integral transforms should constitute a

sequence of i.i.d. uniformly distributed random variables. This approach requires, however, that

the density model used by the forecaster is known in order to compute the probability integrals. It is

not applicable in the common situation where the forecast evaluator does not know the forecaster’s

model and only a sequence of point forecasts generated under some loss function is observed.

6 Effect of parameter estimation error

So far we have established our theoretical results ignoring parameter estimation error. However, in

practice this source of error can significantly influence optimality properties. Hoque, et al. (1988),

for example, show that for small sample sizes the MSFE is a decreasing function of h when the DGP

is a mean zero AR(1) process with a small autoregressive coefficient (less than 0.2 in absolute value

in their example), and the unknown coefficient is estimated using least squares. Further, although

least squares methods provide the best linear unbiased estimator, for forecasting purposes least

squares estimators are in fact inadmissible and dominated by shrinkage estimators and predictors

that are biased though consistent. Requiring each of the elements of β̂ to be unbiased may be

undesirable if the objective is to minimize the MSE of the estimator of β. By dispensing with this

requirement, shrinkage estimators can reduce the MSE.

More specifically, consider a linear forecasting model based on the n−vector of predictor vari-

ables, xt = (x1t, ..., xnt),

Y = Xβ + ε, (26)

where Y = (Y1 · · ·YT )0, X =(x00 · · ·x0T−1)0 and ε = (ε1 · · · εT )0. In the simple case where X0X = In,

ε ∼ N(0, I) and letting β̂ls be the least squares estimator, the James and Stein (1961) estimator,

β̂JS, that shrinks the least squares estimator towards a vector of zeros is

β̂JS = (1−
a

β̂
0
lsβ̂ls

)β̂ls,

for some scalar, a. Under squared error loss the risk R(β̂JS ,β) = E[(β̂JS−β)0(β̂JS−β)] associated

with this estimator is (c.f. Judge et al (1985))

R(β̂JS ,β) = n− a[2(n− 2)− a]E[1/χ2n,λ],

where χ2n,λ is a noncentral chi-square variable with degree of freedom parameter, n, and noncen-

trality parameter λ = β0β/2. The bias of this estimator, β−E[β̂JS], equals aE[1/χ
2
n,λ]β. Provided
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that we choose 0 ≤ a ≤ 2(n − 2), it follows that R(β̂JS,β) < R(β̂ls,β) for all β so the least

squares estimator is inadmissible. Furthermore, the James-Stein estimator with the smallest risk

sets a = n− 2, i.e.10

β̂JS = (1−
n− 2
β̂
0
lsβ̂ls

)β̂ls.

It follows from these results that biased forecasts can be optimal even under MSE loss, once

parameter estimation error is accounted for. Empirical evidence seems to confirm this: Zellner

and Hong (1989) find that shrinkage helps in forecasting growth rates of output in a large interna-

tional data set, while Zellner and Chen (2001) find that a prior that shrinks disaggregate (sector)

parameters in the direction of a common mean improves forecasts of US GDP growth.

Outside the framework that assumes a linear forecasting model and a quadratic loss function,

parameter estimation uncertainty is best dealt with in a Bayesian context. Under the Bayesian

approach the evaluation of a set of predictions is no different from evaluation of a set of unknown

parameters. If the data is taken as given (non-random), expected loss can be used to evaluate

predictions, while the risk function and average or Bayes risk can be used to this end when the

data is viewed as random. Moreover, Bayesian predictions that minimize average or Bayes risk

have the desirable property that they are admissible so that no other predictor has lower average

or Bayes risk.

