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METHODOLOGICAL STUDIES

Statistical Inference When Classroom Quality
is Measured With Error

Stephen W. Raudenbush and Sally Sadoff
University of Chicago, Chicago, Illinois, USA

Abstract: A dramatic shift in research priorities has recently produced a large number
of ambitious randomized trials in K-12 education. In most cases, the aim is to improve
student academic learning by improving classroom instruction. Embedded in these stud-
ies are theories about how the quality of classroom must improve if these interventions
are to succeed. The problem of measuring classroom quality then emerges as a ma-
jor concern. This article first considers how errors of measurement reduce statistical
power in studies of the impact of interventions classroom quality. We show how to use
information about reliability to compute power and plan new research. At the same
time, errors of measurement introduce bias into estimates of the association between
classroom quality and student outcomes. We show how to use knowledge about the
magnitude of measurement error to eliminate or reduce this bias. We also briefly review
research on the design of studies of the reliability of classroom measures. Such studies
are essential to evaluate promising new classroom interventions.

Keywords: Group-randomized experiments, hierarchical linear models, errors in
variables

THE CENTRALITY OF VALID CLASSROOM ASSESSMENT
IN EDUCATIONAL RESEARCH

The premise of this article is that the valid measurement of classroom process is
essential to the advance of large-scale quantitative social science in education.
Quantitative assessment of social interactions in classrooms has a long and
distinguished history (cf. Brophy & Good, 1970). However, this tradition has
had comparatively little influence on the design and conduct of recent large-
scale randomized experiments in school settings, and this past work has not
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Statistical Inference 139

significantly affected recent large-scale surveys of schools, classrooms, and
student outcomes. There are exceptions of seminal importance, including the
Study of Instructional Improvement (cf. Rowan, Camburn, & Correnti, 2004),
several applications of the “CLASS” framework (Pianta, Hamre, Mashburn,
& Downer, in press), and in the Third International Science and Mathematics
Study (see Stigler, Gallimore, & Hiebert, 2000), and this article draws heavily
on these studies.

Classroom Assessment in Intervention Research

A seismic shift in national research priorities over the past 6 years has led
to a dramatic increase in the number of large-scale randomized experiments
designed to test the impact of educational interventions on student outcomes.
Spybrook (2007) identified 55 such trials supported by the Institute for Edu-
cation Sciences. Of these, the vast majority assigned groups, typically schools
or classrooms rather than individuals, to interventions. The majority of the
innovative interventions attempted to improve student learning by improving
classroom teaching.

A major aim of these studies is to evaluate the impact on student learning of
assignment to an innovative classroom intervention. This aim can be achieved,
in principle, without measuring the quality of classroom instruction. However,
the interpretation of findings from such a study will typically be ambiguous.

Consider a study in which the assignment of schools or classrooms to
a novel instructional innovation is found to have no significant impact on
student learning. Assume that the study design was unbiased and provided
adequate statistical power to detect a nonnegligible effect. Two explanations
immediately arise. Program evaluators refer to these as “theory failure” versus
“implementation failure” (Rossi, Lipsey, & Freeman, 2004).

First, it may be that the innovation changed classroom instruction in the
ways intended but that those classroom changes made no difference in student
learning. The term theory failure describes this scenario because the theory that
links intended changes in instruction to intended student outcomes will have
proven incorrect.

Second, the innovation may never have been effectively implemented in
classrooms. Perhaps the innovators lacked skill in working with teachers or
perhaps the teachers lacked the skill, knowledge, or motivation to put the
innovative ideas to work in their teaching. In any case, program theory about
the relationship between the intended instruction and student outcomes was
never tested, leading to “implementation failure.”

Without valid assessments of instructional process, it would be impossible
to distinguish between these two explanations, severely limiting the study’s
contribution to knowledge. One would never know whether the theory under-
lying the program had in fact been tested.

Suppose instead that assignment to the innovation did produce gains in
student learning. One might then assume that the innovation “worked” by
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140 S. W. Raudenbush and S. Sadoff

improving instruction in the ways the program designers intended. But with-
out valid measurements of instruction, this conclusion would be unwarranted.
Perhaps the innovation “worked” in other ways, an assertion that could not
be probed without studying the impact of the innovation on instruction. Once
again, a failure to measure key aspects of classroom life yields major ambigu-
ities in the findings.

