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It is difficult to overstate the profound impact that game theory has had on the 
economic approach and on the sciences more generally. For that reason, understand-
ing how closely the assumptions that underpin game theoretic analysis conform to 
actual human decision making is a question of first-order importance to economists. 
In this spirit, backward induction represents one of the most basic concepts in game 
theory. Backward induction played a prominent role in Reinhard Selten’s (1965) 
development of perfect equilibrium, and it has helped to shape the modern refine-
ment literature. Although backward induction is a cornerstone of game theory, exist-
ing empirical evidence suggests that economic agents engage in backward induction 
less frequently than theorists might hope.

Backward induction has fared especially poorly in the centipede game, which was 
introduced by Robert W. Rosenthal (1981) and has since been extensively analyzed 
(Ken Binmore 1987; Robert J. Aumann 1988; Philip J. Reny 1988; David M. Kreps 
1990; Geir B. Asheim and Martin Dufwenberg 2003). The original centipede game 
is a two-player, finite-move game in which the subjects alternate choosing whether 
to end the game or to pass to the other player. The subject’s payoff to ending the 
game at a particular node is greater than the payoff he receives if the other player 
ends the game at the next node, but less than the payoff earned if the other player 
elects not to end the game. The player making the final choice gets paid more from 
stopping than from passing, and thus would be expected to stop. If the opponent 
will stop at the last node, then, conditional on reaching the penultimate node, the 
player maximizes his earnings by stopping at that node. Following this logic further, 
backward induction leads to the unique subgame perfect equilibrium: the game is 
stopped at the first node.

As pointed out in prior research (Rosenthal 1981; Aumann 1992; Richard D. 
McKelvey and Thomas R. Palfrey 1992; Mark Fey, McKelvey, and Palfrey 1996; 
Klaus G. Zauner 1999), there are many reasons why players might take actions in 
the centipede game that diverge from that prescribed by backward induction. Players 
may face an aversion to the loss of a potential surplus. They may have social prefer-
ences for fairness, altruism, or cooperation; or, they may believe that enough other 

Checkmate: Exploring Backward Induction 
among Chess Players

By Steven D. Levitt, John A. List, and Sally E. Sadoff*

* Levitt: Department of Economics, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, and National 
Bureau of Economic Research (e-mail: slevitt@uchicago.edu); List: Department of Economics, University of 
Chicago, 1126 E. 59th Street, Chicago, IL 60637, and National Bureau of Economic Research (e-mail: jlist@
uchicago.edu); Sadoff: Becker Center on Chicago Price Theory, University of Chicago, 5807 S. Woodlawn Avenue, 
Chicago, IL 60637 (e-mail: sadoff@uchicago.edu). Please direct all correspondence to Sally Sadoff. We would like 
to thank Martin Dufwenberg and Philip Reny for insightful comments that improved the study. Trevor Gallen and 
Elizabeth Sadoff provided truly outstanding research assistance on the ground. Min Sok Lee, Lint Barrage, Tova 
Levin, Nicholas Simmons, and Yana Peysakhovich also provided able research assistance. The research was made 
possible by funding from the Becker Center on Chicago Price Theory.



976 THE AMERICAN ECONOMIC REVIEW april 2011

players in the population have these preferences that continuing the game becomes 
the optimal rational strategy (Aumann 1995). Similarly, there may be enough play-
ers in the population who make backward induction errors that continuing the game 
becomes the optimal rational strategy. Reny (1992) notes that, even if common 
belief of expected utility maximization holds at the initial node, it cannot hold after 
the first player passes, and therefore subsequent play need not conform to backward 
induction. That being the case, passing at the first stage can be perfectly rational.1 
Because of the myriad reasons for choosing not to stop in the centipede game, it is 
difficult to determine why stopping at the first node is so rare empirically: is it due 
to a failure to reason backward or for one of these other reasons?

These demanding assumptions induced McKelvey and Palfrey (1992, 803) to 
choose the centipede game for their seminal experiment exploring alternative mod-
els since they wished to “intentionally choose an environment in which we expect 
Nash equilibrium to perform at its worst.” The game did not disappoint McKelvey 
and Palfrey, and it has consistently produced outcomes that depart radically from 
the predictions of Nash equilibrium (Rosemarie Nagel and Fang F. Tang 1988; Fey, 
McKelvey, and Palfrey 1996; Zauner 1999; Amnon Rapoport et al. 2003; Gary 
Bornstein, Tamar Kugler, and Anthony Ziegelmeyer 2004).

A notable exception to this pattern of results is the work of Ignacio Palacios-
Huerta and Oscar Volij (2009), in which nearly 70 percent of their professional chess 
players stop the game at the first node when matched with other chess players, com-
pared to the roughly 5 percent of subjects who stop in McKelvey and Palfrey (1992). 
Furthermore, in their artefactual field experiment, every single chess Grandmaster 
who is given the chance to end the game on the first move does so when his oppo-
nent is known to be another chess player. When chess players are matched against 
students in the lab, they less frequently stop at the first node. Palacios-Huerta and 
Volij (2009, 1,624) attribute the results to chess players “not satisfy(ing) even the 
minimal departures from common knowledge of rationality that may induce rational 
players to depart from backward induction” because “[b]ackward induction reason-
ing is second nature to expert chess players.” Further, they note that “[i]t is the 
rationality of a subject and his assessment of the opponent’s rationality, rather than 
altruism or other forms of social preferences” that is critical to determining whether 
backward induction will prevail.