More specifically, let Xt = (x00 · · ·x0t)0 be the data up to time t and let Y be the set of possible

outcomes of Y , while θ is again the parameters of the underlying model assumed to lie in some

space Θ. The Bayesian approach chooses a forecast, Ỹt+h,t, that minimizes expected loss given the

available data, Xt :

Ỹ ∗t+h,t ≡ argmin
Ỹt+h,t

Z
Y
L
³
yt+h, Ỹt+h,t

´
p
¡
yt+h|Xt

¢
dyt+h, (27)

10 In the more general case where E[εε0] = σ2I and σ2 is unknown, the optimal (feasible) James-Stein estimator

takes the form

β̂
∗
JS = (1−

(T − n)(n− 2)σ̂2

(T − n+ 2)(β̂
0
lsβ̂ls)

)β̂ls,

where σ̂2 is the usual variance estimator. This estimator has risk

R(β̂JS ,β) = n− (n− 2)2(T − n)

T − n+ 2
E[1/χ2n,λ].
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where the predictive density is given by

p (yt+h|Xt) =

Z
Θ
p(θ|Xt)p(yt+h|Xt,θ)dθ, (28)

and the posterior parameter distribution is proportional to the prior of the parameters and the

conditional density of the data: p(θ|Xt) ∝ p(θ)p(Xt|θ). Under quadratic loss the optimal forecast

is simply the conditional mean, Ỹ ∗t+h,t =
R
Y yp

¡
y|Xt

¢
dy. However, under asymmetric loss the

forecast will generally not be easy to characterize in closed form. One exception pointed out by

Zellner (1986) is for linex loss and a Gaussian density, p
¡
yt+h|Xt

¢
, in which case

Ỹ ∗t+h,t = E
£
Yt+h|Xt

¤
− a

2
V ar(Yt+h|Xt). (29)

Again it is clear that, in the presence of parameter estimation error, the optimal forecast is biased

under asymmetric loss. Serial correlation of the optimal forecast error will also continue to hold even

under MSE loss, c.f. Magnus and Pesaran (1989 and 1991). We are not aware of any demonstrations

of how it affects the variance of multi-period forecast errors, however, where the bias depends in a

complicated manner on the persistence of the true DGP.

7 Empirical illustrations

In this section we present two illustrations of the above results for financial and economic data.

The purpose of these empirical illustrations is to show that the simple model employed in the paper

is a reasonable case to consider. Further, the results emphasize that using the standard properties

of optimal forecast errors (unbiasedness, increasing variance, restricted serial correlation) in the

presence of asymmetric loss and time-varying volatility could lead to the rejection of a perfectly

optimal forecast.

7.1 Forecasts of stock returns

Using maximum likelihood methods we estimated a two-state regime switching model, with unob-

servable state variable St :

Yt = μ+ σstεt, εt ∼ N(0, 1), (30)
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on weekly returns for Exxon over the period January 1970 to December 2003, and obtained the

following parameter estimates:

μ̂ = 0.1323

σ̂ = [0.9698, 1.6711]0

P̂ =

⎡⎣ 0.9756 0.0244

0.1014 0.8986

⎤⎦ .
Thus the annualized return on Exxon over this period was 6.9%. The steady state probabilities

implied by the estimated transition matrix b̄ξ = [0.8061, 0.1939]0 indicate that returns were drawn
from the low volatility regime four times as often as from the high volatility regime.

If we assume a linex loss function for the forecast user with a = 1, then Proposition 2 shows

that the unconditional mean of the optimal Exxon return forecast errors is −0.7292. Given the

asymmetry of the loss function it is not surprising that it is optimal to over-predict, leading to

forecast errors that are negative on average.

Using the expression given in Proposition 3 we obtain the unconditional variance of the optimal

forecast errors for different horizons, and plot these in Figure 9 which is the empirical counterpart

to Figure 3. We again see, under linex loss and a regime switching model for Exxon stock returns,

that the unconditional variance is a decreasing function of the forecast horizon. The MSE of

the optimal forecast errors (not shown) is similarly monotonically downward sloping. Taking the

standard properties of optimal forecasts as a guide, this figure would suggest that it is about 7%

easier (variance of 1.31 versus 1.41) to predict the one-week return on Exxon in the period between

nine and ten weeks from today, than the return on Exxon over the coming week. As we discussed

above, this interpretation is misleading when the forecast user’s loss function is not the MSE loss

function. If we instead use expected loss to measure forecast difficulty, we find that it is about 8%

harder (expected loss of 0.72 versus 0.67) to forecast the 10-step ahead one-week return than it is

to forecast the return over the coming week.

