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Abstract

We demonstrate the equivalence between commonly used test statistics for out-of-sample

forecasting performance and conventional Wald statistics. This equivalence greatly simpli-

fies the computational burden of calculating recursive out-of-sample test statistics and their

critical values. Moreover, for the case with nested models we show that the limit distribu-

tion, which has previously been expressed through stochastic integrals, has a simple repre-

sentation in terms of χ2-distributed random variables and we derive its density. We also

generalize the limit theory to cover local alternatives and characterize the power properties

of the test.
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1 Introduction

Out-of-sample tests of predictive accuracy are used extensively throughout economics and fi-

nance and are regarded by many researchers as the “ultimate test of a forecasting model”

(Stock and Watson (2007, p. 571)). Such tests are frequently undertaken using the approach of

West (1996), which accounts for the effect of recursive updating in parameter estimates. This

approach can be used to test the null of equal predictive accuracy of two non-nested regression

models evaluated at the probability limits of the estimated parameters (West (1996)), and for

comparisons of nested model (McCracken (2007) and Clark and McCracken (2001, 2005)). The

nested case gives rise to a test statistic whose limiting distribution (and, hence, critical values)

depends on integrals of Brownian motion. The test is burdensome to compute and depends

on nuisance parameters such as the relative size of the initial estimation sample versus the

out-of-sample evaluation period.

This paper shows that a recursively generated out-of-sample test of equal predictive ac-

curacy is equivalent to one based on simple Wald statistics. Our result has four important

implications. First, it simplifies calculation of the test statistics, which no longer requires re-

cursively updated parameter estimates. Second, for the case with nested models it greatly

simplifies the computation of critical values, which has so far relied on numerical approxima-

tion to integrals of Brownian motion but now reduces to simple convolutions of chi-squared

random variables. Third, our asymptotic results also cover the case with local alternatives,

thus shedding new light on the power properties of the test. Fourth, our result provides a new

interpretation of out-of-sample tests of equal predictive accuracy which we show are equivalent

to simple parametric hypotheses and so could be tested with greater power using conventional

test procedures.

The paper is organized as follows. Section 2 establishes the equivalence between the out-

of-sample statistics and conventional Wald statistics for any pair of regression models. Section

3 focuses on the comparison of nested models and establishes the simplifications of the limit

distribution for a test of equal predictive accuracy. Section 4 concludes.
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2 Theory

Consider the predictive regression model for an h-period forecast horizon

yt = β′Xt−h + εt, t = 1, . . . , n. (1)

To avoid “look-ahead” biases, out-of-sample forecasts generated by the regression model (1) are

commonly based on recursively estimated parameter values. This can be done by regressing

ys on Xs−h, for s = 1, . . . , t, resulting in least squares estimates β̂t =
(∑t

s=1Xs−hX
′
s−h
)−1∑t

s=1Xs−hys, and using ŷt+h|t(β̂t) = β̂′tXt to forecast yt+h.1

The resulting forecast can be compared to that from an alternative regression model that

uses X̃t−h as a regressor:

yt = δ′X̃t−h + ηt, (2)

whose forecasts are given by ỹt+h|t(δ̂t) = δ̂′tX̃t, where δ̂t =
(∑t

s=1 X̃s−hX̃
′
s−h

)−1∑t
s=1 X̃s−hys.

We do not specify how X̃t is related to Xt. In particular, the two models may be nested,

non-nested, or overlapping. We let k and k̃ denote the dimension of Xt and X̃t, respectively.

West (1996) proposed to judge the merits of a prediction model through its expected loss

evaluated at the population parameters. Under mean squared error (MSE) loss, a test of equal

predictive performance takes the form2

H0 : E[yt − ŷt|t−h(β)]2 = E[yt − ỹt|t−h(δ)]2, (3)

where β and δ are the probability limits of β̂n and δ̂n, respectively, as n→∞. This and related

hypotheses motivate a test statistic based on the out-of-sample MSE loss differential

∆MSEn =

n∑
t=nρ+1

(yt − ỹt|t−h(δ̂t−h))2 − (yt − ŷt|t−h(β̂t−h))2,

where nρ is the number of observations set aside for initial estimation of β and δ while t =

nρ + 1, ..., n is the out-of-sample period. This is taken to be a fraction ρ ∈ (0, 1) of the full

sample, n, i.e., nρ = bnρc (the integer part of nρ). Test statistics based on ∆MSEn appear

in many studies, including Diebold and Mariano (1995), West (1996), McCracken (2007), and

1We assume that initial values X−1, . . . , X−h+1, are observed.
2Another approach considers E[yt − ŷt|t−h(β̂t−h)]2 which typically depends on t; see Giacomini and White

(2006).
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Clark and McCracken (2014), in comparisons of nested, non-nested, and overlapping regression

models.

Our first result compares the MSE loss of ŷt+h|t(β̂t) to the corresponding loss from the very

simple model that has no predictors, i.e., ỹt+h|t(δ̂t) = 0. Although the scope of this result

is obviously limited, this no-change forecast has featured prominently in testing the random

walk model in finance and has also been used as a benchmark in macroeconomic forecasting.