Another strand of the experimental literature on backward induction analyzes 
games that attempt to untangle backward induction from assumptions about ratio-
nality and interdependent preferences (see e.g., Binmore et al. 2002; Eric J. Johnson 
et al. 2002; Uri Gneezy, Aldo Rustichini, and Alexander Vostroknutov 2007; 
Dufwenberg, Ramya Sundaram, and David J. Butler 2008).2 Gneezy, Rustichini, 
and Vostroknutov (2007) and Dufwenberg, Sundaram, and Butler (2008) analyze 
zero-sum winner-take-all extensive form perfect information games with dominant 

1 For more thorough discussions of the relationship between common knowledge of rationality and backward 
induction, see Aumann (1995), Elchanan Ben-Porath (1997), Asheim and Dufwenberg (2003), and Pierpaolo 
Battigalli and Marciano Siniscalchi (1999). Aumann (1992, 2000) summarizes the skepticism toward backward 
induction in this setting eloquently, arguing that most people would say “if this is rationality, they want none of it.”

2 This research finds that assumptions about rationality and social preferences cannot fully explain departures 
from Nash equilibrium predictions (e.g., Binmore et al. 2002; Johnson et al. 2002). Evidence of learning suggests 
that initial failures to backward induct may be due to cognitive limitations (Johnson et al. 2002; Gneezy, Rustichini, 
and Vostroknutov 2007; Dufwenberg, Sundaram, and Butler 2008).
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strategies. Behavior in these games does not depend on social preferences or beliefs 
about the rationality of one’s opponent. This allows for a purer measure of players’ 
ability to recognize and implement backward induction strategies.

Our analysis brings these two strands of the literature together. Motivated by the 
remarkable findings of Palacios-Huerta and Volij (2009), we use professional chess 
players as subjects playing against other chess players, arguably giving backward 
induction its best chance to emerge. We conduct standard centipede games, as well 
as presenting results from two extremely demanding constant sum, winner-take-all 
“race to 100” games. As Judith D. Sally and Paul J. Sally, Jr. (2003) discuss, race 
to 100 is a traditional number game that involves two players who alternate choos-
ing numbers within a given range (in our two games, either from 1 to 10 or 1 to 9). 
These numbers are added in sequence until one player chooses a number that makes 
the sum exactly equal to 100.3 This player is the winner and receives a preset amount 
while the loser receives nothing. Similar to the games in Gneezy, Rustichini, and 
Vostroknutov (2007) and Dufwenberg, Sundaram, and Butler (2008), the optimal 
strategy in race to 100 does not depend on beliefs about other players or on distri-
butional preferences, because it is a constant sum, winner-take-all game. The domi-
nant strategy implied by backward induction is robust to all but the most extreme 
types of preferences.4 In contrast to Gneezy, Rustichini, and Vostroknutov (2007) 
and Dufwenberg, Sundaram, and Butler (2008), which require four and six steps of 
reasoning respectively to solve, race to 100 requires the player to reason backward 
ten moves.5

In the centipede game, our results for chess professionals are sharply at odds with 
those reported in Palacios-Huerta and Volij (2009) when chess players face one 
another in an artefactual field experiment. For instance, in our sample, chess players 
end the game at the first node in only 3.9 percent of the games, compared to 69 per-
cent for Palacios-Huerta and Volij (2009) in their artefactual field experiment. And, 
importantly, not a single one of the 16 Grandmasters in our experiment stop at the 
first node, whereas all 26 of the Grandmasters in Palacios-Huerta and Volij (2009) 
stopped at the first node. Overall, chess players in our sample behave almost exactly 
like standard subject pools in centipede.

Our race to 100 results suggest that failure to stop at the first node in centipede 
has little to do with an inability to reason backward. In the version of race to 100 
in which players choose numbers between 1 and 9, nearly 60 percent of the chess 
players achieve the Nash solution. Yet, among those subjects who perfectly back-
ward induct in race to 100, not a single one stopped at the first node in centipede. 
Indeed, the “best inductors” in the race to 100 game had low stoppage rates in cen-
tipede at any node, passing nearly 84 percent of the time. Interestingly, this passing 

3 The game we use is in the spirit of the games described in Sally and Sally (2003), and similar to the race game 
described in Gneezy, Rustichini, and Vostroknutov (2007). They denote the game by G(m, k), where players can 
choose any number between 1 and k and the winner is the first to make the sum equal to m. We study G(100, 10) 
and G(100, 9) (beginning at zero). Gneezy, Rustichini, and Vostroknutov (2007) study G(15, 3) and G(17, 4) 
(beginning at one). Our race to 100 games share similarities with a set of games known as “Nim” that have been 
analyzed in the mathematics literature (see, e.g., Charles L. Bouton 1901–1902; Richard Sprague 1935–1936; P. 
M. Grundy 1939).