Using Proposition 5 we obtain the autocorrelation function of the optimal forecast errors in

this illustration, and plot this in Figure 10 for h = 1, .., 5. The one-step ahead weekly return

forecast, for example, has first-order serial correlation of almost 0.07, and even at the twentieth lag

the serial correlation is still greater than zero. This implies that the forecast error is predictable

using lagged forecast errors, albeit only weakly in this case. It does not imply that the forecast
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is suboptimal, however: the generalized forecast error exhibits the serial correlation properties

presented in Proposition 7.

7.2 Forecasts of output growth

We next show the effect of asymmetric loss in a two-state example that accounts both for parameter

estimation errors and an unobservable state, St. Given the strong evidence of regime-dependence

in the mean of output growth (c.f. Hamilton (1989)), we extend (30) as follows:

Yt = μst + σstεt, εt ∼ N(0, 1). (31)

When both the underlying state and the parameters θ = (μ1, μ2, σ
2
1, σ

2
2, p11, p22) are unknown, a

Gibbs sampling approach can be used to compute the predictive density, c.f. Albert and Chib (1993)

and Kim and Nelson (1999, chapter 9). The first step generates a vector of states, S̃T = (S1, ..., ST )0,

from the conditional density f(S̃T |θ, ỹT ), where ỹT = (y1, y2, ..., yT )0. The second step generates

(μ0, μ1, σ
2
0, σ

2
1) from f(μ0, μ1, σ

2
0, σ

2
1|ỹT , S̃T ). Finally, the third step generates the state transition

parameters, p11, p22 from f(p11, p22|S̃T ) using that, conditional on S̃T , these state transitions are

independent of ỹT .11

Following Chib (1996) we assume that the priors of the state transition probabilities follow

Dirichlet distributions. Multiplying by the likelihood function for P conditional on a simulated

vector of states this means that the posterior is also Dirichlet. We set the prior mean of each

element equal to 0.5 and the standard deviation equal to 0.25. Assuming a Gaussian prior for μi

conditional on σ2i , i.e., μi|σ2i ∼ N(b0, B0), the posteriors for the mean parameters are (for i = 1, 2)

μi|σ2i , S̃T , ỹT ∼ N(b1i, B1i),

b1i = (B−10 + σ−2i ι0T ιT )
−1(B−10 b0 + σ−2i ι0TYT )

B1i = (B−10 + σ−2i ι0T ιT )
−1.

In both cases we use basically uninformative priors, i.e. b0 = 0, B0 = 1, 000. With μi in place

we assume that the priors for the variance terms are inverse Gaussian, σ2i |μi ∼ IG(v02 ,
δ0
2 ), where

v0 = 2 and δ0 = 0.001 so we again have basically uninformative priors. Conditional on S̃T , ỹT

this yields an inverse Gaussian posterior, σ2i |μi, S̃T , ỹT ∼ IG(v12 ,
δ1i
2 ), where v1 = v0 + T and

δ1 = δ0 +
PT

t=1(yt − μi)
21(st = i).

11We are grateful to Davide Pettenuzzo for providing us with his Gibbs sampling code for this application.
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In our empirical illustration we use quarterly data on US GDP growth from 1952Q1 to 1994Q3,

and save the last 20 observations of this data set to compare against our predictions. This data was

also used by Kim and Nelson (1999). We compute the one- through twenty-step ahead forecasts

starting from the last date in our estimation sample, 1989Q3. Using 7500 draws from the Gibbs

sampler, the posterior means of the growth rate parameters in the two states were 1.09 and 0.05

respectively, with variance parameters equal to 0.49 and 1.00, and transition probability parameters

centered at 0.74 and 0.62 (each associated with a standard deviation of 0.12).

In Figure 11 we plot the optimal forecasts under MSE and linex loss (with a = 1) against

the realizations of GDP growth. These forecasts are computed using equation (27). Notice that

actual GDP growth is greater than the linex forecast of GDP growth for only three out of twenty

cases; this reflects the greater penalty this loss function applies to under-predictions relative to

over-predictions. In contrast, the MSE forecasts are exceeded by the actual GDP growth figures

in nine out of twenty cases. Hence the optimal forecast under linex loss is clearly above that

under MSE loss even after accounting for parameter estimation error.12 Figure 12 shows how the

one-step predictive density from the model (28) differ from the normal distribution. Note also the

pronounced negative skew in the regime switching density forecast.