The task of measuring of classroom processes challenges researchers to
make precise their theory about how and when an innovation comes to be suc-
cessful. More broadly, if we are to develop a science of the links between school
organization, the work of teaching, and children’s cognitive development, tools
for measuring classroom qualities and processes become essential.

Classroom Assessment in Large-Scale Surveys

Let us now fast-forward into a world where much is known about which
innovations improve classroom life and which aspects of classroom life are
crucial to student development. A question of obvious importance then involves
access: What is the distribution of classroom quality so defined? To what extent
do students who vary by demography and geography have access to these
educational opportunities? Answering these questions requires the assessment
of classroom quality in large-scale surveys. To disregard such an aim would
be equivalent in medical research to disregarding the importance of knowing
which heart patients have access to bypass surgery or which kidney patients
have access to dialysis.

However, we need not wait for such an accretion of knowledge about
“what works” in classrooms to justify the large-scale assessment of classroom
process. The accumulation of knowledge about classroom life and student
learning is gradual, and experience shows that when investigators take care in
assessing classroom process, great opportunities arise for the discovery of new
ideas about how to improve education. Perhaps the Third International Science
and Mathematics Study is the most convincing case in point: Mathematics
instruction in countries whose students excel in math looks very different from
the instruction observed in countries where children fare less well (Stigler et al.,
2000). These findings are important not only for generating explanations for
cross-national differences in mathematics achievement but also for the design
of new instructional interventions within countries, and, in particular, within
the United States, whose students score disappointingly low in math.

The Role of Classroom Measures in Studies of School Improvement

Consider a study of a new innovation designed to improve instruction and
thereby to improve student learning. For simplicity, let us denote Z as indicating
assignment to the innovation. That is, Z = 1 if a class participates in the
innovation and Z = 0 if not. Of obvious interest is the association between
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Statistical Inference 141

Z and student outcome variable Y . However, for reasons just described, the
researchers are also interested in (a) whether Z affects classroom instruction,
here denotedQ, and (b) the association between instruction received, Q, and
student outcome Y . We are interested in three questions:

1. The association between Z and Y. This is a standard three-level analysis
(students within classrooms within schools, classrooms being the unit of
treatment) and is described in detail in books on hierarchical linear mod-
els (cf. Goldstein, 2003; Raudenbush & Bryk, 2002). Fully documented
software for planning such studies is available on the Web site of the W.T.
Grant Foundation (http://wtgrantfoundation.org). We do not consider these
models further in this article.

2. The association between Z and Q. This appears to be a standard two-level
model with Z and Q both defined on classrooms nested within schools.
However, we postulate that Q is measured with error and investigate the
implications of these errors of measurement for studies of the impact of an
innovation Z on a classroom process, Q. An extra variance component is
therefore added, making the model essentially a three-level model (errors
of measurement within classrooms within schools).

3. The association between Q and Y. This is a three-level model with Y at
Level 1 and Q at Level 2 (between classrooms). We are interested in the im-
plications of the fact that Q is measured with error for inferences regarding
association between classroom process and Y .

The discussion here is relevant not only to studies of the impact of inno-
vations but also to surveys. Surveys enable study of the distribution of access
to high-quality classrooms. In these studies, the explanatory variables are char-
acteristics of schools and students and classroom quality, Q, is an outcome.
Such surveys also enable specification of models in which Q is an explanatory
variable with Y is a student outcome.

The remainder of this article is organized as follows. The next section
considers the implications of measurement error of classroom process Q for
the design of studies that use Z as an explanatory variable and Q as an outcome.
The following section considers the implications of the measurement error for
studies of the effect of Q on Y . The last section briefly reviews the design
of studies that aim to quantify sources of error in measuring Q and considers
implications for further research.

