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Abstract. We introduce a methodology, with two applications, that incorporates stochastic interest rates, het-
eroskedasticity and risk aversion into the residual income model. In the first application, goodwill is an affine
(constant plus linear term) function where the constant and linear coefficients are time-varying. Homoskedastic
risk gives rise to a constant risk premium, while heteroskedastic risk gives rise to linear state-dependent risk pre-
miums. In the second application, we present a class of models where a non-linear function for the price-to-book
ratio can be derived. We show how interest rates, risk, profitability and growth affect the price-to-book ratio.
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This paper provides a parametric class of models that shows how a firm’s market value relates
to accounting data under stochastic interest rates, heteroskedasticity and adjustments for
risk aversion. We use the framework of the Residual Income Model (RIM), which expresses
the value of a stock as the firm’s book value plus the expected future discounted value of
the firm’s abnormal (or residual) earnings. Our methodology builds on the framework of
Feltham and Ohlson (1999), who extend the RIM to a no-arbitrage setting to accommodate
time-varying interest rates and risk aversion. Feltham and Ohlson give a partial parametric
model of stock valuation using accounting information in this setting. In a heteroskedastic
environment with stochastic interest rates and risk aversion, we extend this analysis in
several ways. First, we apply this methodology to the case where the dynamics of accounting
variables are expressed in dollar amounts as in Feltham and Ohlson (1995). Second, we
derive a solution for the price-to-book ratio of a firm as a function of stochastic interest
rates, accounting rates of return and growth in book.

Our first result extends the Linear Information Model (LIM) developed in Ohlson (1995)
and Feltham and Ohlson (1995). The LIM presents firm value as a linear function of
current observable accounting information and is derived under constant discount rates. This
assumption leads to a standard simplification where a single discount factor can be applied
to all future periods. The discount factor can incorporate an ad hoc adjustment for risk.
There are certain questions, however, which cannot be addressed under this assumption.
For instance, is it always possible to incorporate risk aversion as a spread in a constant
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discount factor? Can a linear solution be found under the addition of time-varying interest
rates, heteroskedasticity and risk aversion? Feltham and Ohlson (1999) show how to adjust
the RIM for risk but do not provide a complete parametric model to answer these questions
directly. They hint, however, that a model as tractable as the LIM might exist under more
general conditions. We propose a class of models where an extended Feltham-Ohlson linear
form can be preserved under stochastic interest rates and time-varying risk premiums. Under
risk neutrality and constant interest rates, our model reduces to the Feltham-Ohlson LIM.

Our extension to the LIM expresses firm value as an affine combination (constant plus
linear form) of abnormal earnings and book value. We show that it is possible to choose
a parameterization so that an affine form for goodwill (the difference between price and
book value) exists under stochastic interest rates and risk aversion, provided that the interest
rate process is uncorrelated with accounting variables. The coefficients in the affine form
are time-varying, and reflect the dependence on current zero coupon bond prices. Risk
aversion potentially affects both the constant and the linear terms. With risk aversion,
homoskedasticity is captured conveniently only in the constant term, while risk aversion
combined with heteroskedastic risk leads to state-dependent risk premiums which appear
in the linear terms.

Under the LIM, dollar amounts of residual earnings are assumed to follow a stationary
process and firm value is a linear function of contemporaneous earnings information. Ques-
tions about the rate of earnings growth rather than the dollar amount of earnings, or firm
growth, cannot easily be addressed in this setting. Our second application focuses on the
price-to-book ratio, rather on than the dollar difference in the price and book, as in the
LIM. We apply our pricing methodology to the RIM framework of Feltham and Ohlson
(1999), with a normalization by book-value.1 This framework models the price-to-book as
a function of stochastic interest rates, a rate of return measure based on profitability (ac-
counting returns of earnings in excess of the risk-free rate), and firm growth. Risk aversion
and heteroskedasticity of all three variables are explicitly modeled.

Ratio analysis highlights the effect of the rate of profitability and growth on valuation. We
might anticipate that higher profitability of a firm would lead to higher price-to-book ratios,
as higher profitability increases firm value relative to current book value. However, the effect
of growth in book on the price-to-book is not so clear.2 By directly parameterizing growth
in book we can determine how the price-to-book ratio behaves when parameters underlying
the process for growth in book are changed. Another comparative static of interest is the
mean-reversion of profitability and growth. Standard economic arguments in a competitive
environment argue that these variables are mean-reverting.3 Does higher mean-reversion
in profitability or growth lead to higher or lower price-to-book ratios? Finally, risk-averse
agents are affected by the volatility of interest rates, profitability and growth. Hence, under
risk aversion, volatility of these variables affects the price-to-book.

We present a closed-form non-linear solution of the price-to-book ratio. The solution
formula allows characteristics of the behavior of the price-to-book to be examined by
comparative statics. As expected, increasing profitability increases the price-to-book ratio.
Increasing the conditional mean of book growth unambiguously increases the price-to-book
ratio. We find that increasing the autocorrelation of profitability or growth in book increases
the price-to-book. That is, ceteris paribus, firms with highly mean-reverting profitability or
growth have lower price-to-book ratios.
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Conducting comparative statics with respect to the dynamics of the interest rate yields one
surprising behavior of the price-to-book which seems counter-intuitive. We may expect that
increasing the volatility of interest rates would decrease the price-to-book, since nominal
interest rates are positive (which is the case under a Cox-Ingersoll-Ross (1985) term structure
model) and increasing the volatility of interest rates implies higher discount factors in future
periods. However, under conservative accounting and risk neutrality, the price-to-book is
an increasing function of the volatility of all state variables including, surprisingly, the
volatility of the interest rate. This counter-intuitive behavior is due to a Jensen’s inequality
effect which dominates under risk neutrality. When risk aversion is introduced, the price-
to-book ratio may fall as the volatility of the interest rate increases.

Our methodology incorporates several stylized facts of interest rates and risk aversion
which bear on accounting valuation. First, interest rates are time-varying, which affects
the discount factors used in future periods. This is a “denominator” effect but interest
rates also predict future abnormal earnings, which is a “numerator” effect.4 Our formal
methodology simultaneously handles both the denominator and numerator effect of time-
varying interest rates. Moreover, predictability of accounting information by any variable,
not just interest rates, can be accommodated. Second, risk-averse agents in the economy need
to be compensated for the uncertainty in the evolution of financial statement information
because accounting information is a driving factor of prices. Viewed another way, the
risk premiums associated with the uncertainties of accounting information are reflected in
discount factors, as discussed by Feltham and Ohlson (1999). Our methodology tractably
incorporates risk aversion and shows how it affects the LIM and book-to-market ratio
dynamics.

Our methodology tractably and parsimonously incorporates rich dynamics of interest rates
and accounting variables by using “affine” processes (Duffie and Kan, 1996), where both
the conditional mean and conditional volatility take on affine forms (constant plus linear
terms). Ohlson (1995) and Feltham and Ohlson (1995) rely on simple AR(1) or modified
AR(1) processes to derive the LIM. These are special cases of the affine set-up. The affine
processes also formally encompass Feltham and Ohlson (1999)’s partial model, since they
can incorporate both heteroskedasticity of the driving variables and risk adjustments.