8 Conclusion

This paper demonstrated that the properties of optimal forecasts that are almost always tested in

the empirical literature hold only under very restrictive assumptions, and are not generally robust

to even slight departures from these assumptions. We showed analytically how they are violated

under more general assumptions about the loss function, extending the seminal work of Granger

(1969) and Christoffersen and Diebold (1997). The properties that optimal forecasts must possess

were generalized to consider situations where the loss function may be asymmetric and the data

generating process may be nonlinear but strictly stationary. Illustrations using data on weekly stock

returns and quarterly output growth confirmed that our findings have much empirical relevance.

A number of implications follow from this paper. Most importantly, our results suggest the need

to develop new and more general methods for forecast evaluation that are robust to deviations from

12 In related work based on the lin-lin loss function, Whiteman (1996) finds that asymmetric loss can significantly

change the mean of the optimal forecast. His application is to budget surpluses for Iowa.
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mean squared error loss. Most economic time series have some dynamics in the conditional variance.

This means that even small deviations from mean squared error loss will overturn the standard

properties that an optimal forecast must have. One approach−proposed by Elliott, Komunjer and

Timmermann (2005)−is to assume that the loss function belongs to a family of parsimoniously

parameterized functions that nests mean squared error loss as a special case. This approach can be

used even with the small sample sizes typically obtainable with forecasting data. Furthermore, the

parameters of the loss function can be estimated by GMM and forecast optimality can be tested

by means of a standard J-test when the model is overidentified. Another approach, suggested by

Patton and Timmermann (2005), is to adopt robust test procedures that are valid for broad classes

of loss functions and data generating processes.
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Appendix

Proof of Proposition 1. Part 1: We know from Christoffersen and Diebold (1997) that

Ŷ ∗t+h,t = μt+h,t+αt+h,t, where αt+h,t depends on the loss, L(.), Ft+h,t and σt+h,t but not on μt+h,t.

So without loss of generality, consider a process with conditional mean zero:

Yt+h = σt+h,tεt+h.

Proving that Ŷ ∗t+h,t is biased then amounts to showing that Ŷ
∗
t+h,t 6= 0. Under assumptions L1 and

L2 we have L̃(e) = L̃(−e), and ζ(e) ≥ ζ(−e) for all e > 0 and so the optimal forecast satisfies

Ŷ ∗t+h,t > 0. To see this, define

Γ
³
Ŷt+h,t, σt+h,t

´
≡ ∂

∂Ŷ
Et

h
L
³
σt+h,tεt+h − Ŷt+h,t

´i
(A1)

= −
Z

L̃0
³
σt+h,tεt+h − Ŷt+h,t

´
f (εt+h) dεt+h

−
Z ∞

ŷt+h,t/σt+h,t

ζ 0
³
σt+h,tεt+h − Ŷt+h,t

´
f (εt+h) dεt+h,

assuming that we may interchange expectation and differentiation operators. Γ
³
Ŷ , σ

´
, evaluated

at Ŷ = 0, is negative since the first term in (A1) equals zero (if L̃ were the loss function the zero

would be the optimal forecast under the given assumptions) while the second term is negative (the

integral term is positive since ζ 0 ≥ 0 and ζ 0 > 0 on a set with measure greater than zero). In the

following we drop time-subscripts where these are not needed. Using the convexity of L̃ and ζ we

can show that ∂Γ/∂Ŷ > 0 :

∂Γ
³
Ŷ , σ

´
∂Ŷ

=
∂

∂ŷ

Ã
−
Z

L̃0
³
σε− Ŷ

´
f (ε) dε−

Z ∞

ŷ/σ
ζ 0
³
σε− Ŷ

´
f (ε) dε

!

=

Z
L̃00
³
σε− Ŷ

´
f (ε) dε+

Z ∞

ŷ/σ
ζ 00
³
σε− Ŷ

´
f (ε) dε+ ζ 0 (0)

1

σ

> 0. (A2)

The existence of an interior optimum (by the convexity of L(.), c.f. Lehmann and Casella (1998))

then implies that Ŷ ∗t+h,t > 0, proving that the optimal forecast is biased.