STUDIES OF THE IMPACT OF INNOVATIONS
ON CLASSROOM PROCESS

We now consider the case in which the aim is to study the impact of receiving a
classroom-level intervention on classroom quality, Q. However, Q is measured
with error. The key result is that although these errors of measurement do not
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142 S. W. Raudenbush and S. Sadoff

cause bias, they do reduce precision and power. As a result, unreliability of
classroom measurement requires sampling a larger number of classrooms or
schools than would otherwise be required to obtain a desired level of statistical
power.

Spybrook (2007) identified two experimental designs most commonly used
in studies of interventions designed to improve learning. Design 1 is a school
randomized trial: Whole schools are assigned at random; teachers and children
in the experimental schools participate in the intervention. In contrast, in Design
2, schools are first sampled and then classrooms within schools are assigned
at random to treatments. We consider these two designs separately because
the reliability of classroom measurement affects statistical power differently in
these two cases.

Statistical Inference for Design 1: Randomization at the School Level

Let Zk = 1 if school k is assigned to receive the experimental innovation and
Zk = 0 if school k is assigned to the control condition, for schools k = 1, . . . ,
K . Let Qjk denote the “true” quality of classroom j in school k on a dimension
of classroom quality for classrooms j = 1, . . . , Jk . This is a two-level design
with classrooms nested within schools at Level 1 and schools varying at Level 2.

Model. A simple Level 1 model represents variation between classrooms
within schools:

Qjk = θ0k + cjk , cjk ∼ N
(
0, τ 2

c

)
. (1)

Here θ0k is the mean classroom quality in school k, cjk is a classroom
random effect and τ 2

c is the variance between classrooms within schools on
quality. This variance is assumed for simplicity to be constant across schools,
though this assumption can be relaxed. The classroom random effects are
mutually independent.

At Level 2, the mean classroom quality varies across schools partly as a
function of treatment assignment:

θ0k = α00 + α01Zk + s0k, s0k ∼ N
(
0, ω2

s0

)
. (2)

Here α00 is the average classroom quality in the control group; α01 is
the average causal effect on quality of being assigned to the experimental
innovation, and s0k is a school-level random effect having between-school
variance ω2

s0. The school-level random effects are assumed independent of
each other and of the classroom random effects. Substitution of Equation 2 into
Equation 1 yields the combined model

Qjk = α00 + α01Zk + s0k + cjk. (3)
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Statistical Inference 143

Estimation and Hypothesis Testing: No Measurement Error. Suppose now that
Qjk could be observed. Estimation of Equation 3 would provide an unbiased
estimate of the treatment effect α01 if schools were randomly assigned to
treatments and no attrition emerged. The analyst may wish to add covariates
to Equation 1 or 2, but such an addition would have no consequences for the
principles we are developing here. In particular, suppose that the researcher is
planning a balanced design, with K/2 schools in each treatment condition and
J classrooms per school. Then the minimum variance unbiased estimate would
be the simple difference between the arithmetic means of the outcome in the
experimental and control groups respectively, that is

α̂01 = Q̄E − Q̄C, (4)

where

Q̄E =
K/2∑
k=1

J∑
j=1

Qjk/(KJ/2)

and

Q̄C =
K∑

k=K/2+1

J∑
j=1

Qjk/(KJ/2)

where the data have been organized such that the students are clustered within
schools and then sorted so that the first K/2 schools are the experimental
schools. The variance of this estimator (Raudenbush, 1997) is

V ar(α̂01) = 4
[
ω2

s0 + τ 2
c /J

]
/K (5)

The null hypothesis H0 : α01 = 0 can be tested using a central F statistic with
degrees of freedom 1, K-2. Under the alternative hypothesis Ha : α01 = α∗

01 >

0, the computed F ratio will be distributed as a noncentral F with degrees of
freedom 2, K-2 and noncentrality parameter

ψ = α∗2
01

V ar(α̂01)
= Kα∗2

01

4[ω2
s0 + τ 2

c /J ]
. (6)

Power increases with ψ : as the number of schools, K , and the squared effect
magnitude α∗2

01 increase, so does power. Increasing the number of classrooms
per school, J , helps, but this benefit diminishes to zero as J increases unless
the between-school variance, ω2

s0, is null.
It is often convenient to plan research based on prior beliefs about

standardized effect sizes. Past research may give some guidance on likely
effect sizes in standardized units when no information is available about
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144 S. W. Raudenbush and S. Sadoff

scale-specific effects. Define the standardized effect size δ = α∗
01/

√
ω2

0s + τ 2
c

and the intraschool correlation (the fraction of variation that lies between
schools) as ρ = ω2