The rest of the paper is organized as follows. In Section 1 we describe the role of a “pricing
kernel” in no-arbitrage valuation. Section 2 presents the affine extension of the LIM and
shows that linearity can survive the introduction of stochastic interest rates and risk aversion.
Section 3 applies the methodology to the case of ratio dynamics, and presents a closed-
form model of the price-to-book ratio. Comparative static exercises show how changes in
the interest rate process, profitability, growth and risk aversion affect the price-to-book of
the firm. Section 4 concludes.

1. A Parameterization of the No-Arbitrage RIM

This section introduces notation to interpret no-arbitrage valuation. This is accomplished
by specifying a tractable “pricing kernel,” which we parameterize as a log-affine form in
Section 1.1. Similar to Feltham and Ohlson (1999)’s analysis, we bring the RIM into this
framework in Section 1.2.
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1.1. A Log-Affine Pricing Kernel

The assumption of no-arbitrage, together with some technical conditions (see Harrison and
Kreps, 1979), guarantees the existence of a random process which prices all assets in the
economy. This random process is called a “pricing kernel,” which we denote by πt+1. The
pricing kernel is unique if markets are complete, meaning that the number of securities is
sufficient to insure against all possible sources of risk in the economy. While the assumption
of no-arbitrage guarantees the existence of πt+1, no-arbitrage gives no information, however,
about the true functional form of πt+1, only that some πt+1 exists.5

The pricing kernel πt+1 relates the price of a security today with its payoffs in the next
period. For any asset:6

Pt = Et [πt+1 Zt+1], (1)

where Pt is the price of an asset, and Zt+1 are its payoffs at time t +1. Note that if Zt+1 = 1,
a unit payoff, then Pt is the price of a one period bond. In the case of a stock St , the price
of the stock is related to its dividends δt by:

St = Et [πt+1(St+1 + δt+1)]. (2)

Time-varying interest rates and risk aversion are captured by the pricing kernel πt+1. To
separate out the role of the short rate rt and risk in πt+1, we introduce another random
variable ξt+1 which we define as:

ξt+1 = πt+1

Et (πt+1)
. (3)

Recall that Et (πt+1) = exp(−rt ) is the price of the one-period risk-free bond at time t . This
enables us to rewrite equation (2) as:

St = Et [exp(−rt )ξt+1(St+1 + δt+1)], (4)

where πt+1 = exp(−rt )ξt+1. Equation (4) separately decomposes the role of the pricing
kernel into the short rate process rt , and ξt+1, which allows for explicit adjustments for risk
aversion in the no-arbitrage environment.

The most general parameterization of no-arbitrage is determined by (i) ξt+1 > 0 and
(ii) Et (ξt+1) = 1. We now assume a parameterization for ξt+1. Specifically, we assume that
ξt+1 is log-normally distributed:

ξt+1 = exp
(− 1

2γ ′σtσ
′
t γ + γ ′σtεt+1

)
. (5)

where εt+1 is a K × 1 vector IID N(0,I), γ is a K × 1 vector and σt is a K × K matrix. The
subscript t on σt indicates that σt may be a function of time t information, and hence may
vary through time. The errors εt+1 represent all shocks to K driving variables in the economy.
For now, these driving variables remain unspecified, but they can be any variable which
affects prices in the economy. In Section 2 we specify the driving variables to be accounting
variables in levels and in Section 3 we specify the driving variables to be ratios.
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The log-normal pricing kernel in equation (5) is a valid pricing kernel. First, it satis-
fies strict positivity as exp(·) > 0. Second, by property of the log-normal distribution (see
Appendix), Et [ξt+1] = 1.7

We refer to γ as the price of risk which captures the risk aversion of agents. The following
example illustrates the role of γ . Let time t = 0, and suppose, without loss of generality,
the prevailing short rate r0 = 0. There is only one source of risk in the economy, say from
earnings, so K = 1, and ε1 ∼ N (0, 1). We would like to price a claim which has a payoff
σ0ε1, that is the security’s payoff is the unanticipated factor shock. The price of this security
P0 is given by:

P0 = E0[ξ1σ0ε1]

= E0
[

exp
(− 1

2γ 2σ 2
0 + γ σ0ε1

)
σ0ε1

]
= γ σ 2

0 . (6)

The last equality can be derived using a lemma in the Appendix. Under the case of risk
neutrality, γ = 0 and the price of the security is zero. This is expected, because under risk
neutrality the price of the security is just the expected value of the security’s payoffs, which
is zero. Under risk aversion γ �= 0, and risk-averse agents must be compensated to take on a
risk with a zero expected value payoff. If γ < 0, the price of the security is negative, which
is less than the risk-neutral price of zero. That is, risk-averse agents must be paid to bear
this risk. The greater the degree of risk aversion, the more negative the value of γ , and the
more risk averse agents must be compensated for bearing risk.

Another interpretation of the role of γ is to look at the role risk plays in factor pricing.
Risk is related to the degree of correlation between shocks in the driving variables (factors)
and the negative of the pricing kernel. To make this concrete, again suppose that there is
only one driving variable in the economy, K = 1, time t = 0, and ε1 ∼ N (0, 1). Using the
lemma stated in the Appendix, the conditional covariance of ε1 with −ξ1 at time t = 0 is
given by:

cov0(ε1, −ξ1) = cov0
(
ε1, −exp

(− 1
2γ 2σ 2

0 + γ σ0ε1
))

= −γ σ 2
0 . (7)

If factor shocks have a correlation of zero, then their prices of risk are zero. If factor shocks
have non-zero correlation with the pricing kernel, then the degree of correlation is a measure
of the degree of risk associated with that variable. Only if γ is non-zero will the covariance
of the factor shock with the signed normalized pricing kernel ξ1 be non-zero. In particular,
if γ is negative, the covariance with −ξ1 is positive, which translates to non-zero risk
aversion. As the degree of risk aversion becomes greater, γ becomes more negative, and
the correlation between the driving factor and −ξ1 becomes more positive.

1.2. The RIM and No-Arbitrage Valuation

We now introduce notation to be used for applying the log-normal parameterization of the
pricing kernel to level and ratio analysis. This notation enables the role of ξt+1 to be used in
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evaluating the expectations of future periods. We start by working with pricing kernel πt+1

notation, and then we define notation so that expectations of future periods can be taken
with respect to ξt+1. These transformed expectations are equivalent to the pricing kernel
expectations.

The pricing kernel πt+1 relates the price of a stock to its future payoffs. Repeating equa-
tion (2) we have:

St = Et [πt+1(St+1 + δt+1)].

Iterating this forward and assuming transversality Et (πτ Sτ ) → 0 as τ → ∞, we get the
Dividend Discount Model (DDM):

St = Et

[ ∞∑
i=1

πt+iδt+i

]
. (8)

To relate the dividend process back to accounting variables, residual accounting makes
the clean surplus accounting assumption:

yt = yt−1 + xt − δt (9)

where yt is the book value of equity and xt represents net earnings at time t . This says that
the increase in the book value of equity comes from earnings less dividends paid.

