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Abstract

Combination of forecasts from survey data is complicated by the frequent entry

and exit of individual forecasters which renders conventional least squares regression

approaches infeasible. We explore the consequences of this issue for various combination

methods in common use and propose a new method that projects actual outcomes on

the equal-weighted forecast to adjust for biases and noise in the underlying forecasts.

Through simulations and an application to inflation forecasts we show that the entry

and exit of individual forecasters can have a large effect on the real time performance

of conventional combination methods. The proposed projection works well in practice.
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1 Introduction

Evidence of in-sample predictability−established on the same sample used to estimate and

select the forecasting model−is widely regarded as being insufficient to demonstrate the

value of the resulting forecasts to a decision maker. By ignoring problems associated with

parameter estimation errors, model uncertainty and data availability, in-sample forecasts

can grossly overstate evidence of genuine predictability. Real-time forecasting experiments

are designed to deal with such problems. Establishing that a variable could have been

predicted in real time requires using the original data vintages (Amato and Swanson 2001;

Croushore and Stark 2001), but also accounting for recursive parameter estimation and even

the uncertainty surrounding model selection in real time (Pesaran and Timmermann 2005).

Many of these issues are not a concern when it comes to evaluating forecasts from survey

data. By construction, such forecasts were computed in real time. However, when interest

lies in real-time combination of survey forecasts, new problems arise. An important issue

that has largely been ignored in the literature on forecast combinations is that most expert

surveys take the form of unbalanced panels as individual forecasters frequently enter and

exit from the surveys. This issue is pervasive and affects the Livingston survey, the Survey

of Professional Forecasters (both maintained by the Federal Reserve Bank of Philadelphia),

the Michigan surveys (Survey Research Center, University of Michigan), the survey of the

Confederation of British Industry (CBI), Consensus Forecasts (Consensus Economics) and

surveys of financial analysts’ forecasts of corporate earnings (Institutional Brokers’ Estimate

System, IBES).

As an illustration of this problem, Figure 1 shows how participation in the Survey of

Professional Forecasters, available from the Federal Reserve Bank of Philadelphia, evolved

over the 5-year period from 1995 to 1999.1 Each quarter, participants are asked to predict

the implicit price deflator for Gross Domestic Product. Forecasters constantly enter, exit

and re-enter following a period of absence, creating problems for standard combination ap-

1For more on the Survey of Professional Forecasters see Croushore (1993).
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proaches that rely on estimating the full covariance matrix for the individual forecasts. Such

approaches are not feasible since many forecasters may not have overlapping data and so the

covariance matrix cannot be estimated.

This paper considers ways to combine expert opinions that work even in the presence of

forecast data that is incomplete with many missing observations. We consider methods such

as the equal-weighted average, odds ratio or the previous best forecast in addition to least

squares and shrinkage methods modified by trimming forecasts from participants who do not

report a minimum number of data points. We also propose a new and very simple approach

that first computes the equal-weighted forecast and then projects the realized value on a

constant and this forecast. This affine transformation of the equal-weighted forecast does

not require each of the underlying forecasts to be unbiased. Furthermore, it can be shown

to be optimal for a wider set of parameterizations of the covariance matrix of forecasts than

the simple equal-weighted forecast. The method only requires estimating an intercept and

a slope parameter through linear projection. Finally, since the method nests the standard

equal-weighted forecast (obtained with a zero intercept and a slope of unity), it is easy to

test if it improves upon the standard forecast.

We compare the real-time forecasting performance of these methods through Monte Carlo

simulations in the context of a common factor model that allows for bias in the individual

forecasts, dynamic dependencies in the common factors, and heterogeneity in individual

forecasters’ ability. In situations with a balanced panel of forecasts the least squares com-

bination methods perform quite well except for when the cross-section of forecasts (N) is

large relative to the length of the time-series (T ). If the parameters in the Monte Carlo

simulations are chosen so that equal-weights are sufficiently suboptimal in population, least-

squares combination methods dominate the equal-weighted forecast. Interestingly, however,

the simple modification of projecting the outcome on an intercept and the equal weighted

forecast continues to outperform regression-based and shrinkage combination forecasts even

in many of these experiments.
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In the simulations that use an unbalanced panel of forecasts calibrated to match actual

survey data, the simulated (“pseudo”) real-time forecasting performance of the least squares

combination methods deteriorates relative to that of the equal-weighted combination. This

happens because the panel of forecasters must be trimmed to get a balanced subset of

forecasters from which the combination weights can be estimated by least squares methods.

This step entails a loss of information relative to using the equal-weighted forecast which is

based on the complete set of individual forecasts. The out-of-sample forecasting performance

of the projection on the equal-weighted forecast continues to be very good in the unbalanced

panel since this approach makes use of the full set of forecasts in the first stage and then

adjusts for any biases remaining in the equal-weighted forecasts in the second stage.

These conclusions are confirmed in an empirical application to inflation forecasts based on

the Survey of Professional Forecasters (the data shown in Figure 1). Our analysis estimates

combination weights recursively and uses these to compute out-of-sample forecasts. We

evaluate these forecasts using both real-time and revised data for actual values. The method

that bases the forecast on a projection of the actual value on the equal-weighted forecast is

found to do very well out-of-sample compared to a range of alternatives in common use.

The plan of the paper is as follows. Section 2 presents a theoretical framework that allows

us to establish conditions under which equal-weights are optimal in population. Section 3

describes commonly used estimation methods from the forecast combination literature and

introduces the projection on the mean forecast. Section 4 conducts a Monte Carlo simulation

experiment based on the common factor model from Section 2, while Section 5 provides an

empirical application to inflation forecasting. Section 6 concludes.
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2 Theoretical Results

2.1 Equal-Weighted Forecast Combination

Forecast combinations such as simple averages have proven surprisingly difficult to out-

perform. This seems to be a robust finding and has been reported in large forecasting

experiments involving different types of modeling approaches and a variety of variables in

economics, finance and other fields (see, e.g., Clemen 1989; Makridakis and Hibon 2000;

Stock and Watson 2001, 2004).

The robustness of the simple average forecast across different data types, time periods,

and forecasting methods remains a puzzle. One would expect to find considerable hetero-

geneity in experts’ forecasting ability and this ought to be exploitable by differentiating

the weights applied to different forecasts. In practice, however, individual forecasters’ true

ability−and consequently the combination weights−are unknown and improving upon the

equally weighted average requires having a procedure for estimating the combination weights

which ensures that the sample estimates do not get too far removed from their true but

unknown values. Least-squares procedures (e.g., Granger and Ramanathan 1984) require es-

timating the covariance matrix of the forecast errors. Achieving a precise estimate of this is

often either very difficult or simply not feasible due to (i) the availability of short and incom-

plete data samples for individual forecasters; (ii) the dimensionality of the problem at hand

with a large number of forecasters relative to the length of the time-series; or (iii) instability

of the covariance matrix (Kang 1986; Elliott and Timmermann 2005) reflecting structural

breaks, time-varying coefficients or other changes in the underlying data generating process.

In this section we establish conditions under which it is optimal (in a population sense)

to use equal-weighted forecast combinations and when it is not. This sets a benchmark that

proves helpful in understanding the finite-sample forecasting performance in simulations and

experiments with actual data. It also points towards directions for improving on the simple

average forecast.