0s/(ω2
0s + τ 2

c ). Therefore α∗2
01 = δ2(ω2

0s + τ 2
c ) and ω2

0s + τ 2
c =

ω2
0s/ρ. Making these substitutions into Equation 6 yields the equivalent expres-

sion

ψ = Kδ2

4[ρ + (1 − ρ)/J ]
. (7)

Measurement Error Model, Statistical Inference, and Power. We now consider
the effect of measurement error on statistical inference and power. Suppose that
we do not observe the true classroom quality but rather a fallible indicator Wjk

following the model

Wjk = Qjk + ejk, ejk ∼ N
(
0, σ 2

e

)
(8)

where the measurement errors ejkare mutually independent of each other and
of all other random effects. Now the minimum variance unbiased estimate is
the mean difference

α̂01 = W̄E − W̄C, (9)

with sampling variance

Var(α̂01) = 4
[
ω2

s0 + (
τ 2
c + σ 2

e

)
/J

]
/K. (10)

As before, the null hypothesis H0 : α01 = 0 can be tested using a central
F statistic with degrees of freedom 1, K-2. Under the alternative hypothesis
Ha : α01 = α∗

01 > 0, the computed F ratio will be distributed as a noncentral F

with degrees of freedom 1, K-2 and noncentrality parameter

ψ = α∗2
01

Var(α̂01)
= Kα∗2

01

4[ω2
s0 + (τ 2

c + σ 2
e )/J ]

. (11)

We now define the reliability of measurement as

λ = τ 2
s /

(
τ 2
c + σ 2

e

)
, (12)

the usual ratio of “true score variance” to observed covariance. This reliability
is equivalent to the correlation between two realizations of W based on the
same measurement procedures as before but using randomly different raters,
items, occasions, and so forth, that generate random errors of measurement (see
the last section in this article). Substituting τ 2

c + σ 2
e = τ 2

c /λ in Equation 11 and

standardizing as before so that δ = α∗
01/

√
ω2

0s + τ 2
c and ρ = ω2

0s/(ω2
0s + τ 2

c ),
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Statistical Inference 145

we now obtain the standardized noncentrality parameter

ψ = Kδ2

4[ρ + (1 − ρ)/(Jλ)]
. (13)

Inspection of Equation 13 reveals that setting λ = 1 yields the noncentrality
parameter we obtained when no measurement error was present (see Equation
7). In effect, Equation 13 tells us that unreliability reduces the effective sample
size of classrooms per school. For example, Equation 2.13 with λ = .5 is
equivalent to Equation 7 with J reduced by half.

Statistical Inference for Design 2 (Classrooms Randomized Within
Schools)

We now consider the case where K schools are again sampled. However, rather
than assigning these schools to the experimental innovation, we instead sample
J classrooms within those schools and assign those classrooms at random to
the experimental innovation or to a control. Let Zjk = 1 is classroom j within
school k is assigned to receive the experimental innovation and Zjk = 0 if that
classroom is assigned to the control condition. As before, let Qjk denote the
“true” quality of classroom j in school k on a dimension of classroom quality
for classrooms j = 1, . . . , Jk . This is again a two-level design with classrooms
nested within schools at Level 1 and schools varying at Level 2. However, now
the treatment indicator is at Level 1 rather than Level 2.

Model. A simple level-1 model is then

Qjk = θ0k + θ1kZjk + cjk , cjk ∼ N
(
0, τ 2

c

)
. (14)

Here θ0k is the mean classroom quality for the control classrooms in school
k, θ1k is the average causal effect of the experimental innovation on classroom
quality in school k, cjk is a classroom random effect, and τ 2

c is the variance
between classrooms (within treatments) within schools on quality. As before,
the classroom random effects are mutually independent. The key difference
between Designs 1 and 2 is that, because the causal variable varies within
schools in Design 2, it is now possible to identify a school-specific treatment
effect, θ1k . This effect may be modeled as varying randomly over schools.