Moreover, results for the general case can be derived from this simple case. We will show that

∆MSEn can be expressed in terms of two pairs of standard Wald statistics, with one pair being

based on the full sample t = 1, ..., n while the other is based on the initial estimation sample,

t = 1, . . . , nρ. In the case with nested regression models the result simplifies further in a way

that allows us to express ∆MSEn as the difference between two Wald statistics.

To prove this result, we need assumptions ensuring that the recursive least squares estimates,

β̂t−h, t = nρ+1, . . . , n and related objects converge at conventional rates in a uniform sense. So

we make the following assumption, where ‖·‖ denotes the Frobenius norm, i.e., ‖A‖ =
√

tr{A′A}

for any matrix A.

Assumption 1. (i) For some positive definite matrix, Σ,

sup
r∈[0,1]

∥∥∥∥∥∥ 1
n

bnrc∑
t=1

Xt−hX
′
t−h − rΣ

∥∥∥∥∥∥ = op(1). (4)

(ii) Let un,t = n−1/2Xt−hεt. For some Γj ∈ Rk×k, j = 0, . . . , h− 1, we have

sup
r∈[0,1]

∥∥∥∥∥∥
bnrc∑
t=1

un,tu
′
n,t−j − rΓj

∥∥∥∥∥∥ = op(1). (5)

The autocovariances of {Xt−hεt} play an important role when h > 1. Define Ω =
∑h−1

j=−h+1 Γj

and note that Ω is closely related to the long-run variance, Ω∞ := plimn→∞
1
n

∑n
s,t=1Xs−hεsεtX

′
t−h,

whenever it is well-defined. The two are obviously equal when the higher-order autocovariances

are all zero, which would correspond to a type of unpredictability of the forecast errors beyond

the forecast horizon, h; this can easily be tested by inspecting the autocorrelations.

Next, define

Un(r) =

bnrc∑
t=1

un,t = n−1/2
bnrc∑
t=1

Xt−hεt, for r ∈ [0, 1],
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so Un ∈ Dk[0,1], where Dk[0,1] denotes the space of cadlag mappings from the unit interval to Rk.

In the canonical case, Un will converge to a Brownian motion. The Brownian limit leads to

additional simplifications regarding the limit distribution, which we detail in Section 3. For

now, we only need to make the following high level assumption on Un( tn), as the Brownian limit

is not needed to establish the equivalence of test statistics.

Assumption 2. Let Mt = 1
t

∑t
s=1Xs−hX

′
s−h. Then

n∑
t=nρ+1

U ′n( t−hn )(M−1t−h − Σ−1)un,t = op(1), (6)

1
n

n∑
t=nρ+1

U ′n( t−hn )(M−1t−hXt−hX
′
t−hM

−1
t−h − Σ−1)Un( t−hn ) = op(1). (7)

Equations (6) and (7) are obtained by Clark and McCracken (2001) under mixing and

moment assumptions that guarantee a Brownian limit of Un; see also Clark and McCracken

(2000) and McCracken (2007, pp. 745–746).

2.1 Comparison with No-Change Forecast

Consider first the simple case where the forecasts from the regression model (1) are compared

to the trivial forecast ỹt|t−h = 0. Define the quadratic form statistic

Sn =

n∑
t=1

ytX
′
t−h

(
n∑
t=1

Xt−hX
′
t−h

)−1 n∑
t=1

Xt−hyt.

This is similar to the explained sum-of-squares in regression analysis – the difference being that

the explanatory variables, Xt−h, are not demeaned.

Theorem 1. Given Assumptions 1 and 2

n∑
t=nρ+1

y2t −
(
yt − ŷt|t−h(β̂t−h)

)2
= Sn − Snρ + κ log ρ+ op(1),

where κ = tr{Σ−1Ω}.

Next, consider

Wn = σ̂−2ε β̂′n

(
n∑
t=1

Xt−hX
′
t−h

)
β̂n, (8)
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where σ̂2ε is a consistent estimator of σ2ε . This is a simple Wald statistic associated with the

hypothesis H0 : β = 0. Since Wn = σ̂−2ε Sn, Theorem 1 shows that, aside from the scaling by

σ̂−2ε , the first two terms on the right side in Theorem 1 are closely related to conventional Wald

statistics – one based on the full sample of n observations, the other based on the initial nρ

observations.

Note that the Wald statistic in (8) is “homoskedastic” although we have not assumed the

underlying processes to be homoskedastic. Theorem 1 shows that ∆MSEn is related to the

“homoskedastic” Wald statistics for testing H0 : β = 0, regardless of whether the underlying

process is homoskedastic and regardless of whether β = 0 or not. As the reader may recall, if

the underlying process is heteroskedastic then, under the null hypothesis (β = 0) and standard

regularity conditions, Wn
d→
∑k

i=1 λiχ
2
i as n → ∞, where λ1, . . . , λk are the eigenvalues of

σ−2ε Σ−1Ω∞ and χ2
1, . . . , χ

2
k are independent χ2-distributed random variables with one degree of

freedom; see, e.g., White (1994, theorem 8.10). Another interesting relation to notice is that,

if Ω = Ω∞ these eigenvalues are related to the constant in Theorem 1, κ, as

κ = σ2ε

k∑
i=1

λi.

