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1 Introduction

In a world with constant volatility, concerns about the possibility of asymmetric or non-quadratic

loss functions in economic forecasting would (almost) vanish: Granger (1969) showed that in such an

environment optimal forecasts will generally equal the conditional mean of the variable of interest,

plus a simple constant (an optimal bias term). However, the pioneering and pervasive work of

Rob Engle provides overwhelming evidence of time-varying volatility in many macroeconomic and

�nancial time series.1 In a world with time-varying volatility, asymmetric loss has important

implications for forecasting, see Christo¤ersen and Diebold (1997), Granger (1999) and Patton and

Timmermann (2007a).

The traditional assumption of a quadratic and symmetric loss function underlying most of the

work on testing forecast optimality is increasingly coming under critical scrutiny, and evaluation

of forecast e¢ ciency under asymmetric loss functions has recently gained considerable attention

in the applied econometrics literature.2 Progress has also been made on establishing theoretical

properties of optimal forecasts for particular families of loss functions (Christo¤ersen and Diebold

(1997), Elliott, et al. (2005, 2008), Patton and Timmermann (2007b)). However, while some results

have been derived for certain classes of loss functions, a more complete set of results has not been

established.

Our paper �lls this lacuna in the literature by deriving properties of an optimal forecast that

hold for general classes of loss functions and general data-generating processes. Working out these

properties under general loss is important since none of the standard properties established in

the linear-quadratic framework survives to a more general setting in the presence of conditional

heteroskedasticity, cf. Patton and Timmermann (2007a). Irrespective of the loss function and data

generating process, a generalized orthogonality principle must, however, hold provided information

is e¢ ciently embedded in the forecast. Implications of this principle will, of course, vary signi�cantly

with assumptions about the loss function and data generating process (DGP). Our results suggest

two approaches: transforming the forecast error for a given loss function, or transforming the

1See, amongst many others, Engle (1982, 2004), Bollerslev (1986), Engle, et al. (1990), the special issue of the

Journal of Econometrics edited by Engle and Rothschild (1992), as well as surveys by Bollerslev, et al. (1994) and

Andersen, et al. (2006).
2See, for example, Christo¤ersen and Diebold (1996), Pesaran and Skouras (2001), Christo¤ersen and Jacobs

(2004) and Granger and Machina (2006).
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density under which the forecast error is being evaluated.

The �rst approach provides tests that generalize the widely-used Mincer-Zarnowitz (1969) re-

gressions, established under mean squared error (MSE) loss, to hold for arbitrary loss functions.

We propose a seemingly unrelated regression (SUR)-based method for testing multiple forecast

horizons simultaneously which may yield power improvements when forecasts for multiple horizons

are available. This is relevant for survey data such as those provided by the Survey of Profes-

sional Forecasters (Philadelphia Federal Reserve) or Consensus Economics as well as for individual

forecasts such as those reported by the IMF in the World Economic Outlook.

Our second approach introduces a new line of analysis based on a transformation from the

usual probability measure to an �MSE-loss probability measure�. Under this new measure, optimal

forecasts, from any loss function, are unbiased and forecast errors are serially uncorrelated, in spite

of the fact that these properties generally fail to hold under the physical (or �objective�) measure.

This transformation has its roots in asset pricing and �risk neutral�probabilities, see Harrison and

Kreps (1979) for example, but to our knowledge has not previously been considered in the context

of forecasting.

Relative to existing work, our contributions are as follows. Using the �rst line of research, we

establish population properties for the so-called generalized forecast error which is similar to the

score function known from estimation problems. These results build on, extend and formalize results

in Granger (1999) as well as in our earlier work (Patton and Timmermann (2007a,b)) and apply

to quite general classes of loss functions and data generating processes. Patton and Timmermann

(2007b) establish testable implications of simple forecast errors (de�ned as the outcome minus the

predicted value) under forecast optimality, while Patton and Timmermann (2007a) consider the

generalized forecast errors but only for more specialized cases such as linex loss with normally

distributed innovations. Unlike Elliott et al. (2005), we do not deal with the issue of identi�cation

and estimation of the parameters of the forecaster�s loss function. The density forecasting results

are, to our knowledge, new in the context of the forecast evaluation literature.

The outline of the paper is as follows. Section 2 establishes properties of optimal forecasts

under general known loss functions. Section 3 contains the change of measure result, and Section

4 presents empirical illustrations of the results of this paper. Section 5 concludes. An appendix

contains technical details and proofs.
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2 Testable Implications under General Loss Functions

Suppose that a decision maker is interested in forecasting some univariate time series, Y �

fYt; t = 1; 2; :::g, h steps ahead given information at time t, Ft. We assume that Xt =
h
Yt; ~Z

0
t

i0
,

where ~Zt is a (m� 1) vector of predictor variables used by the decision maker, and X ��
Xt : 
! Rm+1; m 2 N; t = 1; 2; :::

	
is a stochastic process on a complete probability space (
;F ; P ),

where 
 = R(m+1)1 � �1t=1Rm+1, F = B(m+1)1 � B
�
R(m+1)1

�
, the Borel �-�eld generated by

R(m+1)1, and Ft is the �-�eld fXt�k; k � 0g. Yt is thus adapted to the information set available

at time t:3 We will denote a generic sub-vector of ~Zt as Zt, and denote the conditional distribution

of Yt+h given Ft as Ft+h;t, i.e. Yt+hjFt s Ft+h;t, and the conditional density, if it exists, as ft+h;t.

