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In this paper we explore the underlying consumer heterogeneity in competitive markets for subscription-based
information technology services that exhibit network effects. Insights into consumer heterogeneity with respect

to a given service are paramount in forecasting future subscriptions, understanding the impact of price and
information dissemination on market penetration growth, and predicting the adoption path for complementary
products that target the same customers as the original service. Employing a continuous-time utility model, we
capture the behavior of a continuum of consumers who are differentiated by their intrinsic valuations from using
the service. We study service subscription patterns under both perfect and imperfect information dissemination.
In each case, we first specify the conditions under which consumer rational behavior supported by the utility
model can explain a general observed adoption path, and if so, we explicitly derive the analytical closed-form
expression for the consumer valuation distribution. We further explore the impact of awareness and distribution
skewness on adoption. In particular, we highlight the practical forecasting importance of understanding the
information dissemination process in the market as observed past adoption may be explained by several distinct
awareness and heterogeneity scenarios that may lead to divergent adoption paths in the future. Moreover, we
show that in the later part of the service lifecycle the subscription decision for new customers can be driven
predominantly by information dissemination instead of further price markdowns. We also extend our results
to time-varying consumer valuation scenarios. Furthermore, based on our framework, we advance a set of
heuristic methods to be applied to discrete-time real industry data for estimation and forecasting purposes. In
an empirical exercise, we apply our methodology to the Japanese mobile voice services market and provide
relevant managerial insights from the analysis.
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1. Introduction
In parallel with technological progress, global inter-
connectivity grows at a rapid pace nowadays. As of
2011, worldwide, there are over 2 billion Internet
users (Internet World Stats 2011) and over 5.3 billion
active mobile phone user accounts (The Mobile World
2011). Cisco (2011) predicts that by 2015 there will
be 15 billion devices worldwide connected to IP net-
works. We are witnessing an explosion in the variety
of information technology (IT) services addressing
the diverse needs of this vast reachable consumer
population. Some of these services provide infras-
tructure access (e.g., landline and mobile telephony,

Internet service provision). Others are value-added
services (e.g., VoIP, Web hosting, software-as-a-
service offerings). According to Gartner (2011), global
software-as-a-service revenues are expected to reach
$12.1 billion by the end of 2011 and $21.3 billion by
2015. Mobile industry, the fastest growing telecom
sector, recently surpassed $1.1 trillion in global rev-
enues, with approximately $900 billion accounting for
voice and data services alone (Ahonen 2010, 2011).

In such markets, it is of great strategic impor-
tance for IT service providers to understand the
microlevel structure of the untapped market poten-
tial. First, such insight allows firms to forecast future
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sales with increased accuracy. Second, it enables firms
to better discern and measure the impact of market
primitives such as price and information dissemina-
tion rate on subscription patterns. Third, this knowl-
edge, even post-adoption, allows interested parties to
better assess the opportunities and market size for
complementary value-adding products for which con-
sumers may exhibit a willingness to pay strongly cor-
related with their willingness to pay for the original
service. Although the increasing information footprint
left by consumers of IT services allows providers to
get various signals about the willingness to pay of
their existing installed base, a lot of the information
regarding competitors’ installed bases is being made
available only at the aggregate level. Thus, to attract
and better serve the remaining untapped customers in
the market, it is important for both established incum-
bent and prospective entrant firms to be able to draw
inferences about the structure of the untapped market
potential based on observed aggregate industry-level
adoption.

The continuous-time adoption of innovative prod-
ucts and services has been traditionally explored
through aggregate models, which abstract away from
individual customer behavior in favor of simplified
sales parameterizations that facilitate tractability in
analytical frameworks and applicability in empirical
studies where individual behavior is not observed.
These aggregate models have been used in the
past to explain various adoption outcomes, including
S-shaped growth curves. We direct interested readers
to Mahajan et al. (2000) and Meade and Islam (2006)
for recent reviews of this vast literature.

Discussing the potential issues related to compara-
tive statics analysis in aggregate models, Lucas (1976)
advocates for the understanding of consumer behav-
ior and responsiveness at an individual level, for such
microlevel insights enhance the model’s predictive
power and lead to a more accurate estimation of the
market evolution. Along this line, starting from the
opposite direction and building on individual con-
sumer utility models, several papers have explored
the resulting continuous-time aggregate adoption pat-
tern. Chatterjee and Eliashberg (1990) advance a util-
ity model incorporating information flow and risk
aversion for quality, and show that it can replicate,
under various heterogeneity assumptions, the adop-
tion behavior induced by four specifically chosen
aggregate diffusion models. Madden and Coble-Neal
(2004) explore global growth of mobile services using
a dynamic utility-based model that incorporates net-
work effects and accounts for substitution effects
between wireless and fixed-line services. Other papers
move beyond explaining the adoption path and also
consider firm’s optimal strategies (e.g., Kalish 1985,
Dhebar and Oren 1986). Most research in this branch

starts from a given consumer heterogeneity structure,
and, thus, applies to a restricted set of aggregate
adoption patterns.

In this study, we attempt to reconcile the afore-
mentioned approaches—aggregate and microlevel—
and focus on the market-level adoption (as opposed
to firm-level) of subscription-based IT services in highly
competitive markets and in the presence of network
effects. The primary question this paper sets out
to address is the following: can rational consumer
behavior explain the actual observed adoption path
for a particular IT subscription-based service? To be
exact, under a given utility model, when does a well-
behaved consumer valuation (or, willingness to pay)
distribution exist such that its implied aggregate
adoption path replicates the actual observed one? Fur-
thermore, if existence conditions are satisfied, what
are the shape and properties of such a consumer val-
uation distribution? Although some analytical papers
follow a linear progression from input to output via a
certain process,1 the analytical part of this paper con-
siders a somewhat reverse direction (more common
in empirical studies) where the observed portion of
the output is given and a structure of the input is esti-
mated. Given the nature of our research question, this
study has a positive (descriptive) rather than norma-
tive (prescriptive) tone, but we also discuss various
managerial insights throughout the paper.

In approaching the above research questions, heed-
ing Lucas’ critique, we start from a consumer utility
model and study how it can generate the observed
aggregate adoption curve. We employ a dynamic
continuous-time utility model in which a continuum
of consumers, who enjoy network benefits, are differ-
entiated through their heterogeneous intrinsic valua-
tions for the service. A key characteristic of many IT
services is their susceptibility to network effects (i.e.,
the benefit to consumers often increases in the net-
work size). Network effects have been analytically
and empirically explored in association with var-
ious IT subscription-based products and services
such as mobile telecommunications (Jang et al. 2005,
Doganoglu and Grzybowski 2007, and Niculescu
and Whang 2012), Internet usage (Sing et al. 2002,
Guevara et al. 2007, and Dewan et al. 2010), software-
as-a-service and other software products delivered
under a subscription-based license (Haruvy et al.
2004, Zhang and Seidmann 2009), and cable television
(Seo 2006).

Based on this framework, when information dis-
seminates perfectly in the market, we first specify
the conditions under which well-behaved consumer

1 For example, the consumer heterogeneity (the distribution func-
tion) can be considered as input, and the aggregated adoption path
can be considered as output.



Niculescu et al.: Underlying Consumer Heterogeneity in Markets for Subscription-Based IT Services
1324 Information Systems Research 23(4), pp. 1322–1341, © 2012 INFORMS

heterogeneity can explain the observed adoption
path, and, if such conditions are satisfied, we explic-
itly derive the analytical closed-form expression
for the consumer valuation distribution. We further
extend our analysis to the more general and realistic
case in which information disseminates imperfectly
(i.e., some consumers do not update instantaneously
their information about the current state of the mar-
ket) and derive corresponding results, discussing also
the impact of awareness on adoption. We illustrate
how faster adoption can be the result of either an
increased distribution skewness toward high valu-
ation customers or a faster information dissemina-
tion rate. We also discuss scenarios in which different
subscription curves obtained under separate parame-
ters and consumer distributions may share a common
path in the beginning but might diverge in the future,
highlighting the practical importance for providers
to understand demand-side information refresh rate.
Moreover, we show that it is possible that in the later
part of the service lifecycle the subscription decision
for new customers be driven predominantly by infor-
mation dissemination instead of further price mark-
downs. In this sense, our analysis also advances the
understanding of the drivers of service adoption in
the later stages.

In the second half of the paper, based on our model
and analytic results, we propose discrete-time heuris-
tic methods for estimating underlying consumer het-
erogeneity and forecasting future sales. In special
cases, we also present a method to approximate the
rate at which awareness spreads in the market. In an
empirical exercise, we apply these heuristic meth-
ods to the Japanese mobile voice services market and
explore various information dissemination scenarios.

The remainder of the paper is organized as fol-
lows. We introduce the consumer utility model in §2.
We then characterize the underlying consumer het-
erogeneity supporting observed aggregate adoption
paths in §3. We first explore the case of perfect infor-
mation dissemination in §3.1 and then study the
case of imperfect information dissemination in §3.2.
We extend our results to time-varying consumer val-
uation scenarios in §4. In §5, we propose various
discrete-time heuristic methods based on our model
and results, and, in an empirical illustration, we apply
these methods to the Japanese mobile voice services
market in §6. We conclude in §7. For brevity, all proofs
and additional discussions are included in the online
supplement available at http://dx.doi.org/10.1287/
isre.1120.0422.

2. The Consumer Utility Model
We focus our analysis on IT-intensive subscription-
based services characterized by negligible installa-
tion or cancellation costs. Several on-demand video

streaming services (e.g., Hulu Plus, Netflix), online
music services (e.g., Rhapsody), or online backup ser-
vices (e.g., Dropbox and Mozy) fit this pattern closely.
Some telecommunications service providers are also
beginning to offer their services on a month-to-month
basis without cancellation fees and, in some cases, no
installation, activation, or sign-up fees associated. For
example, in June 2010, Verizon started offering FiOS
bundles (mixing some or all of HD cable TV, Inter-
net, and home phone services) on a month-to-month
basis (no term contract), with waived activation fee
for online orders, no cancellation fees, and most of
the auxiliary equipment rented on a monthly basis
or free with negligible installation fees (Cheng 2010).
Furthermore, Verizon and AT&T also allow month-
to-month subscription to their wireless voice and
data services without early termination fees (Verizon
Wireless 2008, AT&T 2008).2 Similar subscription pay
schemes with negligible upfront fees are also being
employed by numerous publishers of massive multi-
player online games.

We consider a competitive market scenario for
substitutable IT services where the providers are price
takers and we explore aggregate (as opposed to firm-
level) market growth based on new users adopt-
ing the service from one of the existing providers.
In that sense, migration of customers from one ser-
vice provider to another has no direct impact on the
size of the aggregate market. Subscription-based IT
services are technology-intensive and, unlike labor-
intensive services, they are characterized by decreas-
ing marginal costs per features/content/performance
level per user per unit of time due, in part, to
the decrease in cost and increase in performance of
the available supporting technological infrastructure.
Hence, corresponding relative subscription rates per
features/content/performance level usually follow
a decreasing pattern as competition pushes prices
toward marginal costs. Note that in the case of one-
time-purchase products a critical customer-mass
buildup may justify a penetration pricing strategy due
to network effects as past adopters are not influenced
by present prices and thus they may remain in the
installed base in spite of a price increase. However,
it is important to point out that in the case of compet-
itive markets for subscription-based IT services firms
often resist increasing rates, because consumers recur-
rently purchase usage per time period instead of life-
time usage. Thus, past customers would be affected

2 Such an offer is usually not accompanied by the subsidized hand-
set purchase option. However, customers are free to use their
own Code Division Multiple Access (CDMA) or Global System for
Mobile Communication (GSM) handsets. In particular, customers
can resort to secondary markets such as eBay and procure older
used handsets at cheap prices (in the case when they are only inter-
ested in voice services they can opt for devices that are several
generations older and sell at almost negligible prices).
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by current prices and, in association with a price hike,
may either switch to a competing provider or aban-
don the service class altogether (i.e., not subscribe
to the service under any of the providers). Hence,
if the service characteristics are time invariant, then
subscription rates are likely to decrease over time.
We use this setting throughout our baseline analy-
sis (§§2 and 3) and consider an exogenously given
market price (weakly) decreasing over time, which is
consistent with the empirical data we analyze to illus-
trate our theoretical framework. We will later extend
(in §4) the framework to account for the fact that ser-
vice characteristics may be enhanced over time and
price may be occasionally increasing.

We assume a continuum of potential consumers
whose utility rates at time t depend on their intrin-
sic benefit � (hereafter referred to as the customer
type) and marginal network benefit � > 0 (i.e., posi-
tive network effects) of the service. Various services
exhibit different network effect patterns. For example,
in the case of online collaboration tools delivered
under software-as-a-service model (e.g., Acrobat.com,
Google Apps for Business, Zoho Collaboration Apps),
massive multiplayer online games (e.g., Blizzard’s
World of Warcraft), online social dating sites (e.g.,
Match.com), or mobile voice services (e.g., AT&T, Ver-
izon), network effects might be relatively large as
users interact with each other extensively. On the
other hand, for other IT services such as satellite
radio (e.g., Sirius XM), cable television, or automo-
tive telematics (e.g., GM’s OnStar and Toyota’s GBook
systems) the network effects might be considerably
smaller on a relative scale as users can derive value
from the service without necessarily interacting a lot
with each other. As mentioned above, for ease of
exposition, in our baseline model (§§2 and 3), we
assume that customer types and marginal network
effects are time invariant, and type � is distributed
according to a smooth distribution function F (∈ C2)
over the interval 6�1 �̄7. Furthermore, in line with the
previous pricing assumptions, we consider that the
service is offered at an exogenously given positive
subscription rate p4t5 that is continuously differen-
tiable and weakly decreasing in time. We later relax
the above assumptions in §4 and show that our results
still hold in a more general context.