Part 2: To prove that the optimal forecast error is not in general a martingale difference

sequence with respect to Ft notice that e∗t+h,t = σt+h,tεt+h − Ŷ ∗t+h,t, where Ŷ
∗
t+h,t is that value of

Ŷt+h,t for which (A1) equals zero. Provided that ∂Ŷ ∗t+h,t/∂σt+h,t 6= 0, time-variations in σt+h,t will
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translate into predictable time-variations in the forecast error by means of the same variables in

Ft that forecast σt+h,t. To show that ∂Ŷ ∗t+h,t/∂σt+h,t 6= 0 we use the implicit function theorem:

∂Ŷ ∗ (σ) /∂σ = − (∂Γ/∂σ) /
³
∂Γ/∂Ŷ

´
. The denominator equals:

∂Γ
³
Ŷ , σ

´
∂Ŷ

=
∂

∂Ŷ

Ã
−
Z

L̃0
³
σε− Ŷ

´
f (ε) dε−

Z ∞

ŷ/σ
ζ 0
³
σε− Ŷ

´
f (ε) dε

!

=

Z
L̃00
³
σε− Ŷ

´
f (ε) dε+

Z ∞

ŷ/σ
ζ 00
³
σε− Ŷ

´
f (ε) dε+ ζ 0 (0)

1

σ
. (A2)

Since both L̃ and ζ are convex, ∂Γ/∂Ŷ is guaranteed to be positive. (This further implies that

Ŷ ∗ > 0 as Γ
³
Ŷt+h,t = 0, σt+h,t

´
< 0.) To derive ∂Ŷ ∗ (σ) /∂σ notice that

∂Γ
³
Ŷ ∗ (σ) , σ

´
∂σ

= −
Z

L̃00
³
σε− Ŷ ∗

´
εf (ε) dε−

Z ∞

ŷ/σ
ζ 00
³
σε− Ŷ ∗

´
εf (ε) dε− ζ 0 (0)

1

σ2
Ŷ ∗

The last term in this equation is negative under assumption L1. The terms in the above expression

will only cancel out in very special cases and so, generically, ∂Γ
³
Ŷ ∗ (σ) , σ

´
/∂σ 6= 0. For example,

if L̃ (e) = ae2 the first term equals zero and the second term is negative, so ∂Γ/∂σ < 0 which

implies ∂Ŷ ∗/∂σ > 0. If ∂Γ/∂σ 6= 0 then serial dependencies in σt+h,t will generally translate

into serial dependencies in the optimal bias, Ŷ ∗t+h,t, and hence in the forecast error. To see this,

let σ1 and σ2 be two distinct possible values for σt+h,t, which is time-varying by assumption

D2. If we know ∂Ŷ ∗/∂σ > 0, then Ŷ ∗ (σ1) 6= Ŷ ∗ (σ2), and so we have E
h
e∗t+h,t|σt+h,t = σ1

i
=

E
h
σt+h,tεt+h − Ŷ ∗t+h,t|σt+h,t = σ1

i
= E

h
σt+h,tEt [εt+h]− Ŷ ∗ (σt+h,t) |σt+h,t = σ1

i
= −Ŷ ∗ (σ1) 6=

−Ŷ ∗ (σ2) = E
h
e∗t+h,t|σt+h,t = σ2

i
. E

h
e∗t+h,t

i
can equal at most one of E

h
e∗t+h,t|σt+h,t = σ1

i
or

E
h
e∗t+h,t|σt+h,t = σ2

i
, which proves the claim.

Part 3: To understand the factors bringing about the possibility of a declining variance of

the forecast error in h, consider first the case of MSE loss. In that case, Ŷ ∗t+h,t = μt+h,t, and

so Et

h
e∗t+h,t

i
= 0. Using the law of iterated expectations and assuming the process is covariance

stationary, the optimality of Ŷ ∗t+h,t implies:

Et

£
e∗2t+h,t

¤
≤ Et

£
e∗2t+h,t−j

¤
∀j ≥ 0

so E
£
e∗2t+h,t

¤
≤ E

£
e∗2t+h,t−j

¤
and V

£
e∗t+h,t

¤
≤ V

£
e∗t+h,t−j

¤
= V

£
e∗t+h+j,t

¤
.

