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ABSTRACT

A coding error in Farmer et al. (2023) (FST) meant that future information leaked

into the classification scheme used to identify pockets with elevated return predictabil-

ity. While the underlying return forecasts are unaffected by the error, their usage to

identify predictability pockets ex ante becomes noisier under the corrected classifica-

tion scheme. A simple modification that smooths the underlying forecasts prior to

pocket classification retains all the main conclusions of FST including stronger out-of-

sample return predictability inside pockets, economic gains from exploiting this return

predictability, and the greater alignment of return predictability pockets with a sticky

expectations model than with existing asset pricing models.
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I. Introduction

Farmer et al. (2023) (FST) argue that predictability of U.S. stock market returns is con-

centrated in blocks in time (“pockets”). Their empirical analysis uses local kernel regressions

to capture time variation in return predictability and an auxiliary classification scheme to

identify pockets. Next, they examine whether existing asset pricing models can generate

pockets of predictability. Finding that conventional models struggle to generate sufficient

time variation in return predictability concentrated around pockets, they propose an alter-

native asset pricing model with sticky expectations which seems more consistent with the

empirical evidence Finally, they document empirical correlations between analysts’ forecast

errors and their return forecasts consistent with the sticky expectations mechanism.

In a replication study of FST, Cakici et al. (2024) (CFNPZ) identify a coding error which

implies that the original approach for detecting pockets of predictability in FST would not

have been implementable in real time. They also present evidence that some of the results

in FST become substantially weaker after addressing the error.

In this note, we discuss the error, then propose a modest change to the empirical speci-

fication in FST which preserves the key results in the original paper by making the out-of-

sample forecasting approach more robust and, finally, present updated results for the main

specifications in the FST paper.

Our analysis begins by discussing the coding error detected in the replication files by

CFNPZ, and its implications for the results from the exact method described in the paper.

The error does not affect the underlying time-varying (kernel) return forecasts which are

truly one-sided and hence do not benefit from any leakage of future information. Only that

part of the algorithm that classifies periods into predictability pockets gets affected by the

leakage of future information through the usage of a two-sided window. Hence, only the

question of whether the pockets were discoverable in real time is affected. The coding error

also does not affect the methodological contributions in the paper such as the introduction

of the integrated R2 (IR2) measure to capture local return predictability or the analytical

results demonstrating differences in the ability of conventional asset pricing models and a

sticky expectations model to generate local return predictability.

Next, motivated by some of the issues which are apparent from looking at the forecasts

of expected returns within pockets identified after fixing the coding error, we introduce a

simple and intuitive Bayes regularization into the estimation. As we explain below, the effect

of correcting the code and using a one-sided classification scheme is that pocket identifica-

tion becomes noisier which generates many short-lived pockets which are associated with
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large and volatile return forecasts. (Under the previous pocket classification, these forecasts

were excluded from the earlier analyses of predictability within pockets.) These undesir-

able features, however, are easily handled by smoothing the original time-varying forecasts

using one of the many regularization techniques in widespread use. Specifically, we use

a Bayesian approach which shrinks the original (one-sided kernel) return forecast towards

zero. This has the effect of reducing estimation error in the original return forecast and, in

turn, the real-time pocket identification procedure. We then use these smoothed forecasts

for out-of-sample exercises and pocket classification, as in the original paper.

Once this slight adjustment to our original methodology is implemented, we find that

all the conclusions from the original study carry over: (i) there are clear pockets with ele-

vated return predictability and these can be identified ex-ante. As a corollary, we find many

periods of time with little evidence of return predictability; (ii) return predictability inside

such pockets can also be used to improve risk-adjusted return performance through the same

trading rule adopted by FST; (iii) the asset pricing models studied by FST continue to strug-

gle to match the values of statistical and economic return performance measures observed

in the data; (iv) in contrast, a sticky expectations model is closely aligned with both the

statistical and economic measures of return predictability observed in the data; (v) The new

return forecasts continue to be positively correlated with the errors in professional forecast-

ers’ predictions of pro-cyclical measures such as GDP and industrial production growth and

negatively correlated with survey forecast errors of the (countercyclical) unemployment rate.

Hence, while correcting the coding error affects the numerical results in FST, a simple

modification to the real-time prediction scheme re-establishes the main economic findings

in FST. The remainder of this note revisits the main analyses conducted in the published

FST paper. Section II explains the coding error, Section III proposes a simple solution

for smoothing the forecast, while Section IV reports empirical results under this modified

forecasting rule. Section V reports simulations from workhorse asset pricing models, Section

VI discusses model simulation and empirical results related to the sticky expectations model,

while Section VII concludes.

II. Key Issue in Prior Analysis

CFNPZ replicate the results in the study by FST but discover an error in one of the

functions used to implement the replication code. FST use a two-step approach to generate

market excess return forecasts inside and outside of pockets. First, a one-sided kernel is used
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to estimate the parameters of return prediction models of the form:

rt = x′
t−1βt−1 + εt, (1)

where rt is the market excess return at time t, xt−1 is the predictor observed at time t − 1

and βt−1 is the estimated coefficient(s) based on this regression. The one-sided kernel only

uses backward-looking data known at time t − 1 and so the resulting estimate β̂t−1 can be

used to generate forecasts r̂t|t−1 = x′
t−1β̂t−1 in real-time. Importantly, this part of the code

is correctly implemented throughout the FST paper, so these first-step market excess return

forecasts can be considered out-of-sample.

The second step in the FST method is used to identify pockets with return predictability.

To determine if the market is currently in a pocket, FST define the squared error difference:

SEDt = (rt − rt|t−1)
2 − (rt − r̂t|t−1)

2, (2)

where rt|t−1 is the return forecast from a simple prevailing mean and r̂t|t−1 is the forecast from

a kernel-weighted linear return prediction model. When SEDt > 0, the local kernel-based

forecast is more accurate, in a squared error sense, than the prevailing mean. Periods where

this is expected to hold ex ante are labeled “pockets of predictability” by FST. A pocket

classification regression is used to determine if this condition holds:

SEDt = γ0t + γ1tt+ vt. (3)

The code implemented by FST to execute this step erroneously uses a two-sided kernel

rather than a one-sided kernel to estimate the parameters, γ̂0t, γ̂1t and generate forecasts

ŜEDt|t−1 = γ̂0t + γ̂1tt. This has the effect of leaking future information into the γ̂0t, γ̂1t

estimates and means that they were not, as implemented, relying purely on historically

available information.

The key issue, therefore, is not whether or not the degree of stock market return pre-

dictability fluctuates over time and, thus, whether pockets exist. Rather, it is related to

whether such pockets could have been identified–and exploited–in real time.

We acknowledge this error, and we are grateful to CFNPZ for bringing it to our attention.

Errors are humbling to discover. This subtle bug in the code emerged as a result of having,

in one instance, the kernel weighting function embedded inside the regression routine and in

the other case calling the kernel scheme as an external function. To speed up the execution

of the code, the main subroutines for estimating predictive kernel regressions were compiled
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into mex functions in MATLAB. One version of this function, the oldest version which

was a leftover from an earlier version of the analysis in which we were using two-sided

kernels, was mistakenly compiled and given a name suggesting it was a one-sided kernel

regression function. Separate versions of the function were created for handling different sign

restrictions on the regression coefficients which we imposed in the paper, where everything

is properly one-sided. In our main file, we used the old function to estimate the regression

for the SED measure in (3) but the newer versions to estimate the regression coefficients for

the predictive regressions of stock returns themselves.

How does this error affect the main conclusion in FST? As pointed out by CFNPZ, when

pockets are identified using the one-sided (backward-looking) rule in FST, many additional

short-lived pockets appear. Some of these pockets only last a single period and so can be

considered spurious in the sense that they reflect sampling variation, i.e., noise in the γ̂0t, γ̂1t

estimates used to identify pockets. As a consequence, the statistical and economic evidence

of return predictability for the market portfolio based on the pockets identified using the one-

sided (real-time) estimates of γ̂0t, γ̂1t is notably weaker and often disappears when compared

to the evidence established for the pockets identified using a two-sided kernel estimate of the

parameters in equation (3).

Because the market excess return forecasts, r̂t|t−1, use the correct one-sided kernel and

the two-sided kernel is only used to identify the pockets, the coding error does not necessarily

affect the conclusion that pockets of return predictability exist. It only affects the conclusion

that these pockets were discoverable in real time using the one-sided regression estimates of

the γ̂0t, γ̂1t estimates in equation (3).

An analogy is the common finding that predictability of stock market returns is higher

during recessions than in expansions, see Dangl and Halling (2012), Henkel et al. (2011),

and Rapach et al. (2010). Recession and expansion periods are known only ex-post with a

delay of several months, and many other macroeconomic series are only available with some

delay. In real time, an investor cannot use this information ex-ante to condition her return

forecasts on being in a recession. Nonetheless, it is still of interest to understand whether

predictability differs across macroeconomic environments. Similarly, the leakage of future

information into the kernel estimates used to determine whether the market is in a pocket

means these pockets were not discovered in real time. However, this does not imply that

there does not exist pockets in time with much higher return predictability than at other

times.1

1That being said, we do not wish to push this analogy too far due to possible biases in the estimates of the
pocket identification scheme arising from future return information contaminating the parameter estimates.
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The main effect of the coding error resulting in the use of a two-sided kernel to estimate

the parameters of the pocket classification scheme in (3) is to produce notably smoother

forecasts of SEDt compared to those based on a one-sided window.