Therefore, at Level 2, both θ0k and θ1k may vary from school to school:

θ0k = α00 + s0k,

θ1k = α10 + s1k,

(
s0k

s1k

)
∼ N

[(
0
0

)
,

(
ω2

s0 ωs01

ωs10 ω2
s1

)]
(15)

Here α00 is the average level of quality in the control group; α01 is the aver-
age causal effect of being assigned to the experimental innovation; and s0k, s1k
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146 S. W. Raudenbush and S. Sadoff

are school-level random effects having between-school variances ω2
s0, ω

2
s1 re-

spectively and covariance ωs01 = ωs10. The pair of school-level random ef-
fects, while correlated with each other, are assumed independent of the pairs of
random effects associated with other schools and also of the classroom random
effects.
Substitution of Equation 15 into 14 yields the combined model

Qjk = α00 + α01Zjk + s0k + s1kZjk + cjk. (16)

Estimation and Hypothesis Testing: No Measurement Error. Suppose for now
that Qjk could be observed. Estimation of Equation 16 would provide an
unbiased estimate of the treatment effect α01 if schools were randomly assigned
to treatments, no attrition emerged, and no spillover effects between classrooms
were present. Suppose that the researcher is planning a balanced design, with
K/2 schools in each treatment condition and J classrooms per school. Then the
minimum variance unbiased estimate would be the simple difference between
the arithmetic means of the outcome in the experimental and control groups
respectively, that is,

α̂01 = Q̄E − Q̄C, (17)

where

Q̄E =
K∑

k=1

J/2∑
j=1

Qjk/(KJ/2)

and

Q̄C =
K∑

k=1

J∑
j=J/2+1

Qjk/(KJ/2)

where the data have been sorted by school; within schools, the data are sorted
such that the first J /2 classrooms are the experimental classrooms. The variance
of this estimator (Raudenbush & Liu, 2000) is

V ar(α̂01) = [
ω2

s1 + 4τ 2
c /J

]
/K, (18)

and the null hypothesis H0 : α01 = 0 can be tested using a central F statistic
with degrees of freedom 1, K-1. Notice that the between-school variance
component ω2

s0 does not influence Equation 18: One of the key advantages of
randomizing within schools is that school-level variance in the mean outcome is
removed from the experimental error variance. Under the alternative hypothesis
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Statistical Inference 147

Ha : α01 = α∗
01 > 0, the computed F ratio will be distributed as a noncentral F

with degrees of freedom 1, K-1 and noncentrality parameter

ψ = α∗2
01

V ar(α̂01)
= Kα∗2

01

ω2
s1 + 4τ 2

c /J
. (19)

A key factor that can undermine power is ω2
s1, which measures the het-

erogeneity of the treatment effect across schools. If this heterogeneity is large,
increasing the total number of schools, K , contributes greatly to power. If the
heterogeneity is null, increasing the number of classrooms, J , is as helpful
as is increasing K . If schools are regarded as fixed rather than random, the
F ratio under the null hypothesis takes on a noncentral F distribution with
1, K(J -2) degrees of freedom and noncentrality parameter Equation 19 with
ω2

s1 = 0. The main effect of treatment in the fixed effects model becomes
difficult to interpret, however, if the treatment effect is heterogeneous across
schools.

It may again be convenient to work with standardized effect sizes. We
now define the standardized effect size somewhat differently than in the case
of Design 1. Specifically, we set δ = α∗

01/τc, the ratio of the true effect size to
the true standard deviation of the outcome within schools. We also standard-
ize the heterogeneity of the treatment effect variance such that σ 2

δ = ω2
s1/τ

2
c .