5



Let the variable we are interested in forecasting one step ahead given information at time

t be denoted by Yt+1 and assume that an N×1 vector of forecasts computed at time t, Ŷt+1|t,

is available. We follow common practice and minimize mean squared error (MSE) loss so

only the first two moments of the joint distribution of the predicted variable and forecasts

matter:2 µ
Yt+1

Ŷt+1|t

¶
∼

⎛⎜⎝µμy
μ

¶⎛⎜⎝ σ2y σ0yŷ

σyŷ Σŷŷ

⎞⎟⎠
⎞⎟⎠ . (1)

Define the forecast errors associated with the N forecasts as et+1,t = Yt+1ι − Ŷt+1|t,

where ι is an N × 1 vector of ones. From (1) the covariance matrix of the forecast errors,

Σe = E[et+1,te
0
t+1,t], is given by:

Σe = (σ
2
y + μ2y)ιι

0 + μμ0 +Σyy − ισ0yy − σyyι
0 − μyιμ

0−μyμι0. (2)

Suppose that the individual forecasts are unbiased so that μ =μyι and consider minimizing

the expected forecast error variance subject to the constraint that the weights add up to one

(so the combined forecast remains unbiased):

minω0Σeω (3)

s.t. ω0ι = 1.

Assuming that Σe is invertible and solving the associated Lagrangian optimization, we get

the standard solution for the optimal weights:

ω∗ = (ι0Σ−1e ι)−1Σ−1e ι. (4)

In general the optimal weights depend on the full covariance matrix, Σe. Only in very

2To simplify the notation we drop t subscripts on these moments, but it is implicit that all moments can
depend on conditioning information available at the time the forecast is computed. The results can easily
be generalized to an arbitrary h−step forecast horizon.
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special cases does (4) reduce to equal weights−the most prominent special case being when

the forecast errors have identical variance, σ2, and identical pair-wise correlations, ρ, (−1 <

ρ < 1). In this case we get:

Σ−1e =
1

σ2(1− ρ)

µ
I− ρ

1 + (N − 1)ριι
0
¶

=
1

σ2(1− ρ)(1 + (N − 1)ρ) ((1 + (N − 1)ρ)I− ριι0) ,

where I is the N ×N identity matrix. Inserting this expression in (4), we have:

Σ−1e ι =
ι

σ2(1 + (N − 1)ρ)

(ι0Σ−1e ι)−1 =
N

σ2(1 + (N − 1)ρ) ,

and it follows that the optimal weights are given by:

ω∗ =

µ
1

N

¶
ι. (5)

Hence equal-weights are optimal in situations with an arbitrary number of forecasts when the

individual forecast errors have mean zero, identical variance and (arbitrary) identical pair-

wise correlations. The weights add up to unity only as a result of imposing these constraints

and will not otherwise hold in general. In the absence of some notion of the underlying data

generating process, it is difficult to tell how plausible such constraints are so we next turn

to a model that allows us to better interpret the constraints.

2.2 A Common Factor Model

Realistic and empirically plausible covariance structures can be obtained from common factor

models which are widely used empirically to forecast macroeconomic and financial time

series (see, e.g., Chan, Stock and Watson 1999 and Stock and Watson 2006). Moreover,
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intuition can be gained in terms of the structure of the factor loadings, idiosyncratic noise

and variability of the individual factors. Accordingly, let the target variable, Yt+1, and the

individual forecasts,Ŷ i
t+1|t, be driven by the following common factor model:

Yt+1 = μy + β
0
yFFt+1 + εyt+1, εyt+1 ∼ N(0, σ2εY )

Ŷ i
t+1|t = μi + β

0
iFFt+1 + εit+1, εit+1 ∼ N(0, σ2εi), i = 1, ..., N, (6)

where we assume that E [εit+1εjt+1] = 0 if i 6= j, and E[εit+1εyt+1] = 0 for i = 1, ..., N. As

we shall see, an advantage of this model is that it is sufficiently rich to cover a variety of

empirically relevant scenarios.

Dynamics in the nf common factors can also be introduced:

Ft = BFFt−1 + εFt, εFt ∼ N(0,DεF ), (7)

where DεF is an nf × nf diagonal matrix with entries:

DεF =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ2F1 0 · · · 0

0 σ2F2 · · · 0

...
. . . . . . 0

0 0 σ2Fnf

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and E[εyt+1εFt] = E[εit+1εFt] = 0, for i = 1, ..., N. We assume that the eigenvalues of BF

all lie outside the unit circle so (I−BF )
−1 exists and the initial value F0 can be drawn from

the unconditional distribution of the factors. This gives the following convenient form of the
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(unconditional) covariance-matrix of the joint distribution of Y and bY:
σ2y = β0yF (I−B2F )−1DεFβyF + σ2εY ,

σyŷ[i] = β0iF (I−B2F )−1DεFβyF (8)

Σŷŷ[i, j] = β0iF (I−B2F )−1DεFβjF+I{i=j}σ2εi,

where I{i=j} is an indicator function that equals unity if i = j and otherwise is zero.

This model nests several cases of common interest. A particular forecast is conditionally

unbiased when μi = μy, βiF = βyF and σ2εi = 0. As σ
2
εi
increases, an increasingly important

noise component is added to the forecasts which become less valuable and it becomes more

attractive to combine forecasts rather than using a single prediction. Such noise may be due

to model misspecification such as when the wrong predictor variables or predictor variables

subject to measurement errors are used in the forecaster’s model. When σ2εY > 0, the target

variable, Yt+1, comprises an unpredictable component and as σ2εY goes up, the predictiveR
2 of

each individual forecast declines. Cross-sectional heterogeneity in the individual forecasters’

performance can be introduced by letting any one of the parameters (μi, βiF , σ
2
εi
) differ across

forecasters.

Since the factor model is quite general, we impose additional structure to ensure that the

individual forecasts are sensible. In particular, notice that the best linear projection of Yt

on Ŷ i
t|t−1 is given by:

β0iF (I−B2F )−1DεFβyF

β0iF (I−B2F )−1DεFβ
0
iF+σ

2
εi

. (9)

We can choose parameter values such that this is equal to unity, ensuring that the individual

forecasts are unbiased, a restriction often deemed sensible.

Furthermore, letting σ2Fi = σ2F for i = 1, .., nf , σ
2
εi
= σ2ε for i = 1, .., N, assuming (purely

for simplicity) that there is no factor dynamics (BF = O) and letting βiF = βι, βyF = βyι,
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we have:

Σ−1ŷŷ =
1

σ2ε

µ
I− Nnfβ

2σ2F
σ2ε +Nnfβ

2σ2F
ιι0
¶

and so the optimal combination weights are:

ω∗ = Σ−1ŷŷσyŷ

=
1

σ2ε

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− Nnfβ
2σ2F

σ2ε+Nnfβ
2σ2F

−Nnfβ
2σ2F

σ2ε+Nnfβ
2σ2F

· · · −Nnfβ
2σ2F

σ2ε+Nnfβ
2σ2F

−Nnfβ
2σ2F

σ2ε+Nnfβ
2σ2F

1− Nnfβ
2σ2F

σ2ε+Nnfβ
2σ2F

−Nnfβ
2σ2F

σ2ε+Nnfβ
2σ2F

...
. . .

...

−Nnfβ
2σ2F

σ2ε+Nnfβ
2σ2F

· · · 1− Nnfβ
2σ2F

σ2ε+Nnfβ
2σ2F

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

nfββyσ
2
F

...

nfββyσ
2
F

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Equal weights that sum to unity are optimal in this setting provided that:

nfββyσ
2
εσ
2
F

σ2ε(σ
2
ε +Nnfβ

2σ2F )
=
1

N
.

This constraint only holds in the special case where:

σ2ε = nfNβσ2F (βy − β). (10)

Using identical combination weights that sum to unity is clearly only optimal as a very special

case and restricting the individual forecasts to be unbiased through (9) does not, in general,

ensure that it is optimal to use equal weights. Furthermore, variations in the variance-

covariance parameters introduce heterogeneity in forecasting performance and generally have

the effect of moving the optimal weights even further away from 1/N .