Feltham and Ohlson (1999) develop a generalized RIM under time-varying interest rates
and risk aversion. They show that by using clean surplus accounting and the DDM in
equation (8), the equity value of a firm can be written as:8

St = yt + Et

[ ∞∑
i=1

πt+i x
a
t+i

]
(10)

where xa
t are abnormal earnings:

xa
t = xt − (exp(rt−1) − 1)yt−1 (11)

where rt−1 is the risk-free short rate from time t − 1 to time t , which can be stochastic.
In the basic RIM with constant short rates, the appropriate capital charge is the (constant)
risk-free rate. In a setting with stochastic short rates, the relevant capital charge component
of abnormal earnings is the riskless one-period interest rate applied to the book value at the
start of the period. Note that risk is embedded in the Feltham and Ohlson (1999) framework
by using the pricing kernel to take the future expectations of equation (10).

We now re-write equation (10) so that the expectation is taken with respect to ξt+1, called
the “risk-neutral measure.” Part of the role of ξt+1 in the pricing kernel is to separate the
effects of the risk-free rate and risk aversion in πt+1. Repeating equation (4) we have:

St = Et [exp(−rt )ξt+1(St+1 + δt+1)].

This expectation is taken under the “real measure” (the probability density function existing
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in the real world). It can be rewritten as:

St = EQ
t [exp(−rt )(St+1 + δt+1)]. (12)

This expectation is taken under the measure, or probability density function, Q. The measure
Q is called the risk-neutral measure because under Q the price of equity is just the expected
discounted payoffs of the security. This is also called the equivalent martingale measure.9

The pricing kernel πt+1 and ξt+1 are related recursively by:

πt

π0
=

t∏
j=0

ξ j exp(−r j−1). (13)

Using the risk-neutral measure we can equivalently rewrite the value of equity using the
RIM in equation (10), by substituting for the pricing kernel in the infinite sum, as:

St = yt +
∞∑

i=1

EQ
t

[(
i−1∏
j=0

exp(−rt+ j )

)
xa

t+i

]
(14)

This is an equivalent representation of the RIM valuation equation.
The advantage of the parameterization of equation (14) is that it explicitly shows the

interaction of stochastic short rates (through the stochastic discount factor
∏

exp(−rt+ j ))
and risk aversion (through the density ξt used to evaluate the expectation). If there is no
risk, then γ = 0 so ξt = 1 and the real and risk-neutral measure coincide.

The special case of the RIM presented in Ohlson (1995) shows the simplifications which
arise using constant discount rates in the valuation problem. The following claim shows
how the RIM with constant interest rates and a constant ad hoc risk adjustment is a special
case of our general valuation methodology.

Claim 1.1 Assume that

1. short rates are constant, so exp(rt ) = R f

2. the risk premium is constant, covt (r s
t+1, −ξt ) = σ̄ , where rs is the return on the stock

rs
t+1 ≡ (St+1 + δt+1)/St

Then the traditional RIM of stock valuation holds:

St = yt +
∞∑

i=1

R−i Et
[
xa

t+i

]
(15)

where St is the value of firm equity, R = R f + σ̄ , yt is book value, and xa
t are abnormal

earnings:

xa
t = xt − (R − 1)yt−1

where xt represents firm earnings.
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Compared to the traditional RIM, a pricing kernel methodology must be employed once
interest rates are stochastic and risk premiums are time-varying. Under this generalized
setting the valuation problem becomes much more complex. Since the discount factor R is
constant in Claim 1.1, it passes through the expectation operator in equation (14). When
short rates are stochastic, the discount factor

∏
exp(−rt+ j ) is time-varying and it cannot

be passed through the expectation operator. In Claim 1.1, risk aversion is captured by a
constant risk premium R − R f > 0. If risk premiums are time-varying, covt (r s

t+1, −ξt ) is
no longer constant and ξt plays a role in valuation. In a generalized setting of stochastic
interest rates and risk aversion, we must value equity using equation (14) where rt and ξt

need to be parameterized.

2. An Affine Information Model

2.1. Discrete-Time Affine Processes

We now specify what are the driving variables in the economy and how they evolve over
time. The generalized RIM in equation (14) is able to take into account stochastic short
rates and risk aversion. However, equation (14) does not relate realized financial numbers
with firm value, since the values on the right hand side of equation (14) are forecasts. In
this form, equation (14) gives us a theoretical framework to study risk and return, but not a
parametric form to relate firm value with realized financial accounting reports. This section
develops a parametric no-arbitrage model of firm value when accounting information is
given in dollar amounts.

The LIM of Ohlson (1995) and Feltham and Ohlson (1995) is a parametric formulation
of the RIM that expresses the value of a stock as a linear function of current accounting
variables specified in dollars, rather than in terms of abstract future expectations. However,
it is developed under constant interest rates and risk-neutrality. Our aim is to extend the LIM
to account for stochastic interest rates and risk aversion. We specifically ask under what
assumptions and parameterizations linearity can survive under more general no-arbitrage
conditions. We show it is not always possible to incorporate risk aversion by adjusting a
constant discount factor.

For concreteness, we assume the same driving variables in the economy as Feltham and
Ohlson (1995). Specifically, suppose the driving variables are denoted by Xt , and let:

Xt = (
xa

t oat v1t v2t
)′

where xa
t denoting abnormal earnings, oat operating assets,v1t andv2t “other” information at

time t . We also assume that Xt follows a discrete-time affine process (Duffie and Kan, 1996).
(The term “affine” refers to a constant plus linear term.)

Definition 2.1. A K × 1 vector Xt is said to follow a discrete-time affine process if:

Xt+1 = µ + AXt + σtεt+1, (16)

where µ is an K ×1 vector, A and σt are K × K matrices and εt ∼ N(0,1). The conditional
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mean Et (Xt+1) = µ + AXt is affine in Xt , and the conditional covariance is also affine in
Xt and is given by:

σtσ
′
t = h + H · Xt . (17)

The notation “·” represents a tensor product, and is interpreted as:

H · Xt ≡
K∑

j=1

Xt j H ( j) (18)

where Xt j refers to the j th element of Xt . The K × K matrices h and H ( j) are symmetric.

Discrete-time affine processes are an attractive parsimonious class of models which can
capture feedback (mean-reversion) and stochastic volatility. They capture feedback through
the companion matrix A in the conditional mean. Stochastic volatility depends on the level
of the variables through the tensor product in the conditional volatility. Hence, the variables
in Xt may be heteroskedastic (H ( j) �= 0 for some j). Homoskedasticity occurs as a special
case when H ( j) = 0 ∀ j and h �= 0.

We give two examples of affine processes. First, if there is no heteroskedasticity in the
conditional covariances (H ( j) = 0 ∀ j), the process reduces to a Vector Autoregression of
first order (VAR(1)). This is the process used in the Feltham-Ohlson LIM, where Xt follows
the following VAR(1):

Xt+1 = AXt + σεt+1 (19)

where Xt = (xa
t oat v1t v2t )

′, and σσ ′ = h, where h is a constant symmetric matrix. In
Feltham and Ohlson (1995) the companion matrix A takes the form:

A =




ω11 ω12 1 0
0 ω22 0 1
0 0 γ1 0
0 0 0 γ2


 . (20)

Note that the LIM extends to other more general forms of A, rather than to just this special
form. This is a special case of the discrete-time affine process, formed by setting µ = 0 and
specifying the covariance have no heteroskedasticity, so H ( j) = 0 ∀ j .