The key finding in CFNPZ is that the “in pocket” one-sided market excess return forecasts

from equation (1), r̂t|t−1 = x′
t−1β̂t−1, are considerably noisier when the pocket classification

scheme is properly implemented using a one-sided kernel. A symptom of this is the sharp

increase in the number of pockets generated under the one-sided identification scheme –

with most of them being extremely short-lived – and more volatile in-pocket forecasts. This

higher volatility helps explain why so many short-lived pockets are generated under the

one-sided window and is an unattractive feature that makes the resulting periods classified

as pockets more prone to be dominated by noise. Results presented in CFNPZ illustrate

that this increase in noise substantially weakens the evidence on out-of-sample predictability,

especially when using the Clark-West and Diebold-Mariano tests, and partially weakens the

evidence on economic significance of our return forecasts.

We next propose a simple solution that handles the noise in the one-sided pocket classi-

fication scheme by regularizing the underlying market excess return forecasts in a way that

makes them smoother prior to the pocket classification step.

III. A Simple Solution

Above, we argued that correcting the SED regression in (3) used for pocket classification

led to considerably noisier in-pocket forecasts relative to what was considered in the original

FST paper. In light of this issue, we consider a simple and effective solution to reduce noise

in our return forecasts. We use a Bayesian shrinkage procedure, which is just one of many

available regularization methods, for smoothing the original market excess return forecasts,

r̂t|t−1 prior to implementing the one-sided pocket classification regression and out-of-sample

forecast evaluation/economic significance exercises. Reducing the volatility in the original

one-sided return forecasts brings down the estimation error in the parameters of the pocket

identification scheme, γ̂0t, γ̂1t, and also results in better-behaved forecasts overall.

To this end we apply a simple Bayesian approach that shrinks the one-sided kernel-

based market excess return forecasts, r̂t|t−1, towards zero. To see how this works, consider a

regression of market excess returns, rt, on r̂t|t−1:

rt = λ1,t−1r̂t|t−1 + εrt. (4)
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To produce a forecast of rt we estimate λ1,t−1 over the rolling window from t − s to t − 1,

where s is the length of the window. Let r̂t−s:t−1 = (r̂
′

t−s|t−s−1, ...., r̂
′

t−1|t−2)
′ be an s×1 vector

of return forecasts from the time-varying coefficient model and rt−1 = (rt−s, ..., rt−1)
′ an s×1

vector of returns. Both are known at time t − 1. To dampen the effect of estimation error

on our forecasts, we use a simple and intuitive G-prior Bayesian shrinkage scheme along the

lines proposed by Zellner (1986). Let λ̂1,t−1 =
[
r̂′
t−s:t−1r̂t−s:t−1

]−1
r̂′
t−s:t−1rt−1 and λ0 be the

rolling window estimate of λ1,t−1 and the shrinkage target, respectively. Then the G-prior

estimator for λ1 that uses returns up to time t−1, λ̂
G

1,t−1, can be written as (see, e.g., Diebold

and Pauly (1990))

λ̂
G

1,t−1 = λ0 +
1

1 + g

(
λ̂1,t−1 − λ0

)
. (5)

We set λ0 = 0, shrinking return forecasts towards zero for maximal stability, consistent with

the benchmark excess return forecast used by Gu et al. (2020).2 In effect, we form a portfolio

of the original forecast r̂t|t−1 and a zero forecast, with the latter playing a role similar to

a risk-free asset. Our main analysis sets g = 2 corresponding to putting two-thirds weight

on the shrinkage target and one-third weight on the kernel forecasts. We also conduct a

sensitivity analysis with regards to the choice of g and show that the results are robust to

other choices of this parameter.

Before estimating λ̂1,t−1, we winsorize 2.5% of the return forecasts obtained from our time-

varying parameter model in both tails, with the winsorization performed recursively and in

real-time (i.e., using an expanding window) so as to avoid look-ahead bias. Furthermore,

following standard practice from forecast combinations, we restrict the weights to lie between

zero and one and we apply this restriction to the initial rolling-window estimate λ̂1,t−1 (note

that the G-prior shrinkage estimate, λ̂
G

1,t−1, will also lie between 0 and 1 by construction).

To determine if the market is in a pocket with significant return predictability, as in (2),

we next compute the SED measure for comparing the squared errors of the prevailing mean

and shrinkage forecasts:

SEDG
t = (rt − rt|t−1)

2 − (rt − r̂Gt|t−1)
2. (6)

Finally, in the interest of simplicity, we simplify the pocket classification regression in (3) to

only include a constant

SEDG
t = γ0t + vt. (7)

2Other shrinkage targets such as the prevailing mean could of course be used. However, these will
introduce additional variation in the return forecasts and so are likely to require larger values of g to achieve
a similar level of robustness of the resulting forecasts.
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Leaving out the time-trend from the regression in (3) is not important to our results, so we

decided to adopt the simpler specification used here. Further, to avoid ultra-short pockets

with no economic meaning, we define a pocket as a period when the predicted SEDG
t is

greater than 0 for a minimum of one month (21 trading days).3

To test for differences between return predictability inside versus outside of pockets, we

also report the outcome of a two-sample CW t-test. Here the null hypothesis is that return

predictability is the same inside and outside the pockets identified by our classification

scheme, while positive values indicate that return predictability is higher inside pockets and

negative values suggest the opposite.

IV. Empirical Results

We next report results based on the modified return forecasts described above, following

closely the tables and figures in FST. The only key changes are that we use the regularized

one-sided kernel forecasts in place of the original one-sided kernel forecasts, and we use the

simplified pocket classification dummies discussed above.

A. Full-sample Return Regressions

Table I shows the slope coefficients, t-statistics, and R
2
values for univariate regressions

estimated on the full sample, in-pocket, and out-of-pocket periods. While only one of the t-

statistics (T-bill rate) is significant in the out-of-pocket regressions, two of the four (dividend-

price ratio and term spread) are significant in-pocket and in the full sample (T-bill rate and

term spread).4 This is particularly noteworthy since the number of in-pocket observations

is so much smaller than the number of observations in the full sample. R
2
values are also

notably higher in-pocket for the dividend-price ratio and term spread: 0.099 and 0.083 in-

pocket versus 0.005 and 0.041 in the full sample and -0.006 and 0.013 out-of-pocket (all in

percent). Conversely, return predictability from the T-bill rate seems stronger out-of-pocket

than in-pocket.

3We also tried a 10-day and 15-day minimum duration and our results remain virtually unchanged. The
higher level of smoothness of the earlier two-sided SED measure ended up meaning that pockets this short
were not encountered.

4These conclusions are based on one-sided tests with the expected signs of the coefficients or two-sided
tests with a 10% significance level.
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B. Pocket Characteristics

Table II reports pocket statistics for our simple pocket identification scheme applied to

the daily frequency. The number of pockets identified by our Bayesian shrinkage approach

ranges from 20 for the return forecasts based on the term spread predictor to 54 for the

return forecasts based on the dividend-price ratio. Sample lengths vary across the individual

variables, so the fraction of the sample identified as pockets is a more telling statistic. This

measure ranges from 27% for the term spread and dividend-price models to 32% for the

forecasts based on the T-bill rate. Pocket lengths range from 22 days (our imposed minimum)

to more than three years.5

The last three rows in II report the integral R2 measure, IR2. The mean IR2 ranges

from 1.00 for the model based on the dividend-price ratio to 2.03 for the model that uses

the T-bill rate as the predictor.

C. Spurious Pockets

The pocket identification scheme implemented by FST relies on repeated testing which

introduces a risk of detecting spurious pockets. To deal with this issue, FST propose a

bootstrap based on individual pockets’ IR2 values with only the pockets that generate the

highest IR2 values deemed to be non-spurious. FST find that short-lived pockets with low

IR2 values tend to be insignificant while longer-lived pockets have a higher chance of being

significant.

To see if this continues to hold, in Figure 1 we plot the individual pockets’ IR2 values

against their duration. We see a clear upward sloping relation with the longest-lived pockets

generating the highest IR2 values while short-lived pockets frequently produce very small

positive and, in a few cases, negative IR2 values.

Building on this insight, we apply the FST bootstrap to classify pockets into significant

ones (pockets with an IR2 value matched in less than 5% of the simulations) and spurious

pockets (pockets with IR2 values matched in at least 5% of the simulations). These are

marked in red and blue colors, respectively, in Figure 2. We see clear evidence that the

significant pockets tend to be longer-lived than the pockets deemed to be spurious. There

is also a notably stronger correlation across predictions in the pockets identified through

the Bayesian regularization scheme used here as compared to the pockets identified in the

original FST analysis. In our new analysis, the correlation between pocket indices range

5Note that the first 21 days of a pocket do not count towards any of the statistical or economic significance
statistics that we compute.
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between 0.6 and 0.9 across all variables whereas in the original FST analysis these ranged

between -0.02 and 0.59.

The right section of Table II reports summary statistics on the pockets deemed to be

significant. Requiring pockets to be non-spurious significantly reduces their numbers. For

the dividend-price ratio model the number of pockets is reduced from 54 to only 11, while for

the term spread model we go from 20 pockets to only seven significant ones. Furthermore,

the fraction of the sample spent inside pockets now ranges from 13% for the dividend-price

ratio to 23% for the T-bill rate. Minimum pocket duration is also drastically increased to

range between 70 and 173 days. Finally, the minimum IR2 values for the non-spurious

pockets are never negative, ranging from 1.58 to 2.68 with mean values ranging between

3.50 for the dividend-price ratio and 6.68 for the T-bill rate.