Conversely, if βiF = βjF and σ2εi = σ2εj for all i, j, then all diagonal elements of Σŷŷ

are identical as are the off-diagonal elements. This means that equal weights are optimal

although the weights will not necessarily sum to one. In such situations the optimal forecast

is formed as a scalar (not necessarily equal to one) times the equal-weighted average of the

individual forecasts. While still a special case, this covers many more situations than the
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case where the simple equal-weighted forecast is optimal.

3 Methods for Estimating Combination Weights

The theoretical analysis in the previous section suggested that equal-weighted combinations

are only optimal under a set of highly restrictive conditions on the joint distribution of the

forecasts and target variable. That this forecasting method generally performs so well em-

pirically can therefore in all likelihood be attributed to the fact that it does not require the

estimation of any combination weights. In practice, parameter estimation error is an impor-

tant determinant of relative forecasting performance. This also explains why least squares

methods which require estimating the covariance matrix of forecast errors tend to perform

poorly empirically and why shrinkage towards equal-weights−a practice that introduces bias

but reduces the effect of parameter estimation errors−often is found to improve on least

squares methods. Clearly the effect of estimation error on forecasting performance can be

very significant.

To address this point we next describe a variety of methods for forecast combination

in common use and propose a new and simple method that modifies the equal-weighted

forecast,

Ȳt+1|t = N−1
t

NtX
i=1

Ŷ
(i)
t+1|t (11)

which serves as a natural benchmark. Another option is simply to use the previous best

model based on past performance. This approach places all the weight on the single forecast

with the lowest historical MSE-value

Ŷ ∗t+1|t = Ŷ
i∗t
t+1|t, where

i∗t = arg min
i=1,...,Nt

t−1
tX

τ=1

(Yτ − Ŷ i
τ |τ−1)

2 (12)

While it may seem that this method does not require any estimation, this is not quite
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true since the ranking of the various models itself follows a stochastic process that may lead

to shifts in the selected model as new data emerges.

3.1 Least Squares Estimation of Combination Weights

It is common to estimate combination weights by ordinary least squares, regressing real-

izations of the target variable, Yτ on the N-vector of forecasts, Ŷτ |τ−1 using data over the

period τ = 1, ..., T :

ω̂T = (
T−1X
τ=1

Ŷτ+1|τŶ
0
τ+1|τ)

−1
T−1X
τ=1

Ŷτ+1|τYτ+1. (13)

Different versions of this least squares projection have been proposed. Granger and Ra-

manathan (1984) consider three regressions:

(i) Yt+1 = ω0t +ω
0
tŶt+1|t + εt+1

(ii) Yt+1 = ω0tŶt+1|t + εt+1 (14)

(iii) Yt+1 = ω0tŶt+1|t + εt+1, s.t. ω0tι = 1.

The first and second of these regressions can be estimated by standard OLS, the only dif-

ference being that the second equation omits an intercept term. The third regression omits

an intercept and can be estimated through constrained least squares. The first and more

general regression does not require the individual forecasts to be unbiased since any bias can

be adjusted through the intercept term, ω0t . In contrast, the third specification is motivated

by an assumption of unbiasedness of the individual forecasts. Imposing that the weights

sum to one then guarantees that the combined forecast is also unbiased.3 One could further

impose convexity constraints 0 ≤ ωi
t ≤ 1, i = 1, .., Nt to rule out that the combined forecast

lies outside the range of the individual forecasts.

An obvious problem with this approach is that it is very poor at handling unbalanced

3This specification may not be efficient, however, as the latter constraint can lead to efficiency losses as
E[Ŷt+1|tεt+1] 6= 0.
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data sets such as those from the Survey of Professional Forecasters shown in Figure 1. It is

simply not feasible to estimate the complete covariance matrix for this type of data. In such

cases, minimum data requirements must be imposed and the set of forecasts trimmed. For

example, one can require that forecasts from a certain minimum number of (not necessarily

contiguous) common periods be available.

To partially address this issue, we also apply a weighting scheme which, for forecasters

with a sufficiently long track record, uses weights that are inversely proportional to their

historical MSE-values, while using equal-weights for the remaining forecasters (normalized

so the weights sum to one).

3.2 Shrinkage

Shrinkage methods have been widely used in forecasting. For example, Stock and Watson

(2004) propose shrinkage towards the arithmetic average of forecasts. Let ω̂i
t be the least-

squares estimator of the weight on the ith model in the forecast combination obtained, e.g.,

from one of the regressions in (14). The combination weights considered by Stock andWatson

take the form:

ωi
t = ψω̂i

t + (1− ψ)(1/Nt),

ψt = max(0, 1− κNt/(T − 1−Nt − 1)),

where κ regulates the strength of the shrinkage with larger values of κ implying a lower

ψt and thus a greater degree of shrinkage towards equal weights. As the sample size, T ,

rises relative to the number of forecasts, N , the least squares estimate gets a larger weight.

While this approach can be assumed to work well in some situations, because it is based on

the least squares estimator it is also likely to suffer from the deficiencies of that approach.

Conversely, for fixed values of T and N, larger values of κ correspond to more shrinkage

towards equal-weighting (smaller ψt) and hence present some of the problems associated
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with using equal weights.

3.3 Odds Matrix Approach

The odds matrix approach (Gupta and Wilton 1987) computes the combination of forecasts

as a weighted average of the individual forecasts where the weights are derived from a matrix

of pair-wise odds ratios. Each entry in the matrix is interpreted as the odds that forecast i

will outperform forecast j. If the odds matrix is denoted O, then the weight vector, ω, is

obtained from the solution to (O−NI)ω = 0, where I is the identity matrix.4 Estimation

of the matrix O is accomplished by estimating the pair-wise probabilities πij that represent

the probability that the ith forecast will outperform the jth forecast in the next realization.

The entries of the O matrix are then oij =
πij
πji

. There are several ways to estimate the pair-

wise probabilities. Following the empirical application of Gupta and Wilton (1987), we use

πij =
aij

(aij+aji)
, where aij is the number of times forecast i had a smaller absolute error than

forecast j in the historical sample.5

3.4 Projection on the (Equal-Weighted) Mean

We next propose a new method for forecast combination that exploits some of the advan-

tages of using the equal-weighted average but uses information in this average in a more

flexible manner. To motivate the approach, consider the following insights from the lit-

erature on forecast combination (for a survey, see Timmermann 2006 ): (i) estimation of

additional parameters used to combine the forecasts quickly leads to deteriorating forecast-

ing performance; (ii) individual expert forecasts are often biased and the slope coefficient in

4Gupta and Wilton (1987, 1988) propose to use the normalized eigenvector associated with the eigenvalue
that solves Oω = τmaxω (the largest positive eigenvalue) as an estimate of the weight vector. This is the
approach we follow.

5Shrinkage and the odds matrix approach can both be viewed as Bayesian combination methods. More
formal Bayesian methods could also be employed, for example, Bayesian Model Averaging (see Jacobson and
Karlsson (2004)) or one could use Bagging (see Inoue and Kilian (Forthcoming)).
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a regression of the realized value on individual forecasts often differs from unity;6 (iii) bias

correction is best done at the level of the combined forecast by including a single intercept

and more refined adjustments generally do not lead to large improvements; (iv) forecasts

from data sources such as surveys are generally highly unbalanced which makes standard

covariance-based approaches difficult to apply.

Based on these considerations, we propose a simple affine transformation of the equal-

weighted forecast, Ȳt+1|t = N−1
t

PNt

i=1 Ŷ
i
t+1|t :

Ỹt+1|t = α̂t + β̂tȲt+1|t. (15)

This extension of the equal-weighted combination only requires estimating two parameters,

α and β, which can be done through least squares regression. As in the case with the simple

equal-weighted average, information from forecasters with no more than a single data point

can be used. By including a constant, the forecast combination method adjusts for biases

that may be present in the individual forecasts as well as in the aggregate. By allowing for

a slope coefficient different from unity, as shown in Section 2, the method is likely to work

well under a much broader set of scenarios than the simple equal-weighted forecast.