With these definitions in mind, the noncentrality parameter (Equation 19) is
equivalent to

ψ = Kδ2

σ 2
δ + 4/J

. (20)

Measurement Error Model, Statistical Inference, and Power. To assess how re-
liability of measurement affects power, we apply the same measurement model
as in Design 1, namely, Equation 8, and for the balanced case (J /2 classrooms
per treatment in each school k) apply the minimum variance unbiased estimate
α̂01 = W̄E − W̄C, with sampling variance

V ar(α̂01) = [
ω2

s01 + 4
(
τ 2
c + σ 2

e

)
/J

]
/K. (21)

Using our previous definition of the reliability, that is, λ = τ 2
c /(τ 2

c + σ 2
e ),

our noncentrality parameter now becomes

ψ = Kδ2

σ 2
δ + 4/(Jλ)

. (22)

Inspection of Equation 22 again reveals that setting λ = 1 yields the non-
centrality parameter we obtained when no measurement error was present (see
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148 S. W. Raudenbush and S. Sadoff

Equation 20). As in Design 1, Equation 22 tells us that unreliability reduces
the effective sample size of classrooms per school.

Illustrative Example. The consequences of reliability for statistical power are
graphed in Figure 1. The example is based on data collected by Mashburn et
al. (in press). In that data set, 82 classrooms were nested within 18 schools.
About 18% of the variance in outcomes lay between schools. We assume that
the heterogeneity of the effect size is about .05. Power is plotted as a function
of standardized effect sizes of 0.50, 0.75, and 1.00. Reliability makes a fairly
substantial contribution to power. Thus, for an effect size of 0.75, the figure
indicates that power would be about .60 if the reliability were λ = .50, whereas
power would be about .80 for λ = .80.

STUDIES OF THE IMPACT OF CLASSROOM PROCESS
ON STUDENT OUTCOMES

In this section, we consider the case in which the aim is to assess the con-
tribution of classroom quality Q to student learning Y . As before, classroom
quality is measured with error. The key result in this case is that measurement
error creates bias. Specifically, if the effect of classroom quality on student

Figure 1. Random-effects model assumed; harmonic mean of classrooms per school
(J ) is 4.56; schools (K) are 18; effect size variability is 0.05, variance because of
blocking is 0.18 of total variance across schools.
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Statistical Inference 149

outcomes is positive, the estimate based on a fallible measure of classroom
quality will be negatively biased. Although unreliability also reduces power,
thereby increasing the need to sample more classrooms or schools, the problem
of bias is now central. Increasing the sample size will not reduce the bias.

One of the benefits of conducting a study of the reliability of classroom
measurement is that information from such a study can be used to correct the
bias that arises from measurement error. We now consider how the bias can be
so corrected.

Bias Arising From Measurement Error

As before, Qjk denotes the “true” classroom quality on some dimension of
interest. We are now interested in using Qjk to predict student outcome Yijk ,
where students are indexed by i = 1, . . . , njk . In this setting it will typically
be required to control for one or more covariates Xjk because classrooms will
not be randomly assigned to levels of quality Qjk . It is common practice is
to incorporate as covariates those prior characteristics of teachers, schools,
and students that predict classroom quality and are related to Yijk . More so-
phisticated and useful versions of this strategy seek to compare “high” Qjk

classrooms in the experimental condition to observationally similar classrooms
in the control condition (Peck, 2003). Causal inference proceeds cautiously un-
der the assumption that the association between Qjk and unobserved covariates
is null conditional on observed covariates. This is the assumption of ignorable
assignment of Qjk given the observed covariates.

If Qjk were observed, we could estimate the three-level model that would
identify the impact of Qjk on Yijk given the observed covariates. For simplicity,
we consider a single covariate, Xjk . At Level 1 (between children within
classrooms), we have

Yijk = π0jk + εijk, εijk ∼ N
(
0, σ 2

ε

)
, (23)

where π0jkis the mean outcome in class j of school k and εijk is a child-level
random effect independently and identically distributed and independent of
all other random effects. At Level 2 (between classrooms within schools) we
model the classroom mean as a function of Qjk and Xjk:

π0jk = β00k + β01kQjk + β02kXjk + r0jk, r0jk ∼ N
(
0, τ 2

r

)
. (24)

Here β00k is a school-specific random intercept and β01k is a random
coefficient representing the unique partial effect of Qjk on π0jk; β02k represents
the partial association between Xjk and π0jk within school k. The regression
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150 S. W. Raudenbush and S. Sadoff

coefficients jointly vary over schools according to the Level 3 model

β00k = γ000 + u00k

β01k = γ010 + u01k

(
u00k

u01k

)
∼ N

[(
u00k

u01k

)
,

(
ωu00 ωu01

ωu10 ωu11

)]

β02k = γ020.