A customer may join or quit the subscription ser-
vice at any time without paying any registration or
termination fees. A customer of type � derives the
following instantaneous utility rate from consuming the
service at time t:

u�4t5= s�4t5× 4�+ � ·NF 4t5− p4t551 for t ∈�+1 (1)

where NF 4t5 represents a theoretical subscription path
that results from our utility model under a given con-
sumer type distribution F , and s�4t5 ∈ 80119 represents

the subscription decision of a consumer of type �
at time t. Note that in our baseline model, cus-
tomers derive identical network benefits and are dif-
ferentiated through heterogeneous intrinsic benefits
from using the service. Similar models have been
previously used in the literature (e.g., Katz and
Shapiro 1985, Conner 1995, Saloner and Shepard
1995, Mitchell and Skrzypacz 2005, Argenziano 2008,
Cheng and Tang 2010, Cheng and Liu 2010). Condi-
tional on her subscription decision function over time
s�2 601�5 → 80119, a consumer of type � captures the
following total utility from the service:

U4� � s�5 =

∫ �

0
u�4t5 dt

=

∫ �

0
s�4t5× 4�+ �NF 4t5− p4t55 dt0 (2)

Let �= 8s̃ � s̃2 601�5→ 801199 represent the set of fea-
sible consumer subscription decision functions. In our
model, customers exhibit rational behavior in the
sense that they try to maximize the overall utility
from the service via subscription decisions over time:

s∗

� = arg max
s�∈�

U4� � s�50 (3)

Furthermore, we assume that the consumer market
for the service is very large such that consumer col-
lusion at adoption level, if any, is negligible. Because
we consider a continuum of consumers, the action
of an individual consumer will bear no impact on
the actions of others. Consumers make their pur-
chase decision individually based on their belief and
expected evolution of the market. In the absence of
collusion, we focus on the analysis of IT-intensive
subscription services without substantial signup or
cancellation costs, which, given the option of repeated
subscription renewals, induce a myopic consumer
behavior based on the current information set.3 More
precisely, rational consumers will subscribe in a given
time period if the expected instantaneous utility rate for
that particular period (based on their current informa-
tion set) is nonnegative. Because the game (subscrip-
tion decision) is repeated in the next period, any

3 By contrast, we point out that there exist other types of IT
products characterized by a one-time purchase and no recurrent
fees (e.g., operating systems and hardware). For such products,
forward-looking consumers may be strategically holding out on
their purchase, waiting for a price markdown in the future (e.g.,
Song and Chintagunta 2003, Nair 2007). In that sense, expectation
of future prices affects current consumer behavior. However, in our
model of subscription-based services, customers are charged sub-
scription rates only for the duration of their subscription and they
can drop or join the services at any point in time without any addi-
tional costs. As a result, in our model, future subscription prices do
not affect the current period’s decision; i.e., customers make their
decision in a repeated context and their optimal decision becomes
effectively myopic.
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anticipated future decrease in price or increase in
installed base does not impact the decision during the
current period.

Some customers may not be immediately aware of
new services or recent changes in market conditions
due to slow dissemination of information (see, e.g.,
Dodson and Muller 1978, Kalish 1985, Horsky 1990,
Morris and Shin 2006). In this paper, we employ a
sticky-information model similar to the one in Mankiw
and Reis (2002), whereby at any given moment, only
a fraction � ∈ 401 17 of the potential customers update
the current information on market primitives (e.g.,
existence of or subscription rate for the service) to
the current state. Furthermore, prior to adoption, each
customer is equally likely to update her informa-
tion, regardless of how much time has elapsed since
her last update. In our model, once a consumer sub-
scribes, it does not matter whether she changes her
information refresh rate post-adoption.

When adoption started at time t or before, we
denote by �4t5 the lowest-type customer whose real
instantaneous utility would be nonnegative at time t
in equilibrium if she adopted; that is,

�4t5= max
{

p4t5− �NF 4t51 �
}

0 (4)

Let m denote the total market potential. We define
Q4t5 as the pool of qualified potential customers at
time t, i.e., those potential customers whose real
instantaneous utility would be positive at time t if
they subscribe, or, equivalently,

Q4t5
4

=mF̄ 4�4t551 (5)

where F̄ 4�4t55= 1− F 4�4t55. Unless �= 1, at any given
time t, some of the qualified consumers make their
subscription decision based on outdated sticky infor-
mation that may induce a fraction of them to delay
subscribing to the service; that is, NF 4t5 ≤ Q4t5. Once
a consumer subscribes to the service, she will con-
tinue to subscribe in the future because of the nonin-
creasing price pattern. When �= 1, we point out that
NF 4t5=Q4t5.

At any time t > 0, assuming continuity of the
adoption path, new subscribers come from two sub-
groups. The first subgroup, of size Q4t5 − NF 4t5,
consists of qualified customers who had positive
instantaneous utility rate prior to time t but had not
adopted yet because they were not aware of cur-
rent market conditions. Among those, � proportion
of them update to the current information at time
t and consequently adopt. The second subgroup, of
size Q̇4t5 = ¡Q/¡t, consists of potential customers
who just became qualified because their instanta-
neous utility rate turned positive in the immediate
vicinity of t. Similarly, � proportion of them become
informed and subsequently adopt at time t. Thus, the

sticky-information model yields the following adop-
tion dynamics:

ṄF 4t5= �
[

Q4t5−NF 4t5
]

+�Q̇4t50 (6)

To ensure the uniqueness of the continuous adop-
tion path as a result of the equilibrium in continuous
time, we impose the following regularity conditions:

(RC) The type distribution F satisfies
(i) F ∈C2 and 0 < f 4�5 < 1/4��m51 ∀� ∈ 6�1 �̄7,
(ii) �+ �mF̄ 4�5 < �̄1 ∀� < �̄.

A distribution F satisfying condition (RC.i) associates
nonzero density with every customer type. Further-
more, it also requires that the magnitude of the net-
work effects is not so strong to lead to the jumps
in the adoption path. In addition, (RC.ii) is related
to a unique and smooth adoption at time t = 0. If
(RC) is violated, there may be sudden jumps in the
subscription base due to large masses of customers
clustered around certain type values, or there may
exist multiple equilibria. We present a detailed discus-
sion and examples of such cases for � = 1 in Online
Supplement B.

3. Characterization of Implied
Consumer Heterogeneity

In the previous section we have introduced a sub-
scription model based on consumer utility maximiza-
tion. Next, we explore whether a smooth observed
aggregate adoption path can be explained through
this consumer utility framework. Through this analy-
sis, we advance the understanding of consumer sub-
scription behavior based on rational consumer choice.

Let N4t5 be the size of the actual installed base of
adopters at time t that we observe from the data.
Define G4t5 as the fraction of subscribers at time t,
i.e., G4t5

4

=N4t5/m. In this study, we focus on smooth
increasing adoption curves (G is differentiable and
g4t5

4

= Ġ4t54= ¡G/¡t5 > 0) with no instantaneous mass
of adopters (G405 = 0) and full saturation attained
asymptotically (limt→� G4t5= 1).

One of our primary goals is to estimate a consumer
type distribution F that can explain an observed con-
tinuous adoption path G under our utility model, i.e.,
to derive the consumer type distribution(s) F such
that the corresponding theoretical subscription path
NF 4 · 5 matches the observed subscription path N4 · 5.
We first focus on the simple idealized case of per-
fect information dissemination in which �= 1 in §3.1.
We then consider the more realistic, imperfect informa-
tion dissemination case in which 0 <�< 1 in §3.2.

3.1. Perfect Information Dissemination
In this section, we consider perfect information dis-
semination, i.e., � = 1, where all qualified consumers
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are aware of the service existence and its current
market attributes such as prices and subscription
base. Consider the case where firms are customers
of IT services. We would expect some of the mar-
kets for niche IT subscription-based enterprise ser-
vices to exhibit fast information dissemination rates,
thus being close to this idealized case. In competitive
environments, companies nowadays are increasingly
proactive in keeping up to speed with the market evo-
lution and available solutions in a continuous effort
to boost competitive advantage by increasing effi-
ciency, cutting costs, and enhancing their portfolio of
products and services offered. Some of this informa-
tion search is conducted internally by IT departments
within the firms. In addition, recognizing the poten-
tial high impact of such IT services on firms’ per-
formance at all levels of the value chain, a mature
and rapidly growing IT consulting industry focuses
on delivering value to enterprises by identifying and
recommending improved IT solutions based on most
current products and services available. Furthermore,
information about a particular solution is also spread
in the market by IT services companies specialized in
the implementation and integration of that solution.

In this case, Q4t5 = NF 4t5 = mF̄ 4�4t55 for all t, and
the adoption path is characterized by Equations (4)
and (5). Furthermore, (RC.i) implies that � + �mF̄ 4�5
is strictly increasing in �, and hence, (RC.i) implies
(RC.ii).

The following result characterizes the existence and
explicit form of a well-behaved consumer type distri-
bution that can generate the observed adoption path
G under our microstructure model.

Theorem 1. Let

P̃ 4

=
{

p4 · 5 � p2 601�5→�+1 p405= �̄1

ṗ4 · 5 < 01 p4�5= �+ �m
}

1 (7)

where p4�5 = limt→� p4t5. If � = 1, then the following
results hold:

(a) If p ∈ P̃, then there exists a unique consumer type
distribution F satisfying 4RC5 that generates the observed
adoption path G4t5, which is given by

F 4�5= 1 −G4�−14�551 (8)

where �4t5= p4t5− �mG4t5. Moreover, �4t5= �4t5.
(b) Otherwise, there does not exist any distribution F

satisfying (RC) that can yield G4t5.

For the price paths in P̃, first, p405 = �̄ ensures
that the adoption starts smoothly at t = 0. Otherwise,
either adoption does not start at t = 0 (p405 > �̄), or
there is a jump at t = 0 (p405 < �̄). Next, if p4�5 > �+

�m, the lowest type customer never subscribes to the
service, and hence limt→� G4t5 < 1. Therefore, no cus-
tomer type distribution F that contains nonzero mass

around the lowest type—in particular, distributions
satisfying condition (RC.i)—can explain the observed
adoption path G that asymptotes to one. In contrast,
if p4�5 < � + �m, the full adoption occurs in a finite
time, which then cannot satisfy a strictly increas-
ing adoption path (g4t5 > 0) afterward. In addition,
if ṗ4t5 = 0, then adoption stalls momentarily. Conse-
quently, p4�5= �+�m together with ṗ4 · 5 < 0 ensures
a strictly increasing adoption path.

Theorem 1 provides the analytical closed-form
representation of the consumer heterogeneity that
explains the observed adoption path based on con-
sumer utility optimization. This result can be of
important managerial relevance. For example, firms
can derive portions of the consumer distribution F
from the observed adoption path, fit a parameteriza-
tion to it, and then estimate the unobserved distribu-
tion of types who have not adopted yet and forecast
future sales (as will be detailed in §5). We present a
simple example to better illustrate Theorem 1.

Example 1. Consider � = 1. Suppose that G4t5 =

1 − e−t and p4t5 = 41 + e−t5/2. Further, assume that
�m = 1/2, � = 0, and �̄ = 1. Note that p ∈ P̃ holds. In
this case, �4t5 = e−t , and the corresponding F 4�5 = �,
for � ∈ 60117, i.e., � ∼U60117. �

Interestingly, note that the simple uniform type dis-
tribution in Example 1 can generate exponentially
decaying adoption path in equilibrium under our con-
sumer utility model.

3.2. Imperfect Information Dissemination
In this section, we consider the case of � < 1,
which allows us to explore significantly more real-
istic scenarios. First, it is more likely that infor-
mation disseminates in an imperfect way. Second,
note that customers adopt in the decreasing order of
their types under perfect information dissemination
(�= 1). However, under imperfect information dis-
semination, we accommodate a more plausible sce-
nario where this adoption ordering is not required, as
new adopters do not have to be only the newly qual-
ified customers but can be previously qualified cus-
tomers as well, as detailed in Equation (6). Third, as it
will be further demonstrated in this section, imperfect
information dissemination (� < 1) also enables us to
derive the consumer type distribution when the price
is weakly decreasing, compared to a strictly decreasing
price path as required in Theorem 1 in §3.1.

Depending on the characteristics of the subscrip-
tion services, the information dissemination factor
may vary. For example, if the services are related
to hedonic consumption (e.g., video-on-demand ser-
vices or online music streaming services), then one
might expect them to exhibit lower information dis-
semination compared to utilitarian services related
to necessities (e.g., mobile voice services or Internet
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access) that engender more information seeking from
customers.

For a distribution F satisfying (RC) to generate a
smooth adoption path, it is further necessary to have
p ∈P, where

P=
{

p4 · 5 � p2 601�5→�+1 p405= �̄1

ṗ405 < 01 ṗ4 · 5≤ 0
}

0 (9)

Note that p ∈ P guarantees a smooth adoption path
at time 0. In this case, adoption never stalls, pro-
vided that p ∈P. Because of dissemination of updated
information, the installed base is strictly increasing
even when all potential consumers are qualified. Sup-
porting Lemmas A1 and A4 in the Online Supple-
ment A discuss these properties. Further, as discussed
in §3.1, for a distribution F satisfying (RC) to yield
full asymptotic adoption, price paths should satisfy
p4�5≤ �+ �m.

Let
tG

4

= inf
{

t � �+ �mG4t5≥ p4t5
}

1 (10)

denote the earliest time at which all customers are
qualified if the adoption path follows G; in other
words, even the customer with the lowest type � is
willing to adopt the service at time tG if she is aware
of the current information. Because p4�5≤ �+�m and
p ∈P, tG is uniquely defined, and �+�mG4tG5= p4tG5.
For technical reasons, in addition to the previous con-
ditions, we assume that G4 · 5 is twice continuously
differentiable up to tG.

For expositional clarity, we break down the analysis
and first study the case in which full qualification can
only happen in an infinite time, i.e., tG = �, in §3.2.1.
We then explore the case in which full qualification
occurs in a finite time, i.e., tG <�, in §3.2.2.

3.2.1. Full Qualification in Infinite Time. In this
section, we study the case where p4�5= �+�m. Note
that, in this case, the lowest type consumer, �, is qual-
ified only at time infinity; that is, tG = �. We next
derive the consumer heterogeneity implied by the
observed adoption path, G, and the observed price
path, p:

Theorem 2. (a) Under p ∈ P, p4�5 = � + �m, and
�< 1, if the following two conditions are satisfied for all
t > 0,

(i) 41 −�5

∫ t

0 e
−4t−z5g4z5dz

g4t5
< 13 and

(ii)
41 −�5

�

∫ t

0
e−4t−z5g4z5dz <

p405− p4t5

�m
1

then there exists a unique F� that satisfies (RC) and induces
the observed service adoption path G, and it is given by

F�4�5= 1 −
1
�

∫ �−14�5

0
ez−�−14�5

[

g4z5+�G4z5
]

dz1 (11)

where �4t5= p4t5− �mG4t5.

(b) If either condition (i) is violated or p 6∈P, there does
not exist any consumer type distribution F satisfying (RC)
that can generate G in association with the given �.

Condition (i) is a necessary condition for the exis-
tence of a well-behaved consumer heterogeneity dis-
tribution function, i.e., satisfying (RC). Note that the
numerator on the left-hand side of condition (i) con-
tains the information on the historical adoption rate,
g4s5 for s ∈ 601 t7, with a heavier discount for rates fur-
ther in the past. It is useful to illustrate the meaning
of this condition in the context of traditional S-shaped
adoption curves. As long as the adoption rate, g4t5,
is weakly increasing (early adoption), condition (i) is
always satisfied. When/if g4t5 starts to decrease (later
adoption, beyond inflexion point, closer to market sat-
uration), this condition restricts the adoption speed
decay rate contingent on the information dissemina-
tion factor �, in the sense that it cannot decay too fast.
Technically, it guarantees that the function (11) is a
proper distribution function; specifically, F is strictly
increasing in �. Condition (i) furthermore provides a
lower bound for � based solely on aggregate adoption
data. Information dissemination rates may be hard to
estimate directly in practice. As we see from Figure 1,
provided that � is high enough, slight approximation
errors will still yield a fairly robust estimation of the
distribution. Note that conditions (i) and (ii) are both
automatically satisfied when �= 1.