The expression in Theorem 1 can be used to provide model diagnostics by combining κ̂(ρ) =

[
∑n

t=nρ+1 y
2
t −
(
yt − ŷt|t−h(β̂t−h)

)2
−Sn+Snρ ]/ log ρ with a consistent estimator of σ2ε , because

k = κ/σ2ε under correct specifications. Moreover, the path of κ̂(ρ)/σ2ε as a function of ρ is

potentially informative about parameter instability.

2.2 Comparison of Arbitrary Pairs of Regression-Based Forecasts

Next consider general comparisons of pairs of regression models that could be nested, non-

nested, or overlapping. Analogous to the definitions for model (1), introduce objects for model

(2), σ−2η , Σ̃, Ω̃, κ̃ = tr{Σ̃−1Ω̃}, and define

S̃n =

n∑
t=1

ytX̃
′
t−h

(
n∑
t=1

X̃t−hX̃
′
t−h

)−1 n∑
t=1

X̃t−hyt.

To simplify the exposition, we write ỹt|t−h and ŷt|t−h in place of ỹt|t−h(δ̂t−h) and ŷt|t−h(β̂t−h).
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Corollary 1. Suppose that Assumptions 1-2 hold for both models. Then

n∑
t=nρ+1

(yt − ỹt|t−h)2 − (yt − ŷt|t−h)2 = Sn − Snρ − (S̃n − S̃nρ) + (κ− κ̃) log ρ+ op(1). (9)

The corollary shows that the difference in the MSE of the two regression models can be

expressed in terms of two pairs of Wald statistics - one based on the full sample and one based

on the initial estimation sample - that test β = 0 and δ = 0, respectively. This result holds

regardless of the values of β and δ.

The equivalence stated by Corollary 1 is demonstrated by the scatter plots in Figure 1,

where the expression based on the S-statistics is plotted against the expression of the left hand

side of (9), for a number of data generating processes (DGPs). Additional simulation results

for a variety of situation are presented in the Supplemental Material.

2.3 Nested Regression Models

Sharper results can be established for the special case in which one of the regression models is

nested by the other. This case arises when X̃t = X1t, where Xt = (X ′1,t, X
′
2,t)
′ with X1t ∈ Rk̃

and X2t ∈ Rq, so that k = k̃ + q. We decompose β accordingly, i.e., β = (β′1, β
′
2)
′. The case

with nested models was studied by McCracken (2007) who considered the test statistic

Tn =

∑n
t=nρ+1(yt − ỹt|t−h)2 − (yt − ŷt|t−h)2

σ̂2ε
, (10)

where σ̂2ε is a consistent estimator of σ2ε = var(εt+h).

Corollary 1 is directly applicable to this statistic. However, we can use a well known

identity for Wald statistics involving nested hypotheses to simplify the expression. To this end

we partition Σ into blocks

Σ =

 Σ11 •

Σ21 Σ22

 ,

where Σ22 is a q × q matrix. Define Σ̌ = Σ22 − Σ21Σ
−1
11 Σ12. This matrix is positive definite as

a consequence of Assumption 1. Next, define the auxiliary variables

Zt = X2,t − Σ21Σ
−1
11 X1,t, t+ h = 1, . . . , n.
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Figure 1: Scatterplots of the terms on the right hand side in (9) (excluding the op(1) term and
using q = κ− κ̃) against ∆MSEn. The plots are based on 1,000 simulations where n = 500 and
ρ = 0.5 and we in the expression. The six DGPs are based on those in Clark and McCracken
(2005) that includes cased with homoskedastic (DGP 1 and 2), heteroskedastic (DGP 3 and 4),
and serially dependent errors (DGP 5 and 6). See Supplemental Material for details.
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The variable Zt captures that part of X2t that is orthogonal to X1t. Also define

Ω̌ =

h−1∑
j=−h+1

Γ̌j , with Γ̌j = plim
n→∞

1
n

n∑
t=1

Zt−hεtεt−jZ
′
t−h−j .

The residuals obtained from regressing X2,t−h on X1,t−h are given by

Zn,t−h = X2,t−h −
n∑
t=1

X2,t−hX
′
1,t−h

(
n∑
t=1

X1,t−hX
′
1,t−h

)−1
X1,t−h, t = 1, . . . , n.

These can be used to compute the statistic

Šn =
n∑
t=1

ytZ
′
n,t−h

(
n∑
t=1

Zn,t−hZ
′
n,t−h

)−1 n∑
t=1

Zn,t−hyt.

Šn measures that part of the variation in yt that is explained by X2,t−h, but unexplained by

X1,t−h. It is straightforward to verify that W̌n = Šn/σ̂
2
ε is a conventional (homoskedastic) Wald

statistic associated with the hypothesis β2 = 0.

Theorem 2. Given Assumptions 1-2, the out-of-sample test statistic in (10) can be written as

Tn = W̌n − W̌nρ + σ−2ε κ̌ log ρ+ op(1),

where κ̌ = κ− κ̃, which simplifies to κ̌ = tr{Σ̌−1Ω̌} if β2 = n−1/2b with b ∈ Rq fixed.