Point forecasts conditional on Ft are denoted by Ŷt+h;t and belong to Y, a compact subset of R,

while forecast errors are given by et+h;t = Yt+h � Ŷt+h;t:
4 In general the objective of the forecast

is to minimize the expected value of some loss function, L(Yt+h; Ŷt+h;t), which is a mapping from

realizations and forecasts to the real line, L : R�Y! R. That is, in general

Ŷ �t+h;t � argmin
ŷ2Y

Et [L (Yt+h; ŷ)] : (1)

Et[:] is shorthand notation for E[:jFt], the conditional expectation given Ft. We also de�ne the

conditional variance, Vt = E[(Y � E[Y jFt])2jFt] and the unconditional equivalents, E[:] and V (:).

The general decision problem underlying a forecast is to maximize the expected value of some

utility function, U(Yt+h;A(Ŷt+h;t)), that depends on the outcome of Yt+h as well as on the decision

maker�s actions, A, which in general depend on the full distribution forecast of Yt+h; Ft+h;t. Here

we assume that A depends only on the forecast Ŷt+h;t and we write this as A(Ŷt+h;t): Granger and

Machina (2006) show that under certain conditions on the utility function there exists a unique

point forecast which leads to the same decision as if a full distribution forecast had been available.

3The assumption that Yt is adapted to Ft rules out the direct application of the results in this paper to, e.g.,

volatility forecast evaluation. In such a scenario the object of interest, conditional variance, is not adapted to Ft.

Using imperfect proxies for the object of interest in forecast optimality tests can cause di¢ culties, as pointed out by

Hansen and Lunde (2006) and further studied in Patton (2006).
4We focus on point forecasts below, and leave the interesting extension to interval and density forecasting for

future research.
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2.1 Properties under General Loss Functions

Under general loss the �rst order condition for the optimal forecast is5

0 = Et

24@L
�
Yt+h; Ŷ

�
t+h;t

�
@Ŷt+h;t

35 = Z @L
�
y; Ŷ �t+h;t

�
@Ŷt+h;t

dFt+h;t (y) : (2)

This condition can be rewritten using what Granger (1999) refers to as the (optimal) generalized

forecast error,  �t+h;t � @L
�
Yt+h; Ŷ

�
t+h;t

�
=@Ŷt+h;t,6 so that equation (2) simpli�es to

Et[ 
�
t+h;t] =

Z
 �t+h;tdFt+h;t (y) = 0: (3)

Under a broad set of conditions  �t+h;t is therefore a martingale di¤erence sequence with respect to

the information set used to compute the forecast, Ft. The generalized forecast error is closely related

to the �generalized residual�often used in the analysis of discrete, censored or grouped variables,

see Gourieroux, et al. (1987) and Chesher and Irish (1987) for example. Both the generalized

forecast error and the generalized residual are based on �rst-order (or �score�) conditions.

We next turn our attention to proving properties of the generalized forecast error analogous to

those for the standard case. We will sometimes, though not generally, make use of the following

assumption on the DGP for Xt � [Yt; ~Z 0t]0:

Assumption D1: fXt g is a strictly stationary stochastic process.

Note that we do not assume that Xt is continuously distributed and so the results below

may apply to forecasts of discrete random variables, such as direction-of-change forecasts or default

forecasts. The following properties of the loss function are assumed at various points of the analysis,

but not all will be required everywhere.

Assumption L1: The loss function is (at least) once di¤erentiable with respect to its second

argument, except on a set of Ft+h;t-measure zero, for all t and h.

Assumption L2: Et [L (Yt+h; ŷ)] <1 for some ŷ 2 Y and all t; almost surely.

Assumption L2�: An interior optimum of the problem

min
ŷ2Y

Z
L (y; ŷ) dFt+h;t (y)

5This result relies on the ability to interchange the expectation and di¤erentiation operators. Assumptions L1-L3

given below are su¢ cient conditions for this to hold.
6Granger (1999) considers loss functions that have the forecast error as an argument, and so de�nes the generalised

forecast error as  �t+h;t � @L (et+h;t) =@et+h;t. In both de�nitions,  �t+h;t can be viewed as the marginal loss associated

with a particular prediction, Ŷt+h;t.
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exists for all t and h.

Assumption L3: jEt [@L (Yt+h; ŷ) =@ŷ]j <1 for some ŷ 2 Y and all t; almost surely.

Assumption L2 simply ensures that the conditional expected loss from a forecast is �nite,

for some �nite forecast. Assumptions L1 and L2�allow us to use the �rst-order condition of the

minimization problem to study the optimal forecast. One set of su¢ cient conditions for Assumption

L2�to hold are Assumption L2 and:

Assumption L4: The loss function is a non-monotonic, convex function solely of the forecast

error.

We do not require that L is everywhere di¤erentiable with respect to its second argument, nor

do we need to assume a unique optimum (though this is obtained if we impose Assumption L4,

with the convexity of the loss function being strict). Assumption L3 is required to interchange

expectation and di¤erentiation: @Et [L (Yt+h; ŷ)] =@ŷ = Et [@L (Yt+h; ŷ) =@ŷ]. The bounds on the

integral on the left-hand side of this expression are una¤ected by the choice of ŷ, and so two of the

terms in Leibnitz�s rule drop out, meaning we need only assume that the term on the right-hand

side is �nite.

The following proposition establishes properties of the generalized forecast error,  �t+h;t:

Proposition 1 1. Let assumptions L1, L2� and L3 hold. Then the generalized forecast error,

 �t+h;t, has conditional (and unconditional) mean zero.