4 Unless, of course, the player values the utility of her opponent more than her own utility.
5 The problem faced by a player is somewhat easier than it might first appear, however, because the player need 

think back only on his own moves, but need not solve for his opponent’s optimal move. In this way, we are not test-
ing for backward induction in the strict sense. Avinash Dixit (2005, 207) refers to this as a “rollback equilibrium.”
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rate was almost identical to the rate exhibited by subjects who had no skill at back-
ward induction in the race to 100 game. Finally, we find that small variations in 
the race to 100 game (the only difference being whether players choose numbers 
in the range 1 to 10, rather than in the range 1 to 9) influence play considerably.6 
This result suggests that the ability to transfer backward induction prowess from the 
chess board to experimental games is quite sensitive to the particulars of the game 
in question.

The remainder of our paper proceeds as follows. Section I discusses the exper-
imental design, including a more detailed description of the backward induction 
games, the subject pool, and the experimental procedure. Section II discusses the 
results. Section III concludes.

I.  Experimental Design

Following the bulk of the literature, and Palacios-Huerta and Volij (2009), we 
study a version of the centipede game that has exponentially increasing total pay-
outs, as illustrated in Figure 1. In Figure 1, at each node, the payoffs for player 1 
(“White”) appear in the top row and the payoffs for player 2 (“Black”) appear in 
the bottom row. Player 1 is the first mover. If he chooses to stop the game at the first 
node, player 1 receives $4 and player 2 receives $1. If player 1 chooses to continue 
the game at the first node, then it becomes player 2’s turn to move. If player 2 chooses 
to stop the game at the second node, player 1 receives $2 and player 2 receives $8. 
If he chooses to continue the game, it becomes player 1’s turn to move. The game 
continues until one player chooses “Stop” or the game reaches the final node. If the 
game reaches the final node, player 1 receives $256 and player 2 receives $64.

While the subgame perfect equilibrium predicts that player 1 chooses “stop” on 
his first move, few research subjects follow this strategy (Nagel and Tang 1988; 
McKelvey and Palfrey 1992; Fey, McKelvey, and Palfrey 1996; Zauner 1999; 
Rapoport et al. 2003; Bornstein, Kugler, and Ziegelmeyer 2004).7 As mentioned 
earlier, the literature has documented numerous reasons why players may choose to 
continue the game.

A more direct test of backward induction is the race to 100 game. In this game, two 
players alternate choosing numbers within a given range. These numbers are added 
in sequence until one player chooses a number that makes the sum exactly equal to 
100 (beginning from zero). This player is the winner and receives $10, whereas the 
other player receives nothing. We played two variants of the race to 100 game: one 
in which players could choose numbers from 1 to 9 inclusive, and the other in which 

6 Binmore et al. (2002, 87) similarly find that backward induction behavior is sensitive to small changes in games 
that are unfamiliar to players. They conclude that “backward induction would be compelling in the classical view 
of game theory, in which games are complete, literal representations of strategic interaction. But game theory is 
typically used not as a literal description but as a model of more complicated strategic interaction.”

7 For a learning theory that models the influence of experience on end behavior in finite games, we direct the 
reader to the seminal paper of Selten and Rolf Stoecker (1986). As the model suggests, such behavior is a general 
phenomenon, and empirically can be found in games related to the centipede variant. For example, Johnson et al. 
(2002) compare two explanations of why deviations from perfect equilibrium occur in three-round bargaining 
games. They report that both explanations—limited cognition and social preferences—play a role. The authors 
propose an extensive form level-k explanation for their data. Taking this idea to centipede games, Toshiji Kawagoe 
and Hirokazu Takizawa (2008) show that level-k analysis provides consistently good predictions for individual 
behavior.
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they could choose from 1 to 10 inclusive. In the 1 to 9 version, the second mover has 
the advantage: proper backward induction ensures victory for player 2. This holds 
because choosing whatever number yields a sum of 10, and subsequently choosing 
the numbers that add to 20, 30, 40, … , 80, 90, 100, provides a guaranteed win for 
player 2. In the 1 to 10 game, however, the first mover controls her own destiny since 
important sums are 1, 12, 23, 34, … , 78, 89, 100. If one player fails to backwardly 
induct properly on any move, the other player can guarantee victory by reaching one 
of those key numbers and then acting properly thereafter.

The race game’s dominant strategy, constant sum, winner-take-all reward struc-
ture eliminates concerns about loss of potential surplus, one’s own social prefer-
ences, beliefs about others’ social preferences, and beliefs about others’ ability to 
backwardly induct. Consequently, play in the race games more clearly maps to tests 
of backward induction than do choices in the centipede game. In this manner, our 
approach of linking individual play across the centipede and race games is in the 
spirit of Binmore et al. (2002), who break backward induction into its components, 
subgame consistency, and truncation consistency, via experimental methods.

A. Subject Pool

We recruited chess players at two international open chess tournaments that took 
place in the spring and summer of 2008 in the United States: the Chicago Open in 
Wheeling, IL (May 23–26), and the World Open in Philadelphia, PA (July 1–6).8 
While anyone entered in the tournaments was eligible to participate, we concen-
trated our recruiting efforts on highly ranked players.

The World Chess Federation (FIDE) and the United States Chess Federation 
(USCF) rank chess players using the Elo rating method.9 That rating, combined 
with achievements in selected tournaments, qualify players for official titles. The 
Grandmaster (GM) title is the highest title a chess player can receive. It is followed 
in prestige by the International Master (IM) title; the Federation Master and the 

8 Total prize money for the Chicago Open was $100,000 with a top prize of $10,000. Total prize money for 
the World Open was $400,000 with a top prize of $30,000. The average prize money payout to highly rated play-
ers in these tournaments is a few hundred dollars, roughly equal to the entrance fee the tournaments charge. The 
hourly wage earned by players in our experiment was well above the implied hourly wage from participating in the 
tournament.