4 Monte Carlo Simulations

To analyze the determinants of the performance of the various forecast combination methods,

we next conduct a series of Monte Carlo experiments in the context of the factor model

described in Section 2. In all experiments we use two factors, nf = 2, so that F = 1, 2. We

let the sample size, T , vary from 100 to 500 and 1000 and let the number of forecasts (N)

assume values of 4, 10 and 20. This covers situations with large N relative to the sample

size t (e.g., N = 20, T = 100) as well as situations with plenty of data points relative to the

6Zarnowitz (1985) finds evidence against efficiency in individual forecasters’ predictions. Davies and Lahiri
(1995) report evidence that informational efficiency is rejected for up to half of the survey participants in
their data.
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number of estimated parameters (e.g., N = 4, T = 1, 000). All forecasts are one-step-ahead,

simulated out-of-sample, and are computed based on recursive parameter estimates using

only information available at the time of the forecast. To forecast Yt+1 we therefore use

information only up to period t, including for the estimates of the combination weights, ω̂t.

The first set of experiments assumes that the individual forecasts are unbiased and set

μy = μi = 0 (i = 1, ..., N). In the base experiment (experiment 1) we further assume that βi1

solves (10) for all i so the true optimal weights are identical and sum to unity. Furthermore,

we set:

βy = (1 1)0

σεY = σεF1 = σεF2 = 1; σεi = 1 i = 1, .., N

BF = 0.

In experiments 2-7 we assume that βi1 = 0.5, (i = 1, ...., N) while βi2 solves (9) for

i = 1, ...., N ensuring that the regression coefficient of Yt+1 on the individual forecasts Ŷ i
t+1|t

is unity. Factor dynamics is introduced in experiment 3 by letting BF = 0.9×I. Heterogene-

ity in the individual forecasters’ ability is introduced by drawing the factor loadings, βif ,

from a Beta distribution centered on 0.5 with either low dispersion (Beta(5, 5) in experiment

4) or high dispersion (Beta(1, 1) in experiment 5). To allow for the possibility that different

experts capture different predictable components (thus enhancing the role of forecast combi-

nations over the individual models), experiment 6 considers a scenario where different groups

of forecasts load on different factors. Finally, forecast biases are introduced by allowing for

a non-zero intercept in experiment 7. To summarize, we alter the base scenario as follows:
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Scenarios Change in Parameters

1 Base scenario (ω0ι = 1) −

2 Identical weights (ω0ι 6=1) βi solves (9)

3 Factor Dynamics BF = 0.9× I

4 Weak heterogeneity βif ∼ Beta(5, 5)

5 Strong heterogeneity βif ∼ Beta(1, 1)

6 Factor-loadings in blocks

β0i1 =

⎧⎪⎨⎪⎩ 1 if 1 ≤ i ≤ N/2

0 if N/2 < i ≤ N

β0i2 =

⎧⎪⎨⎪⎩ 0 if 1 ≤ i ≤ N/2

1 if N/2 < i ≤ N

7 Biased forecast μi =

⎧⎪⎨⎪⎩ 1/2 if 1 ≤ i ≤ N/2

0 if N/2 < i ≤ N
.

.

Following the analysis in Section 3, we compare the following ten combination methods:

Label Combination Method

EW Equal-weighted forecast

PEW Projection on constant and equal-weighted forecast

GR1 Unconstrained OLS: (14, (i))

GR2 OLS w/o constant: (14, (ii))

GR3 Constrained OLS w/o constant: (14, (iii))

Shrink1 Shrinkage with κ = 0.25

Shrink2 Shrinkage with κ = 1

Odds Odds ratio

Previous Best Forecast from previous best model

Inverse MSE Weight is the inverse of the historical MSE
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4.1 Balanced Panel of Forecasters

Results for the case with a balanced panel of forecasts are reported in Table 1 in the form

of out-of-sample MSE-values computed relative to the MSE-value associated with the equal-

weighted forecast (which is thus always equal to unity). In the base scenario the simple

equal-weighted forecast performs best since it imposes a true constraint on the combination

weights and hence achieves efficiency gains.7 However, the simple equal-weighted forecast

is not producing particularly precise forecasts in the other scenarios (experiments 2-7) even

though the parameters of the Monte Carlo experiments are chosen such that the population

value of a regression of Yt+1 on the individual forecasts bY i
t+1|t is unity. The reason is that

although using equal weights is optimal in settings without cross-sectional heterogeneity (see

our discussion in Section 2), the optimal weights need not add up to unity.

In the base scenario (experiment 1) the best combination scheme among those proposed

by Granger and Ramanathan (1984) is to exclude an intercept and impose that the weights

sum to unity. This holds across all sample sizes and cross-sections−imposing a true constraint

ensures efficiency gains. The improvement over the most general least squares regression

(GR1) is, however, quite marginal−about 1-2%. Conversely, when the true weights do not

sum to unity, as in the second experiment, the most constrained least squares combination

(GR3) produces MSE-values that are far worse than the less constrained models (GR1 and

GR2). Constraining the intercept to be zero (GR2) leads to marginally better performance

than under the unconstrained least squares model (GR1) when this constraint holds as in

experiments 2-6, although it leads to inferior performance when the underlying forecasts are

in fact biased (experiment 7).

Turning to the shrinkage forecasts, these generally improve on the benchmark equal-

weighted combination’s performance. In most cases the shrinkage approach does as well as

or slightly better than the best least squares approach. When the sample size is small, the

7The odds ratio and the inverse MSE approaches seem to marginally outperform the equal-weighted
average but the numbers are very close to one and are more likely the result of sampling variation.
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model with the largest degree of shrinkage does best. However, using a smaller degree of

shrinkage becomes superior as the sample size, T , is raised (for fixed N). The benefit from

shrinkage is particularly sizeable when the number of models is large as when N = 20.

Although the differences in MSE-values are small, the odds matrix and inverse MSE

approaches generally dominate using equal-weights. In contrast, choosing the single best

model does not lead to good forecasting performance in the experiments without heterogene-

ity where (ex ante) the forecasting models are equally good. Combining forecasts therefore

works well in such settings as it allows the user to dilute the noise in the individual forecasts.

As expected, the out-of-sample forecasting performance of the previous best model improves

as the degree of heterogeneity across models gets stronger and a clearer picture of the single

best model emerges.

Factor dynamics−introduced in the third Monte Carlo experiment−leads to deteriorating

forecasting performance across all combination schemes. This is not surprising since the

effective sample size is smaller in the presence of persistent factors. Interestingly, factor

dynamics also has the effect of improving the relative performance of the most general least

squares methods (GR1 and GR2), shrinkage and projection on the equal-weighted mean

(PEW ).

Heterogeneity in the factor loadings of the various forecasts−introduced by drawing these

from a beta distribution−has two effects. First, it means that the true performance now

differs across forecasting models. Models with larger factor loadings have a higher R2 than

models with small factor loadings. Secondly, the combination schemes that are based on

equal weights now perform worse. This follows from our discussion in Section 2 which

showed that (generically) equal weights are optimal only when the forecasts errors have

identical variances with the same pair-wise correlations. The effect of weak heterogeneity on

the performance of the various combination schemes (βif ∼ Beta(5, 5) in experiment 4) is

quite minor. However, as stronger heterogeneity is introduced in the distribution of factor

loadings (βif ∼ Beta(1, 1) in experiment 5), the simple equal-weighted forecasts perform
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worse and using the previous best forecasting model becomes more attractive−although this

strategy is still dominated by many of the other combination methods.

When half of the forecasts track factor one while the remaining half of the forecasts track

factor two (experiment 6), the benefits from combining over using the single best model

(which can only track one factor at a time) tend to be particularly large. Moreover, the

projection on equal weights (PEW ) performs very well and the least constrained OLS and

shrinkage forecasts also continue to perform well relative to the benchmark.