The complex out-of-sample test statistic for equal predictive accuracy, Tn, depends on

sequences of recursive estimates. It is surprising that this is equivalent to the difference between

two Wald statistics, one using the full sample, the other using the subsample t = 1, . . . , nρ.

The results in Theorems 1 and 2 are asymptotic in nature, but the relationship is very

reliable in finite samples, as is evident from the simulations reported in Table 1 which use

n = 200 observations. Thus the correlations reported in Table 1 are for out-of-sample statistics

that are based on sums with as few as 34 terms. The main source of differences between the

recursive MSE differences and the Wald statistics is estimation error in σ̂2ε , because the two

Wald statistics employ sample variances based on different sample sizes, nρ and n, respectively.

The correlations between the expressions on the two sides of Equation (9) in Corollary 1 are

about 0.999 across each of the simulation experiments, see the Supplemental Material, or see

the scatter plots of Figure 1 for the case with n = 500. Additional simulation results are

presented in the Supplemental Material.
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Table 1: Finite Sample Correlation of Test Statistics (n = 200)

ρ π = 1−ρ
ρ DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6

0.833 0.2 0.962 0.972 0.959 0.954 0.969 0.955

0.714 0.4 0.975 0.980 0.971 0.963 0.971 0.956

0.625 0.6 0.977 0.979 0.975 0.960 0.973 0.943

0.556 0.8 0.979 0.98 0.977 0.955 0.971 0.947

0.500 1.0 0.980 0.978 0.975 0.96 0.969 0.941

0.455 1.2 0.980 0.976 0.975 0.954 0.967 0.935

0.417 1.4 0.979 0.974 0.976 0.954 0.962 0.934

0.385 1.6 0.978 0.973 0.974 0.948 0.959 0.936

0.357 1.8 0.977 0.973 0.975 0.948 0.959 0.926

0.333 2.0 0.975 0.972 0.975 0.948 0.958 0.927

Finite sample correlations between Tn and the expression based on Wald statistics in Theorem
2. The sample size is n = 200, but the simulation design is otherwise identical to that in Figure
1. The results are based on 10,000 replications. The parameter, π = (1− ρ)/ρ, is the notation
used in Clark and McCracken (2005).

3 Simplified Limit Distribution for Nested Comparisons

This section turns to the limit distribution of Tn for comparisons of nested models. The

equivalence between the test statistics established above holds without detailed distributional

assumptions. Under standard assumptions used to establish the limit distribution of Tn, the

equivalence between Tn and Wald statistics has interesting implications for the limit distribution

and results in a simplified expression.

For the asymptotic limit results we shall rely on the following additional assumption that

is known to hold under standard regularity conditions used in this literature, such as those in

Hansen (1992) (mixing) or in De Jong and Davidson (2000) (near-epoch).

Assumption 3.

1√
n

bnrc∑
t=1

Zt−hεt ⇒ Ω̌1/2
∞ B(r) on Dq[0,1],

where B(r) is a standard q-dimensional Brownian motion.

Assumption 3 requires that certain linear combinations of Un(r) converge to a Brownian

motion with covariance matrix Ω̌∞, which is defined analogously to Ω∞ as the long-run variance

of {Zt−hεt}.

For the special case where h = 1 and forecast errors are homoskedastic, McCracken (2007)

9



showed that the asymptotic distribution of Tn is given as a convolution of q independent random

variables, each with a distribution of 2
´ 1
ρ u
−1B(r)dB(r)−

´ 1
ρ u
−2B(r)2dr. Results for the case

with h > 1 and heteroskedastic errors were derived in Clark and McCracken (2005).

The relation between Tn and Wald statistics implies that existing expressions for the limit

distribution of Tn can be greatly simplified and generalized to cover the case with local al-

ternatives. To this end we need to introduce Q, defined by Q′ΛQ = Ξ, Q′Q = I, where

Ξ = σ−2ε Ω̌
1/2
∞ Σ̌−1Ω̌

1/2
∞ and Λ = diag(λ1, . . . , λq).

Theorem 3. Suppose that Assumptions 1-3 hold. Let β2 = cn−1/2b for some vector, b, nor-

malized by b′Σ̌b = σ2εκ, and c ∈ R. Define a = b′Σ̌Ω̌
−1/2
∞ Q′ ∈ Rq. Then

Tn
d→

q∑
i=1

λi

[
2

ˆ 1

ρ
r−1Bi(r)dBi(r)−

ˆ 1

ρ
r−2B2

i (r)dr + (1− ρ)c2 + cai{Bi(1)−Bi(ρ)}
]
, (11)

where B = (B1, . . . , Bq)
′ is a standard q-dimensional Brownian motion. Moreover, the limit

distribution is identical to that of

q∑
i=1

λi
[
B2
i (1)− ρ−1B2

i (ρ) + log ρ+ (1− ρ)c2 + aic{Bi(1)−Bi(ρ)}
]
.