Condition (ii) provides a lower bound on how fast
the subscription rate p4t5 can decrease for a given
information factor. For example, when information
disseminates slowly, i.e., under low �, in order to gen-
erate further adoption, the price should decrease fast
enough. At the same time, condition (ii) can also be
interpreted as another lower bound for � given that
41 −�5/� is decreasing in �. Furthermore, technically,
this condition guarantees that F satisfies (RC.ii).

Theorem 2 provides the complete analytical charac-
terization of the consumer heterogeneity that explains
the observed adoption path based on consumer util-
ity optimization under imperfect information dissem-
ination and full qualification in infinite time. We
present two examples and a figure to better illustrate
Theorem 2.

Example 2. Consider p4t5 = b + ae−�t and G4t5 =

1−e−�t . Further, suppose that � = b−�m and �̄ = a+b
with 1/2 < � ≤ � < 1 and �m ≤ a. Note that p4t5 is
strictly decreasing with p405 = �̄ and p4�5 = � + �m.
Both conditions (i) and (ii) in Theorem 2 are satis-
fied for t > 0. In this case, �4t5= �+ 4�̄− �5e−�t , from
which we obtain �−14�5= −41/�5 ln4�− �5/4�̄− �5.
Then from (11), it follows that

F�4�5

=
4�−�54�− �5+�41−�54�̄− �544�− �5/4�̄− �551/�

�41−�54�̄− �5
0
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Figure 1 Illustration of Theorems 1 and 2 via Example 2
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Notes. Panel (a) plots an actual observed adoption path over time. Panel
(b) plots the derived underlying consumer type distribution based on the
individual utility model under five different values of information dissemina-
tion factor � = 001100310051007100911. The specification and the remaining
parameter values are p4t5 = 005 + 105e−001t , G4t5 = 1 − e−001t , m = 1, and
� = 005.

The probability density function is then

f�4�5=
�−�+ 41 −�544�− �5/4�̄− �5541/�5−1

�41 −�54�̄− �5
0

Note that, as a special case, if � = �, � = 0, and
�̄ = 1, then this distribution becomes Beta(1/�, 1) dis-
tribution. We point out that we can also consider the
case of � = 1, leaving the rest of parameter specifi-
cations unchanged, which represents a valid exam-
ple for Theorem 1. This example is also illustrated in
Figure 1. �

In Example 2, the complete retrieval of type distri-
bution F 4�5 benefits from the fact that we can explic-
itly invert �4�5. However, even if we cannot invert
�4�5 explicitly, Theorem 2 can still be used to obtain
a full characterization of consumer type distribution,
as illustrated in Example 3.

Example 3. Consider p4t5 = b + ae−t and G4t5 =

1 − e−�t . The rest of the parameters obey all condi-
tions given in Example 2. The only difference from
Example 2 is that the specification of p4t5 does not
contain �. It can be easily seen that conditions (i)
and (ii) in Theorem 2 are satisfied. In this case, we
do not have an explicit form for �−14t5. Nevertheless,
given that �4t5 is a bijection from 601�5 to 6�1 �̄7, con-
sumer heterogeneity is given by the following system
of equations

�4t5= b− �m+ ae−t
+ �me−�t and

F�4�4t55=
�41 −�5e−t + 4�−�5e−�t

�41 −�5
0 �

As illustrated in Examples 2 and 3, and Figure 1,
we can derive consumer type distribution F� from the
observed adoption path and the price path for a given
information dissemination factor, �. Further, in these
examples, note that all pairs 8�1 F�4 · 59 for � ∈ 6�115
yield the same adoption path G4t5. To better under-
stand this outcome, suppose that we have two differ-
ent scenarios 8�11 F�1

9 and 8�21 F�2
9, such that �1 >�2,

but F�2
has more of high types and less of low types

than F�1
(i.e., F�2

stochastically dominates F�1
). Then,

under �2, a higher fraction of consumers are qualified,
but fewer of them have current market information,
while the opposite happens under �1. This way, these
different settings could potentially yield an identical
subscription path G4t5. The result is formalized next:

Proposition 1. For p ∈ P, if tG is infinite, or equiva-
lently, p4�5= �+ �m, then

(a) if for some value �< 1, all conditions in Theorem 2
are satisfied, then these conditions also hold for all
�̃ ∈ 4�115;

(b) either 415 there does not exist any � < 1 such that
a corresponding F� satisfying 4RC5 generates G4t5, or
425 there exists a continuum of pairs 8�1 F�9 with � < 1
and F� satisfying 4RC5, which yield the subscription path
G4t5; moreover, both scenarios are possible;

(c) if for both �2 <�1 < 1, all conditions in Theorem 2
are satisfied, then F�2

stochastically dominates F�1
(and,

implicitly, Q24t5≥Q14t5 for all t ≥ 0).

Figure 1 illustrates Proposition 1. As can be seen
in Figure 1(b), different � values can generate the
same adoption path G4t5 depicted in Figure 1(a). Fur-
thermore, as stated in part (c) of Proposition 1, the
underlying consumer type distribution corresponding
to the lower � values stochastically dominates the dis-
tribution corresponding to the higher � values. In this
sense, estimating the � values is important in order
to understand the consumer type distribution. How-
ever, as we can see in Figure 1(b), for this example, as
long as the � values are relatively large, e.g., greater
than 005, the consumer type distribution functions do
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not change much; that is, the type distribution can be
robust for certain � values.

So far, we have studied a given market with
an observed adoption path and we explored differ-
ent scenarios with various information dissemination
rates � that lead to this adoption path. We end this
section by discussing the relevance of our results in
the context of similar markets (in terms of prices,
network effects, and market potentials) that exhibit
different adoption paths. We compare the impact of
information dissemination rates and adoption speeds
on consumer heterogeneity. Figure 2(a) depicts dif-
ferent adoption paths G1 and G2, where G2 captures
faster adoption compared to G1. Ignoring the impact

Figure 2 Comparison of Two Different Adoption Paths and the
Corresponding Underlying Consumer Type Distributions
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Notes. Panel (a) plots two different adoption paths: G14t5 = 1 − e−005t and
G24t5 = 1 − e−0065t . Panel (b) plots the corresponding underlying consumer
type densities with the specified � values: f1 for G1 and f2 for G2. The price
path is p4t5 = 1 + e−t for both. The remaining parameter values are m =

10 and � = 0001. These parameter values and price function satisfy condi-
tions (i) and (ii) in Theorem 2.

of information dissemination (i.e., under fixed �), one
would expect that faster adoption in the beginning be
induced by larger mass around high type consumers.
Indeed, we observe this point by comparing f1 ��=0075
and f2 ��=0075 in Figure 2(b), which illustrates the con-
sumer type density function generating the actual
adoption paths in Figure 2(a); fi yields the adoption
path Gi, for i = 81129. However, if one factors informa-
tion dissemination rates into consideration, the rela-
tionship can change. For example, note that f2 ��=009
also generates G2, which represents faster adoption
than G1 induced by f1 ��=0075. In this case, the den-
sity function f2 ��=009 has relatively fewer high-type
consumers than f1 ��=0075. However, it generates faster
adoption because of faster information dissemination.

3.2.2. Full Qualification in Finite Time. In the
previous sections, we have considered the case in
which the lowest type customer can only be qual-
ified in infinite time, i.e., tG = �, or equivalently,
p4�5= �+ �m. We now consider the less restrictive
case in which the lowest type customer is qualified in
finite time; that is, tG is finite.

Theorem 3. (a) Under p ∈ P, p4�5 < � + �m, and
�< 1, if the conditions (i) and (ii) for t ∈ 601 tG5 in Theo-
rem 2 and the following conditions (iii) and (iv) are jointly
satisfied,

(iii)
∫ tG

0
ez−tG 6g4z5+�G4z57 dz= �3

(iv) there exists tc ∈ 601 tG7 such that

g4t5

1 −G4t5
= � for all t ∈ 6tc1�5,

then there exists a unique distribution F� that satisfies
4RC5 and induces the observed service adoption path G,
and it is given by

F�4�5= 1 −
1
�

∫ inf8�−14�59

0
ez−inf8�−14�596g4z5+�G4z57 dz1

(12)

where �4t5= max8�1 p4t5− �mG4t59.
(b) If any of the conditions (i), (iii), or (iv) is violated,

or p 6∈P, there does not exist any consumer type distribu-
tion F satisfying 4RC5 that can generate G in association
with the given �.

Note that, compared to the analysis in Theorem 2,
we require two more conditions, (iii) and (iv). First,
when tG is infinite as in §3.2.1, condition (iii) is
always satisfied (see Lemma A7 in the Online Supple-
ment A) and condition (iv) is not relevant. For NF 4t5=

N4t5 = mG4t5 to hold, from the definition of tG, it
must be true that �4tG5 = � < �4t5 for any t ∈ 601 tG5.
Alongside condition p4�5 < � + �m, condition (iii)
captures the necessary dynamics between �, p, and G
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(and, implicitly tG) that guarantee that, under the
proposed distribution F , the lowest type customer
becomes qualified precisely at time tG. Condition (iv)
provides the adoption behavior after all consumers
are qualified (t > tG). Beyond tG, the information dis-
semination and the associated awareness govern the
adoption path; that is, the evolution of the adop-
tion path in (6) becomes ṄF 4t5= �4m−NF 4t55 because
Q4t5=m and Q̇4t5= 0. Thus, the pool of qualified cus-
tomers who have not adopted yet decays at a rate �,
which then yields an adoption path with a constant
hazard rate � beyond tG, as stated in condition (iv).

We highlight here an important advantage of our
microlevel adoption model over many industry-level
aggregate diffusion models. Many extant aggregate
growth models that include price effects are parame-
terized in the form Ṅ 4t5= �4N 4t51 p4t55 with ¡�/¡p < 0
(e.g., Robinson and Lakhani 1975, Kalish 1983, Sethi
and Bass 2003). According to these models, as long
as full saturation has not been achieved, any further
price markdowns accelerate adoption. By accounting
for imperfect information dissemination, our model
accounts for the fact that beyond a certain point (tG),
adoption may be solely driven by information dis-
semination given that full qualification has been
attained. In such scenarios, aggregate models will fail
to properly explain/forecast late adoption.

We present an example with a figure to demon-
strate how to obtain the consumer type distribution
when full adoption occurs in a finite time, as pre-
sented in Theorem 3.

Example 4. Suppose that

G4t5=

{

a1t if t ≤ tc3

1 − e−�t if tc ≤ t1
(13)

where a1 = �41 − 1/e5. Then from the continuity, we
obtain tc = 1/�. Suppose that � = 0 and �̄ = 10. Fur-
thermore, let �m = 1. Denote � = �4�̄ − 41 − 1/e55 and
consider

p4t5=

{

�̄− �t if t ≤ �̄/�3

0 if �̄/�≤ t0

Then from (10), we obtain tG = tc = 1/�. Suppose
that � = � and it is the unique solution in 60117 that
satisfies

(

1 −
1
e

)

42 −�− e−1/�41 −�55= 11 (14)

which is about 003747. Then all conditions (i)–(iv) are
satisfied. In this case, we have

�4t5=

{

�̄− �t − a1t if t ≤ tc3

0 if tc ≤ t0

Taking an inverse function, we obtain �−14�5 =

4�̄−�5/4�+a15, for � ∈ 6�1 �̄7. Then, after simplification
and using (14), the corresponding distribution func-
tion can be written as

F�4�5=
1
e

×
e�/4��̄5 − 1
e1/� − 1

+

(

1 −
1
e

)

×
�

�̄
1

which is a weighted average of two distribution func-
tions, one of which is U601 �̄7. Example 4 is illustrated
in Figure 3 using a solid line. �

In Example 4, one important aspect to note is that
the information dissemination factor � is uniquely
determined in this case where full qualification occurs
in a finite time. This observation actually holds in gen-
eral as shown in the following proposition:

Proposition 2. For p ∈ P, if tG is finite, or equiva-
lently, p4�5 < �+ �m, there can be at most one � ∈ 40115
that can generate G4t5.

The result in Proposition 2 is in contrast with the
result presented in Proposition 1, in which we have
shown that when full qualification can happen only at
an infinite time, there can exist a continuum of pairs
8�1 F�9 that can generate the same observed adop-
tion path G. When full qualification occurs in finite
time, uniqueness of the information dissemination
factor � is dictated by the necessity of G to exhibit a
constant hazard rate from tG onward, which implies
�= g4t5/41 −G4t55 for all t ≥ tG. Thus, if we observe
the adoption path over the entire time horizon, we
can uniquely identify 8�1 F�9. From a practical per-
spective, one natural question to follow is whether
the same result holds if we observe the adoption path
only up to a given time t. The following proposition
answers this practical question:

Proposition 3. Consider p ∈P, and a pair 8�1 F�9 sat-
isfying 4RC5 that generates increasing smooth adoption
path G�. If tG�

is finite, the following hold:
(a) For any t1 > tG�

, there does not exist any other
smooth adoption path G1 supported by a pair 8�11 F�1

9
satisfying 4RC5 such that G1 6= G� but G14t5 = G�4t5
∀ t ∈ 601 t17.

(b) For t0 < tG�
, it is possible to have multiple dis-

tinct adoption paths G0, each supported by a pair 8�01 F�0
9

satisfying 4RC5 such that G0 6= G� but G04t5 = G�4t5
∀ t ∈ 601 t07.

If the adoption path is observed up to t1 > tG, the
unique 8�1 F�9 can be estimated from the adoption
path G, as stated in part (a) of Proposition 3. This part
provides the positive implication that we do not need
to observe the complete adoption path to uniquely
identify the customer type distribution and the infor-
mation dissemination factor. As long as we observe
the adoption path up to a time greater than the full
qualification time, our methodology generates unique
estimation of the customer type distribution.
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Figure 3 Illustration of Example 4 (Solid Line in All Three Panels) and Proposition 3
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Notes. Panel (a) plots the observed adoption path. Panel (b) depicts the hazard rate for adoptions over time. Panel (c) plots the derived underlying consumer
type distribution. The functional forms of G14t5 and p4t5 are given in Example 4 with tG1

= tc and �1 = �. In addition, G24t5 = a1t if t ≤ t0, G24t5 = a1t +

a24t − t05
3 if t0 ≤ t ≤ tG2

, and G24t5= 1−a3e
−�2 t if t ≥ tG2

. The parameter values are �= 00375, m = 1, � = 1, a= 00237, �= 3051, � = 0, �̄ = 10, a2 = 00237,
a3 = 00738, t0 = 105, tG1

= 2067, tG2
= 2059, �1 = 00375, and �2 = 00847.