D. Statistical and Economic Performance

Panel A of Table III reports Clark and West (2007) (CW) test statistics for the un-

restricted daily market return forecasts (left columns), sign-restricted forecasts (middle

columns) and sign-and-slope restricted forecasts (right columns).

For the unrestricted return forecasts, the in-pocket CW test statistics are statistically

significant at the 5% level for two of the predictors (T-bill rate and term spread) and at the

10% level for the realized variance. The multivariate model, principal components forecast

and two of the three combination forecasts also generate highly significant CW test statistics

inside pockets. In contrast, there is no evidence of return predictability outside the pockets

where all CW test statistics are negative and insignificant. The strong in-pocket return

predictability carries over to the full sample for two of the forecast combinations but not

for the individual predictors and potentially reflects the additional stability generated via

regularization of the local kernel forecasts, especially outside of pockets. Moreover, the two-

sample t-test for equal return predictability in- and out-of-pocket is statistically significant

at the 1% level in all but one case (dividend-price ratio) which is significant at the 5%

level. Hence, we find considerable statistical evidence consistent with out-of-sample return

predictability being significantly stronger inside the pockets identified by our approach than

outside these pockets.

Imposing the positivity constraint on the return forecasts or further imposing constraints

on the sign of the slope of the regression coefficients improves the predictive accuracy of most

of the return forecasts although results vary across the predictors. For example, the CW

t-statistics increase by a large margin for the T-bill rate, term spread and realized variance
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and also for the principal component and the three combination schemes. Improvements are

positive but smaller for the dividend-price ratio. Again, differences in predictive accuracy in-

pocket versus out-of-pocket is highly significant for all individual predictors and forecasting

schemes.

Turning to the financial performance measures listed in Panel B of Table III, we find

that the alpha estimates are statistically significant at the 5% level or higher for all of our

approaches (using one-sided critical values as in the FST paper) with annualized alpha esti-

mates of 2.74, 5.48, 4.42, and 3.41 for the four individual predictor variables and associated

t-statistics of 1.94, 4.01, 3.17, and 2.43. Sharpe ratios associated with the unrestricted return

forecasts exceed that of the prevailing mean (0.46), ranging from 0.48 for the dividend-price

ratio to 0.71 for the T-bill ratio. Imposing non-negativity of the return forecasts and adding

a slope restriction increases alpha estimates which remain highly statistically significant, al-

though the margin of improvement over the unconstrained excess return forecasts is smaller

than that seen for the statistical (CW) tests and Sharpe ratios also do not improve from

imposing these constraints.

E. Robustness to Window Length and Shrinkage Parameter g

Table IV reports CW test statistics for different combinations of the two look-back win-

dows used to estimate the parameters in the return regression and the regression used for

pocket classification. We consider window lengths between two and three years to estimate

the parameters in the return regression in (1) and window lengths ranging from six to 18

months for the pocket classification regression in (7). In Table IV, we use our baseline value

of shrinkage g = 2, but we will demonstrate robustness to other values of g in Table V below.

In-pocket values of the test statistic are significantly positive for most of these scenarios

for the individual predictor variables as well as for the multivariate and principal components

models and the three combinations. The main exception to this finding is when a short (six

month) window is used in the classification scheme which leads to somewhat lower test

statistics, though the degradation of performance in market-timing alphas (bottom right

quadrant) is less severe in some cases. Thus the main take-away from these exercises is to

use a classification window of one year or longer.

In contrast, during the out-of-pocket part of our sample the CW test statistics are almost

always negative. This suggests that the shrinkage return forecasts are less accurate than the

prevailing mean forecasts out-of-pocket.

The test statistics for the null of equal in-pocket and out-of-pocket return predictability
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are reported in the bottom left quadrant. These results continue to be strong, again with

the exception of the shortest six-month window used in the pocket classification step. This

shows that the ability of our forecasting and classification scheme to identify periods with

elevated return predictability is robust across a wide range of settings. Measures of economic

significance such as the alpha estimate (bottom right quadrant) also remain strong for the

vast majority of parameter settings considered here.

Next, consider the sensitivity of our results with regards to the degree of shrinkage, g.

Table V shows that the statistical significance of the in-pocket CW test statistics holds up

in most cases both when we reduce the amount of shrinkage towards the zero target (g = 1)

and when we increase it (g = 3). As in the benchmark case with g = 2, the vast majority of

out-of-pocket test statistics are negative and the test statistics for the null of equal in-pocket

and out-of-pocket return predictability is strongly rejected against the alternative of higher

in-pocket predictability. We also report measures of economic significance, which illustrates

that the alpha and t-statistic estimates from our market timing strategies are insensitive to

our choice of the degree of shrinkage g.

F. Monthly Return Forecasts

Table VI shows pocket characteristics for the monthly data. The number of pockets

identified at the monthly frequency varies from 19 for the term spread model to 41 for the

realized variance model. Pocket duration ranges from 21 to 651 days.6 Between 28% (term

spread) and 32% (T-bill rate) of the monthly samples are identified as being pockets.

The mean IR2 values fall in a somewhat narrower band for the monthly than for the

daily data, ranging between 1.26 for the forecasts based on the realized variance to 1.98 for

the forecasts based on the T-bill rate.

Table VII shows statistical and economic performance results for the monthly data. First

consider the statistical accuracy of the forecasts as reported in Panel A. During the in-

pocket sample periods, the CW test statistics generated by the unrestricted forecasts are

significantly positive at the 10% level for three of the individual predictors (the T-bill rate,

term spread and realized variance) and positive but insignificant for the dividend-price ratio.

The multivariate, principal component and three forecast combination schemes also generate

CW test statistics that are significant at the 10% level of higher inside pockets. In contrast,

the out-of-pocket CW test statistics are all negative except for one case with a small positive

value (0.09 for the dividend-price ratio). Moreover, the tests for differences in predictive

6We report the duration in trading days using the convention of 21 days per month.
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accuracy in-pocket versus out-of-pocket are all positive and significant at the 5% level or

higher for all models except for the dividend-price ratio model which generates a test statistic

that is significant at the 10% level.

Imposing the non-negativity constraint on the sign of the monthly return forecasts mostly

improves forecast accuracy with CW test statistics that in many cases go from being signifi-

cant at the 10% level to being significant at the 5% level. Further adding the sign restriction

on the slope does not make much of a difference to the results.

Next, consider the economic performance measures reported in Panel B in Table VII. In

the unrestricted case all four individual predictors generate highly significant and positive

alpha estimates between 2% and 4% per year. The multivariate, principal components and

two of the three forecast combination schemes also generate alphas exceeding 3.5% per year.

Sharpe ratios range from 0.46 to 0.59 for the individual predictors compared to a value of

0.49 for the prevailing mean. Imposing economic restrictions on our forecasts, we find a

notable improvement in the alpha estimate for the dividend-price ratio model but smaller

effects for the other prediction models. Sharpe ratios do not change much as a result of

imposing these restrictions and are in fact a bit smaller in some cases.

G. Size and Value factor returns

CFNPZ find that many of the strong return prediction results reported by FST continue

to hold for the Fama-French size and value portfolios even after correcting the coding error.

Their findings use the original pocket classification scheme in FST which, as we argue above,

is quite noisy and tends to generate too many short-lived pockets.

To address this point, we also examine predictions generated for the Fama-French size

and value portfolio return series based on our Bayesian forecasting and pocket classification

scheme. Table VIII presents our results for the size (small minus big, or SMB) and value

factor (high minus low, or HML) portfolios. For the SMB return series, the in-pocket CW t-

statistics associated with the individual predictors fall in a range from 1.69 to 2.76 and exceed

three for the three forecast combination schemes and the multivariate model. However, we

now find that the out-of-pocket CW test statistics are even higher than their in-pocket

counterparts for two of the predictors (T-bill rate and term spread). Even so, the test for

differences in predictive accuracy reported in the fourth column continues to be positive

in all comparisons of in-pocket and out-of-pocket return predictability and are statistically

significant at the 10% level of better for all but one comparison (T-bill rate).7

7This can happen even in cases where the CW t-statistic is higher in the out-of-pocket than in-pocket
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For the HML portfolio, in-pocket CW test statistics are all significant at the 5% or

1% level while only one of these statistics is significant and positive out-of-pocket (for the

multivariate model). The far stronger in-pocket return predictability manifests itself in the

form of significantly positive test statistics for the difference in predictive accuracy.

The strong statistical tests for return predictability carry over to the economic perfor-

mance measures (Panel B). For the size factor (SMB) returns, the alpha estimates fall in a

range between 1.31% and 4.15% with all but one estimate being statistically significant at

the 1% level. Sharpe ratios for the SMB returns fall in a range between 0.41 and 0.95 versus

0.17 for the prevailing mean.

Alpha estimates for the value factor (HML) fall in a range between 1.46% and 2.73%

and are again significant at the 1% level for all but one of the forecasting models. Sharpe

ratios range from 0.64 to 0.79 for the four individual predictor variables versus 0.62 for the

prevailing mean which is a smaller improvement than that seen for the SMB portfolio.

V. Asset Pricing Models

In the context of a range of canonical asset pricing models, FST simulate excess returns

data and values for three of the four predictors (the dividend-price ratio, risk-free rate, and

the realized variance) which are generated endogenously by these models. Next, they test

whether the resulting data is consistent with the statistical tests for return predictability

observed in the empirical data as well as the evidence that this could have been exploited

to generate improved economic performance. They find that all asset pricing models under

consideration fall short of matching the in-pocket CW test statistics computed for the actual

data as well as the risk-adjusted return performance measures (alpha).