9 Players may have both a FIDE and USCF rating. Ratings for a given player will not be identical since these rat-
ings are based on their performance in tournaments sanctioned by either FIDE or the USCF. For more information 
about the rating system, see the FIDE Handbook (World Chess Federation 2003), Section B.02.10, or the USCF 
Handbook (United States Chess Federation 2003).
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USCF Master follow—two approximately equal titles, with the former awarded by 
FIDE and the latter awarded by the USCF. We categorize players who hold one or 
both of these titles as Masters.10 Typically, GMs have an Elo rating above 2,500, IMs 
above 2,400, and Masters above 2,200. The experiment also included players who 
hold no title. We divide these players into two categories: those with a rating above 
2,000 and those with a rating below 2,000. Strong club players have an Elo rating 
of about 1,800.

Table 1 summarizes the titles and ratings of the subjects in our study. Our sam-
ple consists of 206 chess players (103 pairs): 26 GMs, 20 IMs, 61 Masters, 46 
players with no chess title rated above 2,000, and 53 players with no chess title 
rated below 2,000. The first movers consisted of 16 GMs, 12 IMs, 33 Masters, 18 
players with no chess title rated above 2,000, and 24 players with no chess title 
rated below 2,000.

B. Experimental Procedure

At each tournament, we rented two conference rooms in the hotels where the 
tournaments were held to conduct the experiments.11 We ran the experiment with 
pairs of chess players who remained anonymous to one another. We informed each 
player that he would be participating in a game that requires two players who take 
turns in sequence, and that the other player was receiving the same instructions in 
another room. While participants did not know each other’s identity, it is likely they 
assumed, given the context of the tournament, that they were paired with other chess 
players. Each pair played three rounds: one round of centipede and two rounds of 
race to 100 (one round of the 1 to 9 variant and one round of the 1 to 10 variant). 
We randomized whether centipede or race to 100 was played first, and likewise 
within the race to 100 game, whether the 1 to 9 or 1 to 10 variant was done first.12 
We randomly assigned each player the role of player 1 (White) or player 2 (Black), 

10 A player may hold both a Federation Master title and a USCF Master title at the same time. Players earn these 
titles based on their performance in tournaments sanctioned by either FIDE or the USCF.

11 We ran the experiment while the tournament was occurring. The players generally participated between tour-
nament rounds or during a round if their game ended early or if they took a bye. In some cases, players in contention 
to win the tournament requested to participate immediately after the tournament ended.

12 Due to time constraints, one pair stopped early and did not play the centipede game; another pair stopped early 
and did not play race 1–10.

Table 1—Summary of Participants

N USCF rating FIDE rating

Grandmasters   26 2,472–2,763 2,265–2,637
International Masters   20 2,273–2,538 2,227–2,488
FIDE and USCF Masters   61 2,009–2,497 2,037–2,497
Other chess players > 2,000   46 2,000–2,610 2,026–2,531
Other chess players  < 2,000   53 852–2,064 1,789–2,341
Total number 206 852–2,763 1,789–2,637

Note: Table 1 reports subject pool results. Columns correspond to title, subject counts, the range 
of USCF ratings, and the range of FIDE ratings.
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and those roles were maintained throughout all three rounds.13 Players did not know 
how many games they would play or that they would remain as either the first mover 
or the second mover. At the beginning of round two and round three, we informed 
players that they would be playing another game with the same player and that they 
would remain in the same mover role. The order in which the games were played 
does not appear to affect play in the centipede game, but does influence actions in 
the race to 100 game, as we discuss later.

Before each game, experimenters gave players a copy of written instructions for 
the game and read aloud from a cue card. In order to prevent collusion, players com-
municated their decisions via Instant Message on computers operated by the experi-
menters. During each game, players recorded their own decisions and the decisions 
of the other player as they occurred.14 After the third round, we asked players to fill 
out a short survey. Immediately following the experiment, we paid players their 
earnings from all three games privately in cash.15

The astute reader will note that we attempted to follow the field experimental 
design in Palacios-Huerta and Volij (2009) as closely as possible. For example, 
we directly informed subjects that they would be playing each game only once, as 
they did. This is an attempt, in the spirit of Miguel A. Costa-Gomes and Vincent P. 
Crawford (2006), to study strategic thinking in an environment without learning. 
And, at no time did we mention other games that subjects might be playing later 
in the experiment; thus the game played first is the strategic analog to a one-shot 
game.

One difference between our design and the field design of Palacios-Huerta and 
Volij (2009) is that our subjects play both the centipede game and the race to 
100 games with the same partner. The fact that we have some subjects play the 
centipede game first while other subjects play the centipede game after the race 
games permits a test of learning across domains. In practice, we find that learning 
is minimal (i.e., ordering does not matter) across the centipede game and the race 
to 100 games.

We should be clear that while our centipede game represents a direct replication 
of the artefactual field experiment in Palacios-Huerta and Volij (2009), in no way 
are we trying to replicate their lab experiment. The latter used a random rematching 
design, had each subject play ten centipede games, and varied opponent type—
chess players versus other chess players, chess players versus students, and students 
versus students. Such an approach permits an analysis of questions beyond those of 
direct import herein.