However, one needs to be careful: If the adoption
path G is specified only until t0 < tG, many differ-
ent pairs 8�1 F�9 can be consistent with the observed
data, but, the generated adoption path after t0 from
different pairs 8�1 F�9 may diverge as illustrated in
Figure 3. Two different type distributions, as depicted
in Figure 3(c), lead to the same adoption path up to
the observed time period t0, diverging afterward, as
illustrated in Figure 3(a). Furthermore, they also have
different � values, i.e., the stabilized levels of haz-
ard rates as depicted in Figure 3(b). In this case, one
needs to estimate the information dissemination fac-
tor � from another source of data.

4. Extension: Increasing Product
Valuation Over Time and
Nondecreasing Subscription Rate

So far, we have considered the model in which intrin-
sic valuation � and marginal network benefit � are
constant over time together with nonincreasing price
path p4t5. It may be possible that the intrinsic valua-
tion as well as the benefits derived via network effects
are increasing over time because of consumer learning
as well as the advances in technology, interconnectiv-
ity, and service versatility (variety of content deliv-
ered, tasks facilitated, or benefits received through
that service). Such enhancements can also be accom-
panied by a price increase due to development and
provision costs as well as increased willingness to pay
of the customers. For example, very recently, Big Fish
Games became the first publisher of casual games to
be allowed to offer access to its products on iPad
via a monthly subscription service (Satariano 2011).
Under the current service, for a $4.99 monthly rate,
customers gain unlimited access to a library of games.
A price increase to $6.99 has been announced for early

2012, which will occur concomitantly with the addi-
tion of new games to the library. The intrinsic service
valuation � is likely to increase for most customers as
more video game content will be accessible per time
period. Moreover, several such games have associated
community rankings allowing players to benchmark
performance against each other, consumer forums,
multiplayer capabilities, and/or in-game chat func-
tionality. Thus, an active network adds more value to
each user. In addition, the strength of network effects
may also increase in the future because more content
might also be associated with more gameplay and,
thus, more time spent interacting with other users per
subscription period.

Suppose overall benefits increase over time at a rate
�4 · 5 with �4t5 > 0 and �̇4t5 > 0 for all t ≥ 0, and the
instantaneous utility rate at time t for a consumer of
type � is

�4t5× 4�+ �N4t55− p4t5

= �4t5

(

�+ �N4t5−
p4t5

�4t5

)

0 (15)

In the absence of significant lock-in fees, the analy-
sis in §2 remains valid and the subscription decision
at time t depends on the sign of �+�N4t5−4p4t5/�4t55,
because consumers become qualified as soon as their
utility rate becomes positive. Note that in this case,
as long as p4t5/�4t5 is decreasing, our previous results
continue to hold via a simple transformation of p4t5
using p̃4t5= p4t5/�4t5. If p4t5 is decreasing, p4t5/�4t5 is
also decreasing. Moreover, even if p4t5 is increasing,
as long as the value to the users increases faster than
price, p4t5/�4t5 can still be decreasing. Essentially, the
analysis can be easily extended as long as the recip-
rocal, i.e., �4t5/p4t5, is increasing in time. Note that
�4t5/p4t5 can be interpreted as an index for the rel-
ative valuation per dollar of the service (bang for
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the buck). In many cases, as technologies advance,
this index tends to increase either because of cost
decrease and/or because of increased features and
content, in which case our model can be applied. Fur-
thermore, our model can also accommodate cases in
which the associated value �4t5 decreases over time as
long as the relative valuation per dollar of the service
increases over time (i.e., subscription rates decrease
very fast).

5. Discrete Time Heuristics
To use the model introduced in §2 on real data, one
would first need to convert it to a discrete-time set-
ting. We illustrate in this section how to discretize the
model and discuss various heuristic steps to estimate
several parameters, derive a truncated empirical dis-
tribution, and forecast future subscription patterns.

Throughout this section we assume that �, m,
and adjusted price p̃4 · 5 (as defined in §4) are
given. Assume there have been tO time periods from
the introduction of the IT service until the end of the
available data, including a period t = 0 just before the
release of the service. We divide the data into two sets:
(i) unavailable, left-censored subscription and price
data in very early periods t ∈ ìLC = 80111 0 0 0 1 tLC9
(time series exhibit left censoring if tLC > 0), and
(ii) observed subscription and price data for periods t ∈

ìO = 8tLC + 11 0 0 0 1 tO9. In this paper we are concerned
with market rather than firm-level analysis. Some of
the firms may not reveal early adoption data to other
firms. In our analysis, we are careful in addressing the
issue of left-censored data when we explain observed
adoption and forecast future market evolution.

5.1. Discrete Model
Using time period as the unit, and starting with ini-
tial value N0 = 0, Equations (4), (5), and (6) can be
discretized for every t > 0 in the following way:

�t = max8�1 p̃t − �Nt−191 (16)

Qt =

{

m1 if �t = �1

m41 − F 4�t551 if �t > �1
(17)

Nt = �Qt + 41 −�5Nt−11 if t > 01 (18)

where the last expression captures new adopters
Nt −Nt−1 arriving at a rate � from two pools: (i) cus-
tomers who were previously qualified but did not
have updated information (i.e., Qt−1 − Nt−1), and
(ii) customers who just became qualified in period t
(i.e., Qt −Qt−1). Because Nt is a weighted average be-
tween Qt and Nt−1, the above dynamics keep Nt below
m without any added constraint. Also, similar to the
continuous case, we define

tG
4

= min
{

t � �+ �Nt−1 ≥ p̃t
}

(19)

as the earliest time when all potential consumers in
the market are qualified.

5.2. Test For Full Qualification
For t ∈ìO we observe both p̃t and Nt . Assuming � is
known, we can test via Equation (19) whether or not
tG occurred prior to period t. Thus, using past sub-
scription data we can estimate whether further price
markdowns will impact future consumer subscription
decisions or not. Moreover, we know that full qual-
ification is possible only when limt→� p̃4t5 ≤ � + �m,
which can be tested as well if we have a parameteriza-
tion of p̃4t5 that allows us to asymptotically estimate
the future evolution of price.

5.3. Approximation of Information Dissemination
Rate Under Full Qualification

Suppose our data indicates that tG ∈ìLC ∪ìO (i.e., full
qualification occurred before period tO). For all t ≥ tG,
we have Qt =m and Nt −Nt−1 = �4m−Nt−15 or

�=
Nt −Nt−1

m−Nt−1
1 ∀ t ≥ tG0 (20)

If tG = tO , then we have only one hazard rate point to
approximate �. However, if tG < tO , then the observed
hazard rate of adoption should be close to � (� plus
some noise) for all t ∈ 8tG1 tG + 11 0 0 0 tO9 ∩ìO . In that
case, we can fit a line to the observed hazard rate
points beyond tG to better approximate information
dissemination rate �.

If full qualification did not occur yet, the results of
Proposition 3, although in continuous time, indicate
that there may be identification problems as multiple
values of �, each in association with a corresponding
type distribution F�, may lead to the same observed
pre-full-qualification subscription path. In that case,
for identification purposes, an exogenous estimation
of � should be executed before our model can be
applied. However, our model still allows for the
exploration and comparison of various scenarios of
information dissemination, as will be detailed in §6.2.

5.4. Fitting the Consumer Type Distribution
Firms are interested in finding out the shape of the
consumer type distribution for various reasons. First,
such information can provide important clues as to
how the subscription pattern will unfold in the future,
as firms would have an estimate of the number
of untapped customers at each valuation level. Sec-
ond, it can indicate whether future adoption will
be impacted by price decreases or it will be mostly
driven by information dissemination (depending on
when full qualification occurs). Third, firms might
be interested in the distribution of consumer types
with respect to a certain IT service even ex post adop-
tion because they may target those same customers
with complementary products and services for which
the customers’ willingness to pay might be correlated
with the willingness to pay for the initial service.

In this subsection, we assume that we have values
for �, �, m, and p̃4 · 5.



Niculescu et al.: Underlying Consumer Heterogeneity in Markets for Subscription-Based IT Services
1334 Information Systems Research 23(4), pp. 1322–1341, © 2012 INFORMS

5.4.1. Discrete Approximation of Observed Em-
pirical Distribution. To understand the density of
consumers at each intrinsic valuation level, firms
would ultimately want to fit a continuous distribution
to the discrete data. An initial step in this process
would be to choose a standard distribution with a lim-
ited number of parameters. This is particularly impor-
tant when full qualification has not been achieved
because customers at the low end of the distribution
did not start adopting yet and a parameterization of
the distribution function would allow firms to extend
it to the unobserved types. In making an educated
guess, firms would benefit from an initial rough dis-
crete approximation of the distribution curve in order
to gain insight into the properties of the distribution.
The model and methods previously established help
the firm come up with such a discrete estimate.

In this subsection, we derive estimates for the pairs
8�e

t 1 F
e
� 4�

e
t 59 along the empirical distribution (denoted

by superscript e) for all t ∈ ìO . We approximate the
marginal types �e

t via Equation (16). We can roughly
approximate F e

� 4�
e
t 5 by attempting to solve directly the

system of Equations (16), (17), and (18), which leads
to the following solution:

F e
� 4�

e
t 5

=























































01 if �e
t = �1

max
{

011−
Nt−41−�5Nt−1

�m

}

1

if t= tLC +1 and �e
tLC+1> �1

max
{

01min
{

F e
� 4�

e
t−1511−

Nt−41−�5Nt−1

�m

}}

1

if tLC +1<t≤ tO and �e
t > �0

(21)

This method attempts to perfectly fit the discrete data
assuming that the information dissemination rate is
exactly � in all periods. This estimation is applicable
only to services exhibiting a growing installed base
and a decreasing adjusted subscription rate over time,
where the marginal type is decreasing and the num-
ber of qualified consumers is increasing over time.
Note that in this approximation we do not impose
(RC); those regularity conditions are used solely in the
analytical derivations in continuous time.

When we have left censoring we will not observe
the distribution for consumer types above �tLC+1,
which amount to the top 1 − F e

� 4�tLC+15 fraction of
the market potential. Furthermore, when full quali-
fication did not occur before tO , we do not observe
the distribution for consumer types below �tO , which
amount to the bottom F e

� 4�tO 5 fraction of the market
potential. To extend a parameterization of the trun-
cated distribution to the left (over low types that are
not yet qualified), it is important that the subscription

decision for a significant market share occurred dur-
ing the window of observation such that a good fit
can be obtained.

5.4.2. Continuous Parameterization of the Trun-
cated Distribution. Note that the previous approach
only provides a glimpse at a few approximated
discrete points along the type distribution curve.
In particular, if firms want to get a deeper and more
granular understanding of the consumer density at
each valuation level, then they need to fit a continu-
ous parametric distribution to the observed data. This
can be done if full qualification did not occur during
the left censored period or at the very beginning on
the observed window because we need several peri-
ods where the marginal type decreases. Thus, for this
section in particular, we are going to consider the case
when tLC + 2 < tG.

Given the decreasing trajectory of adjusted sub-
scription rate, types qualified during left-censored
periods (prior to tLC + 1) cannot be distinguished in
our sales and information dissemination model dur-
ing observed or future sales. Furthermore, pricing
information may not be available during left-censored
periods. Considering �̂tLC+1 defined as in (16), our
model states that the mass of customers that adopt
during the left censored periods is 1− F̂�4�̂tLC+15, where
F̂�4�̂tLC+15= F e

� 4�
e
tLC+15 as defined in (21).

We aim to find an approximation of the distribu-
tion of types � ∈ 6�1 �tLC+15 that were not qualified yet
at time tLC. To capitalize on the observed information,
one approach would be to first parameterize the con-
ditional distribution of types � ≤ �tLC+1:

F̃�4�5=
F̂�4�5

F e
� 4�tLC+15

=Z4� � �51 ∀� ≤ �tLC+11 (22)

where � represents a set of parameters characterizing
the fitted distribution. To obtain a parameterization
Z4· � ·5 of F̃� (and, implicitly, F̂�), for low types, we
can fit common distributions (Gamma, scaled Beta,
truncated normal, truncated exponential, etc.) with
support on 6�1 �tLC+17. An educated decision as to
which particular distribution is to be used can be
made based on the approximated discrete distribu-
tion points within the observed window, as discussed
in §5.4.1.

We do not restrict the distribution choice in our pro-
posed heuristic methods and assume that the firm is
capable of spotting a pattern that indicates a certain
distribution type. In other words, we skip the step of
choosing function Z4 · 5 because it is data driven and
context dependent, and focus on the general method
for estimating the distribution parameters �̂.

First, for any parameter set �, we generate fitted
values for the installed base at each time period. For
any given period tLC < t − 1 < tO , where �t−1 > �, we
can estimate future sales in period t through solving
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a one-step ahead system defined by three equations
with three unknowns �t , Qt , and Nt as described in
§5.1, using parameterization F̂� = Z4· � �5 × F e

� 4�tLC+15.
Note that �t is nonincreasing in t as adoption
increases and adjusted price decreases. The fitted
installed base at the end of period t is given by

N̂t = max
{

Nt−11�Q̂t + 41 −�5Nt−1

}

0 (23)

We fit based on real Nt−1, which may deviate from
the perfect path illustrated in §5.1. For fitting pur-
poses, in the extreme case where there is a big spike in
adoption in the recent past, we assume that untapped
qualified customers were the first to deviate toward
adopting. If also some unqualified customers sub-
scribed before period t (after all qualified customers
adopted), perhaps because of a one-time promotion
(e.g., back-to-school promotional plans for mobile
phones), then we assume that this deviation occurs in
decreasing order of unqualified types and that those
customers remain in the installed base but adoption
stalls until price drops sufficiently low for some other
customer to join.

As a measure of fit, we consider the mean squared
percentage error (MSPE) in estimating sales over the
observed window. This measure compensates for the
magnitude of sales during various time periods and
takes into account relative rather than net errors in
estimation. The parameters of the conditional distri-
bution Z4� � �5 are estimated as

�̂ = arg min
�

1
tO − 4tLC + 15

·

tO
∑

t=tLC+2

(

4N̂t −Nt−15− 4Nt −Nt−15

Nt −Nt−1

)2

0 (24)

We remind the reader that, as per the discussion at
the end of §3.2, in order to avoid other identification
issues it is important for � to be exogenously derived.