A second example of an affine process having heteroskedasticity is the Cox, Ingersoll
and Ross (CIR) (1985) model of term structure. If Xt = rt , the univariate short rate, then
setting h = 0 gives a discretized CIR model, where the variance is proportional to the level
of the interest rate:

Xt+1 = µ + AXt + σtεt+1

where σ 2
t = H (1) Xt , and H (1) is a positive scalar. Under a CIR model, the yield curve can

assume a variety of shapes including upward sloping, humped and downward sloping yield
curves. The stochastic movements of all interest rates are inferred from the short rate rt ,
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once the dynamic of rt in the CIR model is specified. We use the CIR term structure model
to incorporate time-varying interest rates.

2.2. An Affine Information Model (AIM)

Under the LIM, firm value is a linear function of accounting information. We state assump-
tions under which linearity, or an affine form, can be maintained under a more general
setting of heteroskedasticity, risk aversion and time-varying interest rates.

For most of this section we assume that spot interest rates are independent of the accounting
variables. The interest rate process can be very general. At the end of the section we comment
on the case where interest rates and accounting variables are correlated.

2.2.1. An AIM under Independent Interest Rates

We let the K driving variables Xt = (xa
t v′

t )
′, with xa

t denoting abnormal earnings, and vt a
vector representing “other” information at time t . This formulation subsumes Feltham and
Ohlson (1995)’s parameterization, by letting vt = (oat v1t v2t )

′. We use the affine process
of Section 2.1:

Assumption 2.1 Xt is a K × 1 vector with first element abnormal earnings xa
t and other

elements representing other information at time t. Xt follows a discrete-time affine process
as defined by Definition 2.1.

Next we assume that interest rates follow a process that is consistent with no-arbitrage but
independent of accounting information:

Assumption 2.2 The economy is arbitrage-free, and spot interest rates rt follow a process
independent of Xt . The random variable defined in equation (3) ξt+1 is the product of two
factors ξ

(r)
t+1 and ξ

(X)
t+1:

ξt+1 = ξ
(r)
t+1 · ξ

(X)
t+1, (21)

where ξ
(r)
t+1 and ξ

(X)
t+1 are independent and

ξ
(X)
t+1 = exp

(− 1
2γ ′σtσ

′
t γ + γ ′σtεt+1

)
, (22)

where εt+1 are the shocks of the process of Xt . The only requirement for the factor ξ
(r)
t+1 is

that it remains arbitrage-free.

The process for short rates leads to zero coupon bond prices �
{n}
t for period n:

�
{n}
t = EQ

t

[
n−1∏
j=0

exp(−rt− j )

]
. (23)
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One example of an admissible process for rt is a CIR model uncorrelated with Xt , but any
term structure uncorrelated with Xt is possible. In the case of the CIR model, zero coupon
bond prices are exponential affine functions of rt :

�
{n}
t = exp(a(n) + b(n)rt ),

where the a(n) and b(n) coefficients are closed-form (see Cox, Ingersoll and Ross, 1985).
Using the methodology presented in Section 1, an extended version of the Feltham-Ohlson

LIM holds, where we extend the LIM to an affine setting.

Proposition 2.1 Under Assumptions 2.1 and 2.2 the valuation function gt = St − yt can be
expressed as:

gt = αt + β ′
t Xt , (24)

where the constant coefficient αt and the linear coefficient βt of the affine form are given by:

αt =
∞∑

n=0

( ∞∑
k=1

�(n+k)
t

)
e′

1(A + H̄)n(µ + hγ )

βt =
∞∑

n=1

�
{n}
t e′

1(A + H̄)n, (25)

where e1 is a K × 1 vector with first element 1 and the rest zero, A is the companion matrix
of the process for Xt in equation (16), and H̄ is a K × K matrix defined as:

H̄ i j =
K∑

k=1

H ( j)
ik γk,

where H̄ i j is the element in the i th row, j th column of H̄ , H ( j)
ik is the element in the i th row,

kth column of H ( j) (the K × K matrix in equation (18)) and γk is the kth element of γ .

We make several comments on the affine form of valuation in Proposition 2.1. First, the
environment is very general, and Proposition 2.1 shows that an affine form survives with
stochastic interest rates, risk aversion and heteroskedasticity in accounting information.
However, this affine form in accounting variables Xt depends crucially on the assumption
that the interest rate is orthogonal to accounting information. Given this restriction, spot
interest rates may take on any dynamic consistent with no-arbitrage. Second, when interest
rates are not constant, the affine coefficients αt and βt depend on time t through their
dependence on the time t zero coupon bond prices �

{n}
t . In particular, βt can be interpreted

as the valuation of a perpetuity whose payments are risk-adjusted future residual earnings.
The discount factors on the perpetuity are �

{n}
t . Without risk, H̄ = 0 and e′

1 An Xt is the
future expected abnormal earnings n periods into the future, assuming abnormal earnings
have zero mean as in the LIM. Under risk aversion, H̄ �= 0, and the future expected abnormal
earnings in period t + n incorporate a risk adjustment.
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Finally, risk aversion contributes to both αt and βt . In the case of homoskedasticity
(H ( j) = 0 ∀ j and h �= 0), risk aversion gives rise only to state-independent risk premiums
in αt . H̄ = 0 so the effect of homoskedasticity enters through the action of the hγ term.
Under heteroskedasticity (H ( j) �= 0 for some j), risk aversion enters the βt terms. In this
case, the risk premium is state-dependent, through the non-zero H̄ term.

2.2.2. An AIM Under Constant Interest Rates

To focus on the effect of risk aversion and heteroskedasticity, we analyze the case where
interest rates are constant (rt = r f ∀t , R f = exp(r f ) and �

{n}
t = R−n

f ). In this case, the
valuation formula in Proposition 2.1 can be further simplified because all bond pricies are
geometrically related. We look at several examples, including the original LIM. We also
determine when linearity can be maintained under risk aversion and heteroskedasticity.

Corollary 2.1 In the case of constant interest rates, �
{n}
t = R−n

f , the coefficients are con-
stant: αt = α and βt = β and are given by:

α = R f

R f − 1
e′

1(R f − A)−1(µ + hγ )

β = (R f − (A + H̄)′)−1(A + H̄)′e1. (26)

Note the constant term α can arise through either a non-zero µ, or as a constant risk premium
through homoskedastic risk (h �= 0).

Previously, applications of the RIM account for risk by using an ad hoc adjustment to
a constant discount factor. Corollary 2.1 shows that with constant interest rates, it may
not be possible to incorporate the effects of risk aversion in this way. The traditional RIM
model in Claim 1.1 incorporates risk aversion by setting the constant discount rate R to be
R = R f + σ̄ , where the spread σ̄ over the risk-free rate takes risk aversion into account:

gcdf
t =

∞∑
i=1

R−i Et
[
xa

t+i

]
, (27)

where “cdf” denotes constant discount factor. The following lemma shows that under a
constant discount rate R, the valuation function gcdf

t is linear in Xt and does not have a
constant term:

Lemma 2.1 Under Assumption 2.1 and µ = 0, gcdf
t is a linear function of Xt .