We undertake the same analysis based instead on the Bayesian forecasting scheme. Re-

sults from these simulations are shown in Table IX. The first column in the table shows the

empirically observed sample estimates which the simulations from the asset pricing models

are compared against.8 For the regression that uses the dividend-price ratio as a predictor,

all asset pricing models succeed in matching the CW test statistics both in-pocket and out-

of-pocket, as well as for the full sample. However, they fail (with p-values around 0.02) to

match the CW test of equality of in-pocket and out-of-pocket return predictability.

sample because mean squared forecast errors are lower (relative to the benchmark) for the in-pocket than
out-of-pocket forecasts. These are cases where the higher out-of-pocket CW t-statistic simply reflects the
larger out-of-pocket sample size as opposed to a lower mean squared forecast error.

8The reported p-values measure the success of the asset pricing models in achieving this with a low p-value
suggesting that a model is struggling to match the corresponding moment observed in the actual data.
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All asset pricing models also fail to match the empirically observed in-pocket CW test

statistics for the specification that uses the risk-free rate as a predictor and, with p-values

typically around 0.05-0.10, also struggle to match the data for the realized variance speci-

fication. For these two predictors, again none of the models matches the test statistic for

equal in-pocket and out-of-pocket return predictability.

Turning to the economic performance measures, none of the models come close to match-

ing the alpha estimates and t-tests for alpha computed for the data. They do succeed in

matching some of the Sharpe ratio estimates, however, which is unsurprising since Sharpe

ratios have substantial variability across simulated samples and improvements to this mea-

sure from applying our prediction scheme to the data tend to be smaller by comparison to

the alphas.

VI. Sticky Expectations

In the last part of the paper, FST argue that a model with sticky expectations, with

a degree of information rigidity disciplined by other studies, can reproduce the evidence of

pockets observed in the data. Further, they find that the expected return forecasts generated

by such a model are correlated with forecast errors with signs consistent with the model.

We demonstrate that both conclusions still hold using the revised estimation procedure.

A. Simulations from the sticky expectations model

Table X shows simulation results for the sticky expectations model proposed in FST

based on a one-sided 2.5-year estimation window mirroring the baseline empirical results.

As for the regular asset pricing models, we only present results for the three predictor

variables generated endogenously by this model. As in Table IX, the first column shows the

sample moments that the models should be compared against. First consider the dividend-

price ratio variable. The baseline standard calibration model with sticky expectations, the

baseline calibration with rational expectations (λ = 0), and the rational expectations model

recalibrated to match our original moment targets can all match the CW test statistics

across the full sample, in-pocket and out-of-pocket periods. However, only the baseline sticky

expectations model can match the in-pocket versus out-of-pocket difference in squared error

performance test computed for the data. The baseline sticky expectations model is also

the only model to succeed in matching the alpha and tα estimates in the data, whereas the

baseline calibration with rational expectations (λ = 0) and the rational expectations models
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fall well short of this.

Next consider the risk-free rate predictor. Our sticky expectations model succeeds in

matching both the statistical (CW) measures of return predictability along with the three

economic measures. The baseline rational expectations model with λ = 0 and the rational

expectations model fail to match the CW difference statistic as well as all three economic

performance measures computed for the data.

Finally, the sticky expectations model easily matches all the statistical and economic

measures of return predictability when the realized variance is used as the predictor variable.

In contrast, the baseline model with λ = 0 and rational expectations model fail to match the

CW difference statistic as well as the alpha and t-statistic of alpha computed for the data.

B. Direct evidence from forecast errors

FST also provide more direct evidence on the mechanism that might generate return

predictability pockets. They do so by linking expected return forecast and biases in the beliefs

of participants in the Survey of Professional Forecasters (SPF). Specifically, they regress

average quarterly SPF forecast errors for three macroeconomic variables (GDP growth (gy),

the unemployment rate (ue) and real industrial production growth (ie)) on return forecasts.

The sticky expectations model suggests that there should be a positive relation between the

time-varying return forecasts and the forecast errors of gy and ie and a negative relation

between the return forecasts and the forecast errors of ue.

Implementing the same steps and regressions as in FST, we obtain the results depicted in

Figure 3. Consistent with the original results in FST, we find positive and highly significant

correlations between our return forecast errors and survey forecast errors for gy and ip and

negative and highly significant correlations between our return forecast errors and survey

errors in forecasts of the unemployment rate.

VII. Conclusions

CFNPZ identify a coding error in the replication files accompanying the paper by FST.

While this error does not affect how the underlying market excess return forecasts are gener-

ated, it does affect the extent to which pockets can be discovered in real time by letting future

information leak into the parameter estimates of the pocket classification scheme. CFNPZ

show that, once corrected, pocket classification becomes noisier with too many short-lived

pockets being triggered.
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In this note, we propose a simple way to address this additional noise in the forecasts

through a Bayes regularization scheme with G-priors that smooths the underlying (one-sided)

market excess return forecasts before applying a simplified pocket determination rule. This

scheme dampens the noise in the return forecasts and produces significantly more accurate

return forecasts inside pockets for most of the predictor variables and prediction schemes

considered in the analysis.

In conclusion, while we acknowledge the coding error discovered by CFNPZ, we find that

all the main conclusions and economic insights in FST continue to hold once the underlying

market excess return forecasts are smoothed so as to prevent too many short-lived pockets

from being detected. Therefore, modulo the additional need to regularize the forecasts to

reduce estimation error, we find that the FST conclusions are preserved.
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Figure 1: Scatter Plot of Integral R2 of pockets (x-axis) vs. pocket duration in days (y-axis) This figure shows
scatter plots documenting the relationship between the integral R2 and duration (in days) of pockets identified in our baseline daily
empirical specification for each univariate prediction model. Each panel also plots a best fit line. Coefficients are estimated using
a one-sided kernel with a 2.5-year effective sample size, with return forecasts regularized through a Bayesian shrinkage scheme,
and pockets are identified as periods in which a fitted squared forecast error differential (relative to a prevailing mean forecast and
estimated using a one-sided kernel with a one-year effective sample size) is above zero for at least 21 trading days (1 month).
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Figure 2: Local return predictability. The first four panels plot one-sided nonparametric kernel estimates of the fitted squared
forecast error differential ŜEDt (estimated using a one-sided kernel with a one-year effective sample size) from a regression of daily
excess stock returns on each of the four predictor variables using an effective sample size of 2.5 years. The final panel plots the local
ŜEDt from a four-variable regression specification with coefficients estimated using a product kernel. The shaded areas represent
periods when ŜEDt > 0, with areas in red representing pockets that have less than a 5% chance of being spurious and areas in blue
representing pockets that have more than a 5% chance of being spurious. The sampling distributions used to determine spuriousness
come from an EGARCH(1,1) residual bootstrap design.
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Figure 3: Correlation of Coibion-Gorodnichenko forecast errors with excess return
forecasts. This figure shows correlations between forecast errors of three macroeconomic variables
from the Survey of Professional Forecasters (SPF) and excess return forecasts from our time-varying
coefficient models. The three sets of bar graphs correspond to forecast errors for real GDP growth
(gy), the unemployment rate (ue), and real industrial production growth (ip). The height of the nine
colored bars represents correlations of those forecast errors with the excess return forecasts from
our time-varying predictor models. Each bar is bracketed by 95% confidence intervals computed
using HAC standard errors. Since the SPF respondents send in their forecasts in the middle of
each quarter, we only use excess return forecasts from the first month of each quarter to make the
information sets consistent.
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Table I
Constant-Coefficient Regression Results

This table reports slope coefficient estimates, t-statistics (computed using Newey-West stan-

dard errors), and R
2
values for univariate regressions of daily excess stock returns on the

lagged predictor variables listed in the rows. The three panels report results for three dif-
ferent sub periods. Panel A reports results for the full sample, Panel B reports results for
the concatenation of periods determined to be pockets, and Panel C reports results for the
concatenation of all periods not classified as pockets. The start dates for each series are:
November 5, 1926 for the dividend price ratio (dp), January 4, 1954 for the three-month
Treasury bill (tbl), January 2, 1962 for the term spread (tsp), and January 15, 1927 for the
realized variance (rvar). All series run through the end of 2016.

Variables Slope coefficient t-statistic R
2
(in %) No. of obs.

Panel A: Full sample

dp 0.025 1.142 0.005 23,786
tbl −0.007 −2.783 0.053 15,860
tsp 0.017 2.311 0.041 13,846
rvar 0.000 0.536 0.000 23,727

Panel B: In-pocket

dp 0.121 2.625 0.099 5,980
tbl −0.004 −0.658 −0.009 4,608
tsp 0.029 1.881 0.083 3,429
rvar −0.000 −0.349 −0.011 6,536

Panel C: Out-of-pocket

dp 0.002 0.082 −0.006 16,446
tbl −0.006 −1.913 0.037 9,892
tsp 0.012 1.334 0.013 9,057
rvar 0.000 1.134 0.057 15,831
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Table II
Pocket Statistics (Daily)

This table reports statistics on the duration of pockets (in days) and their integral R2

for pockets estimated with daily data. Coefficients are estimated using a one-sided kernel
with a 2.5-year effective sample size, with return forecasts regularized through a Bayesian
shrinkage scheme, and pockets are identified as periods in which a fitted squared forecast
error differential (relative to a prevailing mean forecast and estimated using a one-sided
kernel with a one-year effective sample size) is for a minimum of 21 trading days (1 month).
The right half of the panel reports the statistics only for pockets which are significant at the
5% level according to our bootstrap integral R2 analysis.