5.5. Approximation of Future Sales
Using the parameterization of the conditional distri-
bution derived in §5.4.2, the future subscription path
can be estimated using the one-step ahead procedure
in Equation (23). If full qualification did not occur
before tO , one-step ahead approach requires the use of
the type density at the lower end of the distribution.
Although we used observed data to calibrate condi-
tional distribution Z in Equation (24), we point out
that Z is defined on 6�1 �̂tLC+17 and, thus, it can be
properly used for forecasting purposes. Forecasting
performance is measured via mean absolute percent-
age error (MAPE), mean absolute deviation (MAD),
mean squared percentage error (MSPE), and mean
squared error (MSE).

5.6. Approximation of Full Qualification Time
If the test described in §5.2 indicates full qualifica-
tion already occurred before the last observed period,

then we can either infer that it occurred during unob-
served left-censored time periods, or pinpoint with
precision the period during which it occurred among
the observed time periods.

If full qualification did not occur yet and we have
an exogenous estimate of information dissemination
rate � and a parameterization for p̃ that allows us to
project the future evolution of price, we test first if full
qualification can ever occur (see §5.2). If it can occur,
we can parameterize the distribution (as described
in §5.4.2), approximate the densities of lower types
unqualified at time tO , and, last, project future sales
based on that parameterization (as described in §5.5).
The projection of future sales over multiple future
periods is achieved by repeated iterations of the
one-step ahead equilibrium solution of Equation (23)
where we use projected values for Nt−1, with the only
exception when t − 1 = tO , in which case we use the
real value NtO

to seed the iterations. Then, we can
obtain an approximation for the full qualification time
t̂G = min8t � t > tO1 � > p̃t − �N̂t−19.

6. Empirical Illustration
In this section, we illustrate how the discrete model
and heuristic methodology introduced in §5 can be
applied to real IT services data. For our empirical
illustration, we utilize historical data on wireless voice
services subscription in the Japanese telecommunica-
tions market. Given the very limited available data,
all of it at aggregate level, full identification is not
possible. Thus, the focus of this empirical illustration
is not on delivering a tight analysis with precise esti-
mates for all parameters. Rather, our discussion will
be geared toward the analysis of various information
dissemination scenarios that correspond to various
market assumptions. In many real instances, mar-
ket players have access to some microlevel data that
could provide them with additional insights about
which scenario is closer to reality.

We define the market size as the total number
of unique potential subscribers to mobile voice ser-
vices. In that sense, our model captures how mar-
ket penetration changes over time and network
effects describe the influence of the installed base of
unique subscribers on new and existing subscribers.
We assume that a user’s benefit is influenced linearly
by the number of existing consumers, not the number
of existing mobile voice accounts.

6.1. Data
We collected yearly data on the Japanese mobile voice
services subscription base for fiscal years 1993–2009.4

This data is publicly available from the Japanese

4 In Japan, the fiscal year starts in April and ends in March of the
following year.
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Telecommunications Carrier Association (2011) and
Japanese Ministry of Internal Affairs and Communi-
cations (2005). The number of active voice services
accounts is obtained by subtracting from the total cel-
lular subscriptions the installed bases for data-only
services operating on wireless devices that include
data communication modules (e.g., automotive telem-
atics services such as Toyota’s G-Book supported by
KDDI). To implement the analysis, we generate an
approximation of the unique number of subscribers
in the market by adjusting downward the number of
subscriptions in order to account for users with mul-
tiple accounts. The adjustment was based on indus-
try reports and the details are included in Online
Supplement C. Figure 4(a) depicts the growth of the
base of unique subscribers to wireless voice plans
in Japan. Mobile voice services were introduced in
Japan in 1979 (Padgett et al. 1995) and at the end of

Figure 4 Japanese Wireless Voice Service Adoption and Price
Over Time
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Notes. Panel (a) plots the aggregate number of unique subscribers. Panel (b)
plots the inflation-adjusted price measure. ARPU captures average revenue
per user per month.

March 1994 (end of FY 1993) there were 2.1 million
voice subscribers. In our analysis, we address the left-
censoring of data according to the approach described
in §5.

In estimating the market size m̂, we follow the
derivation in Niculescu and Whang (2012), where
the market potential for voice services in Japan is
assumed to be comprised of the population age six
and above. That approximation is based on market
reports indicating that all age groups from elementary
school to senior citizens exhibit increasing penetration
rates for mobile voice services which, in turn, implies
mobile voice services address some of the needs of
these groups. We refer readers to the aforementioned
article for the detailed justification of this estimation.
Given that the population above age six does not
fluctuate much during the period delimited by fiscal
years 1994 and 2009 (117.8–121.2 million), we use the
average value over this time period, m̂ = 119096 mil-
lion, as the estimate for the market potential for wire-
less voice services in Japan. Historical demographic
data for Japan is available from Japanese Ministry of
Internal Affairs and Communications (2011).

We next discuss the pricing measure. Because of
the lack of detailed historical data on the variety of
wireless voice plans offered over time in Japan, their
corresponding pricing, and subscription base break-
down by plans, no real average price data is avail-
able. Most voice plans involve consumption quotas
(free call minutes) for a basic monthly charge, fol-
lowed by pricing per unit of time for all calls above
the quota. As a proxy for the subscription rate, we
use wireless voice services average revenue per user
(ARPU).5 We collected yearly ARPU data for fiscal
years 1994–2009 for NTT DoCoMo, a major mobile
telecommunications service provider in Japan, with
a market share consistently hovering around 50%.
ARPU data is publicly available on the carrier’s web-
site. To avoid any confusion, we point out that yearly
ARPU refers to revenue per month, but averaged
over an entire year. ARPU computation details are

5 Although this is not a perfect proxy (as it also incorporates charges
above the quota), it is nonetheless one of the best available for
a subscription rate. Another potential price measure for mobile
voice services that we can compute given the available data is
ARPU/MOU, i.e., the average real price per call minute. In the spe-
cial context of the Japanese market, both ARPU and ARPU/MOU
for the observed period of our study are decreasing. Thus, for voice
services, while ARPU embeds a consumption effect as well, it still
replicates the monotonicity of the real price per minute of voice
conversation. Because price in our model represents the subscrip-
tion rate, ARPU was a more appropriate measure. This is quite
accurate when consumers do not go over the quota (commonly
referred to as “communication allowance” in the mobile Japanese
market) for plans with set quotas. For the robustness check, we
performed the analysis also with ARPU/MOU and the results are
similar in nature and have been omitted for brevity.
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included in Online Supplement D. We adjust ARPU
for inflation using the fiscal year gross domestic prod-
uct deflator for Japan, available from Cabinet Office
of the Government of Japan (2011), and note from Fig-
ure 4(b) that it exhibits a decreasing trend in time. In
the absence of complete data for the other companies,
we use the data from NTT DoCoMo as the proxy for
the industry price level.6

In the absence of more data, we assume for sim-
plicity that the value of wireless voice services does
not fluctuate significantly over time (i.e., � ≡ 1 in the
extension in §4). There are two forces that push the
value of wireless voice services in opposite directions.
First, over time, there is a negative impact on con-
sumption levels for voice services in general (whether
wireless or landline) due to substitution effects associ-
ated with the availability of alternative interpersonal
communication channels (such as email, video chat,
or social network interactions), which, in particular,
are increasingly used by cell phone users who also
subscribe to wireless data services. However, in Japan,
as of March 2010 (end of FY 2009), data services on
cell phones were predominantly offered as an add-
on to voice services. Thus, as wireless data services
grew more popular and the gamut of applications and
services on mobile Internet literally exploded in the
recent years, the value of wireless voice services was
positively influenced given that their adoption (albeit
associated with perhaps decreased consumption) was
mandatory for the adoption of the add-on. In that
sense, the instantaneous utility rate defined in (1) may
be envisioned as capturing also the implicit benefit
of wireless voice services in allowing users to adopt
wireless data services as well.

6.2. Analysis
In this section we apply the discrete time heuristic
method introduced in §5 to the data described in §6.1
in order to characterize consumer heterogeneity, fore-
cast future sales, and derive further insights about the
adoption of wireless voice services in the Japanese
market. In this specific context, we can think of the
intrinsic valuation � as capturing the customer need
or preference to communicate via a mobile phone. For
example, certain professions (e.g., consulting) might
involve a lot of traveling. In such circumstances, peo-
ple value the ability to be reachable or reach others
while being mobile. Other consumers (e.g., elderly)

6 Note that NTT DoCoMo faces fierce competition in the mar-
ket, and thus we do not expect it to have had monopolistic pric-
ing power for the period relevant to this study. According to the
Japanese Telecommunications Carrier Association (2011), at the end
of October 2011, NTT DoCoMo had 48.7% of the market, whereas
KDDI, Softbank Mobile, and eMobile had 27.4%, 21.5%, and 2.9%,
respectively. eMobile entered Japanese mobile market in March
2007 and it is growing fast. Hence, NTT DoCoMo did not enjoy an
extremely dominant position in the market.

Figure 5 Empirical Hazard Rate
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might carry a cell phone just in case of emergen-
cies or for the rest of the family to be able to reach
them more conveniently. Network effects capture the
premium value a consumer gets from communicat-
ing with other mobile phone users (perhaps within
the same network) as well as the other benefits asso-
ciated with expanding networks (e.g., carriers invest
more in the infrastructure and handset manufactur-
ers push more models to the market if there are more
users). For simplicity, we assume that � = 0, i.e., for
some consumers the only benefit from subscribing to
a voice plan comes from the ability to communicate
with the rest of the subscribers.

First, we test whether full qualification has occurred
yet. As discussed in §5.2, beyond the point of full
qualification we would expect the hazard rate of
adoption to stabilize around the information dis-
semination rate. From Figure 5, the empirical haz-
ard rate seems to follow an increasing trend over
time and it is unlikely that all consumers have been
qualified by the end of 2006 (after 2006 hazard rate
moves to a different level). It follows that p2006 ≥ � +

�N2006 and tG ≥ 2006. Moreover, because we focus on
full adoption services (limt→� G4t5 = 1), we assume
that p4�5≤ �+ �m, where p4�5 is approximated
by fitting a negative exponential parameterization
p4t5= ae−�4t−tLC−15 + b on the observed price data (tLC =

1993,7 p4�5 = b̂). Given the actual data, this range
translates into � ∈ 63089 × 10−616074 × 10−67. For illus-
tration purposes, we consider � in the middle of the
feasible range, i.e., �̂ = 50315 × 10−6.

We further divide the data set into two separate
sets: (i) a training set that includes data for fiscal years
1994 to 2006, and (ii) a test set that includes the data
for fiscal years 2007 to 2009. We first fit our model
using the training set to estimate the distribution of

7 Even though adoption data is available for 1993, pricing data
is not.
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Table 1 Estimation Results and One-Step Ahead Forecasting Errors

Estimated distribution Training set Test set

Scaled beta 4�11 �25 MSPE % R2 % MAPE % MAD (×105) MSE (×1011) MSPE %

�= 0010 (10.0, 3.00) 1048 89009 30014 11022 13029 9013
�= 0015 (0.90, 0.59) 2059 81030 7061 2083 0085 0059
�= 0020 (0.66, 0.62) 2061 82035 29004 9061 13032 12025
�= 0030 (0.58, 0.77) 2077 84012 83057 28036 98003 88070
�= 0050 (0.57, 0.98) 4079 75053 194019 66057 510096 456032

the consumer heterogeneity. Using the estimated het-
erogeneity distribution, we then provide the one-step
ahead sales forecast for the test set. Given that by
2006 full qualification is not likely to have occurred,
because of the identification issues mentioned at the
end of §3.2 and in §5.4.2 we do not apply our meth-
ods directly to estimate �. Instead, for illustration
purposes, we explore different information dissemi-
nation scenarios (� = 0011001510021003, and 005) and
study the sensitivity of our estimates and forecasts
with respect to the values of �.

For each �, using the training set, we first examine
the rough pointwise approximation for the observed
portion of the consumer type distribution as illus-
trated in §5.4.1 (we omit this step for brevity). To fore-
cast future sales we need to fit a parameterization to
the observed data such that we can approximate the
distribution of consumer types at the low end of the
intrinsic valuation distribution. As discussed in detail
in §5.4.2, we remind the readers that we parameterize
F̂�4 · 5 = F̂�4�̂19945 × Z4· � �5 over the interval 601 �̂19947,
where �̂1994 and F̂�4�̂19945 are estimated as in (16) and
(21). We parameterize conditional distribution Z4� � �5
as scaled Beta4� � �11 �25 because of the ability of such
a distribution class to capture multiple skewness sce-
narios. The corresponding parameter estimates and
fit measure are given in Table 1. Figure 6(a) presents
the estimated continuous parameterization F̂� of the
consumer type distribution function over the inter-
val 601 �̂19947. This plot does not capture the estimation
for the left-censored portion of the data, and thus,
the cumulative distribution function lines do not go
up to one but to F̂�4�̂19945. Given that all five scenar-
ios involve the approximation of the same observed
adoption path, we confirm an expected skewness
toward higher types when information disseminates
slowly in the market. Among the different consid-
ered � values, �= 001 and �= 0015 fit the training set
best based on the MSPE error metric. Note that R2

corresponds to MSE and thus we see a discrepancy
between MSPE and MSE. As discussed in §5.4, we
favor MSPE because it compensates for large isolated
errors.

Based on the estimated distribution of the consumer
intrinsic valuation, we can perform the one-step ahead
forecasting procedure for the sales during the time

window of the test set, following the methodology
presented in §5.5. The forecasted and the realized
sales are plotted in the right-hand part of Figure 6(b),
and multiple error measures capturing the forecast-
ing performance are presented in Table 1. As it can
be seen, the information dissemination factor plays
a significant role in forecasting sales. In particular,
if the corresponding � values are too big (i.e., � =

00210031005) or too small (� = 001), the forecasted val-
ues become rather inaccurate in the test set, which
demonstrates the managerial importance of having a
thorough understanding of how fast customers refresh
information in the market. If � values are relatively
small but not too small (i.e., �= 0015), one-step ahead
forecast values are reasonably accurate as shown in
Table 1.