2. Let assumptions L1, L2�and L3 hold. Then the generalized forecast error from an optimal

h-step forecast made at time t exhibits zero correlation with any function of any element of the time

t information set, Ft, for which second moments exist. In particular, the generalized forecast error

will exhibit zero serial correlation for lags greater than (h� 1).7

3. Let assumptions D1 and L2 hold. Then the unconditional expected loss of an optimal forecast

error is a non-decreasing function of the forecast horizon.

All proofs are given in the appendix. The above result is useful when the loss function is known,

since  �t+h;t can then be calculated directly and employed in generalized e¢ ciency tests that project

 �t+h;t on period-t instruments. For example, the martingale di¤erence property of  
�
t+h;t can be

7Optimal h-step forecast errors under MSE loss are MA processes of order no greater than h� 1. In a non-linear

framework an MA process need not completely describe the dependence properties of the generalized forecast error.

However, the autocorrelation function of the generalized forecast error will match some MA (h� 1) process.
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tested by testing � = � = 0 for all Zt 2 Ft in the following regression:

 t+h;t = �+ �0Zt + ut+h: (4)

The above simple test will not generally be consistent against all departures from forecast opti-

mality. A consistent test of forecast optimality based on the generalized forecast errors could be

constructed using the methods of Bierens (1990), de Jong (1996) and Bierens and Ploberger (1997).

Tests based on generalized forecast errors obtained from a model with estimated parameters can

also be conducted, using the methods in West (1996, 2006).

If the same forecaster reported forecasts for multiple horizons we can conduct a joint test of

forecast optimality across all horizons. This can be done without requiring that the forecaster�s

loss function is the same across all horizons, i.e., we allow the one-step ahead forecasting problem

to involve a di¤erent loss function to the two-step ahead forecasting problem, even for the same

forecaster. A joint test of optimality across all horizons may be conducted as:26666664
 t+1;t

 t+2;t
...

 t+H;t

37777775 = A+BZt + ut;H (5)

and then testing H0 : A = B = 0 vs. Ha : A 6= 0 [ B 6= 0: More concretely, one possibility is to

estimate a seemingly unrelated regressions (SUR) system for the generalized forecast errors:26666664
 t+1;t

 t+2;t
...

 t+H;t

37777775 = A+B1

26666664
 t;t�1

 t;t�2
...

 t;t�H

37777775+ :::+BJ
26666664

 t�J+1;t�J

 t�J+1;t�J�1
...

 t�J+1;t�J�H+1

37777775+ ut;H ; (6)

and then test H0 : A = B = 0 vs. Ha : A 6= 0 [B 6= 0:

2.2 Properties under MSE Loss

In the special case of a squared error loss function:

L(Yt+h; Ŷt+h;t) = �
�
Yt+h � Ŷt+h;t

�2
; � > 0; (7)

optimal forecasts can be shown to have the standard properties, using the results from Proposition

1. For reference we list these below:
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Corollary 1 Let the loss function be

L
�
Yt+h; Ŷt+h;t

�
= �h

�
Yt+h � Ŷt+h;t

�2
; �h > 0 for all h

and assume that Et
�
Y 2t+h

�
<1 for all t and h almost surely. Then

1. The optimal forecast of Yt+h is Et [Yt+h] for all forecast horizons h;

2. The forecast error associated with the optimal forecast has conditional (and unconditional)

mean zero;

3. The h-step forecast error associated with the optimal forecast exhibits zero serial covariance

beyond lag (h� 1);

Moreover, if we further assume that Y is covariance stationary, we obtain:

4. The unconditional variance of the forecast error associated with the optimal forecast is a

non-decreasing function of the forecast horizon.

This corollary shows that the standard properties of optimal forecasts are generated by the

assumption of mean squared error loss alone; in particular, assumptions on the DGP (beyond

covariance stationarity and �nite �rst and second moments) are not required. Properties such as

these have been extensively tested in empirical studies of optimality of predictions or rationality of

forecasts, e.g. by testing that the intercept is zero (� = 0) and the slope is unity (� = 1) in the

Mincer-Zarnowitz (1969) regression

Yt+h = �+ �Ŷt+h;t + "t+h (8)

or equivalently in a regression of forecast errors on current instruments,

et+h;t = �+ �0Zt + ut+h: (9)

Elliott, Komunjer and Timmermann (2008) show that the estimates of � will be biased when the

loss function used to generate the forecasts is of the asymmetric squared loss variety. Moreover, the

bias in that case depends on the correlation between the absolute forecast error and the instruments

used in the test. It is possible to show that under general (non-MSE) loss the properties of the

optimal forecast error listed in Corollary 1 can all be violated; see Patton and Timmermann (2007a)

for an example using a regime switching model and the �linex�loss function of Varian (1974).
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3 Properties under a Change of Measure

In the previous section we showed that by changing our object of analysis from the forecast error

to the �generalized forecast error� we can obtain the usual properties of unbiasedness and zero

serial correlation. As an alternative approach, we next consider instead changing the probability

measure used to compute the properties of the forecast error. This analysis is akin to the use of

risk-neutral densities in asset pricing, cf. Harrison and Kreps (1979). In asset pricing one may scale

the objective (or physical) probabilities by the stochastic discount factor (or the discounted ratio of

marginal utilities) to obtain a risk-neutral probability measure and then apply risk-neutral pricing

methods. Here we will scale the objective probability measure by the ratio of the marginal loss,

@L=@ŷ, to the forecast error, and then show that under the new probability measure the standard

properties hold; i.e., under the new measure,
�
Yt+h � Ŷt+h;t;Ft

�
is a martingale di¤erence sequence

when Ŷt+h;t = Ŷ �t+h;t, where Ŷ
�
t+h;t is de�ned in equation (1). We call the new measure the �MSE-

loss probability measure�. The resulting method thus suggests an alternative means of evaluating

forecasts made using general loss functions.