The contributions of Theorem 3 are twofold. First, the theorem establishes the asymptotic

distribution of Tn under local alternatives (c 6= 0), thereby generalizing the results in Clark

and McCracken (2005) who showed results for c = 0.3 Second, it simplifies the expression

of the limit distribution from one involving stochastic integrals to one involving (dependent)

χ2(1)-distributed random variables, B2
i (1) and ρ−1B2

i (ρ). Below, we further simplify the limit

distribution under the null hypothesis to an expression involving differences of two independent

χ2-distributed random variables.

Theorem 4. Let B be a univariate standard Brownian motion. The distribution of 2
´ 1
ρ r
−1BdB−

´ 1
ρ r
−2B2du is identical to that of

√
1− ρ(Z2

1 − Z2
2 ) + log ρ, where Zi ∼ iidN(0, 1).

Theorems 3 and 4 show that the limit distribution of Tn/
√

1− ρ is invariant to ρ under the

null hypothesis, whereas the non-centrality parameter,
√

1− ρc2, and hence the power of the

test, is decreasing in ρ. This property of the test might suggest choosing ρ as small as possible to

maximize power, although such a conclusion is unwarranted because the result relied on ρ being

3The expression in Clark and McCracken (2005) involves a q× q matrix of nuisance parameters. For the case
c = 0, this expression was simplified by Stock and Watson (2003) to that in (11).
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strictly greater than zero to ensure that
(
n−1

∑nρ
t=1Xt−hXt−h

)−1
is bounded in probability and

β̂t is well behaved. Still, comparing the test with ρ = 0.75 to the test using ρ = 0.25, the non-

centrality parameter reveals that the former amounts to the same loss in asymptotic power, as

discarding (1− 1/
√

3) ' 42% of the sample (and using ρ = 0.25), a substantial loss of power.

The asymptotic results in Theorems 1-4 take the sample split, ρ, to be fixed, but could be

generalized to be uniform in ρ over some interval (a, b) ⊂ [0, 1]. Such results could be used to

develop a test that is robust to mining over the sample split, analogous to the results derived

in Rossi and Inoue (2012).

Because the distribution is expressed in terms of two independent χ2-distributed random

variables, in the homoskedastic case where λ1 = · · · = λq = 1 it is possible to obtain relatively

simple closed-form expressions for the limit distribution of Tn:

Theorem 5. The density of
∑q

j=1

[
2
´ 1
ρ r
−1Bj(r)dBj(r)−

´ 1
ρ r
−2Bj(r)

2dr
]

is given by

fq(x) =
1√

1− ρ2qΓ( q2)2
e
−|x−q log ρ|

2
√
1−ρ

ˆ ∞
0

(
u(u+ |x−q log ρ|√

1−ρ )
)q/2−1

e−udu.

For q = 1 and q = 2 the expression simplifies to

f1(x) = 1
2π
√
1−ρK0(

|x−log ρ|
2
√
1−ρ ) and f2(x) = 1

4
√
1−ρ exp

(
− |x−2 log ρ|

2
√
1−ρ

)
,

respectively, where K0(x) =
´∞
0

cos(xt)√
1+t2

dt is the modified Bessel function of the second kind.

For q = 2, the limit distribution is simply the non-central Laplace distribution. The density

for q = 1 is also readily available, since K0(x) is implemented in standard software.

4 Conclusion

We show that a test statistic that is widely used for out-of-sample comparisons of regression-

based forecasts is equal in probability to a linear combination of Wald statistics. This equiv-

alence greatly simplifies the computation of the test statistic based on recursively estimated

parameters, regardless of whether the models being compared are nested, overlapping, or non-

nested.

For the case where the forecasts are based on nested regression models, we provide further

simplifications. In this case the test statistics can be expressed as the difference between

two Wald statistics of the same null - one using the full sample and one using a subsample.
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Moreover, in the nested case, the limit distribution can be expressed as a difference between two

independent χ2-distributions and convolutions thereof. We also derive local power properties

for the test which establish that the power of the test is decreasing in the sample split fraction,

ρ.

These results raise serious questions about testing the stated null hypothesis for nested

comparisons in this manner. Subtracting a subsample Wald statistic from the full sample

Wald statistic dilutes the power of the test. Moreover, the test statistic, Tn, is not robust to

heteroskedasticity, which causes nuisance parameters to show up in its limit distribution. In

contrast, the conventional full-sample Wald test can easily be adapted to the heteroskedastic

case by using a robust estimator for the asymptotic variance of β̂2,n. This result does not,

however, imply that out-of-sample tests of predictive accuracy are without value. Out-of-sample

tests can be helpful in guarding against data mining which may arise when multiple models

are being compared and also provide insights into the effect of estimation error on “real-time”

forecasting performance in a manner that is not reflected in conventional full-sample tests.

However, such robustness comes at the expense of power. Our results help econometricians

better decide which tests to use in a particular situation.
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Appendix of Proofs

We first prove a number of auxiliary results. To simplify the exposition, we will occasionally write
∑
t,

supt, and supr as short for
∑n
t=nρ+1, supnρ+1≤t≤n, and supr∈[ρ,1], respectively.