As information dissemination rate increases, for
the same observed adoption path during the training
window more new consumers are expected to sub-
scribe during the test window. This happens because
a higher � corresponds to a lower delay rate that
allows for the observed adoption path to be generated
by less mass of high type subscribers. This, in turn,
leads to the expectation that more consumer mass is
concentrated around low types. Thus, during the test
window, for higher values of � the model would pre-
dict a higher inflow of newly qualified customers as
opposed to previously qualified customers who oper-
ated under outdated information until recently catch-
ing up with current market conditions. Note that,
among considered values, �= 0015 fits relatively well
the training set and performs best in one-step ahead
forecasting in the test set.8 One may consider that
the annual information dissemination factor of 0015
seems small in the mobile telecommunications indus-
try. We point out that in our model � can more
or less be considered an industry average over all
potential customers who have not adopted yet and
over time. Once a customer subscribes, our model
and results are not impacted by a potential shift in

8 In the training set, � = 001 leads to overfitting, which affects
forecasting performance. We remind the reader that, as discussed
before, in the absence of full qualification, because of the identifi-
cation issues mentioned at the end of §3.2 and in §5.4.2, � should
not be estimated based on the fit of the scaled Beta distribution on
the training set.
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Figure 6 (a) Approximation of Type Distribution F̂�, Using Scaled Beta Parameterization for Conditional Distribution Z4· � ·5, as Discussed in §5.4.2.
(b) Corresponding Fitted Values and One-Step Ahead Forecasting of New Subscriptions
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her information refresh rate post-adoption. Because
we have adjusted the installed base to reflect unique
subscribers, in our model new adopters never had a
mobile voice account before. Technology-savvy con-
sumers move first toward adopting. This group con-
tains young professionals as well as high-school and
university students. Users that are not very involved
with technology and less mobile (for example, senior
citizens) will likely refresh less often their information
about available wireless offers and associated bene-
fits. Consumers over age 50 constitute almost 40% of
the market potential. Such users might also be more
conservative regarding technology adoption. Accord-
ing to Web Japan (2005), at the end of 2004, approx-
imately 80% of people in their twenties and thirties
subscribed to wireless voice services, and adoption at
the senior end of the age spectrum was considerably
slower (adoption rates for 65–69, 70–79, and 80+ age
groups stood at 26.4%, 11.4%, and 4.7%, respectively).
As time passes and penetration rate grows, the bulk
of new subscribers will increasingly come from the
second consumer pool. Moreover, a low � indicates
that a considerable portion of this less tech-savvy con-
sumer pool would actually qualify quite early, and
could have started deriving positive benefits earlier
had it not been for the holding back due, among other
things, to outdated information.

Lastly, for a given marginal network effect (such as
the one chosen in the feasible region for illustration

purposes), one can continue to explore at future
times if full qualification has occurred, as discussed
in §5.2. Once full qualification has been achieved,
future subscriptions are driven primarily by informa-
tion dissemination.

We end this section by emphasizing that our empir-
ical exercise is meant as an illustration of how to
apply our discrete-time model to real data, and the
results should be taken with a grain of salt. Additional
data is necessary in order to precisely estimate � and
�, as discussed in §§3.2 and 5. For exposition, we
picked � in the middle of a reasonably chosen feasible
region. Higher (lower) marginal network effects will
bring the market to full qualification faster (slower),
with an obvious impact on the forecasting of future
sales.

7. Concluding Remarks
This paper represents one of the first continuous-
time analytical studies to explore at a broad level
the underlying consumer heterogeneity in competi-
tive markets for subscription-based IT services that
exhibit network effects. Understanding consumer
heterogeneity is important for the forecasting of the
subscriber base growth as well as the sales of com-
plementary products or services. We study when and
how very general adoption paths can be explained by
an individual consumer utility model in association
with various rates of information dissemination and
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corresponding well-behaved consumer type distribu-
tions. When such distribution functions exist, we fully
characterize them. We provide various managerial
insights stemming from the way awareness dissem-
ination rate, distribution skewness, and price jointly
impact adoption. In particular, for forecasting pur-
poses, it is very important for firms to have a deep
understanding of how information spreads in the
market as adoption curves generated under differ-
ent heterogeneity and information refresh rate sce-
narios may share a common path in the past but
may diverge in the future, before full qualification is
reached. If full qualification has been reached, new
subscriptions will be predominantly driven by infor-
mation dissemination in the future and will exhibit
a stable hazard rate of adoption, which makes possi-
ble the estimation of information dissemination in the
market directly from our model.

Our analytical theory takes a less conventional
approach, starting from general aggregate adoption
and trying to explain at a microlevel what consumer
heterogeneity pattern generated it. The vast major-
ity of analytical microeconomic theory starts in the
opposite direction, building from the individual level
behavior based on a given consumer heterogeneity.
In the latter case, the implied adoption paths are con-
strained by the consumer heterogeneity assumptions.
However, in practice, managers look at sales trends
and attempt to estimate future adoption based on
the observed history at an aggregate level. Thus our
research complements existing analytical modeling
literature by attempting to explain from a consumer
behavior perspective a vast spectrum of adoption sce-
narios. From an empirical perspective, it also pro-
vides a starting point in making an educated guess
about the properties of consumer heterogeneity before
any strong assumptions are made for forecasting pur-
poses. Moreover, as discussed in §3.2, we show also
that our model can explain adoption behavior that
may not be captured properly by several extant aggre-
gate models, in particular in later adoption stages.
This is consistent with Lucas (1976) in the sense that
the use of aggregate models poses forecasting risks
given that some parameters may not be structural and
changes to a single parameter may overlook underly-
ing consumer behavior dynamics.

Although the major research goal of this paper is
to enhance the analytical explanatory theory behind
adoption of IT services under network effects, for
practical purposes we also present a set of heuris-
tic methods that illustrate how our continuous-time
framework and analytic results can be discretised and
applied to real industry data in the estimation of
consumer heterogeneity and the forecasting of future
sales. As an empirical illustration, we apply these
heuristic methods to the Japanese mobile voice ser-
vices market and explore the implied heterogeneity

and forecast the growth of the subscriber base.
As argued in §6.2, according to our modeling frame-
work, it may be unlikely that full qualification oc-
curred in the Japanese market as of 2006 (the last
period in our training set). In this case, given the lack
of additional data and the possibility of identifica-
tion issues as discussed at the end of §3.2, we do not
estimate � endogenously and limit our illustration to
a rich analysis of various information dissemination
scenarios. However, we comment that a low informa-
tion dissemination rate seems to fit the data best.

Our work is by no means an exhaustive analy-
sis of underlying consumer heterogeneity in adop-
tion processes for IT subscription-based services, but
rather a foray into the topic, with its own limitations.
Thus, there are several directions for future research
based on our approach. On the analytical side, one
extension would be to consider service differentia-
tion in the market and explore implied consumer
heterogeneity going deeper into competition dynam-
ics between firms and consumer retention strategies.
Other extensions could open up more dimensions
of consumer heterogeneity, exploring how informa-
tion dissemination or network effects are correlated
with customer type. In particular, one can study other
utility models including nonlinear forms (e.g., multi-
plicative network effects). It would also be interesting
to consider a time-varying information dissemination
rate, capturing market fluctuations in promotions and
advertising. An additional extension could consider
combining adoption and consumption volume. On the
empirical side, with richer data sets, one could envi-
sion a more complex analysis where � can also be
estimated simultaneously with the consumer hetero-
geneity in the market even before full qualification has
occurred.
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A. Proofs of Main and Supporting Results

Lemma A1. Adoption at the origin. Let us define NF (0
+) , limt↓0NF (t) and Q(0+) ,

limt↓0Q(t). If 0<α≤ 1 and condition (RC) is satisfied, the following results hold:

(a) if p(0)> θ̄, then NF (0
+) =NF (0) =Q(0+) =Q(0) = 0, but adoption does not start at t= 0;

(b) if p(0) = θ̄, then NF (0
+) = NF (0) = Q(0+) = Q(0) = 0 and θ(0) = θ̄; moreover, NF (t) and

Q(t) are strictly increasing in the immediate vicinity of the origin if and only if ṗ(0)< 0;

(c) if p(0)< θ̄, then NF (0
+)> 0, Q(0+)> 0, and θ(0)< θ̄; i.e., there is a jump in both qualified

customers and adopters at the origin.

Proof. In the proof below, note that when α= 1 we have NF (t) =Q(t).

(a), (b). We prove (a) and (b) simultaneously. Suppose that adoption starts at t= 0. Around

origin, regardless of whether there is a jump in the installed base or not, no customer adopts

unless it benefits her. Thus, NF (0
+)≤Q(0+)≤m. Since the price schedule is continuous, we have

p(0) = p(0+)≥ θ̄. From (RC.ii), we have θ < θ̄−νm≤ p(0+)−νNF (0
+). Therefore, we cannot have

instantaneous full adoption at the very beginning. Once the product is introduced to the market,

its adoption path follows the laws dictated by equations (5) and (6). At t > 0, only a fraction of the

qualified people who have not adopted yet will adopt. Thus, it must be the case that the marginal

adopter has utility rate 0. Let

h(θ), θ+ νmF̄ (θ) . (A.1)

Since mF̄ (θ(0+)) =Q(0+)≥NF (0
+) we obtain:

θ(0+) = p(0+)− νNF (0
+)≥ θ̄− νmF̄ (θ(0+)), (A.2)

which can be rewritten as h(θ(0+))≥ θ̄= h(θ̄), with equality being possible solely in the case when

p(0) = θ̄. From (RC.ii) we see that θ(0+) = θ̄ can be the only solution, and that solution occurs

solely if h(θ(0+)) = θ̄. Therefore, if p(0)> θ̄, adoption does not start and Q(0) =Q(0+) =NF (0) =

NF (0
+) = 0. On the other hand, if p(0) = θ̄, the highest type becomes qualified and adoption starts

(in any small interval around the origin there will be a mass of qualified adopters, and a fraction

of them shall adopt immediately). Therefore θ(0+) is defined. From the above, it then follows that

θ(0+) = θ̄ and that Q(0) = Q(0+) = NF (0) = NF (0
+) = 0. There is no jump that can keep the

system stable around the origin.

Let us now look at the case when p(0) = θ̄. Note that, in continuous time, θ(0) = θ̄ means that

there are basically a negligible number of qualified customers in the beginning. Both the installed
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base and the number of qualified customers remain at negligible levels as long as the price equals

θ̄ level. Suppose that p(t) = θ̄ for all t∈ [0, ǫ), with ǫ > 0. Pick t̃∈ [0, ǫ). Then, similar to the above

approach in equation (A.2), we can prove that h(θ(t̃))≥ θ̄. Thus, θ(t̃) = θ̄ and Q(t̃) =NF (t̃) = 0.

This argument can be used for the reverse direction of the proof as well.

(c) If p(0) < θ̄, then all customers with type θ ≥ max{p(0), θ} adopt even in the absence of

network effects. Therefore θ(0+)≤max{p(0), θ}< θ̄. Then, given condition (RC), Q(0+) =m[1−

F (θ(0+))] > m[1 − F (θ̄))] = 0. As soon as the product is introduced on the market, there is an

instantaneous mass of qualified customers. Among them, a positive fraction adopt immediately.

Therefore Q(0+)> 0 and NF (0
+)> 0 and θ(0+)< θ̄. �

Lemma A2. Full adoption when α = 1. Assume F satisfies (RC), customers exhibit full

product awareness (α=1), and ṗ(·)< 0. Then, the following hold:

(a) Full adoption occurs if and only if h(θ)≥ p(∞);

(b) Full adoption occurs in finite time if and only if h(θ)> p(∞).

Proof. (a) (⇒) Trivial, since the lowest type must adopt.

(⇐) Suppose that θ+νm= h(θ)≥ p(∞), but we only have partial adoption, stopping at θ(∞)>θ.

When α = 1, from condition (RC.i) it immediately follows that h is strictly increasing. Conse-

quently, h(θ(∞)) > h(θ). Therefore, we have h(θ(∞)) > p(∞). Using (RC.i) and the fact that
∫ θ̄

θ
f(θ)dθ=1, it follows that θ̄ > θ+νm. Therefore, θ̄ > p(∞). Since p(t) is continuous, there exists

0 < t̄ <∞ such that adoption starts at t̄ (even if ṗ(0) = 0). Since full adoption does not occur

for t≥ t̄, we have h(θ(t)) = p(t). Taking the limit t→∞, we obtain h(θ(∞)) = p(∞), which is a

contradiction.

(b) Proof is similar to that of part (a). �

Proof of Theorem 1. (a) Existence. We first propose a construction for F and then prove

that it satisfies all the desired properties, including uniqueness. Let the distribution F on [θ, θ] be

defined as

F (θ) = 1−G(σ−1(θ)), (A.3)

where σ(t) = p(t) − νmG(t). Since ṗ(t) < 0, g(t) = Ġ(t) > 0, and ν > 0, we have σ(t) strictly

decreasing in t (and therefore invertible as well). Moreover, G(t) increases from 0 to 1, p(0) = θ̄

and p(∞) = θ + νm. Thus, σ(t) completely spans the interval (θ, θ̄]. Furthermore, since σ−1 is a

strictly decreasing bijection mapping (θ, θ̄] to [0,∞), F is a properly defined cumulative distribution

function. Moreover, F is strictly increasing. Next, substituting θ by σ(t) in (A.3), we obtain

F̄ (σ(t)) =G(t). (A.4)
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Differentiating the above equation with respect to time t, we obtain f(σ(t))σ̇(t) =−g(t). From the

definition of function σ, we get σ̇(t) = ṗ(t)− νmg(t)< 0. Therefore:

f(σ(t)) =−
g(t)

ṗ(t)− νmg(t)
> 0. (A.5)

Using (A.5), it follows that for all t, f(σ(t)) < 1
νm

. Since σ is bijective, we have f(θ) < 1
νm

for

all θ ∈ [θ, θ̄]. Thus, condition (RC.i) is satisfied. Note that when α = 1, condition (RC.i) implies

condition (RC.ii). Hence (RC) is satisfied. Using Lemma A2, we see that full adoption occurs at

infinity, and at every finite moment in time we have p(t) = θ(t) + νmF̄ (θ(t)) = h(θ(t)). Since we

defined σ(t) = p(t)− νmG(t) = p(t)− νmF̄ (σ(t)) we have p(t) = h(σ(t)). Since (RC.i) holds, h is

strictly increasing and, thus, σ(t) = θ(t). Consequently NF (t) =N(t) =mG(t) for any t≥ 0, and F

yields the observed adoption path as G.

Uniqueness. Assume that F1 and F2 satisfy the requirements and lead to equivalence. We have

1−F1(θ1(t)) = 1−F2(θ2(t)) =G(t). Since f1(θ)> 0 and f2(θ)> 0 for all θ ∈ [θ, θ̄], θ1(t) and θ2(t)

are uniquely defined. Given that F1 and F2 are continuously increasing, G(0) = 0 and G(∞) = 1, it

follows that θ1(t) and θ2(t) are bijections between [0,∞) and (θ, θ̄]. Moreover, since full adoption

occurs at infinity, θ1(t) = p(t)− νmF̄1(θ1(t)) = p(t)− νmG(t) = p(t)− νmF̄2(θ2(t)) = θ2(t). Also,

F̄ (θ1(t)) = F̄ (θ2(t)). Thus, F1 ≡F2.