13 The one exception to random assignment was that we were more likely to assign Grandmasters at the Chicago 
Open to the role of player 1. We did this to ensure that we could observe at least one move for Grandmasters in the 
centipede game.

14 In the race to 100 games, subjects recorded the number chosen and current sum at the end of each turn. The 
experimenters confirmed that players had correctly recorded these numbers before proceeding with play.

15 See the Web Appendix for a copy of the written instructions, the cue cards read aloud by experimenters, and 
the survey.
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II.  Experimental Results

Figure 2 and Table 2 present results on the probability of stopping at each node in 
the centipede game, overall and conditional upon reaching that node, respectively. 
The top row in Table 2 pools data across players; the remaining rows parse the data 
according to the chess ranking of the player making a decision at the node. Each 
column in the table corresponds to a different node. Looking first at the results pool-
ing all players, we find that stop probabilities are low at early nodes and generally 
increase over the course of the game. For example, in only 3.9 percent of the 102 
pairs does the player stop the game at the first node.

Figure 2 reveals that roughly 10 percent of the games end at the second node. 
Nearly 45 percent of the games make it to at least node 5 (at which point player 1 
gets $64 and player 2 receives $16). Remarkably, 37 percent of players who reach 
the sixth node choose to continue the game to the final node (for a sure loss of 
$64).16 This result is consistent with many underlying motivations, including posi-
tive reciprocity—a player who has been generous at earlier nodes is rewarded by the 
opponent at the final node, even though the opponent suffers a substantial financial 
loss in doing so—more general social preferences, and bounded rationality.

Given the high pass rates observed in the data, passing maximizes expected returns 
at every node except the last one (where passing guarantees a loss). For instance, in 
our data the average final payoff to player 1 when he elected to pass at the first node 
was $44.85, compared to a guaranteed $4 from stopping at the first node (average 
earnings in total were $38.14). These results are consistent with previous studies of 
the centipede game using student subjects.

In terms of level of chess expertise, it is interesting to note that in 16 pairs with a 
Grandmaster as player 1, not once did the Grandmaster stop at the first node. Only 

16 Among those who played the centipede game before either of the race to 100 games, 1.9 percent of the pairs 
stopped at the first node, 7.7 percent at the second node, and 77 percent made it to at least node 5; 7.7 percent of 
the pairs reached the final node.
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Figure 2. Distribution of Centipede Game Stopping Nodes



983levitt et al.: backward inductionVOL. 101 NO. 2

1 of 9 Grandmasters who had the chance ended the game at the second node, and in 
only 1 of 15 opportunities did a Grandmaster end the game at the third node. The 
same general pattern is true among International Masters, as well as lower ranked 
players. Overall, the centipede results for our chess sample look very much like the 
empirical results with standard subject pools, and strikingly different from the earlier 
findings on chess players reported in Palacios-Huerta and Volij (2009).

A. Race to 100 Games

Tables 3, 4, and 5 summarize empirical results for the race to 100 games. Table 3 
splits the data according to the first point at which the game is “solved,” where solved 
means that one player gets onto a number that guarantees victory and plays optimally 
at every move from that point onward. The top two rows in Table 3 show results for the 
variant of the game in which players choose 1 to 9; the bottom two rows correspond 
to the 1 to 10 treatment. In each case we report both the “key numbers” that ensure 
victory and the percentage of games that are first solved at that particular key number.

The top portion of Table 3 demonstrates that in the 1 to 9 treatment, 57.3 percent 
of pairs solved the game as early as possible (i.e., at the number 10). By the num-
ber 20, roughly two-thirds of the pairs have solved the game. If the solution is not 
achieved by then, the game is likely not solved until near the end. Interestingly, the 
chess players do much worse in the 1 to 10 treatment: only 12.6 percent of these 
cases are solved on the first move (which requires the player to choose 1) and in only 
roughly 20 percent of cases is there a solution by the second key number (which is 
12).17 Remarkably, nearly two-thirds of the 1 to 10 treatment are not solved until 
number 78 or higher.

17 These results are consistent with Dufwenberg, Sundaram, and Butler (2008), who find that 14 percent of play-
ers solve a related game on the first move in the first round of play. Gneezy, Rustichini, and Vostroknutov (2007) 
do not separately report first round results for the race game they analyze. Yet, pooling the first five rounds of play, 

Table 2—Summary of Centipede Results-Implied Stop Probability

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

All chess players 0.039 0.102 0.193 0.352 0.587 0.632
(102) (98) (88) (71) (46) (19)

Grandmasters 0 0.111 0.067 0 0.636 1
(16) (9) (15) (7) (11) (2)

International Masters 0 0 0.083 0.625 0.625 0
(12) (8) (12) (8) (8) (1)

Masters 0.063 0.077 0.259 0.318 0.455 0.5
(32) (26) (27) (22) (11) (8)

> 2,000 0.056 0.154 0.154 0.2 0.5 1
(18) (26) (13) (15) (6) (2)

< 2,000 0.042 0.103 0.286 0.526 0.7 0.667
(24) (29) (21) (19) (10) (6)

Notes: Table 2 reports the distribution of implied stop probabilities for players in the centipede 
game. Columns correspond to the conditional probability that a player will stop at that node, 
given the chance to do so. Odd nodes refer to player one’s choices, while even nodes refer to 
player two’s choices. Number of opportunities observed is displayed in parentheses below.
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We find it striking that even among a subject pool that has extensive experience 
with backward induction, the seemingly minor change of shifting the “key num-
bers” from numbers ending with zero leads to a sharp reduction in success in solving 
the problem.18 This result is consistent with the power of subtle changes reported 
in many psychology experiments, as well as in Binmore et al. (2002, 87), who find 
that backward induction behavior of players unfamiliar with the game is quite sensi-
tive to minute changes in the game, and also with the findings of Adriaan de Groot 
(1965) regarding the difficulty chess players have in generalizing their skills in unfa-
miliar settings, even within relatively narrow contexts.