Note that the conditional distribution of the forecast error, Fet+h;t , given Ft and any forecast

ŷ 2 Y, satis�es

Fet+h;t (e; ŷ) = Ft+h;t (ŷ + e) ; (10)

for all
�
e; Ŷt+h;t

�
2 R� Y where Ft+h;t is the conditional distribution of Yt+h given Ft.

To facilitate the change of measure, we make use of the following assumption:

Assumption L5: @L (y; ŷ) =@ŷ � (�) 0 for y � (�) ŷ:

Assumption L5 simply imposes that the loss function is non-decreasing as the forecast moves

further away (in either direction) from the true value, which is a reasonable assumption. It is

common to impose that L (ŷ; ŷ) = 0, i.e., the loss from a perfect forecast is zero, but this is

obviously just a normalization and is not required here.

The sign of (y � ŷ)�1 @L (y; ŷ) =@ŷ is negative under assumption L5, and in de�ning the MSE-

loss probability measure we need to further assume that it is bounded and non-zero:

Assumption L6: 0 < �Et
h
(Yt+h � ŷ)�1 @L (Yt+h; ŷ) =@ŷ

i
<1 for all ŷ 2 Y and all t; almost

surely.
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De�nition 1 Let assumptions L5 and L6 hold and let

� (e; ŷ) � �1
e
� @L (y; ŷ)

@ŷ

����
y=ŷ+e

(11)

Then the �MSE-loss probability measure�, d ~Fet+h;t (�jŷ), is de�ned by

d ~Fet+h;t (e; ŷ) =
� (e; ŷ)

Et [� (Yt+h � ŷ; ŷ)]
� dFet+h;t (e; ŷ) (12)

By construction the MSE-loss probability measure ~F (�jŷ) is absolutely continuous with respect

to the usual probability measure, F (�jŷ), (that is, ~F (�jŷ) << F (�jŷ)). The function

~�t+h;t (e; ŷ) �
� (e; ŷ)

Et [� (Yt+h � ŷ; ŷ)]
(13)

is the Radon-Nikodým derivative d ~Fet+h;t (�jŷ) =dFet+h;t (�jŷ). If we let u = e�1, then Assumption

L6 requires that @L (y; ŷ) =@ŷjy=ŷ+1=u = O
�
u�1

�
. Note that � (e; ŷ) is well-de�ned at e = 0 for

some common loss functions. For example,

MSE : lim
e!0

� (e; ŷ) = 2

Linex : lim
e!0

� (e; ŷ) = a2

PropMSE : lim
e!0

� (e; ŷ) = 2=ŷ2

where the Linex and PropMSE loss functions are de�ned as L (y; ŷ) = exp faeg � ae � 1 and

L (y; ŷ) = (y=ŷ � 1)2, respectively. For mean absolute error loss, L (y; ŷ) = jej, the limits from both

directions diverge, meaning that there is no MSE-loss density under MAE in general. However,

if the variable of interest is conditionally symmetrically distributed at all points in time, then the

optimal forecast under MAE coincides with the optimal forecast under MSE, as the conditional

mean is equal to the conditional median, and so the appropriate Radon-Nikodým derivative is equal

to one.

We now show that under the MSE-loss probability measure the optimal h-step ahead forecast

errors exhibit the properties that we would expect from optimal forecasts under MSE loss:

Proposition 2 1. Let assumptions L1, L5 and L6 hold. Then the �MSE-loss probability measure�,

~Fet+h;t (�jŷ), de�ned in equation (12) is a proper probability distribution function for all ŷ 2 Y:

2. If we further let assumption L2�hold, then the optimal forecast error, e�t+h;t = Yt+h � Ŷ �t+h;t
has conditional mean zero under the MSE-loss probability measure ~Fet+h;t

�
�jŶ �t+h;t

�
:
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3. The optimal forecast error is serially uncorrelated under the MSE-loss probability measure,

~Fet+h;t

�
�jŶ �t+h;t

�
, for all lags greater than h� 1.

4. ~V
h
e�t+h;t

i
, the variance of e�t+h;t under ~Fet+h;t evaluated at Ŷ

�
t+h;t, is a non-decreasing function

of the forecast horizon.

Notice that e�t+h;t is a martingale di¤erence sequence, with respect to Ft, under ~Ft+h;t. Fur-

thermore, although the MSE loss probability measure operates on forecast errors, the result holds

for general loss functions having Yt+h; Ŷ �t+h;t as separate arguments.

It is worth emphasizing that the MSE-loss probability measure is a conditional distribution, and

so obtaining an estimate of it from data is not as simple as it would be if it was an unconditional

distribution. If we assume that the density fet+h;t exists then it is possible, under some conditions,

to obtain a consistent estimate of fet+h;t via semi-nonparametric density estimation, see Gallant

and Nychka (1987). If L is known then � is, of course, also known.8 With consistent estimates

of fet+h;t and � it is simple to construct an estimator of ~fet+h;t. In recent work, Chernov and

Mueller (2007) specify a �exible parametric model for ~ft and �t in order to estimate the underlying

objective conditional density, f , of forecasters from a variety of macroeconomic surveys. From this

density estimate, they are then able to both �bias-correct�the individual forecasts, and compute

combination forecasts.