Corollary 2.1 shows that the constant term is zero only if µ = 0 and γ = 0, or µ = 0 and
h = 0. If either condition is not satisfied, the value function gt cannot be described as in
equation (27) using a constant discount factor R, so we have the following corollary:

Corollary 2.2 It is not always possible, even under constant interest rates, to have a
constant discount factor.



A GENERAL AFFINE EARNINGS VALUATION MODEL 409

Note that Feltham and Ohlson (1995) parameterize xa
t to have zero mean, but if some

state variables in Xt have non-zero mean then α is no longer zero. In this case, only the
assumption of risk neutrality guarantees the absence of a constant risk premium.

The following example shows how the AIM nests the LIM of Ohlson (1995) and Feltham
and Ohlson (1995) as a special case.

Example 2.1 The Feltham-Ohlson LIM. In the case of µ = 0, homoskedasticity (H ( j) = 0
so H̄ = 0) and risk neutrality, γ = 0, the AIM reduces to the Feltham-Ohlson LIM, where:

α = 0

β = (R f − A′)−1 A′e1.

We comment that under homoskedasticity, if µ �= 0 then α is no longer zero but the linear
coefficient β in the traditional LIM remains unchanged.

In the next example we state an alternative set of conditions under which linearity can be
maintained under risk aversion.

Example 2.2 In the case µ = 0, h = 0 and risk aversion (γ �= 0), the valuation function
gt has a linear form, where:

α = 0

β = (R f − (A + H̄)′)−1(A + H̄)′e1.

Since we assume no homoskedastic risk (h = 0), Xt must exhibit heteroskedasticity (H ( j) �=
0 for some j) to be non-degenerate. In this case, the effect of risk aversion is absorbed
into the linear coefficient β (through the H̄ term). That is, state-dependent risk (through
heteroskedasticity and risk aversion) gives rise to state-dependent risk premiums.

2.2.3. The Case of Correlated Interest Rates

When interest rates are correlated with the accounting variables, they must be included as a
state variable in Xt . That is, we re-define Xt as Xt = (rt xa

t v′
t )

′. Now, the random variable
ξt+1 can no longer be factored into two independent terms, one depending on rt and one
depending only on accounting variables. In this case, an affine solution for gt is no longer
possible, but we can still find a functional form to relate gt with contemporaneous Xt . It
can be shown that:

gt =
∞∑

i=1

ea(i)+b(i)′ Xt (c(i) + d(i)′ Xt ),

where a(i) and c(i) are scalars, and b(i) and d(i) are vectors. The coefficients a(i), b(i),
c(i) and d(i) are constant and can be derived similarly to Proposition 3.1.10 This formula
still relates gt to observed values of Xt but the relation is now non-linear.
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3. A Parametric Generalized Earnings Model

While the AIM or LIM presents firm value as a linear function of earnings, it is not convenient
for determining how growth in earnings or growth of the firm affects valuation. This section
uses a measure of firm profitability and growth in book, together with the stochastic short
rate, as driving factors to build a model of the price-to-book ratio. This allows direct inference
of how the rate of profitability and firm growth affect ratio valuation. We introduce the
framework in Section 3.1. Section 3.2 presents an example of a specialized process for
the driving variables to motivate how the model can be used in comparative statics. We
derive the model in Section 3.3. Finally, Section 3.3 conducts comparative statics using the
price-to-book formula.

3.1. Normalizing the RIM by Book Value

We start by repeating the no-arbitrage RIM in equation (14):

St = yt +
∞∑

i=1

EQ
t

[(
i−1∏
j=0

exp(−rt+ j )

)
xa

t+i

]
.

To deal with accounting ratios, we normalize and divide each side by book value yt :

St

yt
= 1 + EQ

t

[ ∞∑
i=1

(
i−1∏
j=0

exp(−rt+ j )

)(
xt+i

yt+i−1
− (ert+i−1 − 1)

)
yt+i−1

yt

]
(28)

We introduce some definitions to convert the accounting variables in levels to ratios or
growth rates:

Bt = St/yt

egt = yt/yt−1

re
t = xt/yt−1

zt = re
t − (exp(rt−1) − 1) (29)

In equation (29), Bt is the price-to-book ratio and gt is the growth rate in book value. The
next equation for re

t is the accounting return on equity (earnings to book). Higher accounting
returns denote higher profitability. The variable zt is the accounting return in excess of the
risk-free rate, which we define as “the abnormal accounting return.” It is derived using
the Feltham and Ohlson (1999) definition of abnormal earnings, and then normalizing the
abnormal earnings by book value:

xa
t = xt − (exp(rt−1) − 1)yt−1

zt ≡ xa
t

yt−1
= xt

yt−1
− (exp(rt−1) − 1)

yt−1

yt−1
(30)
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Under mark-to-market accounting Bt = 1 and zt = 0. Under conservative accounting zt

may be non-zero.
Using the above definitions we can rewrite equation (28) as:

Bt = 1 + e−rt EQ
t

[
zt+1 +

∞∑
i=2

(
i−1∏
j=1

e−(rt+ j −gt+ j )

)
zt+i

]

= 1 + e−rt EQ
t

[ ∞∑
i=1

(
i−1∏
j=1

e−(rt+ j −gt+ j )

)
zt+i

]
(31)

where we assume that the product term is equal to 1 if the index is negative. We assume
that the variables Bt , rt , zt and gt are stationary.11

Equation (31) rewrites the RIM, but expresses the price-to-book ratio as discounted ab-
normal returns. It still remains in the no-arbitrage setting of the RIM. We remark that the
normalized setting of equation (31) is still Miller-Modigliani (1961) consistent, so dividend
policy does not influence value because the original RIM in levels is Miller-Modigliani con-
sistent (see Ohlson, 1995). The driving variables behind the price-to-book are accounting
returns of earnings (rather than earnings for price levels), growth in book value (rather than
book value in levels), and accounting abnormal returns of earnings (rather than abnormal
earnings). This moves us from the setting of dollar amounts or price levels to ratios or
growth rates.

Although equation (31) shows the price-to-book ratio to be a function of spot rates,
abnormal returns and growth, the numbers on the right hand side of equation (31) are
forecasts. We need a parameterization of the driving variables to relate the price-to-book to
contemporaneous accounting information. We do in this in the following section.

3.2. A Specialized Process for Interest Rates, Profitability and Growth

We specify the driving variables of the economy as the risk-free rate, abnormal returns of
earnings and growth in book value. Denote Xt = (rt zt gt )

′ and assume that Xt follows
a discrete-time affine process, as defined in equations (16) and (17). To give a concrete
example, suppose Xt is given by:

rt+1 = µr + ρr rt + σr
√

rtε
1
t+1

zt+1 = µz + α1rt + α2zt + σzε
2
t+1

gt+1 = µg + α3rt + α4zt + α5gt + σgε
3
t+1 (32)

with εt = (ε1
t ε2

t ε3
t )

′ ∼ N (0,I).
This structure may seem overly restrictive, but it is only intended as a simple example of

how feedback dynamics can be accomplished in the affine system. Assuming the errors are
independent implies that interest rates, abnormal earnings and growth in equity are subject
to independent shocks. We make this assumption so that we can analyze the effect of each
of the variables in Xt separately. The first equation is a discretized square root process (the
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workhorse CIR model of term structure asset pricing) of the short rate. Through the variance
term, conditional volatility increases proportionally with the level of the interest rate.