Tables 4 and 5 present empirical results of the race to 100 game in terms of implied 
probabilities of solving the problem, conditional on reaching that point without a 
solution previously being obtained. Table 4 (Table 5) shows the 1 to 9 (1 to 10) 
treatment. The first column of Table 4 corresponds to the first chance a player has 
to solve the problem (i.e., in the 1 to 9 variant, the first action by player 2, or the 
second move by player 1 if player 2 fails to solve the problem on the first move). 
The other columns map to each of the relevant “key numbers.” The top row of the 
table provides pooled results, whereas subsequent rows split the data by chess rank-
ing. The number of opportunities that arise at each node is presented in parentheses.

Overall, in the 1 to 9 treatment, 39 percent of players solve the game on their 
first move. This number is lower than the 57.3 percent of games that are solved by 
the number 10 because, in cases where the game is not solved by one player at the 
first chance, the other player often also fails to successfully solve it.19 If the game is 
not solved early, then the probability that it is solved at a middle node is less than 
10 percent. By the number 80, the hazard rate for solving it rises to 24 percent, and 
by 90, the solution rate is nearly three-quarters. Grandmasters are the group most 
likely to solve the game on their first chance (50 percent likelihood), but among the 
Grandmasters who fail to solve the game immediately, their performance is weak. 
Generally, we do not find stark differences in performance across chess rankings.

they find 46.5 percent of players make no errors on the first move. We should note that, similar to the centipede 
game results discussed above, subjects who play the race games before the centipede game behave similarly to those 
playing the race games after the centipede game.

18 The null hypothesis of equal probabilities of finding an early solution to the 1 to 9 and 1 to 10 treatments is 
strongly rejected by the data.

19 Note also that it is possible for neither player to solve the game on the first try, but for the game to be solved 
at 10 if both players’ first actions are low numbers, and then the third number selected solves the problem. This 
happens in one instance in the data.

Table 3—Summary of Race to 100 Results

Node at which game solved 1 2 3 4 5 6 7 8 9

Number at which game solved (1–9) 10 20 30 40 50 60 70 80 90
Percentage of time solved (1–9) 0.573 0.087 0.029 0.039 0.019 0.01 0.029 0.078 0.136

Number at which game solved (1–10) 1 12 23 34 45 56 67 78 89
Percentage of time solved (1–10) 0.126 0.087 0.019 0.01 0.01 0.029 0.049 0.214 0.447

Notes: Table 3 reports the distribution of nodes at which a race to 100 game was solved. Rows 1 and 3 report the 
“key number” from which a win may be forced. Rows 2 and 4 report the percent of the time a corresponding game 
was solved at that node; a solution is a choice of number that summed to a “key number,” in conjunction with never 
deviating from subsequent “key numbers” afterward.
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Data trajectories in the 1 to 10 game are similar, except that the solution rates early 
in the game are much lower than in the 1 to 9 treatment. Once again, if a solution is 
not reached near the beginning, it is unlikely that the game will be solved until near 
the end: about one in five players who reach the 78 node solve it there, and about 
three-fourths of the players get the right answer at 89. Grandmasters do somewhat 
better than other chess players with respect to finding an early solution to the 1 to 10 
game, but a test of the null hypothesis that Grandmasters have the same probability 
of solving this game at the first opportunity is rejected only at the p < 0.10 level.

To explore whether learning takes place within the course of the experiment, 
we examine whether the proportion of games solved at each stage of race to 100 
depends upon whether this is the first or second race to 100 game for the players 
(recall that every subject plays both the 1 to 9 and the 1 to 10 version). As shown 

Table 4—Implied Probabilities 1–9

First 10 20 30 40 50 60 70 80 90

All 0.392 0.333 0.147 0.061 0.083 0.048 0.026 0.086 0.242 0.737
(158) (3) (34) (49) (48) (42) (38) (35) (33) (19)

GM 0.5 — 0 0 0.167 0 0 0 0 0.5
(16) (0) (4) (4) (6) (5) (5) (4) (5) (2)

IM 0.333 — 0 0.333 0 0 0 0 0.75 —
(12) (0) (4) (3) (4) (4) (2) (2) (4) (0)

Master 0.422 — 0.4 0 0.077 0.083 0 0.111 0.222 1
(45) (0) (5) (10) (13) (12) (9) (9) (9) (5)

> 2,000 0.357 0.333 0 0.118 0.167 0.091 0.091 0 0 0.6
(42) (3) (13) (17) (12) (11) (11) (8) (6) (5)

< 2,000 0.372 — 0.375 0 0 0 0 0.167 0.333 0.714
(43) (0) (8) (15) (13) (10) (11) (12) (9) (7)

Notes: Table 4 reports the distribution of implied probabilities for race to 100 (1–9). Columns correspond to the 
“key number” from which a win can be forced. Columns correspond to the conditional probability that a player 
will solve a game at that number, given the chance to do so. Number of opportunities observed is displayed in 
parentheses.