4 Numerical Example and an Application to U.S. In�ation

To illustrate how the MSE-loss error density di¤ers from the objective error density, consider the

following simple example. Consider the following AR(1)-GARCH(1,1) data generating process:

Yt = �0 + �1Yt�1 + "t

"t = h
1=2
t �t (14)

ht = ! + �ht�1 + �"
2
t�1

�tjFt�1 s N (0; 1) :

8 If L is unknown, a nonparametric estimate of � may be obtained via sieve estimation methods, for example, see

Andrews (1991) or Chen and Shen (1998).
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Next, consider the simple and analytically tractable �linex�loss function of Varian (1974), scaled

by 2=a2:

L (y; ŷ; a) =
2

a2
(exp fa (y � ŷ)g � a (y � ŷ)� 1) : (15)

The scaling term 2=a2 does not a¤ect the optimal forecast, but ensures that this function limits

to the MSE loss function as a ! 0. When a > 0; under-predictions (y > ŷ, or e > 0) carry an

approximately exponential penalty, while over-predictions ( y < ŷ; or e < 0) carry an approximately

linear penalty. When a < 0 the penalty for over-predictions is approximately exponential while the

penalty for under-predictions is approximately linear. In Figure 1 we present the linex loss function

for a = 3:

[ INSERT FIGURE 1 ABOUT HERE ]

Under linex loss, the optimal one-step-ahead forecast and the associated forecast error are (see

Varian (1974), Zellner (1986) and Christo¤ersen and Diebold (1997))

Ŷ �t = Et�1 [Yt] +
a

2
Vt�1 [Yt]

e�t = �a
2
Vt�1 [Yt] + "t (16)

= �a
2
ht + h

1=2
t �t

so e�t jFt�1 s N
�
�a
2
ht; ht

�
and so we see that the process for the conditional mean (an AR(1) process above) does not a¤ect the

properties of the optimal forecast error. Notice that the forecast error follows an ARCH-in-mean

process of the type analyzed by Engle, Lilien and Robbins (1987).

The generalized forecast error for this example is as follows, and has a log-normal distribution

when suitably centered and standardized:

 t �
@L
�
Yt; Ŷt

�
@ŷ

=
2

a

�
1� exp

n
a
�
Yt � Ŷt

�o�
(17)

so
�
1� a

2
 t

�
jFt�1 s logN

�
a
�
�t � Ŷt

�
; a2ht

�
and

�
1� a

2
 �t

�
jFt�1 s logN

�
�a

2

2
ht; a

2ht

�
:

For the numerical example, we chose values of the predicted variance, ht; to correspond to the

mean and the 0.01, 0.25, 0.75, 0.9 and 0.99 percentiles of the unconditional distribution of ht when
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the GARCH parameters are set to (!; �; �) = (0:02; 0:05; 0:93) ; which are empirically reasonable.

A plot of the objective and the MSE-loss densities is given in Figure 2.

[ INSERT FIGURE 2 ABOUT HERE ]

In all cases we see that the MSE-loss density is shifted to the right of the objective density,

in order to remove the (optimal) negative bias that is present under the objective probability

distribution due to the high cost associated with positive forecast errors. The way this probability

mass is shifted depends on the level of predicted volatility, and Figure 2 reveals a variety of shapes

for the MSE-loss density. When volatility is low, (ht = 0:54 or 0:73) the MSE-loss density remains

approximately bell-shaped, and is a simple shift of location (with a minor increase in spread) so that

the mean of this density is zero. When volatility is average to moderately-high, (ht = 1:00 or 1:11)

the MSE-loss density becomes a more rounded bell shape and remains unimodal. When volatility

is high, the MSE-loss density becomes bimodal: it is approximately ��at-topped�for the ht = 1:43

case (though actually bimodal) and clearly bimodal for the ht = 2:45 case. The bimodality arises

from the interaction of the three components that a¤ect the shape of the MSE-loss density: the

derivative of the loss function, the shape of the objective density, and the inverse of the forecast

error.

We also see that the MSE-loss density is symmetric in this example. This is not a general

result: a symmetric objective density (such as in this example) combined with an asymmetric loss

function will generally lead to an asymmetric MSE-loss density. It is the particular combination

of the normal objective density with the linex loss function that leads to the symmetric MSE-loss

function observed here. A symmetric but non-normal conditional density for �t; such as a mixture

of normals, can be shown to lead to an asymmetric MSE-loss density.

4.1 Application to U.S. In�ation

In this section we apply the methods of this paper to in�ation forecasting, which was the appli-

cation in Rob Engle�s original ARCH paper, Engle (1982). We use monthly CPI in�ation for the

U.S., � log(CPIt) over the period January 1982 to December 2006. This happens to be the period

starting with the publication of the original ARCH paper, and also coincides with the period af-

ter the change in the Federal Reserve�s monetary policy during the �monetarist experiment�from

1979-82. This is widely believed to have led to a break in the in�ation dynamics and volatility of

12



many macroeconomic time-series. We use a simple AR(4) model for the conditional mean, and a

GARCH(1,1) model for the conditional variance.9 Assuming normality for the standardized resid-

uals from this model, we can then obtain both the MSE-optimal forecast (simply the conditional

mean) and the Linex-optimal forecast, where we set the linex shape parameter to equal three, as

in the previous section.10 The data and forecasts are presented in Figure 3. In the upper panel we

plot both the realized in�ation (in percent per month) and the estimated conditional mean, which

is labelled in the �MSE forecast�in the lower panel. The lower panel reveals that the linex forecast

is always greater than the MSE forecast, by an amount that grows in periods with high variance

(as shown in the middle panel), with the average di¤erence being 0.087%, or 1.04% per year. With

average realized in�ation at 3.06% per year in this sample period, the linex forecast (optimal) bias

is substantial.