Lemma A.1. Let at and bt be matrices whose dimensions are such that the product, atbt, is well defined.

Then, for l ≤ m ≤ n,

n∑
t=m+1

atbt =

n−1∑
t=m

(at − at+1)

t∑
s=l

bs + an

n∑
s=l

bs − am
m∑
s=l

bs.

Proof.

n∑
t=m+1

atbt =

n∑
t=m+1

at

(
t∑
s=l

bs −
t−1∑
s=l

bs

)

=

n∑
t=m+1

at

t∑
s=l

bs −
n∑

t=m+1

at

t−1∑
s=l

bs

=

n∑
t=m+1

at

t∑
s=l

bs −
n−1∑
t=m

at+1

t∑
s=l

bs

=

n−1∑
t=m

(at − at+1)

t∑
s=l

bs + an

n∑
s=l

bs − am
m∑
s=l

bs.

Lemma A.2. Suppose that supρ≤r≤1

∥∥∥ 1
n

∑brnc
t=1 (ζn,t − ζ)

∥∥∥ = op(1) and let g(x) = xa for a ∈ R. Then

1
n

n∑
t=nρ+1

g( tn )ζn,t
p→
ˆ 1

ρ

radrζ.

Proof. Let ζ̃n,t = (ζn,t − ζ)/n and apply Lemma A.1 with l = 1, m = nρ,

n∑
t=nρ+1

g( tn )ζ̃n,t =

n−1∑
t=nρ

(
g( tn )− g( t+1

n )
) t∑
s=1

ζ̃n,s + g(nn )

n∑
s=1

ζ̃n,s − g(
nρ
n )

nρ∑
s=1

ζ̃n,s.

13



The last two terms are easily seen to be op(1) and the first term is bounded by 1
n

∑n
t=nρ+1

∣∣∣∣ g( tn )−g( t+1
n )

1/n

∣∣∣∣
supnρ<t≤n

∥∥∥∑t
s=1 ζ̃n,s

∥∥∥, which is op(1) since 1
n

∑n
t=nρ+1

∣∣∣∣ g( tn )−g( t+1
n )

1/n

∣∣∣∣→ ´ 1ρ |g′(r)|dr. Hence

1
n

n∑
t=nρ+1

g( tn )ζn,t = 1
n

n∑
t=nρ+1

g( tn )ζ + op(1),

and the result now follows from 1
n

∑n
t=nρ+1 g( tn ) =

´ 1
ρ
g(r)dr + o(1).

Corollary A.1. Given (5) of Assumption 1, we have

1
n

∑
t

n
t εt−jX

′
t−h−jΣ

−1Xt−hεt = −γj log ρ+ op(1),

where γj = tr{Σ−1Γj}.

Proof. We have

1
n

∑
t

εt−jX
′
t−h−jΣ

−1Xt−hεt = tr{Σ−1 1
n

∑
t

Xt−hεtεt−jX
′
t−h−j} =

= tr{Σ−1
∑
t

un,tu
′
n,t−j} = tr{Σ−1(Γj + op(1))},

where the last equality follows by Assumption 1.ii. The result now follows by Lemma A.2 with ζn,t =

εt−jX
′
t−h−jΣ

−1Xt−hεt = ntr{Σ−1un,tu′n,t−h}, ζ = γj = tr{Σ−1Γj}, and g(r) = r−1, since
´ 1
ρ
u−1du =

− log ρ.

Lemma A.3. Suppose Ut = Ut−1 +ut ∈ Rq and let M be a symmetric q× q matrix. Then 2U ′t−1Mut =

U ′tMUt − U ′t−1MUt−1 − u′tMut.

Proof. Rearranging the non-vanishing terms in

U ′tMUt − U ′t−1MUt−1 = (Ut−1 + ut)
′M(Ut−1 + ut)

′ − U ′t−1MUt−1,

and using u′tMUt−1 = U ′t−1Mut yields the result.

Lemma A.4. The following identity holds for ∆MSE:

n∑
t=nρ+1

y2t − (yt − ŷt|t−h(β̂t−h))2 = A+ 2B + 2C −D,
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where

A =
∑
t

β′Xt−hX
′
t−hβ,

B = β′
∑
t

Xt−hεt,

C =
∑
t

(β̂t−h − β)′Xt−hεt,

D =
∑
t

(β̂t−h − β)′Xt−hX
′
t−h(β̂t−h − β).

Proof. Let ξt = β′Xt and ϑt = (β̂t − β)′Xt, so that yt+h = εt+h + β′Xt = εt+h + ξt and yt+h − ŷt+h|t =

εt+h + β′Xt − β̂′tXt = εt+h − ϑt. It follows that

y2t+h − (yt+h − ŷt+h|t)2 = (εt+h + ξt)
2 − (εt+h − ϑt)2

= ξ2t + 2ξtεt+h + 2ϑtεt+h − ϑ2t ,

which are the terms in the sums that define A, B, C, and D, respectively.

Proof of Theorem 1. From the identity of Lemma A.4, the theorem follows by showing that

A+ 2B + 2C −D = Sn − Snρ + κ log ρ+ op(1).