Thus the unconditional variance of the optimum forecast error is weakly increasing in the horizon.

Now consider the general case of asymmetric loss: notice that e∗t+h,t = σt+h,tεt+h − Ŷ ∗t+h,t, so
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V (e∗t+h,t) = E[Vt(e
∗
t+h,t)] + V (Et

h
e∗t+h,t

i
) = E[σ2t+h,t] + V (Ŷ ∗t+h,t). Comparing this across different

values of h, under covariance stationarity the first term is constant, so we focus on the second

term, V (Ŷ ∗t+h,t). We establish the result through a Taylor series expansion under the assumption

that Yt+h is covariance stationary and εt+h|Ft ∼ F (0, 1, κh), where κh is independent of Ft and

non-decreasing in h. We demonstrate that under sign restrictions on the derivatives, ∂Ŷ ∗/∂σ > 0

and ∂2Ŷ ∗/(∂σ∂κ) ≤ 0, V (e∗t+2,t) < V (e∗t+1,t). Note that

Ŷ ∗t+h,t = Ŷ ∗
¡
σ2t+h,t, κh

¢
≈ Ŷ ∗

¡
σ̆2h, κh

¢
+ Ŷ ∗0σ

¡
σ̆2h, κh

¢ ¡
σ2t+h,t − σ̆2h

¢
= Ȳ ∗h + Ŷ ∗0σ

¡
σ̆2h, κh

¢ ¡
σ2t+h,t − σ̆2h

¢
where σ̆2h is selected to satisfy Ŷ ∗

¡
σ̆2h, κh

¢
= Ȳ ∗h ≡ E

h
Ŷ ∗t+h,t

i
. Then E

h
Ŷ ∗t+h,t

i
≈

E
h
Ȳ ∗h + Ŷ ∗0σ

¡
σ̆2h, κh

¢ ³
σ2t+h,t − σ̆2h

´i
= Ȳ ∗h + Ŷ ∗0σ

¡
σ̆2h, κh

¢ ³
E
h
σ2t+h,t

i
− σ̆2h

´
⇒ σ̆2h ≈ E

h
σ2t+h,t

i
≡

σ2y ∀ h. So Ŷ ∗t+h,t ≈ Ȳ ∗h + Ŷ ∗0σ
¡
σ2y, κh

¢ ³
σ2t+h,t − σ2y

´
for all h. Then

V
h
Ŷ ∗t+1,t

i
≈ V

h
Ȳ ∗1 + Ŷ ∗0σ

¡
σ2y, κ1

¢ ¡
σ2t+1,t − σ2y

¢i
= Ŷ ∗0σ

¡
σ2y, κ1

¢2
V
£
σ2t+1,t

¤
Similarly V

h
Ŷ ∗t+2,t

i
≈ Ŷ ∗0σ

¡
σ2y, κ2

¢2
V
£
σ2t+2,t

¤
So V

h
Ŷ ∗t+1,t

i
− V

h
Ŷ ∗t+2,t

i
≈ Ŷ ∗0σ

¡
σ2y, κ1

¢2 ¡
V
£
σ2t+1,t

¤
− V

£
σ2t+2,t

¤¢
+V

£
σ2t+2,t

¤
(Ŷ ∗0σ

¡
σ2y, κ1

¢
+ Ŷ ∗0σ

¡
σ2y, κ2

¢
)
³
Ŷ ∗0σ

¡
σ2y, κ1

¢
− Ŷ ∗0σ

¡
σ2y, κ2

¢´
> 0.

Here we used that
¡
V
£
σ2t+1,t

¤
− V

£
σ2t+2,t

¤¢
> 0 by D3, while V

£
σ2t+2,t

¤
≥ 0 by assumption D2,

Ŷ ∗0σ
¡
σ2y, κ1

¢2
> 0 and

³
Ŷ ∗0σ

¡
σ2y, κ1

¢
− Ŷ ∗0σ

¡
σ2y, κ2

¢´
≥ 0 by the assumption that ∂Ŷ ∗/∂σ > 0 and

∂2Ŷ ∗/∂σ∂κ < 0 and the fact that κ1 ≤ κ2. Thus the variance of e∗t+1,t is greater than that of e
∗
t+2,t,

completing the proof.