The second equation is a Gaussian process which says that abnormal earnings are au-
tocorrelated, and that the short rate Granger-causes abnormal returns. As interest rates go
up, we expect abnormal earnings to decrease (see Nissim and Penman, 2000). This is cap-
tured by a negative α1 coefficient. Increasing interest rates decrease the discount factors
applying in future periods and decrease the price-to-book through a “denominator” effect.
The predictability of accounting returns by interest rates is a “numerator” effect because
it decreases cashflows in future periods. Both the denominator and numerator effect are
handled simultaneously by the dynamics of companion matrix A in the discrete-time affine
process (equation (16)). The coefficient α2 captures the mean-reversion of profitability. As
profitability becomes more mean-reverting (or less persistent), α2 decreases.

The last equation parameterizes growth as a Gaussian process. The conditional mean
of growth in equity is a predictable function of past growth in equity, lagged short rates
and abnormal earnings. In particular, we would expect firm growth and profitability to be
positively related; this would be captured by a positive α4 coefficient. The α5 coefficient
reflects mean-reversion or persistence of growth in book. As mean-reversion increases (or
persistent decreases), α5 decreases.

In terms of the notation of Section 1.1, this imposes the following structure on the com-
panion matrix A, and the matrices h and H driving the covariances:

A =

 ρr 0 0

α1 α2 0
α3 α4 α5


 , h =


 0 0 0

0 σ 2
z 0

0 0 σ 2
g


 , H (1) =


σ 2

r 0 0
0 0 0
0 0 0


 ,

and H (2) = H (3) = 0.
We examine several interesting effects on the price-to-book ratio from this parameteriza-

tion. In particular, we separately determine the effect of changing the parameters of the short
rate, abnormal return or growth in book on the price-to-book. Changing the mean reversion
of profitability or growth is accomplished by changing α2 and α5. Risk-averse agents are
affected by changes in volatility, so σr , σz and σg affect valuation under risk aversion. To
conduct comparative statics, however, we need to derive an analytical expression for the
price-to-book ratio.

3.3. The Parametric Earnings Model

We now develop a non-linear formula for the price-to-book ratio. The case presented in
the previous section is only an example of a particular affine system, but our derivations
presented here apply to the most general affine model. This formula is like the LIM in that
it relates the price-to-book to observed accounting data rather than to forecasts in equation
(31), but with abnormal returns and growth rates a linear solution is no longer possible.
The price-to-book valuation formula is given in the following proposition, which evaluates
the conditional expectation of the infinite sum in equation (31) as a function only of time t
information.
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Proposition 3.1 Suppose the variables Xt = (rt zt gt )
′ follow a discrete-affine process

in Definition 2.1 and the default-adjusted pricing kernel πt+1 takes the log-linear form
in equation (5). Then the price-to-book ratio can be written only as a function of time t
information:

Bt = 1 + e−rt EQ
t

[ ∞∑
i=1

(
i−1∏
j=0

e−(rt+i −gt+i )

)
zt+i

]

= 1 + e−rt

∞∑
i=1

ea(i)+b(i)′ Xt (c(i) + d(i)′ Xt ), (33)

where a(i) and c(i) are scalars, and b(i) and d(i) are 3×1 vectors. The constant coefficients
a(i), b(i), c(i) and d(i) are given by:

a(i) = a(i − 1) + (−e1 + e3 + b(i − 1))′(µ + hγ )

+ 1
2 (−e1 + e3 + b(i − 1))′h(−e1 + e3 + b(i − 1))

b(i)′ Xt = (−e1 + e3 + b(i − 1))′(AXt + H · Xtγ )

+ 1
2 (−e1 + e3 + b(i − 1)′(H · Xt )(−e1 + e3 + b(i − 1))

c(i) = c(i − 1) + d(i − 1)′(µ + h(γ − e1 + e3 + b(i − 1)))

d(i)′ Xt = d(i − 1)′(AXt + (H · Xt )(γ − e1 + e3 + b(i − 1))), (34)

where e j denotes a vector of zeros with a 1 in the j th place. The initial conditions are given
by:

a(1) = 0

b(1)′ Xt = 0

c(1) = e′
2(µ + hγ )

d(1)′ Xt = e′
2((H · Xt )γ + AXt ) (35)

Let us interpret the valuation model of Proposition 3.1 by comparing it to the LIM and the
AIM in Section 2. Although the LIM is given in dollar amounts and Proposition 3.1 gives
a model in ratio terms the two approaches are similar. First, the LIM relates how prices are
related to current observable accounting information rather than to forecasts. Proposition 3.1
does the same thing. It assumes a parameterization of accounting ratios and growth rates
(Xt = (rt zt gt )

′) that enables the infinite sum involving expectations in equation (31) to
be a function only of observable Xt information. Second, the AIM presented in Section 2
incorporates time-varying interest rates and risk aversion under heteroskedasticity. There,
to maintain an affine form rt must be uncorrelated with accounting variables. Here, rt is
correlated with accounting ratios and included as a state variable. Third, both the AIM
and Proposition 3.1 are derived under no-arbitrage framework. Finally, the LIM is closed-
form and gives price as a linear function of accounting information. Proposition 3.1 is also
closed-form, but the solution is non-linear.
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We interpret the coefficients a(i), b(i), c(i) and d(i) in the closed-form solution as follows.
As long as transversality is satisfied, a(i) → −∞ when i → ∞ so the exponential tends
to zero, and the individual terms in the sum quickly become small. Practically, this means
that the sum in equation (33) can be evaluated very quickly without many terms.

The a(i) and b(i) coefficients result from the effect of the r −g discounting terms. In equa-
tion (34), the terms quadratic in −e1 +e3 +b(i −1) are Jensen’s inequality terms. The terms
linear in −e1 + e3 + b(i − 1) involving γ result from risk aversion. The Jensen’s inequality
terms are always positive, while the risk premium terms can be negative if γ is negative.
Increasing the volatility of a factor increases the Jensen’s inequality terms, unless the risk
premium terms in the a(i) and b(i) recursions outweigh the effect of the Jensen’s inequal-
ity terms. This implies that in a risk-neutral setting, increasing the volatility of a factor
increases, ceteris paribus, the terms in the exponential. This increases the price-to-book.
However, in a risk-averse setting, that is when γ < 0, the price-to-book can decrease with
volatility. We illustrate this in the next section.

The c(i) and d(i) coefficients value the abnormal return stream. Notice from the initial
conditions in equation (35) that the e2 vector pulls out only the abnormal returns terms. The
terms involving µ and AXt result from the action of the conditional mean of the process
of Xt , and the terms involving γ are the risk premiums which act on the covariances. In
the recursions for c(i) and d(i) in equation (34) the Jensen term −e1 + e3 + b(i − 1) also
enters, along with a risk premium effect.