[ INSERT FIGURE 3 ABOUT HERE ]

To emphasize the importance of the loss function in considering forecast optimality, we illustrate

two simple tests of optimality for each of the two forecasts.11 The �rst looks for bias in the forecast,

while the second looks for bias and �rst-order autocorrelation in the forecast errors. The results for

the MSE and Linex forecasts are presented below, with Newey-West (1987) t-statistics presented

in parentheses below the parameter estimates. The �p-value�below reports the p-value associated

with the test of the null of forecast optimality, either zero bias or zero bias and zero autocorrelation.

eMSE
t = � 0:002

(�0:123)
+ ut; p-value = 0:902

eMSE
t = � 0:002

(�0:124)
+ 0:003
(0:050)

eMSE
t�1 + ut; p-value = 0:992 (18)

eLinext = � 0:087
(�6:175)

+ ut; p-value = 0:000

eLinext = � 0:085
(�6:482)

+ 0:021
(0:327)

eLinext�1 + ut; p-value = 0:000

9The Engle (1982) LM test for ARCH in the residuals from the AR(4) model rejected the null of homoskedasticity,

at the 0.05 level, for all lags up to 12.
10The Jarque-Bera (1987) test for the normality of the standardized residuals actually rejects the assumption of

normality here. The estimated skewness of these residuals is near zero, but the kurtosis is 4.38, which is far enough

from 3 for this test to reject normality. We nevertheless proceed under the assumption of normality.
11Formal testing of forecast optimality would use a pseudo-out-of-sample period for analysis, separate from the

period used for estimation.
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As expected, the MSE-optimal passes these tests. The Linex-optimal forecast fails both of these

tests, primarily due to the positive bias in the linex forecasts. This is, of course, also expected,

as the linex forecasts are constructed for a situation where the costs of under-predicting are much

greater than those of over-predicting, see Figure 1. Thus the linex forecast is not constructed to

be optimal under MSE loss, which is what the above two tests examine.

Next we consider testing for optimality under linex loss, using the generalized forecast error for

that loss function and the methods discussed in Section 2. The formula for the generalized forecast

for linex loss is given in equation (17) ; and from that we construct  MSE
t and  Linext using the MSE

forecast and the Linex forecast. We ran the same tests as above, but now using the generalized

forecast error rather than the usual forecast error, and obtained the following results:

 MSE
t = � 0:210

(�3:985)
+ ut; p-value = 0:000

 MSE
t = � 0:214

(�3:737)
� 0:019
(�0:342)

 MSE
t�1 + ut; p-value = 0:000 (19)

 Linext = � 0:010
(�0:256)

+ ut; p-value = 0:798

 Linext = � 0:010
(�0:263)

� 0:031
(�0:550)

 Linext�1 + ut; p-value = 0:849

Using the test of optimality based on linex loss (with parameter equal to three), we �nd that the

MSE forecasts are strongly rejected, while the linex forecasts are not. The contrast between this

conclusion and the conclusion from the tests based on the usual forecast errors provides a clear

illustration of the importance of matching the loss function used in forecast evaluation with that

used in forecast construction. Failure to accurately account for the forecaster�s objectives through

the loss function can clearly lead to false rejections of forecast optimality.

Finally, we present the estimated objective and MSE-loss densities associated with these fore-

casts. We nonparametrically estimated the objective density of the standardized residuals, �̂t �

(yt � �̂t) =
p
ĥt; where �̂t is the conditional mean and

p
ĥt is the conditional standard deviation,

using a Gaussian kernel with bandwidth set to 0:9�
q
V̂ [�̂t]�T�1=5, where T = 300 is the sample

size: From this, we can then compute an estimate of the conditional (objective) density of the

forecast errors:

f̂
�
ejĥt

�
= f̂�

 
e+ ĥta=2p

ĥt

!
1p
ĥt

(20)
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The MSE-loss density is estimated as:

~f
�
ejĥt

�
=

2
ae (1� exp faeg)

Ê
h
2
aet
(1� exp faetg) jht

i f̂ �ejĥt� (21)

where Ê

�
2 (1� exp faetg)

aet
jht
�
� 1

T

TX
i=1

2
�
1� exp

�
a
�p
ht�i � a

2ht
�	�

a
�p
ht�i � a

2ht
� (22)

and thus uses both the nonparametric estimate of the objective density, and a data-based estimate

of the normalization constant.

The estimated objective and MSE-loss densities are presented in Figure 4, using the same

method of choosing values for the predicted variance: we use values that correspond to the mean

and the 0.01, 0.25, 0.75, 0.9 and 0.99 percentiles of the sample distribution of ĥt from our model.

As in the simulation example in the previous section, we see that the objective density is centered

to the left of zero, and that the centering point moves further from zero as the variance increases. A

small �bump�in the right tail of the objective density estimate is ampli�ed in the MSE-loss estimate,

particularly as the volatility increases, and the MSE-loss density is approximately centered on zero.