We first consider C, which is the most interesting term. It follows from (6) and Lemma A.2 that

C =

n∑
t=nρ+1

n
t U
′
n,t−h( t−hn )Σ−1un,t + op(1)

=

n∑
t=nρ+1

n
t U
′
n,t−1Σ−1un,t −

h−1∑
j=1

n∑
t=nρ+1

n
t u
′
n,t−jΣ

−1un,t + op(1), (A.1)

where we write Un,t in place of Un( tn ). Now

−
n∑

t=nρ+1

n
t u
′
n,t−jΣ

−1un,t = γj log ρ+ op(1), j = 1, . . . , h− 1,

where we applied Corollary A.1. The contribution from the last term in (A.1) is thus ξ = (γ1 + · · · +

γh−1) log ρ.

Applying Lemma A.3 to 2U ′n,t−1Σ−1un,t, we find

2C =

n∑
t=nρ+1

n
t (U ′n,tΣ

−1Un,t − U ′n,t−1Σ−1Un,t−1 − u′n,tΣ−1un,t) + 2ξ + op(1)

= U ′n,nΣ−1Un,n − n
nρ
U ′n,nρΣ

−1Un,nρ + 1
n

n∑
t=nρ+1

(nt )2U ′n,tΣ
−1Un,t + κ log ρ+ op(1). (A.2)
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Here we used κ = tr{Σ−1Ω} =
∑h−1
j=−h+1 tr{Σ−1

∑n
t=1 utu

′
t−h} + op(1) =

∑h−1
j=−h+1 γj + op(1) and

γj = γ−j . The penultimate term in (A.2) offsets the contributions from −D, because

D = 1
n

n∑
t=nρ+1

( n
t−h )2U ′n,t−hM

−1
t−hXt−hX

′
t−hM

−1
t−hUn,t−h = 1

n

n∑
t=nρ+1

( n
t−h )2U ′n,t−hΣ−1Un,t−h + op(1),

by (7) and Lemma A.2 with g(r) = r2. Next, A+ 2B equals

β′
n∑
t=1

Xt−hX
′
t−hβ − β′

nρ∑
t=1

Xt−hX
′
t−hβ + 2n1/2β′Un,n − 2n1/2β′Un,nρ .

With Sm = β̂′m
[∑m

t=1Xt−hX
′
t−h
]
β̂m = (β̂m − β + β)′

[∑m
t=1Xt−hX

′
t−h
]

(β̂m − β + β), we have

(Sn − Snρ) = U ′n,nΣ−1Un,n −
n

nρ
U ′n,nρΣ

−1Un,nρ + op(1)

+β′
n∑

t=nρ+1

Xt−hX
′
t−hβ + 2n1/2β′(Un,n − Un,nρ), (A.3)

from which the result now follows. �

Proof of Corollary 1. This follows from writing

(yt − ỹt|t−h)2 − (yt − ŷt|t−h)2 =
{
y2t − (yt − ŷt|t−h)2

}
−
{
y2t − (yt − ỹt|t−h)2

}
,

where y2t is the squared prediction error from the simple auxiliary (zero) forecast. �

Proof of Theorem 2. The first result follows from Corollary 1 and the identity Qn = Q̃n + Q̌n. Let

A =

 I −Σ−111 Σ12

0 I

 .

Consider

κ = tr{Σ−1Ω} = tr{(A′ΣA)−1A′ΩA} = tr{

 Σ11 0

0 Σ̌

A′ΩA},

so that

κ = tr{Σ−111 Ω11}+ tr{Σ̌−1Ω22·1},

where Ω22·1 = (−Σ21Σ−111 , I)Ω(−Σ21Σ−111 , I)′. Now recall that Ω =
∑h−1
j=−h+1 Γj where Γj = plim 1

n∑n
t=1Xt−hεtεt−jX

′
t−h−j , so that the terms that make up Ω22·1 are given from plim 1

n

∑n
t=1 Zt−hεtεt−jZ

′
t−h−j ,

proving that Ω22·1 = Ω̌. Hence, the result holds provided that

plim 1
n

n∑
t=1

X1,t−hεtεt−jX
′
1,t−h−j = plim 1

n

n∑
t=1

X1,t−hηtηt−jX
′
1,t−h−j , j = 0, . . . , h− 1,
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which would imply Ω11 = Ω̃. Since ηt = εt + β′2Zt−h, the result follows when β2 = n−1/2b, with b fixed.

�

Proof of Theorem 3. We establish the result by showing that the two expressions for the limit

distribution are identical. Then we derive the limit distribution for the difference between the two Wald

statistics and use their relation with Tn.

Consider F (r) = 1
rB

2(r)− log r (for r > 0). By Ito stochastic calculus,

dF = ∂F
∂BdB +

[
∂F
∂u + 1

2
∂2F
(∂B)2

]
du = 2

rBdB − 1
r2B

2dr,

so
´ 1
ρ

2
rBdB −

´ 1
ρ

1
r2B

2dr =
´ 1
ρ

dF (r) equals F (1)− F (ρ) = B2(1)− log 1−B2(ρ)/ρ+ log ρ.