Statistics dp tbl tsp rvar dp tbl tsp rvar

Num pockets 54.00 27.00 20.00 51.00 11.00 8.00 7.00 14.00
Fraction of sample 0.27 0.32 0.27 0.29 0.13 0.23 0.19 0.17
Duration

Min 22.00 22.00 24.00 22.00 155.00 173.00 70.00 144.00
Mean 131.74 191.67 192.45 149.16 274.73 418.00 343.14 270.79
Max 505.00 850.00 809.00 499.00 484.00 829.00 788.00 478.00

Integral R2

Min −0.52 −1.57 0.03 −0.33 1.86 2.68 1.58 2.13
Mean 1.00 2.03 1.56 1.95 3.50 6.68 4.09 5.83
Max 7.50 13.81 12.15 11.02 7.50 13.81 12.15 11.02
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Table III
Out-of-Sample Measures of Forecasting Performance (Daily Benchmark Specification)

Panel A reports the Clark and West (2007) test statistics for out-of-sample return predictability measured relative to a prevailing mean forecast.
Panel B reports three measures of economic significance associated with returns on a portfolio that uses the time-varying coefficient model
forecast in-pocket and the prevailing mean forecast out-of-pocket to allocate between the risk-free asset and the market (portfolio weights are
limited to be between zero and two): the annualized estimated alpha in percentage points, the heteroskedasticity- and autocorrelation-consistent
t-statistic for the estimated alpha, and the annualized Sharpe ratio of the portfolio. We use a backward-looking kernel with an effective sample
size of 2.5 years to compute forecasts and regularize the forecasts through a Bayesian shrinkage scheme with shrinkage paramter g = 2. “pc” is
a recursively computed first principal component of the four predictor variables. “mv” is a four-variable multivariate forecast estimated using
a product kernel. “comb1,” “comb2,” and “comb3” refer to using a simple average of the univariate forecasts. “comb1” sets an individual
predictor’s forecast to the time-varying coefficient model forecast during a pocket and to the prevailing mean otherwise. “comb2” is the same
as “comb1” except that it ignores individual predictor forecasts when that variable is not in a pocket but at least one other variable is in
a pocket. “comb3” makes no distinction between in-pocket and out-of-pocket periods and always uses the simple equal-weighted average of
all four univariate models. The CW test statistics approximately follow a normal distribution, with positive values indicating more accurate
out-of-sample return forecasts than the prevailing mean benchmark and negative values indicating the opposite. A pocket is classified as a
period in which a fitted squared forecast error differential (estimated using a one-sided kernel with a one-year effective sample size) is above
zero for a minimum of 21 trading days (1 month). Consider a particular statistic of interest, β. ∗, ∗∗, and ∗ ∗ ∗ represent statistical significance
at the 10%, 5%, and 1% level from a hypothesis test of β = 0 against an alternative hypothesis of β > 0. †, ††, and † † † represent statistical
significance at the 10%, 5%, and 1% level from a hypothesis test of β = 0 against an alternative hypothesis of β < 0.

Panel A: Clark-West statistics

Unrestricted + excess return forecasts All sign restrictions

Variables Full sample In-pocket Out-of-pocket Diff. Full sample In-pocket Out-of-pocket Diff. Full sample In-pocket Out-of-pocket Diff.

dp 0.32 1.25 −1.03 2.00∗∗ 0.19 1.32∗ −0.98 1.94∗∗ 0.36 1.49∗ −0.90 2.08∗∗

tbl 1.34∗ 2.29∗∗ −1.05 3.14∗∗∗ 1.76∗∗ 2.98∗∗∗ −0.74 3.41∗∗∗ 1.74∗∗ 3.14∗∗∗ −0.74 3.35∗∗∗

tsp 0.24 1.85∗∗ −1.62† 2.87∗∗∗ 0.88 2.29∗∗ −1.17 3.03∗∗∗ 1.05 2.58∗∗∗ −1.37† 3.53∗∗∗

rvar 0.57 1.39∗ −0.83 2.07∗∗ 0.58 1.76∗∗ −1.02 2.45∗∗∗ 0.69 1.77∗∗ −0.90 2.47∗∗∗

mv 1.55∗ 2.38∗∗∗ −0.38 2.88∗∗∗ 1.81∗∗ 2.10∗∗ 0.51 1.71∗∗ 1.81∗∗ 2.10∗∗ 0.51 1.71∗∗

pc 0.40 1.76∗∗ −1.38† 2.77∗∗∗ 1.06 2.27∗∗ −0.92 3.00∗∗∗ 1.06 2.27∗∗ −0.92 3.00∗∗∗

comb1 1.81∗∗ 1.84∗∗ – – 2.21∗∗ 2.23∗∗ – – 2.39∗∗∗ 2.41∗∗∗ – –
comb2 1.94∗∗ 1.97∗∗ – – 2.37∗∗∗ 2.40∗∗∗ – – 2.52∗∗∗ 2.54∗∗∗ – –
comb3 0.67 1.52∗ −1.27 2.57∗∗∗ 0.90 2.07∗∗ −1.23 3.10∗∗∗ 1.04 2.09∗∗ −1.14 3.05∗∗∗

Panel B: Economic significance

Unrestricted + excess return forecasts All sign restrictions

Variables α̂ tα̂ Sharpe Ratio α̂ tα̂ Sharpe Ratio α̂ tα̂ Sharpe Ratio

dp 2.74∗∗ 1.94 0.48 – 2.99∗∗ 1.93 0.48 – 3.26∗∗ 2.10 0.50 –
tbl 5.48∗∗∗ 4.01 0.71 – 5.64∗∗∗ 3.64 0.66 – 5.95∗∗∗ 3.80 0.68 –
tsp 4.42∗∗∗ 3.17 0.62 – 4.84∗∗∗ 2.99 0.59 – 5.16∗∗∗ 3.26 0.63 –
rvar 3.41∗∗∗ 2.43 0.52 – 3.54∗∗∗ 2.33 0.51 – 3.37∗∗ 2.26 0.51 –
mv 3.59∗∗∗ 2.72 0.56 – 3.56∗∗∗ 2.43 0.53 – 3.56∗∗∗ 2.43 0.53 –
pc 4.57∗∗∗ 3.45 0.65 – 4.97∗∗∗ 3.10 0.60 – 4.97∗∗∗ 3.10 0.60 –

comb1 4.51∗∗∗ 3.25 0.62 – 4.65∗∗∗ 3.08 0.60 – 4.85∗∗∗ 3.25 0.62 –
comb2 4.47∗∗∗ 3.05 0.59 – 4.72∗∗∗ 3.01 0.59 – 4.98∗∗∗ 3.19 0.61 –
comb3 2.26∗∗ 1.90 0.46 – 2.56∗∗ 1.72 0.45 – 2.57∗ 1.59 0.45 –
pm −0.26∗ −1.62 0.46 – −0.26∗ −1.62 0.46 – −0.26∗ −1.62 0.46 –
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Table IV
Robustness of Out-of-Sample Measures of Forecasting Performance (Window Length)

This table reports the Clark and West (2007) test statistics for out-of-sample return predictability measured relative to a prevailing mean
forecast for different combinations of bandwidths for both the coefficient from the predictive regression and fitted squared forecast error
differential estimation. In each column header, the first duration corresponds to the effective sample size for estimating the coefficient and the
second duration corresponds to the effective sample size for estimating the fitted squared forecast error differential. The shrinkage parameter
is set to g = 2 across specifications. “pc” is a recursively computed first principal component of the four predictor variables. “mv” is a
four-variable multivariate forecast estimated using a product kernel. “comb1,” “comb2,” and “comb3” refer to using a simple average of the
univariate forecasts. “comb1” sets an individual predictor’s forecast to the time-varying coefficient model forecast during a pocket and to
the prevailing mean otherwise. “comb2” is the same as “comb1” except it ignores individual predictor forecasts when that variable is not
in a pocket but at least one other variable is in a pocket. “comb3” makes no distinction between pocket and nonpocket periods and always
uses the simple equal-weighted average of all four univariate models. The CW test statistics approximately follow a normal distribution with
positive values indicating more accurate out-of-sample return forecasts than the prevailing mean benchmark and negative values indicating
the opposite. A pocket is classified as a period in which a fitted squared forecast error differential is above zero for a minimum of 21 trading
days (1 month). Consider a particular statistic of interest, β. ∗, ∗∗, and ∗ ∗ ∗ represent statistical significance at the 10%, 5%, and 1% level
from a hypothesis test of β = 0 against an alternative hypothesis of β > 0. †, ††, and † † † represent statistical significance at the 10%, 5%,
and 1% level from a hypothesis test of β = 0 against an alternative hypothesis of β < 0.