The �bump�in the right tail of both of these densities disappears if we impose that the standardized

residuals are truly normally distributed; in that case the objective density is, of course, Gaussian,

and the resulting MSE-loss density is unimodal across these values of ĥt.

[ INSERT FIGURE 4 ABOUT HERE ]

5 Conclusion

This paper derives properties of an optimal forecast that hold for general classes of loss functions

in the presence of conditional heteroskedasticity. Studying these properties is important, given

the overwhelming evidence for conditional heteroskedasticity that has accumulated since the pub-

lication of Engle�s seminal (1982) ARCH paper. We show that irrespective of the loss function

and data generating process, a generalized orthogonality principle must hold provided information

is e¢ ciently embedded in the forecast. We suggest that this orthogonality principle leads to two

primary implications: (1) a transformation of the forecast error, the �generalized forecast error�,

must be uncorrelated with elements of the information set available to the forecaster, and (2) a

transformation of the density of the forecast errors, labelled the �MSE-loss� density, must exist
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which gives forecasts that are optimal under non-MSE loss the same properties as those that are

optimal under MSE loss.

The �rst approach to testing forecast optimality has its roots in the widely-used Mincer-

Zarnowitz (1969) regression, while the second approach is based on a transformation from the

usual probability measure to an �MSE-loss probability measure�. This transformation has its roots

in asset pricing and �risk neutral� probabilities but to our knowledge has not previously been

considered in the context of forecasting. Implementing the �rst approach empirically is relatively

straightforward, although it may require estimation of the parameters of the loss function if these

are unknown (Elliott et al. (2005)); implementing the second approach will require thinking about

forecast (sub-)optimality in a di¤erent way, which may yield new insights into forecaster behavior.

Appendix

Proof of Proposition 1. 1. Assumptions L1 and L2�allow us to analyze the �rst-order condition

for the optimal forecast, and assumption L3 permits the exchange of di¤erentiation and expectation in the

�rst-order condition, giving us, by the optimality of Ŷ �t+h;t,

Et
�
 �t+h;t

�
= Et

24@L
�
Yt+h; Ŷ

�
t+h;t

�
@Ŷt+h;t

35 = 0:
E
�
 �t+h;t

�
= 0 follows from the law of iterated expectations.

To prove point 2, since (Yt; Yt�1; :::) 2 Ft by assumption we know that  �t+h�j;t�j =

@L
�
Yt+h�j ; Ŷ

�
t+h�j;t�j

�
=@ŷ is an element of Ft for all j � h. Assumptions L1 and L2� again allow

us to analyze the �rst-order condition for the optimal forecast, and assumption L3 permits the exchange of

di¤erentiation and expectation in the �rst-order condition. We thus have

E
�
 �t+h;tjFt

�
= E

24 @L
�
Yt+h; Ŷ

�
t+h;t

�
@Ŷ

������Ft
35 = 0;

which implies E
�
 �t+h;t � � (Zt)

�
= 0 for all Zt 2 Ft and all functions � for which this moment exists. Thus

 �t+h;t is uncorrelated with any function of any element ofFt. This implies thatE
�
 �t+h;t �  �t+h�j;t�j

�
= 0,

for all j � h; and so  �t+h;t is uncorrelated with  
�
t+h�j;t�j .

To prove point 3, note that assumption (D1) of strict stationarity for fXtg yields the strict stationarity

of
�
Yt+h; Ŷ

�
t+h;t

�
since Ŷ �t+h;t is a time-invariant function of

~Zt. Thus for all h and j we have

E
h
Et

h
L
�
Yt+h; Ŷ

�
t+h;t

�ii
= E

h
Et�j

h
L
�
Yt+h�j ; Ŷ

�
t+h�j;t�j

�ii
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and so the unconditional expected loss only depends on the forecast horizon, h, and not on the period when

the forecast was made, t. By the optimality of the forecast Ŷ �t+h;t we also have, 8j � 0,

Et

h
L
�
Yt+h; Ŷ

�
t+h;t�j

�i
� Et

h
L
�
Yt+h; Ŷ

�
t+h;t

�i
E
h
L
�
Yt+h; Ŷ

�
t+h;t�j

�i
� E

h
L
�
Yt+h; Ŷ

�
t+h;t

�i
E
h
L
�
Yt+h+j ; Ŷ

�
t+h+j;t

�i
� E

h
L
�
Yt+h; Ŷ

�
t+h;t

�i
where the second line follows using the law of iterated expectations and the third line follows from strict

stationarity. Hence the unconditional expected loss is a non-decreasing function of the forecast horizon.

Proof of Corollary 1. This proof follows directly from the proof of Proposition 1 above, when

one observes the relation between the forecast error and the generalized forecast error,  �t+h;t, for the mean

squared loss case: e�t+h;t = � 1
2�h

 �t+h;t, and noting that the MSE loss function satis�es assumptions L1,

L3 and L4 which implies a unique interior optimum.

To prove Proposition 2 we prove the following lemma, for the �~L-loss probability measure�, which nests

the MSE-loss probability measure as a special case. We will require the following generalization of assumption

L6:

Assumption L6�: Given two loss functions, L and ~L, 0 < Et

h
@L(Yt+h;ŷ)=@ŷ

@ ~L(Yt+h;ŷ)=@ŷ

i
< 1 for all ŷ 2 Y

almost surely.

Lemma 1 Let L and ~L be two loss functions, and let Ŷ �t+h;t and ~Y
�
t+h;t be the optimal forecasts of

Yt+h at time t under L and ~L respectively.