(b) Note that the conditions are necessary in order for adoption to start smoothly at 0, continue

in a strictly increasing manner, and end with full adoption. The condition p(0) = θ̄ indicates that

adoption starts at 0. Moreover, since h is increasing, there is no jump at 0. In addition, since

price is continuously decreasing, adoption never stalls. Also from Lemma A2, the lowest type must

adopt at infinity. If any of the conditions are violated, no distribution function satisfying (RC) can

generate the observed adoption path G. �

Lemma A3. If 0<α< 1, p∈P, and condition (RC) is satisfied, the following two relationships

hold for t≥ 0:

(a) Q(t)−NF (t) = (1−α)e−αt

∫ t

0

eαzQ̇(z)dz, (A.6)

(b) Q(t) =
e−t

α

∫ t

0

ez[ṄF (z)+αNF (z)]dz. (A.7)

Proof. (a) We can rewrite equation (6) as

[Q̇(t)− ṄF (t)]+α[Q(t)−NF (t)] = (1−α)Q̇(t) .

Multiplying both sides by the integration factor eαt, we have

∂

∂t
{eαt[Q(t)−NF (t)]}= eαt(1−α)Q̇(t).

Since Q̇(t) can only be discontinuous at tM , inf{t|Q(t) =m}, both sides are integrable. Integrating

with respect to t, we obtain eαt[Q(t)−NF (t)] = (1−α)
∫ t

0
eαzQ̇(z)dz+K1, where K1 is a constant.
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Using the boundary condition at t= 0, Q(0) =NF (0) = 0 (based on Lemma A1), we have K1 = 0

and the result (A.6) follows immediately.

(b) We can rewrite equation (6) as 1
α
[ṄF (t)+αNF (t)] = Q̇(t)+Q(t). Multiplying both sides by

the integration factor et, we have et

α
[ṄF (t) + αNF (t)] =

∂

∂t
[etQ(t)]. By integration and use of the

boundary conditions, we obtain the desired equation (A.7).

For both parts (a) and (b), note that the equalities, (A.6) and (A.7), hold even when tM <∞.

First, the above approach guarantees that (A.6) and (A.7) hold for t < tM . When t≥ tM , Q(t) =m

and ṄF (t) = α[m−NF (t)]. Solving this differential equation, we obtain NF (t) =m−K2e
−αt for all

t≥ tM , where K2 is a constant. Then

(1−α)e−αt

∫ t

0

eαzQ̇(z)dz= e−α(t−tM )[m−NF (tM)] =K2e
−αt =m−NF (t) .

Thus, (a) holds. Part (b) follows immediately by writing Ṅ(t) + αN(t) = αm for all t > tM , as

specified by equation (6). �

Lemma A4. Define NF (∞) , limt→∞NF (t) and Q(∞) , limt→∞Q(t). If condition (RC) is

satisfied, p∈P, and 0<α< 1, then,

(a) NF (t)<m, and NF (t) is strictly increasing, for all 0≤ t <∞; i.e. full adoption occurs only

at infinity, if ever;

(b) θ(t) is strictly decreasing and Q(t) is strictly increasing for θ(t)>θ;

(c) Q(∞) =NF (∞); i.e., all qualified customers ultimately adopt;

(d) for full asymptotic adoption (NF (∞) =Q(∞) =m) to occur, it is necessary that h(θ)≥ p(∞);

(e) if h(θ)>h(θ)≥ p(∞) for all θ > θ, then F yields full asymptotic adoption.

Proof. (a,b). We prove (a) and (b) simultaneously. We first look at time t = 0. Since θ(0) =

p(0) = θ̄ (Lemma A1), due to right continuity at t= 0, we have:

θ̇(0) = ṗ(0)− νṄF (0),

ṄF (0) = αQ̇(0),

Q̇(0) = −mf(θ̄)θ̇(0).

Therefore, we have ṄF (0) = −
αmf(θ̄)ṗ(0)

1−νmαf(θ)
. Using conditions (RC.i) and the fact that ṗ(0) < 0, it

follows that ṄF (0)> 0. Then θ̇(0)< 0 and Q̇(0)> Ṅ(0)> 0.

For the monotonicity properties at t > 0, note that ṄF (t) depends on Q(t)−NF (t) and Q̇(t)

from (6). Condition (RC.ii) ensures that not all customers are qualified at the origin, and Q(·) and

Q̇(·) are continuous in the immediate vicinity of 0. Given that Q̇(0)> 0, there exists ǫ > 0 such

that Q̇(t)> 0 for t ∈ [0, ǫ). Moreover, the installed base does not shrink, since the price is weakly

decreasing and existing customers continue to subscribe to the service. Consequently, θ(t) is weakly

decreasing, Q(t) is weakly increasing, and thus Q̇(t)≥ 0 for t > 0.
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For the strict monotonicity, first, note that Q(t)−NF (t)> 0 for 0< t<∞, since Q̇(t)> 0 in the

vicinity of the origin, and from equation (A.6). Then, it follows that NF is strictly increasing from

(6). Next, from θ(t) =max{θ, p(t)− νNF (t)}, θ(t) is strictly decreasing for θ(t)> θ. Consequently,

from equation (5), Q(t) is strictly increasing for θ(t)> θ.

(c) Since both Q(t) and NF (t) are continuous, increasing, and bounded from above by m, it fol-

lows that limt→∞ Q̇(t) = limt→∞ ṄF (t) = 0. Therefore, from equation (6), note that limt→∞[Q(t)−

NF (t)] = 0. Thus Q(∞) =NF (∞).

(d) It follows immediately since the lowest type must adopt as well.

(e) Suppose that we only have partial adoption. From part (c), note that θ(∞)> θ (otherwise

Q(∞) =m=NF (∞)). Then, at any time t, we have Q(t)<m, NF (t)<m, and θ(t) = p(t)−νNF (t).

Taking the limit t→∞ and using part (c), we obtain

θ(∞) = p(∞)− νNF (∞) = p(∞)− νQ(∞) = p(∞)− νmF̄ (θ(∞)).

Therefore, h(θ(∞))= p(∞)≤ h(θ), which contradicts the fact that h(θ)>h(θ) for all θ > θ. Thus,

it follows that θ(∞) = θ and Q(∞) =m. Using part (c), we obtain NF (∞) =m. �

Lemma A5. If condition (RC) is satisfied, p∈P, and 0<α< 1, the following properties hold:

(a) in order for all customers to become qualified in finite time (i.e. there exists tM <∞ such that

θ(tM) = θ and Q(tM) =m), it is necessary that h(θ)> p(∞);

(b) if h(θ)>h(θ)> p(∞) for all θ > θ, then all customers become qualified in finite time;

(c) if Q(∞) =m, and h(θ)>p(∞), then all customers become qualified in finite time.

Proof. (a) Since Q(tM ) =m, we have NF (∞) =m>NF (tM) from parts (a) and (c) of Lemma

A4. At time tM <∞, we have θ≥ p(tM)− νNF (tM)>p(∞)− νm. Thus, h(θ)>p(∞).

(b) From part (e) of Lemma A4, it follows that Q(∞) = NF (∞) = m and θ(∞) = θ. Suppose

that it takes infinite time for all customers to become qualified. That means Q(t)<m and θ(t)> θ

for all t <∞. We then have θ(t) = p(t)− νNF (t) for all t <∞. Taking limit t→∞, we obtain

θ = θ(∞) = p(∞)− νm, or h(θ) = p(∞), which is a contradiction. Therefore, there exists tM <∞

such that Q(tM) =m and θ(tM) = θ.

(c) The proof is similar to part (b). �

Lemma A6. When p ∈ P and 0 < α < 1, for a distribution F satisfying regularity conditions

(RC) to generate a service adoption path G, the following conditions are necessary:

(a) θ+ νm≥ p(∞);

(b)
∫
t

0
ez−tg(z)dz

g(t)
< 1

1−α
, for t∈ [0, tG);

(c)
∫ tG

0
ez−tG[g(z)+αG(z)]dz =α; and

(d) if h(θ)> p(∞), there exists a finite time tc such that 0≤ tc ≤ tG and eαt[1−G(t)] is constant

over the interval [tc,∞).
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Proof. (a) This condition is necessary for full asymptotic adoption since the lowest type cus-

tomer must adopt (albeit at infinity).

(b) Suppose that there exists F that satisfies (RC) and generates the adoption path G. Then

NF (t) = N(t) =mG(t), and consequently, θ(t) = max{θ, p(t)− νmG(t)}. Subsequently, it follows

that θ(tG) = θ and θ(t)> θ for all t ∈ [0, tG). Since p(t) is weakly decreasing and G(t) is strictly

increasing, θ(t) is strictly decreasing for t∈ [0, tG]. Using equations (5) and (A.7), we have

F (θ(t))= 1−
e−t

α

∫ t

0

ez[g(z)+αG(z)]dz, ∀ t∈ [0, tG]. (A.8)

Even though Q̇ may not exist at tG, Q(t) remains continuous. As a result, F is continuous, and

therefore, equation (A.8) is valid for tG. Differentiating equation (A.8) with respect to time, using

integration by parts, and simplifying the expression, we get

∂[F (θ(t))]

∂t
=

(

1

α
− 1

)

e−t

∫ t

0

ezg(z)dz−
g(t)

α
. (A.9)

Since F is strictly increasing in θ due to (RC), and θ(t) is strictly decreasing for t∈ [0, tG], F (θ(t))

should be strictly decreasing in t over [0, tG):
∂[F (θ(t))]

∂t
< 0 for all t ∈ [0, tG). This is equivalent to

∫
t

0
ez−tg(z)dz

g(t)
< 1

1−α
for t∈ [0, tG).

(c) Since θ(tG) = θ from part (b) and F (θ) = 0, using equation (A.8), the condition follows.

(d) Note that limt→∞G(t) = 1 and a distribution F generates an adoption path G, all customers

are eventually qualified and adopt, i.e., Q(∞) = NF (∞) = m. Subsequently, according to part

(c) of Lemma A5, Q(t) converges to m in finite time. From the definition of tG, it follows that

tG = inf{t|Q(t) =m}<∞. Consequently, from part (a) of Lemma A4, it follows that NF (tG)<m.

Hence, for t≥ tG, Q̇(t) = 0, and from equation (6), NF (t) evolves according to equation:

ṄF (t) =α[m−NF (t)]. (A.10)

Solving this differential equation, we obtain NF (t) =m− ke−αt, for all t≥ tG, where k=
m−NF (tG)

e−αtG
.

Since NF (t) =mG(t), this completes the proof. �

Lemma A7. When 0<α< 1, the following holds

lim
t→∞

e−t

∫ t

0

ez[g(z)+αG(z)]dz = α.

Proof. Via integration by parts and using G(0) = 0, it follows that
∫ t

0

ezg(z)dz= etG(t)−

∫ t

0

ezG(z)dz.

Therefore, we obtain

e−t

∫ t

0

ez[g(z)+αG(z)]dz =G(t)− e−t(1−α)

∫ t

0

ezG(z)dz. (A.11)
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Since G(t)≤ 1, it follows that

lim
t→∞

e−t

∫ t

0

ezG(z)dz≤ 1. (A.12)

Since G(t) is strictly increasing and smooth, for any 0< ǫ< 1, there exists tǫ such that for all z > tǫ

we have G(z)> 1− ǫ. Therefore, for t > tǫ, we obtain

e−t

∫ t

0

ezG(z)dz≥ e−t

∫ t

tǫ

ezG(z)dz > e−t

∫ t

tǫ

ez(1− ǫ)dz= (1− ǫ)
(

1− etǫ−t
)

. (A.13)

Taking limit over t→∞ in (A.13), and combining with upper bound (A.12) we obtain

1− ǫ≤ lim
t→∞

e−t

∫ t

0

ezG(z)dz≤ 1. (A.14)

Further, taking limit over ǫ ↓ 0 in (A.14), it follows that

lim
t→∞

e−t

∫ t

0

ezG(z)dz= 1. (A.15)

Therefore, taking limit over t→∞ in (A.11), we obtain

lim
t→∞

e−t

∫ t

0

ez[g(z)+αG(z)]dz = 1− (1−α) =α. �

Proof of Theorem 2. First, from Lemma A6, note that condition (i) is necessary for the

existence of a distribution Fα that would generate the observed subscription path G. Lemma A7

ensures that condition (c) in Lemma A6 is satisfied since in this case, tG =∞. Condition (d) in

Lemma A6 is not necessary in this case since p(∞) = h(θ).

Existence. Note that since σ(t) = p(t)− νmG(t), σ(t) is a strictly decreasing bijection between

[0,∞) and (θ, θ̄]. Therefore, σ−1(θ) is well-defined. We propose the following construction

F (σ(t))= 1−
1

α

∫ t

0

ez−t[g(z)+αG(z)]dz. (A.16)

First, we verify that F is a properly defined distribution function satisfying regularity condition

(RC). From p(∞) = θ + νm, we have tG =∞. Since we assume that G is twice continuously

differentiable up to tG, we have F ∈ C2. Using σ̇(t) = ṗ(t)− νmg(t)< 0 and integration by parts

to derive a similar result to equation (A.9) together with condition (i) in Theorem 2 (the same as

part (b) of Lemma A6), we obtain

0< f(σ(t)) =

(

1
α
− 1

)

e−t
∫ t

0
ezg(z)dz− g(t)

α

ṗ(t)− νmg(t)
. (A.17)

Therefore, F (θ) is strictly increasing in θ over [θ, θ̄]. Further, F (θ̄) = F (σ(0))= 1. From Lemma A7,

it also follows that F (θ) = F (σ(∞)) = limt→∞F (σ(t)) = 0. Thus F is an appropriate distribution.

From (A.17), we have f(σ(t)) < g(t)

α[νmg(t)−ṗ(t)]
≤ 1

ανm
for t > 0. Further, if t = 0, then we have
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f(σ(0)) = g(0)

α[νmg(0)−ṗ(0)]
< 1

ανm
from ṗ(0)< 0. Thus, condition (RC.i) is satisfied. Using integration

by parts, equation (A.16) can be rewritten as

F̄ (σ(t)) =
e−t(1−α)

α

∫ t

0

ezg(z)dz+G(t) .

Using condition (ii) in the Theorem and the fact that σ(t) = p(t)−νmG(t), it follows that h(σ(t)) =

σ(t)+νmF̄ (σ(t))<p(0) = θ̄= h(θ̄) for all t > 0. Since σ(t) is a strictly decreasing bijection between

[0,∞) and (θ, θ̄], condition (RC.ii) is also satisfied. Thus, condition (RC) is completely satisfied.