When we let half of the forecasts be biased with a bias equal to one-half of the standard

deviation parameters, the efficiency gain due to omitting an intercept in the least squares

combination regression is now more than out-done by the resulting bias. This explains

why the general Granger-Ramanathan scheme (GR1) which includes an intercept term now

produces better results than the constrained Granger-Ramanathan regressions (GR2 and

GR3). The previous best model produces worse forecasting performance than in the case

without bias, as there is always the risk of selecting a biased model. Since the shrinkage

methods pull the least squares forecast towards the biased equal-weighted forecast, this

also explains why the shrinkage schemes perform worse than in the case without a bias and

generally produce worse results than the least squares methods. In contrast, the performance

of the forecast that uses a projection on an intercept and the equal-weighted forecast is

unchanged compared with the results in the second experiment since only the intercept is

changed.

Overall, the best forecasting performance is produced by the simple combination method

that regresses Yt+1 on an intercept and the equal-weighted forecast, Y t+1|t = N−1PN
i=1
bY i
t+1|t.

This approach produces better results than the equal weighted forecast in all experiments

except the first one (for which a small under-performance of up to two percent is observed).

Furthermore, it generally does best among all combination schemes in experiments 2-7, with

slightly better results observed for the least squares and shrinkage methods in the presence
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of strong heterogeneity (experiment 5).8

4.2 Unbalanced Panel of Forecasters

We next perform the same set of experiments on data generated from the two-factor model

filtered so as to mimic the unbalanced panel structure of the Survey of Professional Fore-

casters data shown in Figure 1. To this end we first group the experts into frequent and

infrequent forecasters defined according to whether a forecaster participated in the survey a

minimum of 75 percent of the time. Next, we pool observations within each of the two groups

of forecasters and estimate two-state Markov transition matrices for each group, where state

one represents participation in the survey while state 2 is absence from the survey. The

estimated transition matrices were:

Frequent Participation :

⎛⎜⎝ 0.84 0.16

0.41 0.59

⎞⎟⎠ , (16)

Infrequent Participation :

⎛⎜⎝ 0.69 0.31

0.03 0.97

⎞⎟⎠ . (17)

Among frequent forecasters there is an 84 percent chance of observing a forecast next period

if a forecast was reported in the current period. This probability declines to 40 percent if no

forecast was reported in the current period. Conversely, the extremely high probability (0.97)

of repeated non-participation among the infrequent forecasters shows that this category

covers forecasters who rarely participate in the survey.

We use these transition matrices to generate a matrix of zeros and ones that indicates

when a forecaster participated in the survey. We then multiply, element-by-element, the zero-

one participation matrix with the matrix of one-step forecasts generated from the two-factor

8Under strong heterogeneity among the forecasters, the equal-weighted forecast is sub-optimal. This
explains why in experiment 5 regression-based approaches which assign different weights to the individual
forecasters perform relatively better than methods based on the equal-weighted forecast.
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model and apply the combination methods to the resulting (unbalanced) set of forecasts.

To apply least-squares combination methods we trimmed those forecasters with fewer

than 20 contiguous forecasts or no prediction for the following period. Among the remain-

ing forecasters we next used the largest common data sample to estimate the combination

weights. If there were no forecasters with at least 20 contiguous observations or if there

are fewer remaining forecasters than parameters to be estimated, we simply use the average

forecast for next period. Our simulations assume that the proportion of frequent forecasters

is set at 40 percent. This means that we only have to resort to using equal-weights one-third

of the time−a number similar to that found in the empirical application in the next section.

Results are reported in Table 2 in the form of out-of-sample MSE-values again measured

relative to the values generated by the equal-weighted forecast combination. Since unbal-

anced panels are more likely to occur in settings with a relatively large number of forecasters,

we only report results for N = 20.

Compared with the earlier results in Table 1, the previous best, odds matrix and inverse

MSE approaches perform more like the equal-weighted approach in the unbalanced panel.

A similar finding holds for the least squares combination and shrinkage approaches. The

performance of such methods (relative to the simple equal-weighted approach) is therefore

relatively worse in the unbalanced panel. Two reasons explain this finding. First, in about

one-third of the periods the regression methods revert to using the equal-weighted forecast

because a balanced subset of forecasters with a sufficiently long track record cannot be found.

Second, since the regression methods trim the set of forecasters to obtain a balanced subset

of forecasts, they discard potentially valuable information. Consequently, these methods

perform worse than the equal-weighted average when conditions are in place for the latter

to work well and only outperform by a small margin otherwise.

Overall, the PEW method continues to perform better than the other approaches even

with an unbalanced panel of forecasts. Moreover, the relative performance of this approach

generally improves over the case with a balanced panel. For example, in the second exper-
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iment the relative MSE-value associated with this approach goes from 0.72 in the balanced

panel to 0.56 in the unbalanced panel. Similar improvements are observed in experiments 4

and 5. The only experiment where a worse (relative) performance is observed is in the sixth

experiment with a block diagonal factor structure. However, even in this case the PEW

approach remains the best overall.

We conclude that, across the board, the proposed equal-weighted projection method is

better than the other methods that can be used when estimation of the full covariance matrix

of the forecast errors is not feasible (equal weights, odds matrix or previous best forecast).

It also performs better than the regression and shrinkage approaches modified so they can

be used on a balanced subset of forecasters. Although the PEW approach does better in

most experiments irrespective of whether a balanced or an unbalanced panel of forecasts is

available, the extent to which the PEW approach outperforms tends to be greater in the

unbalanced panel.

5 Application to Inflation Forecasts

To illustrate the performance of the combination methods on actual data we use one- and

four-step-ahead inflation forecasts from the Survey of Professional Forecasters. Inflation

is measured as the annualized quarterly change in the output deflator using either fully

revised data or real-time data from the Federal Reserve of Philadelphia’s web site. Fully

revised data is the last revision as of January 2007, whereas real-time data corresponds to

the first revision. We restrict the data sample to start in the fourth quarter of 1979 to take

into account the change in monetary policy that occurred when Paul Volcker took office as

Chairman of the Federal Reserve. This change is widely regarded as having affected the

behavior of inflation (see Clarida, Galí, and Gertler 2000, among others). Our sample ends

with the forecasts made for the third quarter of 2006. At each period in time there are

between 9 and 49 forecasters, with a median value of 32.
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We calculate the mean forecast at each point in time (equal-weighted combination,

Y t+h|t = (1/Nt)
PNt

i=1
bY i
t+h|t, where h, the forecast horizon, is either 1 or 4) and use the

first R forecasts to estimate the parameters of the regression of Yt+h on an intercept and the

equal-weighted forecasts. This projection is then used to generate out-of-sample forecasts

for observation R + h. Denoting the full sample size as T + h, up to P = T + 1 − R out-

of-sample forecasts can be generated in this way. We use either recursive estimation−where

the estimation window expands so the first window has R observations and the last window

R + P − 1 observations−or rolling window estimation where the length of the estimation

window remains fixed at R observations. In both cases we set R = 30, so that we end up

with 77 out of sample forecasts for h = 1 and 74 for h = 4.

For the other combination methods we keep forecasters with a minimum of 10 contiguous

observations. Finally, we estimate the combination weights on the largest common sample.9

We also calculated an equal-weighted combination and the projection on the prediction of

this group of forecasters.

Before presenting the combination results it is useful to consider the performance of the

best individual forecasters. Using one and four-step-ahead forecasts, Figure 2 presents time-

series and histograms of the identification numbers of the survey participants with the best

historical forecasting record at a given point in time. While the plots reveal some persistence

in the identity of the best forecaster, there is considerable turnover among the forecasters at

the top, indicating the potential for successfully combining forecast from this data set.