Variable In-pocket Out-of-pocket

2.5yCoef, 2yCoef, 3yCoef, 2.5yCoef, 2.5yCoef, 2.5yCoef, 2yCoef, 3yCoef, 2.5yCoef, 2.5yCoef
1ySED 1ySED 1ySED 6mSED 1.5ySED 1ySED 1ySED 1ySED 6mSED 1.5ySED

dp 1.25 1.18 1.28 0.74 0.67 −1.03 −0.91 −1.11 −0.49 −0.42
tbl 2.29∗∗ 2.15∗∗ 2.41∗∗∗ 1.44∗ 2.34∗∗∗ −1.05 −0.20 −1.02 0.29 −1.02
tsp 1.85∗∗ 1.97∗∗ 1.82∗∗ 0.53 1.66∗∗ −1.62† −1.38† −1.50† −0.16 −1.50†

rvar 1.39∗ 1.62∗ 1.42∗ 1.00 1.05 −0.83 −0.43 −0.80 −0.35 −0.53
mv 2.38∗∗∗ 1.66∗∗ 2.52∗∗∗ 1.91∗∗ 2.12∗∗ −0.38 −0.19 −0.28 −0.07 −0.35
pc 1.76∗∗ 1.79∗∗ 1.66∗∗ 0.70 1.60∗ −1.38† −1.15 −1.22 −0.13 −1.21

comb1 1.84∗∗ 1.89∗∗ 1.87∗∗ 1.01 1.58∗ – – – – –
comb2 1.97∗∗ 2.03∗∗ 1.94∗∗ 0.76 1.64∗ – – – – –
comb3 1.52∗ 1.53∗ 1.50∗ 0.44 1.36∗ −1.27 −0.68 −1.26 0.46 −1.03

Variable Difference Economic significance - α̂

2.5yCoef, 2yCoef, 3yCoef, 2.5yCoef, 2.5yCoef, 2.5yCoef, 2yCoef, 3yCoef, 2.5yCoef, 2.5yCoef
1ySED 1ySED 1ySED 6mSED 1.5ySED 1ySED 1ySED 1ySED 6mSED 1.5ySED

dp 2.00∗∗ 1.83∗∗ 2.07∗∗ 1.13 1.05 2.74∗∗ 2.60∗∗ 2.79∗∗ 1.62 1.65
tbl 3.14∗∗∗ 2.50∗∗∗ 3.17∗∗∗ 1.73∗∗ 3.13∗∗∗ 5.48∗∗∗ 4.99∗∗∗ 5.05∗∗∗ 3.56∗∗∗ 5.45∗∗∗

tsp 2.87∗∗∗ 2.94∗∗∗ 2.85∗∗∗ 0.71 2.63∗∗∗ 4.42∗∗∗ 4.19∗∗∗ 4.33∗∗∗ 1.74∗ 4.09∗∗∗

rvar 2.07∗∗ 2.15∗∗ 2.10∗∗ 1.39∗ 1.56∗ 3.41∗∗∗ 3.06∗∗ 3.42∗∗∗ 2.19∗ 2.42∗∗

mv 2.88∗∗∗ 2.01∗∗ 3.01∗∗∗ 2.29∗∗ 2.59∗∗∗ 3.59∗∗∗ 3.56∗∗∗ 3.74∗∗∗ 3.02∗∗ 3.48∗∗∗

pc 2.77∗∗∗ 2.71∗∗∗ 2.57∗∗∗ 0.93 2.51∗∗∗ 4.57∗∗∗ 4.28∗∗∗ 4.29∗∗∗ 2.36∗∗ 4.16∗∗∗

comb1 – – – – – 4.51∗∗∗ 4.23∗∗∗ 4.33∗∗∗ 2.55∗∗ 3.96∗∗∗

comb2 – – – – – 4.47∗∗∗ 4.18∗∗∗ 4.48∗∗∗ 2.04∗ 3.64∗∗∗

comb3 2.57∗∗∗ 2.31∗∗ 2.53∗∗∗ 0.77 2.32∗∗ 2.26∗∗ 2.61∗∗ 2.11∗∗ 2.18∗∗ 2.18∗∗
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Table V
Robustness of Out-of-Sample Measures of Forecasting Performance (Shrinkage Parameter g)
This table reports the Clark and West (2007) test statistics for out-of-sample return predictability measured
relative to a prevailing mean forecast for different choices of the Bayesian shrinkage parameter g. In each
column header, we indicate the choice of g associated with each set of results. Window lengths for estimation
and pocket identification are as in Table III. “pc” is a recursively computed first principal component of
the four predictor variables. “mv” is a four-variable multivariate forecast estimated using a product kernel.
“comb1,” “comb2,” and “comb3” refer to using a simple average of the univariate forecasts. “comb1” sets
an individual predictor’s forecast to the time-varying coefficient model forecast during a pocket and to the
prevailing mean otherwise. “comb2” is the same as “comb1” except it ignores individual predictor forecasts
when that variable is not in a pocket but at least one other variable is in a pocket. “comb3” makes no
distinction between pocket and nonpocket periods and always uses the simple equal-weighted average of all
four univariate models. The CW test statistics approximately follow a normal distribution with positive
values indicating more accurate out-of-sample return forecasts than the prevailing mean benchmark and
negative values indicating the opposite. A pocket is classified as a period in which a fitted squared forecast
error differential is above zero for a minimum of 21 trading days (1 month). Consider a particular statistic of
interest, β. ∗, ∗∗, and ∗ ∗ ∗ represent statistical significance at the 10%, 5%, and 1% level from a hypothesis
test of β = 0 against an alternative hypothesis of β > 0. †, ††, and † † † represent statistical significance at
the 10%, 5%, and 1% level from a hypothesis test of β = 0 against an alternative hypothesis of β < 0.

Variable In-pocket Out-of-pocket Difference

g = 1 g = 2 g = 3 g = 1 g = 2 g = 3 g = 1 g = 2 g = 3

dp 0.80 1.25 1.44∗ −0.79 −1.03 −1.06 1.38∗ 2.00∗∗ 2.19∗∗

tbl 2.60∗∗∗ 2.29∗∗ 2.23∗∗ −1.02 −1.05 −1.00 3.58∗∗∗ 3.14∗∗∗ 3.02∗∗∗

tsp 2.00∗∗ 1.85∗∗ 1.54∗ −2.05†† −1.62† −1.21 3.25∗∗∗ 2.87∗∗∗ 2.36∗∗∗

rvar 0.89 1.39∗ 1.50∗ −0.34 −0.83 −0.82 1.33∗ 2.07∗∗ 2.18∗∗

mv 2.23∗∗ 2.38∗∗∗ 2.59∗∗∗ −0.05 −0.38 −0.74 2.80∗∗∗ 2.88∗∗∗ 3.24∗∗∗

pc 1.71∗∗ 1.76∗∗ 1.56∗ −1.33† −1.38† −1.05 2.71∗∗∗ 2.77∗∗∗ 2.38∗∗∗

comb1 1.78∗∗ 1.84∗∗ 1.78∗∗ – – – – – –
comb2 1.96∗∗ 1.97∗∗ 1.92∗∗ – – – – – –
comb3 1.35∗ 1.52∗ 1.55∗ −1.35† −1.27 −1.13 2.29∗∗ 2.57∗∗∗ 2.63∗∗∗

Variable α̂ tα̂ Sharpe Ratio

g = 1 g = 2 g = 3 g = 1 g = 2 g = 3 g = 1 g = 2 g = 3

dp 1.72∗ 2.74∗∗ 3.35∗∗ 1.36 1.94 2.25 0.43 0.48 0.51
tbl 4.80∗∗∗ 5.48∗∗∗ 5.64∗∗∗ 4.03 4.01 3.86 0.72 0.71 0.69
tsp 4.28∗∗∗ 4.42∗∗∗ 4.28∗∗∗ 3.40 3.17 2.93 0.66 0.62 0.59
rvar 2.17∗∗ 3.41∗∗∗ 3.57∗∗∗ 1.77 2.43 2.40 0.46 0.52 0.52
mv 2.72∗∗∗ 3.59∗∗∗ 4.30∗∗∗ 2.37 2.72 3.05 0.52 0.56 0.60
pc 3.75∗∗∗ 4.57∗∗∗ 4.25∗∗∗ 3.15 3.45 2.99 0.63 0.65 0.60

comb1 3.97∗∗∗ 4.51∗∗∗ 4.51∗∗∗ 3.27 3.25 3.09 0.62 0.62 0.61
comb2 3.77∗∗∗ 4.47∗∗∗ 4.96∗∗∗ 2.84 3.05 3.22 0.56 0.59 0.61
comb3 2.26∗∗ 2.26∗∗ 2.26∗∗ 1.90 1.90 1.90 0.46 0.46 0.46

25



Table VI
Pocket Statistics (Monthly)

This table reports statistics on the duration of pockets (in days) and the integral R2 of
pockets for pockets estimated with monthly data. Coefficients are estimated using a one-
sided kernel with a 2.5-year effective sample size and we regularize the resulting forecasts
through a Bayesian shrinkage scheme with parameter g = 2. Pockets are identified as periods
in which a fitted squared forecast error differential (relative to a prevailing mean forecast
and estimated using a one-sided kernel with a one-year effective sample size) is above zero
for a minimum of one month.