Proof of Proposition 2. The h-step-ahead forecast error has a conditional expectation of

Et

£
e∗t+h,t

¤
= −1

a
log
³
ξ̂
0
t|tP

hϕ
´
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which, since P is a probability matrix with one eigenvalue of unity, is different from zero even when

h→∞. The unconditional expectation of the forecast error is

E
£
e∗t+h,t

¤
= E

£
Et

£
e∗t+h,t

¤¤
=

kX
st=1

ξ̄(st)E

∙
−1
a
log
³
ξ̂
0
t|tP

hϕ
´
|St = st

¸

= −1
a

kX
st=1

ξ̄(st) log
³
ι0st,tP

hϕ
´

= −1
a
ξ̄
0
λh,

where λh = log
¡
Phϕ

¢
and ιst is a k× 1 zero-one selection vector that is unity in the stth element

and is zero otherwise.

The unconditional bias remains, in general, non-zero for all h. In the limit as h→∞,

E
£
e∗t+h,t

¤
→ −1

a
ξ̄
0
log
³
ιξ̄
0
ϕ
´
= −1

a
ξ̄
0
ι log

³
ξ̄
0
ϕ
´
= −1

a
log
³
ξ̄
0
ϕ
´

which is also, in general, non-zero.

Proof of Proposition 3. From Proposition 2 we have

V ar
¡
e∗t+h,t

¢
= E

£
e∗2t+h,t

¤
− 1

a2
λ0hξ̄ξ̄

0
λh

= E

"µ
σst+hνt+h −

1

a
log
³
ξ̂
0
t|tP

hϕ
´¶2#

− 1

a2
λ0hξ̄ξ̄

0
λh

= E
h
σ2st+hν

2
t+h

i
− 2

a
E
h
σst+hνt+h log

³
ξ̂
0
t|tP

hϕ
´i

+
1

a2
E

∙
log
³
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0
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hϕ
´2¸
− 1
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λ0hξ̄ξ̄

0
λh

=
kX

st+h=1

ξ̄(st+h)E
h
σ2st+hν

2
t+h|St+h = st+h

i
− 1
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λ0hξ̄ξ̄

0
λh

+
1

a2
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h
log
³
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0
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´
· log

³
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0
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´
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i
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=
kX

st+h=1

ξ̄(st+h)σ
2
st+h
− 1

a2
λ0hξ̄ξ̄

0
λh

+
1

a2

kX
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ξ̄(st) log
³
ϕ0Ph0

´
ιstι

0
st log

³
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´
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0
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1
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Ã
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0
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!
λh −
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0
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1
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³¡
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¢
¯ I− ξ̄ξ̄0

´
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Here ξ̄(i) is the i
th element of the vector ξ̄, the outer product ιstι

0
st is a k × k matrix of all zeros,

except for the (st, st)
th element, which equals one. To examine the variance of the optimal h-step

ahead forecast as h→∞, notice that

lim
h→∞

λh = ι log
³
ξ̄
0
ϕ
´
.

Furthermore, for any vector ξ̄ such that ξ̄0ι = 1,

ι0
³¡
ξ̄ι0
¢
¯ I− ξ̄ξ̄0

´
ι = ι0

³³
ξ̄ι
0
´
¯ I
´
ι− ι0ξ̄ξ̄0ι = ξ̄

0
ι−

³
ξ̄
0
ι
´0 ³

ξ̄
0
ι
´
= 0.

So, as h→∞, the variance of the optimal h-step ahead forecast therefore converges to

V ar
£
e∗t+h,t

¤
→ ξ̄

0
σ2 +

1

a2
log
³
ξ̄
0
ϕ
´
ι0
³¡
ξ̄ι0
¢
¯ I− ξ̄ξ̄0

´
ι log

³
ξ̄
0
ϕ
´

= ξ̄
0
σ2.