Figure 3 shows time-series plots of the four-step-ahead forecast errors, calculated using

real-time data and based on the equal-weighted, rolling window projection, and unrestricted

least squares (GR1) approaches. Due to their use of a common target (actual) value, there

is a substantial common component in the series. Even so, it is clear that the differences

9We also did the application allowing at least 20 contiguous observations, with the rule that if there are no
forecasters with at least 20 contiguous observations or if there are fewer observations than parameters (arising
in about a third of the cases), we simply use the equal-weighted average forecast (this rule is not necessary
when we restrict the application to at least 10 contiguous observations). The results are qualitatively the
same as in the case reported here.
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between the three sets of forecasts are economically large, suggesting that it makes a material

difference which of the approaches is used for forecasting. One of the features that also comes

across from these figures is the advantage of bias-adjusting the simple average.

Empirical results in the form of (pseudo real time) root mean squared error values for the

various combination methods and estimation procedures (recursive or rolling) for one-step-

ahead and four-steps-ahead forecasts are presented in Table 3. The table presents separate

results for revised and real-time data.

The PEW combinations generate the smallest RMSE-values in the great majority of

cases. However, this cannot be conclusive evidence in favor of PEW combinations since

sample variability in forecasting performance needs to be taken into account, as indicated by

Granger and Newbold (1986), Meese and Rogoff (1988), and Diebold and Mariano (1995).

To find out if the differential performance of the various forecasts is significantly different

from zero, we calculate three sets of p−values. First, we apply the Diebold and Mariano

(1995) test to the MSE differences (PEW vis-a-vis alternative models) using:

bvt+h|t = ³Yt+h − \PEW_rollt+h|t
´2
−
³
Yt+h −

³dAM t+h|t

´´2
. (18)

Here \PEW_roll represents the forecasts calculated using the PEW method under a rolling

estimation window and dAM stands for the alternative model under consideration. Under

the null that the expected difference in MSE-values equals zero, E
£
vt+h|t

¤
= 0, a standard

application of the central limit theorem yields P
1
2v −→ N (0, S) , where v = P−1

PT+1
t=R bvt+h|t,

and S is the spectral density of v at frequency zero scaled by 2π.10 This approach does not

account for recursive parameter updating. Because of this−and because we do not know

how the individual forecasts were generated by the survey participants−we also adopt the

forecast evaluation approach recently proposed by Giacomini and White (2006). Their null

hypothesis, E
£bvt+h|t|It¤ = 0, is different from the one used by Diebold and Mariano in two

10We estimate S using Newey and West’s (1987) autocorrelation and heteroskedasticity consistent variance
estimator.
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aspects. First, losses depend on parameter estimates, rather than on their probability limits.

And second, the expectation is conditional on the information set It. Giacomini and White

show that under their null, PZ
0
(Sg)−1 Z −→ χ2q, where Z = P−1

PT+1
t=R htbvt+h|t, and ht is a

q × 1 test function, with ht ⊂ It. To implement this test, we use a constant and the lagged

difference as instruments, and Newey and West’s procedure to estimate Sg.11

The second and third panels of Table 3 report the associated p-values of these tests applied

to our data. First consider the results with the revised data. At the one-quarter forecast

horizon, the Diebold-Mariano p−values suggest that the performance of the PEW method is

significantly better than the Granger-Ramanathan approaches, one of the shrinkage methods,

and the odds ratio approach. It is also significantly better than the previous best forecast.

However, it is not possible to distinguish statistically between the PEW forecasts and those

produced by the equal-weighted, one of the shrinkage approaches as well as the inverse MSE

method. This could be due to the shortness of our evaluation sample. Similar results are

produced by the Giacomini-White p−values and when four-step-ahead forecasts rather than

one-step-ahead forecasts are considered.

However, the results change substantially when real-time data is used for the actual

values. In this case, despite continuing to produce the smallest RMSE-value, the PEW

forecasts are only significantly better than the GR1 and GR2 forecasts when four-steps-

ahead forecasts are considered. These results suggest that while the PEW forecasts produce

better forecasts independently of whether revised or real-time data is used to measure the

‘actual’ value, the evidence in support of this approach is strongest when revised data is

used as the forecast target.

The third and final set of p−values is based on the test statistic recently proposed by

Clark and West (2006). In effect this approach allows us to decompose the previous test

statistic and obtain a sharper comparison between the equal-weighted forecast and the PEW

11All the combination methods that we use satisfy Giacomini and White’s limited memory requirement
except PEW_rec. The requirement is satisfied because for EW we only use the forecasts available that
period, for PEW_roll we use a fixed estimation window, and for the other methods we use, each period,
the largest common sample among the forecasters that have a minimum of 10 contiguous forecasts.
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method. When nested models are compared, uncertainty introduced by the estimation of

additional parameters under the alternative and more general model (the projection method

in our case compared to the simple null that α = 0, β = 1) must be accounted for. Under

the null of identical forecasting performance of the two approaches, the sample difference

of the mean MSE-values is therefore not zero but negative. To account for this, Clark and

West suggest the following adjustment to the test statistic:

bvat+h|t = ¡Yt+h − Y t+h|t
¢2−³Yt+h − ³bατ + bβτY t+h|t

´´2
+
³
Y t+h −

³bατ + bβτY t+h|t

´´2
. (19)

Clark and West establish conditions under which the distribution of va = P−1
PT+1

t=R bvat+h|t is
given by P

1
2 va −→ N (0, Sa). Again we use Newey and West’s procedure to estimate Sa. P -

values for the null that the difference in MSE-values (equal—weighted vis-a-vis PEW ) equals

zero are shown in the final panel of Table 3. The first two p-values compare PEW recursive

and PEW rolling with equal weights, respectively, whereas the third p-value compares PEW

using only forecasters with at least 10 contiguous forecasts with equal weights applied to the

same subset of forecasters. In all cases the null gets rejected at the 5% level. The projection

on the mean forecast is therefore better than the equal-weighted forecast irrespective of the

method used to estimate the parameters of the projection and independently of how inflation

is measured.

To better understand the performance of the PEW method, it is helpful to study the

evolution over time in the estimates of the projection parameters α and β. To this end,

Figure 4 provides a plot of these estimates using rolling windows of 30 observations, revised

data and one and four-steps-ahead forecasts. The estimates of α and β display persistent

deviations from zero and one, respectively. Such persistent deviations are consistent with

and help explain the gains from using the projection approach and from using rolling window

methods to estimate α and β.
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6 Conclusion

Successful schemes for real-time combination of expert forecasts achieve a favorable trade-off

between the bias induced by using sub-optimal forecast combination weights and the effect

of parameter estimation error arising from the use of estimated combination weights. This

trade-off is key to the real-time performance of different combination approaches and is the

explanation for our finding that the entry and exit of experts from surveys of professional

forecasters has such a large effect on the merit of the different approaches. Essentially, the

unbalanced panel structure of survey data means that the real-time performance of com-

bination methods that require estimating the full covariance between the experts’ forecasts

deteriorates relative to that of more robust methods such as equal-weighting or using pos-

terior odds. It also explains the good overall performance of the new approach proposed

here of projecting the outcome variable on a constant and the equal-weighted forecast. This

approach uses information in the full set of individual forecasts (incorporated into the equal-

weighted average) but then adjusts for possible bias and noise in this aggregate forecast.