Table 5—Implied Probabilities 1–10

First 12 23 34 45 56 67 78 89

All 0.098 0.095 0.022 0.008 0.008 0.026 0.047 0.198 0.754
(193) (21) (91) (120) (125) (116) (107) (111) (61)

GM 0.2 0 0 0 0.071 0.077 0.1 0.286 0.75
(25) (2) (5) (16) (14) (13) (10) (14) (4)

IM 0.105 0.333 0 0 0 0.091 0.083 0.167 1
(19) (3) (9) (11) (10) (11) (12) (12) (5)

Master 0.107 0 0.043 0 0 0 0.04 0.226 0.8
(56) (5) (23) (26) (36) (31) (25) (31) (20)

> 2,000 0.024 0.167 0 0 0 0.034 0.103 0.045 0.647
(42) (6) (21) (36) (36) (29) (29) (22) (17)

< 2,000 0.098 0 0 0.031 0 0 0 0.219 0.75
(51) (5) (28) (32) (28) (32) (33) (32) (16)

Notes: Table 5 reports the distribution of implied probabilities for race to 100 (1–10). Columns correspond to the 
“key number” from which a win can be forced. Columns correspond to the conditional probability that a player 
will solve a game at that number, given the chance to do so. Number of opportunities observed is displayed in 
parentheses.
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in the bottom two rows of Table 6, when the 1 to 10 game is played after the 1 to 9 
game, performance in the 1 to 10 game is improved. A solution is reached by the 
key number 12 nearly 30 percent of the time if players first see the 1 to 9 game, 
compared to roughly half that rate if they have not. This difference is statistically 
significant at the p < 0.01 level. Interestingly, the top two rows of the table demon-
strate that when the 1 to 9 game is played second, performance on the 1 to 9 game 
actually diminishes slightly relative to when the 1 to 9 game is played first, but that 
difference is not statistically significant. This may occur because in contrast to the 1 
to 9 game, in the 1 to 10 variant the solution frequently comes very late in the game. 
And players do not appear to generalize from the fact that the game can be solved by 
backward induction in the final moves to the broader lesson that this class of games 
is susceptible to backward induction from the very first move.

One explanation for these differences across games is that the pattern that emerges 
from the backward induction approach in the 1 to 9 game is easily recognizable: 60, 
70, 80, 90, 100. To a player who is not using backward induction initially, the fact 
that the opponent always chooses a number that ends on zero and wins using that 
strategy sends a strong cue as to the nature of the solution to the game. In contrast, 
the pattern of choices in the 1 to 10 game is much less obvious: 56, 67, 78, 89, 100. 
A player could ride the backward induction strategy to victory without the opponent 
even recognizing that there was a pattern to the first player’s actions.20

Interestingly, we also find some evidence that playing the centipede game first 
interferes with solving the 1 to 10 game. If race to 100 is played first, 20.2 percent 
of pairs solve the 1 to 10 game on the first move (i.e., by choosing 1). This percent-
age drops to 5.88 percent when centipede is played first. Similarly, the percentage 
of games solved on the final node (i.e., 89) increases from 33.3 percent to 55.9 
percent when race to 100 is played first and second, respectively. The effect on the 
1 to 9 game is similar in direction but the differences are small. One explanation for 
this result is that the players see centipede as a game of cooperation as opposed to 

20 Using a related game, Dufwenberg, Sundaram, and Butler (2008) find that playing an easier variant before 
a harder one increases the probability that players first will recognize that there is an analytic solution and second 
will solve for the dominant strategy (there, the easier variant required fewer steps of reasoning than the harder 
variant). However, in contrast to our results, they do not find that playing the harder variant first hurts play in the 
easier variant. This may be because the easier variant requires only two steps of reasoning. Gneezy, Rustichini, 
and Vostroknutov (2007) also find that learning takes place over the course of repeated race games, with subjects 
switching from forward induction to backward induction as experience increases. Although their subjects played 
race games of varying difficulty, they do not discuss the effect of game order on performance.

Table 6—Percentage of Games Solved at Each Node

1 2 3 4 5 6 7 8 9

Race to 100 1–9 10 20 30 40 50 60 70 80 90
1–9 Played first (N = 52) 0.615 0.115 0.038 0.019 0.019 0 0.019 0.058 0.115
1–9 Played second (N = 51) 0.529 0.059 0.02 0.059 0.02 0.02 0.039 0.098 0.157

Race to 100 1–10 1 12 23 34 45 56 67 78 89
1–10 Played first (N = 51) 0.078 0.059 0 0.02 0 0.059 0.039 0.176 0.569
1–10 Played second (N = 51) 0.176 0.118 0.039 0 0.02 0 0.059 0.255 0.333

Notes: Table 6 reports the distribution of when a race was solved, conditional on the order races were played in. 
Columns correspond to the “key number” at which a game was solved. One pair of players dropped out after play-
ing the race (1–9) first, which accounts for the differing number of observations.
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a backward induction game, which interferes with their ability to conceptualize the 
race to 100 game as a backward induction game.21

B. Is Skill at Backward Induction Correlated
with Stopping Early in the Centipede Game?

As noted earlier, there are many reasons why a player in the centipede game might 
not choose to stop the game. Inability to backward induct is one of those explana-
tions.22 Using performance in the race to 100 game as a measure of skill at backward 
induction, we are able to test whether those who successfully backward induct in 
the race to 100 game are more likely to stop at a given node in the centipede game.