(25)

In this model we have constrained β02kto be invariant over schools. Sub-
stituting Equation 25 into Equation 24 and Equation 24 into Equation 23, we
have the combined or “mixed” model

Yijk = γ000 + γ010Qjk + γ020Xjk + r0jk + u00k + u01kQjk + εijk, (26)

Inference would be straightforward if we could directly observe Qjk .
However, as in earlier sections, we do not observe Qjk but rather the fallible
variable Wjk where

Wjk = Qjk + ejk, ejk ∼ N
(
0, σ 2

e

)
. (27)

Complicating matters a bit is that Qjk is related to Xjk (recall that we
included Xjk to control for confounding). We therefore have

Qjk = α0 + α1Xjk + s0k + cjk, s0k ∼ N
(
0, ω2

s0

)
; cjk ∼ N

(
0, τ 2

c

)
.

(28)

If we were to estimate a regression of the same form as Equation 26 but
now using the fallible Wjk as a predictor in place of the unknown Qjk , the
estimates of γ010, γ020 would be biased.

Correcting for the Bias

Although the bias in estimating the effect of classroom quality on stu-
dent outcomes can be severe, obtaining a good estimate of the reliability
λ = τ 2

c /(τ 2
c + σ 2

ε ) can be most helpful. To see why, let us consider condi-
tional expectation of Qjk given Wjk , Xjk , and s0k , the school-level random
component of Qjk that is

Q̂jk = [E(Qjk|Wjk,Xjk, s0k)] = λWjk + (1 − λ)(α0 + α1Xjk + s0k).

(29)

Taking a second expectation gives us

Q∗
jk = E(Qjk|Wjk,Xjk) = E(Q̂jk|Wjk,Xjk)

= λWjk + (1 − λ)(α0 + α1Xjk + s∗
0k) (30)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
] 

at
 0

6:
23

 0
9 

A
ug

us
t 2

01
1 



Statistical Inference 151

where

s∗
0k = E(s0k|Wjk,Xjk) = λ2k(W̄.k − α0 − α1X̄k)

with λ2k = ω2
0s

ω2
0s + τ 2

c /(Jkλ)
. (31)

Here

W̄.k =
Jk∑

j=1

Wjk/Jk,

and

X̄.k =
Jk∑

j=1

Xjk/Jk.

The conditional expectation Q∗
jk is the empirical Bayes posterior mean of the

latent variable Qjk given the observed data and is available in the empirical
Bayes residual file output by now-standard software for hierarchical linear
models (Raudenbush & Bryk, 2002, Equations 8.29, 8.30).

The important point is that substitution of a consistent estimate of Q∗
jk for

the unknown Qjk in Equation 26 will eliminate the large-sample bias in the
estimation of the regression coefficients γ010, γ020 under standard assumptions
that we now make clear. Let us now examine the conditional expectation of Y

given the observed covariate X and the fallible indicator W . The first step is to
condition also on the random effects u0k, u1k :

E(Yijk|Xjk,Wjk, u00k, u01k)
= γ000 + γ010Q

∗
jk + γ020Xjk + E(r0jk|Xjk,Wjk, u00k, u01k)

+u00k + u01kQ
∗
jk + E(εijk|Xjk,Wjk, u00k, u01k).

(32)

Under our assumptions that the Level 1 and Level 2 random effects are condi-
tionally independent of the level three random effects and of X and Q,

E(r0jk|Xjk,Wjk, u00k, u01k) = E(r0jk) = E(εijk|Xjk,Wjk, u00k, u01k)

= E(εijk) = 0.

Therefore,

E(Yijk|Xjk,Wjk, u00k, u01k) = γ000 + γ010Q
∗
jk + γ020Xjk + u00k + u01kQ

∗
jk.

(33)
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Our second step is to take the expectation over the distribution of the Level 3
random effects:

E(Yijk|Xjk,Wjk) = γ000 + γ010Q
∗
jk + γ020Xjk + E(u00k|Xjk,Wjk)

+E(u01k|Xjk,Wjk)Q∗
jk.