Statistics dp tbl tsp rvar

Num pockets 34.00 23.00 19.00 41.00
Fraction of sample 0.31 0.32 0.28 0.31
Duration

Min 42.00 42.00 42.00 42.00
Mean 214.94 224.61 204.47 183.37
Max 546.00 672.00 651.00 609.00

Integral R2

Min −0.11 −1.21 −0.28 −0.31
Mean 1.52 1.98 1.43 1.26
Max 6.12 8.50 8.54 7.11
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Table VII
Out-of-Sample Measures of Forecasting performance (Monthly Benchmark Specification)

Panel A reports Clark and West (2007) test statistics for out-of-sample return predictability measured relative to a prevailing mean forecast.
Panel B reports 3 measures of economic significance associated with returns on a portfolio that uses the time-varying coefficient model forecast
in-pocket and the prevailing mean forecast out-of-pocket to allocate between the risk-free asset and the market (portfolio weights are limited to
be between zero and two): the annualized estimated alpha in percentage points, the HAC t-statistic for the estimated alpha, and the annualized
Sharpe ratio of the portfolio. We use a backward-looking kernel with an effective sample size of 2.5 years to compute forecasts and regularize
the forecasts through a Bayesian shrinkage scheme. “pc” is a recursively computed first principal component of the four predictor variables.
“mv” is a four-variable multivariate forecast estimated using a product kernel. “comb1,” “comb2,” and “comb3” refer to a simple average of
the univariate forecasts. “comb1” sets an individual predictor’s forecast to the time-varying coefficient model forecast during a pocket and to
the prevailing mean otherwise. “comb2” is the same as “comb1” except it ignores individual predictor forecasts when that variable is not in a
pocket but at least one other variable is in a pocket. “comb3” makes no distinction between in-pocket and out-of-pocket periods and always
uses the simple equal-weighted average of all four univariate models. The CW test statistics approximately follow a normal distribution with
positive values indicating more accurate out-of-sample return forecasts than the prevailing mean benchmark and negative values indicating
the opposite. A pocket is classified as a period in which a fitted squared forecast error differential (estimated using a one-sided kernel with a
one-year effective sample size) is above zero in the preceding period, for a minimum of 21 days. Consider a particular statistic of interest, β.
∗, ∗∗, and ∗ ∗ ∗ represent statistical significance at the 10%, 5%, and 1% level from a hypothesis test of β = 0 against an alternative hypothesis
of β > 0. †, ††, and † † † represent statistical significance at the 10%, 5%, and 1% level from a hypothesis test of β = 0 against an alternative
hypothesis of β < 0.

Panel A: Clark-West statistics

Unrestricted + excess return forecasts All sign restrictions

Variables Full sample In-pocket Out-of-pocket Diff. Full sample In-pocket Out-of-pocket Diff. Full sample In-pocket Out-of-pocket Diff.

dp 1.06 1.23 0.09 1.62∗ 0.93 1.42∗ −0.08 1.67∗∗ 1.07 1.27 0.29 1.35∗

tbl 1.33∗ 1.59∗ −0.22 2.16∗∗ 1.48∗ 1.99∗∗ −0.10 2.41∗∗∗ 1.73∗∗ 1.81∗∗ 0.56 1.71∗∗

tsp 0.88 1.52∗ −0.96 2.47∗∗∗ 0.92 1.58∗ −0.49 2.21∗∗ 1.07 1.65∗∗ −0.34 2.28∗∗

rvar 0.93 1.51∗ −0.78 2.28∗∗ 1.02 1.71∗∗ −0.47 2.26∗∗ 1.39∗ 1.57∗ 0.39 1.74∗∗

mv 0.83 1.70∗∗ −0.54 2.19∗∗ 1.56∗ 1.85∗∗ 0.35 1.90∗∗ 1.56∗ 1.85∗∗ 0.35 1.90∗∗

pc 0.79 1.58∗ −1.32† 2.66∗∗∗ 0.85 1.58∗ −0.68 2.26∗∗ 0.85 1.58∗ −0.68 2.26∗∗

comb1 1.51∗ 1.50∗ – – 1.59∗ 1.68∗∗ – – 1.52∗ 1.59∗ – –
comb2 1.57∗ 1.51∗ – – 1.49∗ 1.55∗ – – 1.48∗ 1.55∗ – –
comb3 1.10 1.33∗ −0.40 2.15∗∗ 1.12 1.27 0.08 1.95∗∗ 1.38∗ 1.13 0.87 1.42∗

Panel B: Economic significance

Unrestricted + excess return forecasts All sign restrictions

Variables α̂ tα̂ Sharpe Ratio α̂ tα̂ Sharpe Ratio α̂ tα̂ Sharpe Ratio

dp 2.11∗∗ 1.65 0.46 – 3.03∗∗ 1.84 0.48 – 2.80∗∗ 1.68 0.47 –
tbl 3.99∗∗∗ 3.04 0.59 – 4.34∗∗∗ 2.73 0.56 – 4.03∗∗∗ 2.38 0.53 –
tsp 3.15∗∗∗ 2.34 0.53 – 3.18∗∗ 1.99 0.49 – 3.27∗∗ 2.05 0.50 –
rvar 3.34∗∗∗ 2.60 0.55 – 3.64∗∗ 2.30 0.52 – 3.49∗∗ 2.19 0.51 –
mv 3.79∗∗∗ 2.93 0.59 – 3.85∗∗∗ 2.39 0.53 – 3.85∗∗∗ 2.39 0.53 –
pc 3.37∗∗∗ 2.46 0.54 – 3.23∗∗ 1.95 0.50 – 3.23∗∗ 1.95 0.50 –

comb1 3.51∗∗∗ 2.71 0.56 – 3.72∗∗∗ 2.40 0.53 – 3.54∗∗ 2.25 0.52 –
comb2 3.57∗∗∗ 2.62 0.56 – 3.60∗∗ 2.11 0.51 – 3.58∗∗ 2.11 0.51 –
comb3 0.81 0.69 0.40 – 1.17 0.63 0.40 – 2.41∗ 1.39 0.45 –
pm −0.36∗∗ −1.88 0.49 – −0.36∗∗ −1.88 0.49 – −0.36∗∗ −1.88 0.49 –
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Table VIII
Out-of-Sample Measures of Forecasting Performance
(Fama-French Factor Portfolio Excess Returns, Daily)

Panel A reports Clark andWest (2007) test statistics for out-of-sample return predictability measured relative
to a prevailing mean forecast. Panel B reports three measures of economic significance associated with returns
on a portfolio that uses the time-varying coefficient model forecast in-pocket and the prevailing mean forecast
out-of-pocket to allocate between small and big or high and low (portfolio weights are limited to be between
zero and two): the annualized estimated alpha in percentage points, the t-statistic on the estimated alpha,
and the annualized Sharpe ratio of the portfolio. Significance of the estimated alpha is assessed using a t-
statistic estimated using HAC standard errors. We use a backward-looking kernel to compute forecasts and
regularize the forecasts through a Bayesian shrinkage scheme. “pc” is a recursively computed first principal
component of the four predictor variables. “comb1,” “comb2,” and “comb3” refer to a simple average of the
univariate forecasts. “comb1” sets an individual predictor’s forecast to the time-varying coefficient model
forecast during a pocket and to the prevailing mean otherwise. “comb2” is the same as “comb1” except it
ignores individual predictor forecasts when that variable is not in a pocket but at least one other variable
is in a pocket. “comb3” makes no distinction between pocket and nonpocket periods and always uses the
simple equal-weighted average of all four univariate models. The CW test statistics approximately follow
a normal distribution with positive values indicating more accurate out-of-sample return forecasts than the
prevailing mean benchmark and negative values indicating the opposite. A pocket is classified as a period in
which a fitted squared forecast error differential (estimated using a one-sided kernel with a one-year effective
sample size) is above zero in the preceding period, for a minimum of 21 days. Consider a particular statistic
of interest, β. ∗, ∗∗, and ∗∗∗ represent statistical significance at the 10%, 5%, and 1% level from a hypothesis
test of β = 0 against an alternative hypothesis of β > 0. †, ††, and † † † represent statistical significance at
the 10%, 5%, and 1% level from a hypothesis test of β = 0 against an alternative hypothesis of β < 0.

Panel A: Clark-West statistics

SMB HML

Variable Full sample In-pocket Out-of-pocket Difference Full sample In-pocket Out-of-pocket Difference

dp 2.72∗∗∗ 2.36∗∗∗ 1.86∗∗ 1.90∗∗ 1.68∗∗ 2.04∗∗ 0.49 1.62∗

tbl 2.78∗∗∗ 1.69∗∗ 2.33∗∗∗ 0.82 1.40∗ 1.86∗∗ 0.33 1.58∗

tsp 2.80∗∗∗ 1.99∗∗ 2.18∗∗ 1.28∗ 2.27∗∗ 3.14∗∗∗ 0.30 2.75∗∗∗

rvar 2.60∗∗∗ 2.76∗∗∗ 0.85 2.40∗∗∗ 0.48 2.78∗∗∗ −2.03†† 3.73∗∗∗

mv 4.81∗∗∗ 3.11∗∗∗ 4.60∗∗∗ 1.32∗ 4.19∗∗∗ 4.09∗∗∗ 1.97∗∗ 2.80∗∗∗

pc 3.37∗∗∗ 2.51∗∗∗ 2.61∗∗∗ 1.81∗∗ 2.09∗∗ 2.45∗∗∗ 0.73 1.84∗∗

comb1 3.06∗∗∗ 3.12∗∗∗ – – 2.57∗∗∗ 2.69∗∗∗ – –
comb2 3.64∗∗∗ 3.81∗∗∗ – – 2.63∗∗∗ 2.76∗∗∗ – –
comb3 3.80∗∗∗ 3.41∗∗∗ 1.81∗∗ 1.73∗∗ 1.61∗ 2.12∗∗ 0.04 2.30∗∗