Second, we show that NF (t) =N(t) =mG(t) where F is given by (A.16). Define Φ(t) =m(1−

F (σ(t))). Replacing F (σ(t)) with (A.16) and differentiating Φ(t) with respect to time t, we obtain

Φ̇(t) = mg(t)+αmG(t)

α
−Φ(t), which can be rewritten as Ṅ(t) =α[Φ(t)−N(t)+Φ̇(t)]. Since tG =∞, it

follows that the lowest type can only adopt at infinity. Consequently, θ(t) can be rewritten as θ(t) =

p(t) − νNF (t). Therefore, {θ(t),Q(t),NF (t)} and {σ(t),Φ(t),N(t)} satisfy the same differential

system, comprised of equations (4), (5), and (6). By substituting (4) into (5), and (5) into (6), NF

satisfies the following ODE:

ṄF (t) =
α[mF̄ (p(t)− νNF (t))−NF (t)−mf(p(t)− νNF (t))ṗ(t)]

1−αmνf(p(t)− νNF (t))
, (A.18)

with the boundary conditions NF (0) = 0 (via Lemma A1). Thus we can write ṄF (t) =Ψ(t,NF (t)).

Since F satisfies condition (RC), we see that Ψ(t,NF )∈ C
0,1. Thus, Ψ is locally Lipschitz inNF . This

is a sufficient condition for the existence and uniqueness of a solution for equation (A.18), for any

given boundary condition (e.g. see Amann 1990). Since {θ(t),Q(t),NF (t)} and {σ(t),Φ(t),N(t)}

satisfy the same differential system, it follows that NF (t) =N(t) =mG(t) and θ(t) = σ(t) for all t.

Uniqueness. Note that θ(t) is unique and it is a bijection. Further, from (A.7), Q(t) is unique.

Since Q(t) =mF̄ (t), the uniqueness of F follows. �

Proof of Proposition 1. (a) First, note that tG is independent of α. Second, since both 1−α

and 1−α

α
are decreasing in α over the interval (0,1), if conditions (i) and (ii) in Theorem 2 hold

for a value α< 1, then they hold for all values α̃ ∈ (α,1).

(b) From Theorem 2, if α < 1 satisfies conditions (i) and (ii), then there exists a unique distri-

bution Fα satisfying (RC) that generates observed adoption path G(t). Moreover, from part (a.1)

of this proposition, if conditions (i) and (ii) are satisfied for one value α < 1, then they are satis-

fied for infinitely many values of α. Therefore, we either have an infinite number of pairs {α,Fα}

generating G(t) and satisfying (RC), or none. Note that Example 1 following Theorem 2 in the

main text provides an existence scenario. For no existence scenario, consider G(t) = 1−e−t. In this

case, g(t) = e−t and
∫
t

0
ez−tg(z)dz

g(t)
= t which cannot be bounded by a constant (in this case, 1

1−α
) for

t∈ (0,∞). Therefore, condition (i) in Theorem 2, which is necessary, is never satisfied.
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(c) Note that given N and implied distributions Fαs, according to the proof of Theorem 2,

θ(t) = p(t)− νmG(t) = σ(t) does not depend on the parameter α. Therefore, θ(t) is a bijection

between [0,∞) and (θ, θ̄]. For any α∈ (0, 1), using integration by parts, we can rewrite (A.16) as

Fα(θ(t))= 1−G(t)+

(

1−
1

α

)

e−t

∫ t

0

ezg(z)dz. (A.19)

It then follows that ∂

∂α
Fα(θ(t))> 0, which immediately yields the stochastic dominance property.

�

Proof of Theorem 3. From Lemma A6, note that conditions (i), (iii), and (iv) are necessary

for the existence of distribution Fα.

Existence. Since p(∞)< θ+ νm, we have tG <∞. Further, σ(t) =max{θ, p(t)− νmG(t)}, and it

is a weakly decreasing surjective (onto) function from [0,∞) to [θ, θ̄]; specifically, σ(t) is strictly

decreasing on [0, tG] and constant (equal to θ) afterwards. Since Q should satisfy equation (A.7),

we define the type distribution F in a similar way as in (A.16):

F (σ(t))= 1−
1

α

∫ min{t, tG}

0

ez−min{t, tG}[g(z)+αG(z)]dz.

From the proof of Theorem 2, F (σ(t)) is strictly decreasing in t over [0, tG], with F (θ̄) =F (σ(0)) = 1

and F (θ) = F (σ(tG)) = 0 (because of condition (iii)). Moreover, F (σ(t)) = F (σ(tG)) = 0 for all

t≥ tG. Thus, F is a proper distribution function. Similar to the proof of Theorem 2, one can show

that F satisfies (RC).

Next, we show that N(t) =NF (t). Denote tM , inf{t|θ(t) = θ}= inf{t|Q(t) =m}. Since tG <∞,

we have two cases: tM ≥ tG and 0 < tM < tG (since we know that not all customers are qualified

initially due to condition (RC.ii), tG > 0 holds). First, if tM ≥ tG, then θ(t)> θ and σ(t)>θ for all

t∈ [0, tG). Similar to the proof of Theorem 2, it follows that mG(t) =N(t) =NF (t) and that σ(t) =

θ(t) over the interval [0, tG]. Moreover, for all t > tG, we have ṄF (t) = α[m−NF (t)]. Furthermore,

since tG ≥ tc from condition (iv), we have that eαt[1−G(t)] is a constant for all t > tG, which implies

that g(t) = α[1−G(t)], or Ṅ(t) = α[m−N(t)] for all t > tG. Since we have identical differential

equations with identical boundary condition at tG (NF (tG) =N(tG)), it immediately follows that

NF (t) =N(t) for all t > tG. Lastly, it follows that tG = tM , the moment when all consumers become

qualified. Second, if 0< tM < tG, then θ(t)> θ and σ(t)> θ for all t ∈ [0, tM). Similar to part (a),

it follows that mG(t) = N(t) = NF (t) and that σ(t) = θ(t) over the interval [0, tM ]. However, in

this case, θ(tM) = θ. Since tM < tG, σ(tM)> θ. Therefore p(tM)−νNG(tM)> θ≥ p(tM)−νNF (tM),

which is a contradiction. Consequently, this second case cannot exist.

Uniqueness. Similar to the proof of Theorem 2, uniqueness over the interval [0, tG] follows.

Further, as shown in the existence proof above, NF obeys a unique ODE ṄF (t) = α[m−NF (t)]

over the interval [tG,∞) with boundary condition NF (tG) =N(tG). This guarantees uniqueness of

the solution. �
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Proof of Proposition 2: If tG <∞, for Fα to generate the observed adoption path G, there

must exist a finite time tc < tG such that eαt[1−G(t)] is constant for all t > tc from condition (iii)

of Theorem 3. This cannot happen for two different values α1 6= α2. Therefore, there exists at most

one parameter α ∈ (0, 1) that can generate the adoption path G. �

Proof of Proposition 3: (a) Note that from the condition (iv) in Theorem 3 in §3.2.2 for the

case in which full qualification occurs in finite time, i.e., tG<∞, α is uniquely defined using the

adoption Gα over the time interval [tG, t1]. Consequently, from (12), the distribution Fα is uniquely

defined.

(b) First, consider Gα(t) as in (13) and the corresponding p(t) in Example 4, from which we can

derive the corresponding distribution function as given in the end of Example 4. For any given

t0<tGα
=1/β1, where β1 is the unique solution to (14), define a different adoption function G0(t)

for any a2>0 as follows:

G0(t) =

{

a1t if t≤ t0 ;
a1t+ a2(t− t0)

3 if t0<t<tG0
;

1− a3e
−α0t if tG0

≤ t ,
(A.20)

where a1=β1(1− 1/e), and tG0
is the unique solution greater than t0 of the following equation:

a2(tG0
− t0)

3 +(a+ δ)t− θ̄=0 . (A.21)

Furthermore,

α0 =

∫ tG0

0
ez−tG0g0(z)dz

1−
∫ tG0

0
ez−tG0G0(z)dz

, (A.22)

a3 = eα0tG0 (1− a1tG0
− a2(tG0

− t0)
3) , (A.23)

and p(t) is given in Example 4. Lastly, consider

θ̄ > max

(

e− 1

α0e
, 1−

1

e
+

(1−α0)(a1 + a2)

β1α0

)

. (A.24)

It then follows that the corresponding G0 in (A.20) satisfies conditions (i) – (iv) in Theorem 3, and

hence there exists the corresponding Fα0
. Note that we can pick any a2 > 0, which guarantees the

existence of multiple distinct adoption paths G0, each supported by a pair {α0, Fα0
} that satisfies

(RC) such that G0 6=Gα but G0(t) =Gα(t) for t∈ [0, t0]. �

B. Discussion on the Regularity Conditions
In this section, we discuss the implications of (RC) being violated in the simple case when α= 1.

Note that when α=1, (RC) is equivalent to (RC.i) because h(θ) = θ+νmF̄ (θ) is strictly increasing

in θ, and hence, (RC.i) implies (RC.ii). First, if (RC.i) is violated, there might be multiple adoption

paths in equilibrium. For example, if θ+νm> p(0)> θ̄, then we have at least two equilibria at time
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Figure 7 Illustration of a subscription path when α= 1 and (RC) is violated. Panel (a) plots a consumer valuation

distribution function when RC is violated. Panel (b) depicts the corresponding adoption path. The

subscription rate considered is p(t) = 1− t for t ∈ [0, 1] and 0 for t > 1. The consumer type density

function is f(θ) = 2(1−θ) for θ ∈ [0, 1], θ̄=1, and θ=0. The other parameters are α= 1, and νm= 2/3.

t=0: (1) all customers adopt, or (2) all customers wait. We may also obtain multiple equilibria if

h given in (A.1) is not one-to-one (injective). Alternatively, if f(θ) = 0 over some interval (θ1, θ2)

with θ1 > θ and F (θ1)> 0, adoption stalls before reaching full saturation once θ2-type customers

have adopted, and it may never re-start if the price does not drop enough in the future for the

lower type customers to jump in. If adoption restarts, then θ(t) would be discontinuous.

On the other hand, taking the derivative of θ(t) with respect to t for θ(t)> θ under differentia-

bility assumptions, we obtain:

θ̇(t)(1− νmf(θ(t)))= ṗ(t).

If for some θ1 ∈ (θ, θ(0)) we have 1− νmf(θ1) = 0, then the path of θ(t) cannot pass through or

cannot be differentiable at that point if the price is strictly decreasing. This leads to jumps or

stalling in adoption.

Last, if for some θ2 ∈ (θ, θ(0)) we have 1−νmf(θ2)< 0, one of the previously described situations

occurs. If f(θ) > 1
νm

for all θ, since
∫ θ̄

θ
f(θ)dθ = 1, it must be the case that θ̄ < νm+ θ, which,

depending on the initial price values might lead to multiple equilibria. Alternatively, if there exists

another θ3 ∈ [θ, θ] such that f(θ3) ≤
1

νm
, then under the continuity assumption of f , there must

exist θ4 ∈ [θ3, θ2] such that f(θ4) =
1

νm
, which leads to jumps or stalling.

Figure 7 also illustrates visually an example of multiple equilibria when (RC) is violated and the

distribution is heavily skewed towards lower types. As depicted in Panel (a), if θ < 0.25, then 1−

νmf(θ)< 0. In this case, as revealed in Panel (b), there exist multiple equilibria in period A (0.33<
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t < 0.375) as well as jumps in that period. In the Pareto-dominant equilibrium, the jump occurs

at the beginning of period A (at t= 0.33). There also exist a continuum of alternative equilibria

since, in equilibrium, the jump can occur at any time within period A. Technically, from (4), (5),

and NF (t) =Q(t), we obtain θ(t) = 1+
√
9−24t
4

, which is well-defined and monotone decreasing when

t < 0.375. Correspondingly, the resulting adoption path becomes G(t) = 1− (2θ(t)− θ(t)2) when

t < 0.375. As t increases further, full adoption becomes a feasible choice for customers, generating

the alternative equilibrium in period A. Furthermore, beyond t= 0.375, full adoption is the only

equilibrium, as illustrated in period B in the figure.

C. Estimation of Unique Subscriber Installed
Base for Mobile Voice Services in Japan

As discussed in §6.1, we want to adjust the total number of active voice services accounts in order

to obtain the total number of unique voice subscribers. According to a GSM Asia Pacific report

by Garner (2006), as of Q1 of FY2006, the multiple-connections phenomenon (whereby a user has

several active wireless voice accounts) is very small in Japan, due partly to the low prevalence of

prepaid services.9 A Forrester Research report by Browne et al. (2009) documents a recent surge in

the multiple-connection phenomenon in Japan, with 6% of female Internet users and 10% of male

Internet users reporting having at least two active accounts at the end of Q2 of FY2008. Same

report states that 96% of Internet users have a mobile phone. Also, we note that NTT DoCoMo, the

leading telecommunications firm in the Japanese market, is also offering 2in1 plans whereby users

can keep two different phone numbers. Prior to March 2008, each 2in1 plan (and, implicitly, the two

numbers in use) corresponded to a single subscription. Starting in March 2008, two subscriptions

were necessary for the same user for voice services but data consumption was still quantified in a

consolidated way in association with only one of these two subscriptions.

Taking all this information into consideration we derived an approximation for the number of

adopters with multiple voice accounts based on the number of mobile Internet subscriptions at

the industry level and 2in1 NTT DoCoMo plans as well. First, in order to connect Internet user

numbers with mobile Internet user numbers, we are assuming that as of Q2 of FY2008, the vast

majority of Japanese Internet users who have a cell phone are also mobile Internet users. In the

absence of additional historical data, we further assume that the multiple-connection phenomenon

is negligible among voice subscribers who do not use mobile Internet. In other words, we assume

users who need to communicate a lot and/or, due to specific reasons, need multiple accounts

in order to separate communication streams, are also consumers of mobile Internet since mobile

data services provide additional communication channels (MMS, social networking, etc). Moreover,

9 As of December 2007, less than 2.5% of the Japanese mobile telecom market consisted of prepaid customers (GSM
Asia Pacific 2008).
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in the absence of specific market information, we consider negligible the number of subscribers

with three or more active voice accounts and consider that the multiple-connection phenomenon

is predominantly induced by users with two active accounts. Prior to the introduction of mobile

Internet services in 1999, we assume that the multiple connection phenomenon was negligible. We

consider that at the beginning most of the adoption is still first-time adoption while later, as the

market approaches saturation, adoption exhibits an increasing percentage of multiple-connections

users. In that sense, we assumed that the percentage of mobile Internet subscribers that have

multiple voice accounts grew linearly from February 1999 until March 2006 from 0% to 5% and,

after that, it increased faster, at a rate of an additional 1% per year. Then, number of unique

subscribers is derived then by subtracting the number of users with multiple accounts from the

total number of active mobile voice accounts.

D. NTT DoCoMo Voice ARPU Details
NTT DoCoMo reports yearly ARPU as the ratio between the fiscal year revenue from monthly

related charges (net of any activation fees or other unrelated charges) and the sum of active

subscriptions during each month of the current fiscal year. For any given month, the active sub-

scriptions are computed as the average between the subscriptions at the end of the previous month

and the subscriptions at the end of the current month.