Equations (34) and (35) completely determine the response of the price-to-book (equation
(33)) in terms of parameters to the underlying process Xt . However, the reaction of the price
to changes in the parameters is not immediately transparent due to the recursive nature of the
coefficients in the valuation equation. We now conduct a series of exercises in comparative
statics to further analyze the effects of parameter changes on the price-to-book.

3.4. Comparative Statics of the Price-to-Book

In this section we show how varying the parameters of the processes of the short rate,
abnormal returns and growth in book affect the price-to-book ratio of a firm, using the
motivating example in equation (32). In a previous version of this paper (Ang and Liu, 1998),
we calibrated this model to several individual stocks. We use the estimated parameters of
Intel, from January 1975 to June 1997, as a basis for illustrating the comparative statics.
These parameters are listed in Table 1. We conduct our comparative statics at the base case
of the sample mean for Xt over the sample.12 In our plots, we show this baseline case as a
circle.

In our comparative static exercises we wish to clarify the role of risk aversion. To do this,
only one factor, the growth in equity gt , is priced, and we set the prices of risk for the short
rate rt and abnormal returns zt to zero. The first assumption is close to reality, because term
structure estimations have found insignificant prices of interest rate risk. The action of the
price of risk of zt is very similar to the price of risk of gt , so we concentrate only on the
action of one price of risk. Hence we set γ = (0 0 γ3)

′ where γ3 is the price of risk of growth
in book.
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Table 1. Parameters for comparative statics

Baseline Parameters

µr 0.0054
ρr 0.7548
σr 0.0374
µz 0.0263
α1 −0.8695
α2 0.7720
σz 0.0176
µg 0.0247
α3 1.1829
α4 0.6008
α5 −0.0105
σg 0.0698
γ3 −13.1982

Notes: These parameters are the base-line
case for the comparative statics exercises. The
equations for the processes are given by equa-
tion (32). We set γ1 = γ2 = 0.

For reference, we repeat the system Xt = (rt zt gt )
′ here:

rt+1 = µr + ρr rt + σr
√

rtε
1
t+1

zt+1 = µz + α1rt + α2zt + σzε
2
t+1

gt+1 = µg + α3rt + α4zt + α5gt + σgε
3
t+1. (36)

3.4.1. Effect of the Short Rate on the Price-to-Book

We first examine the effect of the short-rate parameters. As µr increases, short rate levels
increase and future abnormal earnings are discounted back at higher rates. This decreases
the price-to-book. In Figure 1 we see the price-to-book as a function of the persistence
ρr , and the volatility σr . We first discuss the effect of ρr . As interest rates become more
persistent, the price-to-book decreases. Intuitively, increasing the persistence increases the
unconditional mean of the short rate. As cash flows are generally valued back at a higher
discount factor, the price-to-book falls.

In Figure 1 the price-to-book increases when σr increases. At first glance, this would
seem counter-intuitive, for two reasons. First, we would expect agents to dislike volatility,
so that price-to-book would decrease when volatility increases. Second, the interest rate is
bounded at zero in the CIR model, and increasing the volatility of the short rate increases the
unconditional mean of interest rates. This implies that the discount factors which value back
future abnormal returns are higher. However, in our base-line case, agents are risk-neutral
with respect to the interest rate risk. The increase in the price-to-book when σr increases is
purely due to a Jensen’s inequality effect. Only if interest rate risk is priced is it possible to
cancel the Jensen’s inequality effect.
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Figure 1. Comparative statics for short rate parameters. (The figure plots the price-to-book as a function of
persistence of the short rate ρr (top plot), and as a function of the short-rate volatility σr (bottom plot). The
base-line case is shown as a circle.)
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3.4.2. Effect of Profitability on the Price-to-Book

We turn now to the effect of profitability on the price-to-book. As expected, increasing µz

increases the price-to-book as a higher µz implies greater profitability. The price-to-book
ratio also increases as the predictability coefficient α1 increases, if zt is positive. Econom-
ically, this occurs because increasing abnormal returns causes cashflows in future periods
to increase, and hence this increases the price-to-book ratio. Correspondingly, decreasing
α1 decreases abnormal returns. The effect is opposite for negative levels of zt .

The top panel of Figure 2 shows the effect of altering the persistence (α2) of abnormal
returns. Increasing the persistence of zt , or decreasing the mean-reversion, increases the
price-to-book. The statistical interpretation is as follows. The unconditional mean of ab-
normal returns rises as the persistence rises. Higher average abnormal returns then imply
higher price-to-book. Economically, we expect a firm’s profitability to mean-revert within
and across industries (see Fama and French, 2000). Higher mean reversion (or lower per-
sistence of abnormal earnings) means that high relative earnings in the short term persist
for fewer periods. This lower profitability decreases the price-to-book ratio.

The bottom panel of Figure 2 presents the price-to-book as a function of abnormal return
volatility σz . In our parameterization, increasing the volatility of abnormal returns increases
the price-to-book. This is because the price of risk of abnormal returns γ2 is zero, so agents
are risk-neutral with respect to profitability. The Jensen’s effect causes the price-to-book
to increase when σz increases. However, if γ2 is negative and agents are risk-averse with
respect to abnormal returns, then it may be possible for the price-to-book to fall as volatility
of profitability increases.

3.4.3. Effect of Growth on the Price-to-Book

Any parameters which increase the growth in book increase the price-to-book ratio. For
example, increasing µg , α3 or α4 when zt is positive increases the price-to-book because
each parameter raises growth in book. The intuition is that increasing growth increases the
likelihood of higher cashflows in future periods.

The parameter α5 captures the persistence, or mean-reversion, of firm growth. The top
panel of Figure 3 shows that increasing the persistence of the growth in book increases
the price-to-book. This effect is similar to increasing the persistence of zt (α2), since the
unconditional mean of gt rises as the persistence of gt increases. Higher persistence implies
that firm growth mean-reverts to an industry or market average at a faster rate. Hence the
firm has fewer periods to enjoy the benefits of relatively higher growth.

The bottom panel of Figure 3 shows the effect of a decreasing price-to-book with increas-
ing volatility in growth in equity (σg). This is in line with intuition: we would expect, ceteris
paribus, normal risk-averse investors to lower their valuations the greater the volatility in
growth. We obtain this result because there is a large non-zero price of risk on growth in
equity γ3 and this causes the price-to-book to decrease as volatility increases. In this case,
in addition to the Jensen’s inequality effect (which increases with σg), there is also a risk
aversion effect which counteracts the Jensen’s inequality effect.
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Figure 2. Comparative statics for abnormal return parameters. (The figure plots the price-to-book as a function
of the persistence of abnormal returns α2 (top plot), and the volatility of abnormal returns σz (bottom plot). The
base-line case is shown as a circle.)
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Figure 3. Comparative statics for growth in equity parameters. (The figure plots the price-to-book as a function
of the persistence of growth in equity α5 (top plot), and the volatility of growth in equity σg (bottom plot). The
base-line case is shown as a circle.)
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Figure 4. Comparative statics for price of risk of growth in equity. (The figure plots the price-to-book as a function
of the price of risk of growth in equity (γ3). The base-line case is shown as a circle.)

Finally, Figure 4 shows the effect of risk aversion on the price-to-book. In Figure 4, for
risk aversion levels below γ3 = −15 the price-to-book is very flat, but as investors approach
risk neutrality the price-to-book becomes very large.