Proof of Corollary 1. Follows directly from the proof of Proposition 3.
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Proof of Proposition 4. The conditional variance of the variable of interest is:
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which yields the expression given in the proposition. As h→∞,
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so V [Vt [Yt+h]]→ 0.

Proof of Proposition 5. The autocovariance function for an h-step forecast is:

Cov
£
e∗t+h,t, e

∗
t+h−j,t−j

¤
= E

£¡
σst+h−jσst+hνt+h−jνt+h

¢¤
− 1

a
E
h
σst+h−jνt+h−j log

³
ξ̂
0
t|tP

hϕ
´i

−1
a
E
h
σst+hνt+h log

³
ξ̂
0
t−j|t−jP

hϕ
´i

+
1

a2
E
h
log
³
ξ̂
0
t|tP

hϕ
´
log
³
ξ̂
0
t−j|t−jP

hϕ
´i
− 1

a2
λ0hξ̄ξ̄

0
λh

= ξ̄
0
σ21{j=0} −

1

a2
λ0hξ̄ξ̄

0
λh +

1

a2

kX
st−j=1

kX
st=1

ξ̄(st−j)ξ̂(st|st−j) ×

E
h
log
³
ξ̂
0
t|tP

hϕ
´
log
³
ξ̂
0
t−j|t−jP

hϕ
´
|St−j = st−j , St = st

i

36



= ξ̄
0
σ21{j=0} −

1

a2
λ0hξ̄ξ̄

0
λh

+
1

a2

kX
st−j=1

kX
st=1

ξ̄(st−j)ξ̂(st|st−j) log
³
ι0stP

hϕ
´
log
³
ι0st−jP

hϕ
´

= ξ̄
0
σ21{j=0} −

1

a2
λ0hξ̄ξ̄

0
λh

+
1

a2
λ0h

⎛⎝ kX
st−j=1

ξ̄(st−j)

Ã
kX

st=1

ξ̂(st|st−j)ιst

!
ι0st−j

⎞⎠λh

= ξ̄
0
σ21{j=0} −

1

a2
λ0hξ̄ξ̄

0
λh

+
1

a2
λ0h

⎛⎝ kX
st−j=1

ξ̄(st−j)P
j0ιst−jι

0
st−j

⎞⎠λh

= ξ̄
0
σ21{j=0} +

1

a2
λ0h

³¡
ξ̄ι0
¢
¯Pj − ξ̄ξ̄0

´
λh

For fixed h, as j →∞, Cov
h
e∗t+h,t, e

∗
t+h−j,t−j

i
→ 1

a2
λ0h

³¡
ξ̄ι0
¢
¯
³
ιξ̄
0
´
− ξ̄ξ̄0

´
λh = 0.
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Proof of Proposition 7. Cov
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The autocovariance is zero for all lags greater than or equal to the forecast horizon.
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Legends for Figures:

Figure 1: Linear-exponential loss function and unconditional optimal forecast error density,

two-state regime switching example.

Figure 2: Bias in the optimal forecast for various forecast horizons, two-state regime switching

example.

Figure 3: Variance of the optimal h-step forecast error for various forecast horizons, two-state

regime switching example.

Figure 4: Unconditional variance of the h-step conditional variance under the Markov switching

DGP, for various forecast horizons.

Figure 5: Autocorrelation in the optimal h-step forecast error for various forecast horizons,

two-state regime switching example.

Figure 6: The unconditional variance of h-step conditional variance for a GARCH(1,1) process

with (ω, α, β) = (1, 0.05, 0.9) .

Figure 7: Expected loss from the optimal forecast for various forecast horizons, two-state regime

switching example.

Figure 8: Autocorrelation in the optimal generalised forecast error for various forecast horizons,

two-state regime switching example.

Figure 9: Variance of the optimal h-step forecast error for various forecast horizons, Exxon

stock returns, Jan 1970 to Dec 2003.

Figure 10: Autocorrelation in the optimal h-step forecast error for various forecast horizons,

Exxon stock returns, Jan 1970 to Dec 2003.

Figure 11: Optimal one- to twenty-step ahead forecasts of US GDP growth, as at 1989Q3, under

MSE and Linex loss.

Figure 12: Comparing estimates of the one-step ahead predictive density of GDP growth.
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