Rather than using a simple linear projection of the outcome on a constant and the equal-

weighted forecast, Ȳt+1,t, more flexible functions can of course be adopted if the sample size

permits their estimation. For example, one could use Ŷt+1|t = f(Ȳt+1|t; θ), where f(·) is given

by a neural net or sieve estimator with parameters θ. The median or a trimmed mean could

also be used instead of the mean forecast in situations where “extreme” forecasts would

otherwise lead to poor performance.
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Table 1: Simulation results from forecast combinations under factor structure 

# of 
Forecasts

Sample 
Size EW PEW GR1 GR2 GR3 Shrink 1 Shrink 2 Odds Previous 

Best
Inverse 

MSE

4 100 1.000 1.015 1.052 1.046 1.037 1.045 1.043 0.993 1.538 0.988
4 500 1.000 1.004 1.010 1.008 1.006 1.008 1.008 0.998 1.653 0.997
4 1000 1.000 1.002 1.002 1.001 1.000 1.001 1.001 0.999 1.664 0.998

10 100 1.000 1.021 1.133 1.123 1.110 1.116 1.098 0.986 2.620 0.979
10 500 1.000 1.004 1.020 1.017 1.015 1.017 1.016 0.997 2.943 0.994
10 1000 1.000 1.002 1.012 1.011 1.010 1.011 1.011 0.999 3.027 0.997
20 100 1.000 1.020 1.253 1.236 1.222 1.206 1.129 0.981 4.357 0.971
20 500 1.000 1.006 1.040 1.037 1.034 1.036 1.034 0.996 4.970 0.993
20 1000 1.000 1.002 1.021 1.019 1.019 1.019 1.019 0.998 5.293 0.997

4 100 1.000 0.873 0.905 0.899 1.036 0.899 0.897 0.995 1.126 0.994
4 500 1.000 0.862 0.867 0.866 1.006 0.866 0.866 0.999 1.179 0.999
4 1000 1.000 0.864 0.864 0.864 1.000 0.864 0.864 0.999 1.184 0.999

10 100 1.000 0.785 0.868 0.859 1.108 0.854 0.843 0.993 1.111 0.992
10 500 1.000 0.769 0.780 0.779 1.016 0.779 0.779 0.998 1.204 0.998
10 1000 1.000 0.773 0.781 0.781 1.009 0.781 0.781 0.999 1.235 0.999
20 100 1.000 0.735 0.907 0.893 1.229 0.872 0.832 0.991 1.082 0.990
20 500 1.000 0.715 0.740 0.737 1.034 0.737 0.736 0.998 1.196 0.998
20 1000 1.000 0.721 0.735 0.735 1.022 0.735 0.734 0.999 1.240 0.999

4 100 1.000 0.730 0.757 0.752 1.032 0.752 0.751 0.993 1.279 0.989
4 500 1.000 0.722 0.726 0.724 1.004 0.724 0.724 0.998 1.369 0.998
4 1000 1.000 0.719 0.720 0.721 1.003 0.721 0.721 0.999 1.431 0.999

10 100 1.000 0.513 0.567 0.563 1.103 0.561 0.557 0.990 1.340 0.986
10 500 1.000 0.503 0.511 0.510 1.021 0.510 0.510 0.998 1.488 0.997
10 1000 1.000 0.494 0.500 0.500 1.010 0.500 0.500 0.999 1.512 0.999
20 100 1.000 0.406 0.498 0.491 1.221 0.481 0.486 0.988 1.300 0.984
20 500 1.000 0.405 0.418 0.417 1.032 0.417 0.417 0.997 1.494 0.997
20 1000 1.000 0.403 0.410 0.410 1.019 0.410 0.409 0.999 1.572 0.998

4 100 1.000 0.870 0.886 0.877 0.980 0.876 0.874 0.983 1.029 0.982
4 500 1.000 0.877 0.876 0.874 0.976 0.873 0.873 0.990 1.105 0.990
4 1000 1.000 0.853 0.845 0.845 0.958 0.845 0.845 0.989 1.087 0.989

10 100 1.000 0.766 0.830 0.821 0.980 0.817 0.808 0.979 1.013 0.978
10 500 1.000 0.765 0.775 0.773 0.920 0.773 0.772 0.986 1.076 0.986
10 1000 1.000 0.755 0.757 0.755 0.906 0.755 0.755 0.987 1.070 0.986
20 100 1.000 0.739 0.916 0.903 1.041 0.881 0.838 0.978 1.002 0.977
20 500 1.000 0.725 0.745 0.743 0.870 0.743 0.742 0.985 1.038 0.984
20 1000 1.000 0.714 0.722 0.722 0.853 0.722 0.721 0.986 1.055 0.985

Experiment 1 : Equal weights summing to one

Experiment 2: Equal weights

Experiment 3: Factor Dynamics

Experiment 4: Weak heterogeneity
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Table 1: Simulation results (continuation) 

# of 
Forecasts

Sample 
Size EW PEW GR1 GR2 GR3 Shrink 1 Shrink 2 Odds Previous 

Best
Inverse 

MSE

4 100 1.000 0.861 0.851 0.843 0.898 0.842 0.841 0.959 0.939 0.955
4 500 1.000 0.860 0.828 0.826 0.887 0.826 0.826 0.966 0.962 0.963
4 1000 1.000 0.840 0.815 0.814 0.882 0.814 0.814 0.966 0.972 0.963

10 100 1.000 0.762 0.816 0.809 0.858 0.804 0.794 0.949 0.881 0.945
10 500 1.000 0.743 0.721 0.719 0.767 0.719 0.719 0.953 0.877 0.949
10 1000 1.000 0.748 0.724 0.724 0.762 0.724 0.723 0.953 0.882 0.949
20 100 1.000 0.734 0.866 0.851 0.871 0.832 0.799 0.943 0.809 0.939
20 500 1.000 0.706 0.710 0.708 0.733 0.708 0.707 0.950 0.813 0.945
20 1000 1.000 0.705 0.700 0.700 0.725 0.700 0.700 0.951 0.828 0.946

4 100 1.000 0.778 0.807 0.802 1.033 0.802 0.800 0.995 1.060 0.995
4 500 1.000 0.765 0.769 0.768 1.007 0.768 0.768 0.999 1.104 0.999
4 1000 1.000 0.760 0.761 0.760 1.002 0.760 0.760 0.999 1.114 1.000

10 100 1.000 0.642 0.708 0.701 1.105 0.697 0.690 0.994 1.032 0.995
10 500 1.000 0.629 0.639 0.638 1.018 0.637 0.637 0.999 1.108 0.999
10 1000 1.000 0.631 0.637 0.637 1.008 0.637 0.637 1.000 1.122 0.999
20 100 1.000 0.566 0.697 0.687 1.233 0.671 0.654 0.993 1.008 0.995
20 500 1.000 0.550 0.567 0.565 1.032 0.565 0.565 0.998 1.082 0.999
20 1000 1.000 0.554 0.566 0.565 1.023 0.565 0.565 1.000 1.143 1.000

4 100 1.000 0.841 0.872 0.924 1.019 0.923 0.922 0.991 1.123 0.989
4 500 1.000 0.830 0.835 0.901 0.996 0.901 0.901 0.995 1.161 0.995
4 1000 1.000 0.830 0.830 0.890 0.987 0.890 0.890 0.995 1.159 0.995

10 100 1.000 0.756 0.836 0.892 1.087 0.887 0.875 0.988 1.095 0.987
10 500 1.000 0.737 0.749 0.799 0.991 0.799 0.799 0.994 1.172 0.993
10 1000 1.000 0.741 0.749 0.807 0.987 0.807 0.807 0.995 1.192 0.995
20 100 1.000 0.706 0.871 0.909 1.191 0.887 0.844 0.986 1.084 0.985
20 500 1.000 0.690 0.714 0.750 1.008 0.749 0.749 0.994 1.185 0.994
20 1000 1.000 0.691 0.705 0.742 0.990 0.742 0.742 0.995 1.210 0.994

Experiment 6: Block-diagonal factor structure

Experiment 7: Bias in individual forecasts

Experiment 5: Strong heterogeneity

Notes: Results are based on 10,000 simulations. EW: equal-weighted forecast, PEW: projection of actual value 
on an intercept and EW forecast, GR1: unconstrained OLS, GR2: OLS w/o constant, GR3: OLS w/o constant and 
weights constrained to add to unity, Shrink1: shrinkage with κ=0.25, Shrink2: shrinkage with κ=1, Odds: Odds 
ratio approach, Previous Best: forecast from previous best model, Inverse MSE: weight equals the inverse of the 
historical MSE. 
 