Once again, we assume that the random effects are independent of the X and W ,
in which case E(u00k|Xjk,Wjk) = E(u00k) = E(u01k|Xjk,Wjk) = E(u01k) =
0 . Therefore, we have

E(Yijk|Xjk,Wjk) = γ000 + γ010Q
∗
jk + γ020Xjk. (34)

Thus, substitution of a consistent estimate of Q∗
jkwill eliminate the large-

sample bias associated with the error with which W measures Q. The assump-
tions are standard ones: that treatment assignment is ignorable, meaning that
Q is conditionally independent of unobservables (the random effects) given
the observable X, that the measurement errors are also ignorable, and that the
linearity of Y in X and Q holds.

DESIGNING STUDIES OF QUANTIFY ERRORS IN MEASURES
OF CLASSROOM PROCESS

As shown in the previous section, knowing the reliability λ is extremely useful
in removing bias associated with measurement error when classroom quality
is a predictor of student outcomes. The second section had revealed the utility
of knowing λ in studies of the impact of innovations on classroom quality.
Specifically, λ is a crucial input in determining the power of a study to detect
the impact of an innovation on classroom quality.

The question thus arises: How does one design a study to reveal the relia-
bility of measurement of classroom quality? This is a topic taken up in detail
in Raudenbush, Martinez, Bloom, Zhu, and Lin (2007). Their key idea is that
one must first conceptualize the primary sources of error in measuring quality
and then design a study in which the importance of these sources can be sep-
arately identified. Raudenbush and Sampson (1999) applied this approach to
measuring neighborhoods and described it as the science of measuring ecolog-
ical settings or “ecometrics” as distinct from psychometrics, though both use
similar statistical tools. In particular, generalizability analysis as developed by
Cronbach and Gleser (1965) is particularly useful.

To illustrate, Raudenbush, Martinez, Bloom, Zhu, and Lin (2007) de-
scribed data collected at the National Center for Early Development and Learn-
ing (see Mashburn et al., in press). In this study, raters coded aspects of quality
of classrooms on multiple days. Within each day, classrooms were observed on
multiple 20-min segments. Random variation associated with raters, days, and
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segments combined additively and in interaction to generate a complex error of
measurement. The authors showed how increasing the number of raters or days
or segments per day would plausibly affect reliability given estimation of the
magnitude of the components of error variance generated by these sources. By
increasing reliability, we have seen that we can increase the power of a study
designed to assess the impact of a new intervention Z on classroom quality
Q. We have also seen that a good estimate of reliability is extremely useful in
reducing bias in studies that aim to assess the impact of classroom quality Q

on student outcomes Y .
Studies of sources of measurement error can also reveal potential biases that

can arise even in randomized experiments. Suppose that some raters are more
likely than others to be assigned to observed classrooms randomly assigned
to the experimental treatment. This unbalanced assignment might produce a
substantial bias if rater effects are large. The same problem can arise in assigning
days of the week or month to classrooms in the experimental versus control
condition. Although it may not be possible to balance all sources of error by
experimental condition, a measurement study can reveal the most important
sources of error, enabling the researcher to focus on balancing these sources,
thereby removing the most salient sources of bias.

This discussion leaves many questions unanswered. Consider, for example,
studies of validity that postulate a confirmatory factor structure among items.
Use of factor analysis generally entails the assumption that measurement errors
are independent. However, the fact that multiple items are assessed contempo-
raneously by the same rater implies that the errors of measurement will in fact
be correlated. So factor analyses must remove these rater and temporal effects
if the model assumptions hold.

We have considered rather simple cross-sectional designs. In fact, the
knowledge we seek to produce in children will result from sequences of in-
struction across grades. For example, instruction in word decoding and complex
oral language in grades K-1 followed by instruction in reading comprehension
and writing in Grades 2 and 3 may be essential to produce a high level of
reading comprehension by the end of Grade 3. Such sequential treatments pose
problems of causal inference that do not arise in cross-sectional settings. These
difficulties combine with problems of measurement error to pose significant
methodological challenges that we cannot discuss in this article but that are the
subjects of ongoing research.
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