Next, consider W̌n − W̌nρ where, analogous to (A.3), σ̂2
ε(W̌n − W̌nρ) is equal to

Šn − Šnρ = Ǔ ′n,nΣ̌−1Ǔn,n −
n

nρ
Ǔ ′n,nρΣ̌

−1Ǔn,nρ + op(1)

+β′2

n∑
t=nρ+1

Zt−hZ
′
t−hβ2 + 2n1/2β′2(Ǔn,n − Ǔn,nρ)

= B(1)′Ω̌1/2
∞ Σ̌−1Ω̌1/2

∞ B(1)− ρ−1B(ρ)′Ω̌1/2
∞ Σ̌−1Ω̌1/2

∞ B(ρ)

+(1− ρ)c2b′Σ̌b+ 2cb′Ω̌1/2
∞ [B(1)−B(ρ)] + op(1).

Under Assumption 3, we have Ǔn,bnrc = n−1/2
∑bnrc
t=1 Zt−hεt ⇒ Ω̌

1/2
∞ B(r).

Now, define B̃(r) = QB(r), another q-dimensional standard Brownian motion, and use that σ−2ε b′Σzzb =

κ to arrive at

B̃(1)′ΛB̃(1)− ρ−1B̃(ρ)′ΛB̃(ρ) + (1− ρ)c2κ+ 2σ−2ε b′Ω1/2Q′[B̃(1)− B̃(ρ)]

=

q∑
i=1

λi

[
B̃2
i (1)− ρ−1B̃2

i (ρ) + (1− ρ)c2 + 2ai[B̃(1)− B̃(ρ)]
]
,

where we used that σ−2ε b′Ω1/2Q′ = b′Σ̌Ω̌−1/2σ−2ε Ω̌1/2Σ̌−1Ω̌1/2Q′ = b′Σ̌Ω̌−1/2ΞQ′ = b′Σ̌Ω̌−1/2Q′Λ =

(a1λ1, . . . , aqλq). Since B̃ and B are identically distributed, the limit distribution may be expressed in

terms of B instead of B̃. �

Proof of Theorem 4. Let B(r) be a standard one-dimensional Brownian motion and define U =

B(1)−B(ρ)√
1−ρ and V = B(ρ)√

ρ , so that B(1) =
√

1− ρU +
√
ρV . Note that U and V are independent standard

Gaussian random variables. Express the random variable B2(1)−B2(ρ)/ρ as a quadratic form:

(√
1− ρU +

√
ρV
)2
− V 2 =

 U

V

′ 1− ρ
√
ρ(1− ρ)√

ρ(1− ρ) ρ− 1

 U

V

 ,

and decompose the 2 × 2 symmetric matrix into Q′ΛQ, where Λ = diag(
√

1− ρ,−
√

1− ρ) (the eigen-
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values) and

Q =
1√
2

 √
1 +
√

1− ρ
√

1−
√

1− ρ

−
√

1−
√

1− ρ
√

1 +
√

1− ρ

 ,

so that Q′Q = I. Then the expression simplifies to
√

1− ρ(Z2
1 −Z2

2 ) where Z = Q(U, V )′ ∼ N2(0, I). �

Proof of Theorem 5. Let Z1i,Z2i, i = 1, . . . , q be i.i.d. N(0, 1), so that X =
∑q
i=1 Z

2
1,i and Y =∑q

i=1 Z
2
2,i are both χ2

q-distributed and independent. The distribution is given by the convolution

q∑
i=1

[√
1− ρ(Z2

1,i − Z2
2,i) + log ρ

]
=
√

1− ρ(X − Y ) + q log ρ.

To derive the distribution of S = X − Y , where X and Y are independent χ2
q-distributed random

variables, note that the density of a χ2
q is

ψq(u) = 1{u≥0}
1

2q/2Γ( q2 )
uq/2−1e−u/2.

We are interested in the convolution of X and −Y , whose density is given by

fq(s) =

ˆ
1{u≥0}ψq(u)1{u−s≥0}ψq(u− s)du =

ˆ ∞
0∨s

ψq(u)ψq(u− s)du,

=

ˆ ∞
0∨s

1

2q/2Γ( q2 )
uq/2−1e−u/2

1

2q/2Γ( q2 )
(u− s)q/2−1e−(u−s)/2du

=
1

2qΓ( q2 )Γ( q2 )
es/2
ˆ ∞
0∨s

(u(u− s))q/2−1 e−udu.

For s < 0 the density is 2−qΓ( q2 )−2es/2
´∞
0

(u(u− s))q/2−1 e−udu. Using the symmetry about zero, we

arrive at the expression

fq(s) =
1

2qΓ( q2 )2
e−|s|/2

ˆ ∞
0

(u(u+ |s|))q/2−1 e−udu.

When q = 1 this simplifies to f1(s) = 1
2πK0( |s|2 ), where Kk(x) denotes the modified Bessel function of the

second kind. For q = 2 the expression for the density reduces to the simpler expression, f2(s) = 1
4e
− |s|

2 ,

which is the density of the Laplace distribution with scale parameter 2. �
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