 
 
 
 
 

 32



Table 2: Simulation results from forecast combinations under factor structure with 
survey-like data 

# of 
Forecasts

Sample 
Size EW PEW GR1 GR2 GR3 Shrink 1 Shrink 2 Odds Previous 

Best
Inverse 

MSE

20 100 1.000 1.000 1.040 1.030 1.520 1.030 1.030 1.520 1.540 1.000
20 500 1.000 0.986 1.040 1.030 1.510 1.030 1.030 1.510 1.520 1.000
20 1000 1.000 0.990 1.030 1.020 1.530 1.020 1.020 1.530 1.550 1.000

20 100 1.000 0.583 0.988 0.982 0.979 0.982 0.981 0.978 0.979 1.000
20 500 1.000 0.555 0.994 0.988 0.984 0.988 0.987 0.983 0.984 1.000
20 1000 1.000 0.575 0.995 0.989 0.984 0.989 0.988 0.984 0.985 1.000

20 100 1.000 0.355 0.973 0.976 0.975 0.976 0.976 0.975 0.976 1.000
20 500 1.000 0.337 0.966 0.973 0.974 0.973 0.973 0.974 0.975 1.000
20 1000 1.000 0.338 0.962 0.971 0.969 0.971 0.970 0.969 0.969 1.000

20 100 1.000 0.577 0.990 0.985 0.980 0.984 0.984 0.980 0.980 1.000
20 500 1.000 0.551 0.984 0.980 0.976 0.980 0.980 0.977 0.977 1.000
20 1000 1.000 0.561 0.999 0.991 0.985 0.991 0.991 0.985 0.985 0.998

20 100 1.000 0.563 0.987 0.981 0.976 0.981 0.981 0.976 0.976 1.000
20 500 1.000 0.552 0.988 0.983 0.980 0.983 0.983 0.981 0.981 1.000
20 1000 1.000 0.557 0.988 0.983 0.977 0.983 0.982 0.977 0.977 1.000

20 100 1.000 0.761 1.000 0.998 0.993 0.997 0.997 0.992 0.992 1.000
20 500 1.000 0.739 1.010 0.999 0.993 0.999 0.998 0.993 0.993 1.000
20 1000 1.000 0.754 1.000 0.998 0.994 0.998 0.998 0.994 0.994 0.998

20 100 1.000 0.586 0.987 0.992 0.990 0.992 0.992 0.990 0.991 1.000
20 500 1.000 0.564 0.994 0.998 0.997 0.998 0.998 0.996 0.997 0.999
20 1000 1.000 0.579 0.995 0.997 0.995 0.997 0.997 0.995 0.995 0.998

Experiment 5: Strong heterogeneity

Experiment 6: Block-diagonal factor structure

Experiment 7: Bias in individual forecasts

Experiment 1 : Equal weights summing to one

Experiment 2: Equal weights

Experiment 3: Factor Dynamics

Experiment 4: Weak heterogeneity

Notes: Results are based on 10,000 simulations. The minimum number of contiguous observations used by the 
least squares and shrinkage combinations is 10. EW: equal-weighted forecast, PEW: projection of actual value on 
an intercept and EW forecast, GR1: unconstrained OLS, GR2: OLS w/o constant, GR3: OLS w/o constant and 
weights constrained to add to unity, Shrink1: shrinkage with κ=0.25, Shrink2: shrinkage with κ=1, Odds: Odds 
ratio approach, Previous Best: forecast from previous best model, Inverse MSE: inverse of historical MSE when 
available or equal weights. 

 33



 
Table 3: Empirical application to inflation forecasts from the  

Survey of Professional Forecasters.1/

RMSE
EW 0.88 0.90 1.01 1.00
EWc 1.00 0.98 1.15 1.15
PEW, Recursive 0.90 0.90 1.00 0.98
PEW, Rolling 0.79 0.88 0.83 0.93
PEW c 0.90 0.97 0.78 1.00
GR1 2.28 8.00 1.08 1.38
GR2 1.21 1.76 1.12 1.09
GR3 1.12 1.04 1.02 0.98
Shrink 1 1.24 2.84 1.85 1.03
Shrink 2 2.60 6.91 5.50 1.50
Odds 0.89 0.89 1.07 1.09
Previous Best 0.94 0.88 1.05 1.09
Inverse of MSE 0.87 0.90 1.01 0.98

P-Values Diebold-Mariano Test 2/ 

EW 0.16 0.67 0.11 0.50
EWc 0.01 ** 0.15 0.01 ** 0.10 *
PEW, Recursive 0.02 ** 0.43 0.06 * 0.29
PEWc 0.22 0.23 0.40 0.49
GR1 0.09 * 0.27 0.11 0.06 *
GR2 0.00 *** 0.15 0.04 ** 0.10 *
GR3 0.03 ** 0.16 0.05 ** 0.58
Shrink 1 0.02 ** 0.29 0.19 0.28
Shrink 2 0.16 0.29 0.22 0.23
Odds 0.10 * 0.81 0.05 ** 0.18
Previous Best 0.06 * 0.92 0.03 ** 0.10 *
Inverse of MSE 0.21 0.75 0.09 * 0.66

P-Values Giacomini-White Test 3/

EW 0.15 0.28 0.00 *** 0.01 ***
EWc 0.02 ** 0.08 * 0.00 *** 0.03 **
PEWc 0.01 ** 0.26 0.24 0.13
GR1 0.10 * 0.22 0.25 0.04 **
GR2 0.00 *** 0.28 0.16 0.30
GR3 0.05 ** 0.10 * 0.00 *** 0.56
Shrink 1 0.07 * 0.39 0.31 0.59
Shrink 2 0.25 0.40 0.28 0.17
Odds 0.06 * 0.22 0.00 *** 0.11
Previous Best 0.04 ** 0.24 0.00 *** 0.25
Inverse of MSE 0.17 0.32 0.00 *** 0.45

P-Values Clark-West Test 4/ 

PEW Recursive 0.01 *** 0.05 ** 0.00 *** 0.00 ***
PEW Rolling 0.00 *** 0.02 ** 0.00 *** 0.00 ***
PEWc 0.00 *** 0.03 ** 0.00 *** 0.03 **

1-Step-Ahead 4-Steps-Ahead
Revised Data Real-Time Data Revised Data Real-Time Data

 
* p<0.10. ** p<0.05. *** p<0.01. 
1/ The minimum number of contiguous observations required is 10, except for EW, PEW Recursive, 
and PEW Rolling, where no restriction was imposed. For PEW Rolling a fixed window with 30 
observations was used. The number of out-of-sample forecasts equals 77 for 1-step-ahead and 74 for 4-
steps-ahead. 
2/ Computed with respect to PEW Rolling. 
3/ Computed with respect to PEW Rolling. Test is conditional on the (first/fourth) lag of the difference 
of the losses. 
4/ The first two comparisons are with respect to EW, the third one is with respect to EWc.
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Figure 1: Participants in the Survey of Professional Forecasters (inflation forecasts) 
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Notes: The ID corresponds to the identification number assigned to each forecaster in the survey. The 
columns represent the quarter when the survey was taken. The Xs show when a particular forecaster 
responded to the inflation part of the survey and provided a one-step-ahead forecast. 
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Figure 2: Previous Best Forecaster 

 
a) Time-Series 
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b) Histogram 
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Figure 3: Forecast Errors, Four-Steps-Ahead, Real-Time Data 
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Figure 4: Estimated Parameters of PEW Rolling 
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