1. Let assumptions L1, L5 and L6�hold for L and ~L. Then the ��L-loss probability measure�,

~Fet+h;t, de�ned below is a proper probability distribution function for all ŷ 2 Y.

d ~Fet+h;t (e; ŷ) =
� (e; ŷ)

Et [� (Yt+h � ŷ; ŷ)]
� dFet+h;t (e; ŷ)

where � (e; ŷ) �
@L (y; ŷ) =@ŷjy=ŷ+e
@ ~L (y; ŷ) =@ŷ

���
y=ŷ+e

�  (ŷ + e; ŷ)
~ (ŷ + e; ŷ)

2. If we further let assumption L2�hold, then the generalized forecast error under ~L evaluated

at Ŷ �t+h;t, ~ 
�
Yt+h; Ŷ

�
t+h;t

�
= @ ~L

�
Yt+h; Ŷ

�
t+h;t

�
=@ŷ, has conditional mean zero under the �L-loss

probability measure.
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3. The generalized forecast error under ~L; evaluated at Ŷ �t+h;t; is serially uncorrelated under the

�L-loss probability measure for all lags greater than h� 1.

4. ~E
h
~L
�
Yt+h; Ŷ

�
t+h;t

�i
, the expectation of ~L

�
Yt+h; Ŷ

�
t+h;t

�
under ~Fe (�; ŷ), is a non-decreasing

function of the forecast horizon when evaluated at ŷ = Ŷ �t+h;t.

Proof of Lemma 1. We �rst need to show that d ~Fet+h � 0 for all possible values of e, and thatR
d ~Fet+h;t (u; ŷ) du = 1. By assumption L5 we have � (e; ŷ) > 0 for all e where � (e; ŷ) exists. Thus

��dFet+h;t is non-negative, andEt [�] is positive (and �nite by assumption L6�), so d ~Fet+h;t
�
e; Ŷt+h;t

�
� 0;

if dFet+h;t

�
e; Ŷt+h;t

�
� 0: By the construction of d ~Fet+h;t it is clear that it integrates to 1.

To prove part 2, note that, from the optimality of Ŷ �t+h;t under L;

~Et

h
~ 
�
Yt+h; Ŷ

�
t+h;t

�i
/

Z
~ 
�
Ŷ �t+h;t + e; Ŷ

�
t+h;t

�
�
�
e; Ŷ �t+h;t

�
� dFet+h;t

�
e; Ŷ �t+h;t

�
=

Z
 
�
Ŷ �t+h;t + e; Ŷ

�
t+h;t

�
� dFet+h;t

�
e; Ŷ �t+h;t

�
= 0:

The unconditional mean of ~ 
�
Yt+h; Ŷ

�
t+h;t

�
is also zero by the law of iterated expectations.

Part 3: Since ~E
h
~ 
�
Yt+h; Ŷ

�
t+h;t

�i
= 0, from part 2, we need only show that

~E
h
~ 
�
Yt+h; Ŷ

�
t+h;t

�
� ~ 
�
Yt+h+j ; Ŷ

�
t+h+j;t+j

�i
= 0 for j � h. Again, by part 2,

~Et

h
~ 
�
Yt+h; Ŷ

�
t+h;t

�
� ~ 
�
Yt+h+j ; Ŷ

�
t+h+j;t+j

�i
= ~Et

h
~ 
�
Yt+h; Ŷ

�
t+h;t

�
� ~Et+j

h
~ 
�
Yt+h+j ; Ŷ

�
t+h+j;t+j

�ii
for j � h

= 0:

~E
h
~ 
�
Yt+h; Ŷ

�
t+h;t

�
� ~ 
�
Yt+h+j ; Ŷ

�
t+h+j;t+j

�i
= 0 follows by the law of iterated expectations.

For part 4 note that ~Et
h
~ 
�
Yt+h; Ŷ

�
t+h;t

�i
= 0 is the �rst-order condition of min

ŷ

~Et

h
~L (Yt+h; ŷ)

i
, so

~Et

h
~L
�
Yt+h; Ŷ

�
t+h;t

�i
� ~Et

h
~L
�
Yt+h; Ŷ

�
t+h;t�j

�i
8 j � 0, and so ~E

h
~L
�
Yt+h; Ŷ

�
t+h;t

�i
�

~E
h
~L
�
Yt+h; Ŷ

�
t+h;t�j

�i
= ~E

h
~L
�
Yt+h+j ; Ŷ

�
t+h+j;t

�i
by the law of iterated expectations and the assump-

tion of strict stationarity. Note that the assumption of strict stationarity for fXtg su¢ ces here since Ŷ �t+h;t
and the change of measure, ~�t+h;t

�
e; Ŷ �t+h;t

�
, are time-invariant functions of ~Zt.

Proof of Proposition 2. Follows from the proof of Lemma 1 setting ~L (y; ŷ) = (y � ŷ)2 and

noting that assumption L6 satis�es L6�for this loss function.
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Figure 1: MSE and Linex loss functions for a range of forecast errors.
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Figure 2: Objective and �MSE-loss� error densities for a GARCH process under Linex loss, for
various values of the predicted conditional variance.
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Figure 3: Monthly CPI in�ation in the US over the period January 1982 to December 2006, along
with the estimated conditional mean, conditional standard deviation, and the linex-optimal forecast.
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Figure 4: Estimated objective and �MSE-loss� error densities for US in�ation, for various values
of the predicted conditional variance.
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