Panel B: Economic significance

SMB HML

Variable α̂ tα̂ Sharpe ratio α̂ tα̂ Sharpe ratio

dp 2.75∗∗∗ 2.51 0.65 – 1.65∗∗∗ 2.50 0.68 –
tbl 1.31∗∗ 2.08 0.41 – 1.46∗∗ 2.18 0.64 –
tsp 1.33∗∗∗ 2.60 0.50 – 2.21∗∗∗ 3.17 0.74 –
rvar 2.05∗∗∗ 3.04 0.59 – 2.34∗∗∗ 3.46 0.79 –
mv 2.73∗∗∗ 2.78 0.63 – 2.51∗∗∗ 3.82 0.80 –
pc 1.44∗∗∗ 2.64 0.48 – 1.88∗∗∗ 2.66 0.69 –

comb1 3.04∗∗∗ 3.64 0.79 – 2.08∗∗∗ 3.12 0.75 –
comb2 4.15∗∗∗ 4.25 0.95 – 2.43∗∗∗ 3.17 0.75 –
comb3 3.89∗∗∗ 3.93 0.83 – 2.73∗∗∗ 2.77 0.76 –
pm −0.38 −0.75 0.17 – −0.17† −1.55 0.62 –
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Table IX
OOS Asset Pricing Model Simulations (Unrestricted - new baseline identification of pockets)

This table reports Monte Carlo simulation results of our one-sided kernel estimation applied to data simulated from four different asset
pricing models (this includes two specifications of Wachter’s rare disasters model, one of which omits data from disaster episodes). We report
seven statistics. The first four are Clark and West (2007) t-statistics relative to a prevailing mean benchmark in the full sample, in-pocket,
out-of-pocket, and the difference between in and out-of-pocket. The final three are economic statistics associated with returns on a portfolio
that uses the time-varying coefficient model forecast in-pocket and the prevailing mean forecast out-of-pocket to allocate between the risk-free
asset and the market (portfolio weights are limited to be between zero and two): the annualized estimated alpha in percentage points, the
HAC t-statistic associated with that alpha, and the annualized Sharpe ratio of the portfolio. Column (2) presents the corresponding statistics
from the data for reference.

Bansal-Yaron Campbell-Cochrane Garleanu-Panageas Wachter Wachter (no disasters)

Stats Sample Avg. Std. err. p-val Avg. Std. err. p-val Avg. Std. err. p-val Avg. Std. err. p-val Avg. Std. err. p-val

Panel A: dp

CWFS 0.32 0.09 1.00 0.40 0.16 0.64 0.41 0.23 0.91 0.46 0.32 0.99 0.50 0.40 1.20 0.47
CWIP 1.25 0.07 0.97 0.11 −0.04 0.89 0.08 0.10 0.98 0.13 0.10 1.02 0.13 0.22 1.10 0.15
CSOOP −1.03 0.04 1.00 0.85 0.19 0.79 0.93 0.19 0.94 0.91 0.26 1.02 0.90 0.33 1.15 0.89
CWDIFF 2.00 0.02 0.97 0.02 −0.14 0.97 0.02 −0.04 0.97 0.02 −0.04 1.02 0.03 −0.02 1.01 0.02

α̂ 2.74 −0.36 1.72 0.03 0.01 0.97 0.00 −0.04 0.87 0.00 0.16 2.04 0.08 0.22 1.44 0.04
tα̂ 1.94 −0.21 0.97 0.01 0.02 0.99 0.02 −0.04 1.00 0.02 0.22 1.08 0.06 0.16 1.02 0.04
SR 0.48 0.44 0.13 0.37 0.47 0.07 0.46 0.33 0.11 0.07 0.46 0.12 0.42 0.58 0.10 0.87

Panel B: risk-free

CWFS 1.34 0.10 1.00 0.12 0.16 0.65 0.04 0.22 0.90 0.11 0.33 0.99 0.14 0.41 1.20 0.18
CWIP 2.29 0.08 0.96 0.01 −0.04 0.89 0.00 0.10 0.98 0.01 0.10 1.03 0.01 0.23 1.10 0.04
CSOOP −1.05 0.05 1.00 0.86 0.20 0.80 0.94 0.18 0.94 0.91 0.26 1.01 0.91 0.32 1.16 0.89
CWDIFF 3.14 0.03 0.96 0.00 −0.14 0.96 0.00 −0.03 1.00 0.00 −0.04 1.03 0.00 −0.01 1.02 0.00

α̂ 5.48 −0.34 1.72 0.00 0.01 0.97 0.00 −0.04 0.87 0.00 0.16 2.03 0.01 0.22 1.43 0.00
tα̂ 4.01 −0.20 0.98 0.00 0.03 0.99 0.00 −0.05 0.99 0.00 0.22 1.08 0.00 0.16 1.01 0.00
SR 0.71 0.44 0.13 0.02 0.47 0.07 0.00 0.33 0.11 0.00 0.46 0.12 0.02 0.58 0.10 0.08

Panel C: rvar

CWFS 0.57 0.10 1.02 0.34 0.07 0.67 0.22 0.19 0.91 0.33 0.22 1.00 0.35 0.32 1.21 0.37
CWIP 1.39 0.08 0.99 0.09 −0.17 0.92 0.04 0.04 0.98 0.08 −0.01 1.02 0.07 0.12 1.09 0.10
CSOOP −0.83 0.04 1.01 0.80 0.17 0.80 0.90 0.17 0.94 0.86 0.21 1.01 0.85 0.28 1.15 0.84
CWDIFF 2.07 0.04 1.05 0.02 −0.25 1.07 0.01 −0.05 1.09 0.03 −0.10 1.07 0.03 −0.06 1.07 0.03

α̂ 3.41 −0.40 1.85 0.02 −0.07 1.02 0.00 −0.05 0.89 0.00 0.04 2.04 0.04 0.11 1.47 0.01
tα̂ 2.43 −0.24 1.01 0.00 −0.07 1.01 0.01 −0.08 0.98 0.01 0.11 1.04 0.01 0.04 1.01 0.01
SR 0.52 0.44 0.13 0.26 0.47 0.07 0.23 0.33 0.11 0.04 0.45 0.12 0.28 0.58 0.09 0.71
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Table X
Sticky Expectations Model Simulation Results

This table reports Monte Carlo results for the one-sided kernel empirical results using simulated data from
the sticky expectations model. We generate 500 bootstrap samples of the same sample size as is available for
each predictor in the data for three separate calibrations. “Baseline” refers to the standard calibration with
sticky expectations, “Baseline (λ = 0)” refers to the “Baseline” calibration but with rational expectations
(i.e., λ = 0), and “RE Recalibrated” refers to a recalibration of the rational expectations model to match the
target moments. “dp” refers to the log dividend-price ratio, “rf” refers to the log risk-free rate, and “rvar”
refers to realized variance on a 60-day trailing window. A pocket is classified as a period in which a fitted
(using a one-sided kernel with a one-year effective sample size) squared forecast error differential is above
zero in the preceding period. For each predictor and each calibration, we report six statistics. The first four
are Clark and West (2007) t-statistics relative to a prevailing mean benchmark in the full sample, in-pocket,
out-of-pocket, and the difference between in and out-of-pocket. The final three are economic statistics
associated with returns on a portfolio that uses the time-varying coefficient model forecast in-pocket and
the prevailing mean forecast out-of-pocket to allocate between the risk-free asset and the market (portfolio
weights are limited to be between zero and two): the annualized estimated alpha in percentage points, the
HAC t-statistic associated with that alpha, and the annualized Sharpe ratio of the portfolio. The column
“Data” reports the corresponding statistics from the data for reference.

Baseline Baseline (λ = 0) RE Recalibrated

Stats Data Avg Std. err p-val Avg Std. err p-val Avg Std. err p-val

dp

CWfs 0.32 1.31 1.13 0.83 0.30 0.97 0.50 0.29 0.91 0.50
CWip 1.25 2.85 1.22 0.90 0.11 1.00 0.14 0.03 0.94 0.11
CWoop −1.03 −0.61 0.97 0.69 0.27 0.99 0.89 0.30 0.93 0.92
CWdiff 2.00 2.90 1.25 0.77 −0.08 1.00 0.01 −0.16 0.92 0.01
α 2.74 1.98 1.59 0.31 0.01 1.82 0.08 0.16 1.36 0.03
tα 1.94 1.39 1.08 0.30 0.01 0.98 0.03 0.11 0.98 0.03
SR 0.48 0.52 0.18 0.58 0.32 0.11 0.07 0.43 0.10 0.28

rf

CWfs 1.34 2.38 1.13 0.82 0.22 0.95 0.12 0.08 0.87 0.07
CWip 2.29 3.15 1.17 0.76 −0.01 0.99 0.01 −0.13 0.95 0.01
CWoop −1.05 0.42 1.01 0.93 0.26 0.93 0.92 0.17 0.89 0.91
CWdiff 3.14 2.94 1.30 0.43 −0.12 1.10 0.00 −0.21 1.06 0.00
α 5.48 3.78 1.68 0.16 −0.18 1.82 0.00 −0.37 1.35 0.00
tα 4.01 2.55 1.07 0.09 −0.13 0.98 0.00 −0.28 0.96 0.00
SR 0.71 0.61 0.17 0.30 0.32 0.11 0.00 0.43 0.10 0.01

rvar

CWfs 0.57 1.84 1.13 0.87 0.19 0.95 0.34 0.05 0.86 0.29
CWip 1.39 2.98 1.25 0.90 0.08 0.99 0.09 −0.11 0.98 0.05
CWoop −0.83 −0.04 0.98 0.80 0.16 0.93 0.87 0.11 0.89 0.85
CWdiff 2.07 2.79 1.28 0.74 −0.01 1.04 0.02 −0.16 1.06 0.01
α 3.41 3.18 1.65 0.44 −0.36 1.90 0.02 −0.54 1.39 0.01
tα 2.43 2.09 1.05 0.39 −0.22 0.99 0.01 −0.39 0.96 0.00
SR 0.52 0.56 0.18 0.60 0.32 0.11 0.05 0.43 0.10 0.18
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