There are 15 players in our sample who backward inducted perfectly in the race 
to 100 games; i.e., they made the optimal backward induction strategy every chance 
they were given in both games. The top row of Table 7 reports the probability that 
these 15 players stop at each node in the centipede game, conditional on reach-
ing that node. The number of times each node is reached is shown in parentheses. 
Despite the fact that these 15 players proved themselves adept at backward induction 
in the race to 100 games, not once out of ten opportunities did they choose to stop 
at the first node in the centipede game. At nodes 2 through 4, these players never 
stopped the game more than 25 percent of the time. At node 5, they stopped two out 
of three times. Tellingly, on the two occasions in which they reached node 6, these 
players elected to pass both times, even though no backward induction whatsoever 
is required to see that passing at the last node lowers one’s own payoff, suggest-
ing that other forces, such as social preferences, are at work. Despite demonstrated 
ability to backward induct flawlessly in the race to 100 games, this group of players 
elected to stop the centipede game in only 17 percent of the opportunities that they 
faced. These results argue against interpreting failure to stop in the centipede game 
as evidence of an inability of an individual to backward induct.

21 Another explanation is subject fatigue.
22 Because the subjects play each game variant only once, our measure of backward induction ability captures 

players’ ability to backward induct in response to a novel situation rather than their ability to learn the backward 
induction strategy over the course of repeated play.

Table 7—Centipede Behavior by Induction Ability: Implied Stop Probabilities

N F1 F2 F3 F4 F5 F6

Best 15 0 0.2 0.125 0.25 0.667 0
(10) (5) (8) (4) (3) (2)

Second best 66 0 0.106 0.375 0.412 0.571 0.889
(17) (47) (16) (34) (7) (9)

Second worst 36 0.1 0.133 0.278 0.417 0.833 1
(20) (15) (18) (12) (12) (1)

Bad 87 0.036 0.065 0.109 0.238 0.458 0.429
(55) (31) (46) (21) (24) (7)

Notes: Table 7 displays implied stop probability by inductor ability, rather than title for players. 
Odd numbered columns refer to player 1’s decisions; even numbered columns refer to player 
2’s decisions.
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The second row of Table 7 shows results for players who exhibited some back-
ward induction ability in the race games, although they did not play those games 
perfectly. These “second-best” inductors are players who solved one race to 100 
game on their first move or solved both race to 100 games before the last node, but 
made at least one mistake in those games. Sixty-six subjects fit this classification. 
Similar to the best inductors, these players rarely stopped the centipede game at 
early nodes. Not once in 17 opportunities did they stop at node 1 when given the 
opportunity, and in only 10.6 percent of the cases did they stop at the second node.23 
These players were more likely than the perfect inductors to stop centipede at other 
nodes, and overall stopped the centipede game in 31 percent of the chances they 
were given.

Our third classification of players includes those who did not qualify for the top 
two categories for backward induction, but did solve at least one of the race to 
100 games prior to the last node. Thirty-six players fell into this category. These 
subjects play centipede much like the second-best inductors, with an overall stop-
ping rate of 32 percent.

The last group of players includes those who did not solve either of the race to 
100 games prior to the final node. Nearly 40 percent of our subjects fall into this 
category. Interestingly, this set of players, who showed no proficiency for backward 
induction, played the centipede game most like the perfect backward inductors, 
passing at very high rates. In sum, we find no evidence that stopping in the centi-
pede game is systematically related to backward induction performance in the race 
to 100 games, calling into question the validity of using centipede games to draw 
inferences about backward induction.

III.  Conclusion

In this study, we explore the behavior of world-class chess players in complemen-
tary games that lend insights into backward induction prowess. We find that these 
players exhibit substantial abilities to backward induct in games appropriate for 
tests of backward induction, but do not choose the backward induction solution in 
the centipede game. This behavior cannot easily be attributed to an inability to back-
ward induct, since it is uncorrelated with demonstrated backward induction ability 
in the more appropriate tests of backward induction.

Indeed, given the actual play of opponents, such cooperative behavior in the cen-
tipede game is wealth maximizing. One explanation for this high degree of coopera-
tion in our experiment is that cooperative arrangements are common in tournament 
chess. For example, anecdotal evidence suggests that it is common for chess play-
ers to agree to a draw (tie) prior to a game toward the end of tournaments when 
such collusive behavior is jointly beneficial. Chess players also report agreeing in 

23 These second-best inductors have many more opportunities at the second node than at the first node because 
the most common way to qualify was to solve correctly the 1 to 9 version of the race to 100 game on the first move. 
In order to have that chance, one had to be a second mover in that game, and if you were a second mover in one 
game, you moved second in all games.
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advance of games to 60–40 splits (60 percent of tournament payoffs to the game 
winner, 40 percent to the loser) in order to reduce the variance of payoffs.24
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