4. Conclusion

This paper introduces a methodology that incorporates stochastic interest rates, risk aversion
and heteroskedasticity into the Residual Income Model (RIM). We provide two applications
of the methodology. First, in applying the methodology to dollar amounts, we show that
the Ohlson (1995) and Feltham and Ohlson (1995) Linear Information Model generalizes
to an affine (constant plus linear terms) model under time-varying interest rates and risk
aversion. The processes for accounting information may be heteroskedastic. The interest
rate process is very general but is assumed to be uncorrelated with the processes governing
the evolution of accounting information.

Second, in applying the methodology to ratio dynamics, we provide a non-linear closed-
form formula for the price-to-book ratio in terms of stochastic short rates, profitability and
firm growth. In comparative static exercises, increasing the growth in book increases the
price-to-book ratio and increasing the mean-reversion of profitability or growth decreases
the price-to-book. The effect of interest rates on the price-to-book depends on the degree
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of risk aversion. Under sufficiently high risk aversion, increasing the mean or volatility of
the short rate decreases the price-to-book ratio.

Appendix Proofs

We start by stating the following Lemma which gives the expectation of the product of a
normal with the exponential of a normal, which can be proved by evaluating the expectation.
This is used in some of the proofs below.

A. Lemma

Lemma A.1 If Y is distributed as a K -variate normal with Y ∼ N (0, �), and γ and δ are
K × 1 constant vectors then

E(δ′Y eγ ′Y ) = δ′�γ e
1
2 γ ′�γ (A.1)

B. Proof of Claim 1.1

Starting from the relation St = Et [πt+1(St+1 + δt+1)] we can substitute for πt+1 = R−1
f ξt+1

using the assumptions about a flat term structure to get:

St = R−1
f Et (ξt+1(St+1 + δt+1)). (B.1)

Using the definition of the return of the stock r s
t+1 ≡ (St+1 + δt+1)/St and covt (r s

t+1,

−ξt+1) = σ̄ , we can write Et (r s
t+1) = R f + σ̄ ≡ R, with R a constant.

In this case:

St = 1

R
Et (St+1 + δt+1), (B.2)

and iterating this equation forward and assuming transversality we obtain:

St =
∞∑

i=1

R−i Et (δt+i ). (B.3)

Then, as in Ohlson (1995), abnormal earnings become xa
t = xt − (R − 1)yt−1, and sub-

stituting for dividends in the previous equation yields:

St = yt + Et

[ ∞∑
i=1

R−i xa
t+i

]
= yt +

∞∑
i=1

R−i Et
(
xa

t+i

)
(B.4)

because the telescoping sum collapses, assuming R−τ Et (yt+τ ) → 0 as τ → ∞.
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C. Proof of Proposition 2.1

From equation (14) we can write:

gt =
∞∑

i=1

EQ
t

[(
i−1∏
j=0

exp(−rt+ j )

)
xa

t+i

]
(C.1)

where gt = St − yt . An equivalent statement is:

gt = Et
[
exp(−rt )ξt+1

(
gt+1 + xa

t+1

)]
exp(rt )gt = Et

(
gt+1 + xa

t+1

) + covt
(
gt+1 + xa

t+1, ξt+1
)
, (C.2)

noting that Et (ξt+1) = 1.
Next, conjecture an affine solution for gt which has the form:

gt = αt + βt Xt ,

where αt and βt can depend on zero coupon bond prices �
{n}
t , but not the state variables

Xt . We can rewrite equation (C.2) as:(
�

{1}
t

)−1
(αt + β ′

t Xt ) = Et (αt+1 + (βt+1 + e1)
′ Xt+1)covt ((βt+1 + e1)

′σtεt+1, ξt+1). (C.3)

Here note that exp(rt ) = (�
{1}
t )−1. Using Lemma A.1 and evaluating the conditional mean

of Xt+1 gives:(
�

{1}
t

)−1
αt + (

�
{1}
t

)−1
β ′

t Xt = Et (αt+1) + (Et (βt+1) + e1)
′µ + (Et (βt+1) + e1)

′ AXt

+ (Et (βt+1) + e1)
′(h + H · Xt )γ, (C.4)

after substituting σtσ
′
t = h + H · Xt . Equating the coefficients of Xt we have:

(
�

{1}
t

)−1
αt = Et (αt+1) + (Et (βt+1) + e1)

′(µ + hγ )(
�

{1}
t

)−1
βt = (A + H̄)′(Et (βt+1) + e1). (C.5)

One can show by substitution that the above equations are solved by setting:

αt =
∞∑

n=0

( ∞∑
k=1

�(n+k)
t

)
e′

1(A + H̄)n(µ + hγ )

βt =
∞∑

n=1

�
{n}
t e′

1(A + H̄)n. (C.6)

D. Proof of Lemma 2.1

Since R is a constant, xa
t = xt − (R − 1)yt−1 is a linear function of the state variables

Xt . That is, xa
t = L ′ Xt for some constant vector L . Then, Et (xa

t+i ) = L ′ Ai Xt is a linear
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function of Xt . Hence:

gt =
∞∑

i=1

R−i L ′ Ai Xt = L ′ A(R − A)−1 Xt , (D.1)

which is a linear function of Xt , that is, there is no constant term.

E. Proof of Proposition 3.1

To prove Proposition 3.1 we show that a single term in the infinite sum at horizon T sum
takes the form:

EQ
t

[(
T −1∏
i=1

e−(rt+i −gt+i )

)
zt+T

]
= ea(T )+b(T )′ X (t)(c(T ) + d(T )′ X (t)) (E.1)

We show that the coefficients a(T ), b(T ), c(T ), and d(T ) are given by the Ricatti differ-
ence equations in equation (34) with initial conditions in equation (35). Once this is shown,
Proposition 3.1 follows immediately from evaluating each individual term in the infinite
sum.

We prove equation (E.1) by induction. Assume validity of equation (E.1) for T . We show
that the equation holds for T + 1. Using iterative expectations we can write:

EQ
t

[(
T∏

i=1

e−(rt+i −gt+i )

)
zt+T +1

]
= EQ

t

[
e−(rt+1−gt+1)EQ

t+1

[(
T −1∏
i=1

e−(rt+1+i −gt+1+i )

)
zt+T +1

]]

= EQ
t

[
e−(e1−e3)

′ Xt+1 ea(T )+b(T )′ Xt+1(c(T ) + d(T )′ Xt+1)
]
.

(E.2)

The induction assumption is used in the last equality. We then observe that Xt+1 under Q
satisfies (this is the discrete-time version of Girsanov’s theorem):

Xt+1 = µ + AXt + σtσ
′
t γ + σtε

Q
t+1, (E.3)

where ε
Q
t+1 is a (mean-zero) standard normal random variable under Q. Then:

EQ
t

[(
T∏

i=1

e−(rt+i −gt+i )

)
zt+T +1

]

= ea(T )+(−e1+e3+b(T ))′(µ+AXt +σt σ
′
t γ )

× EQ
t

[
e(γ−(e1−e3)+b(T ))′σt ε

Q
t+1(c(T ) + d(T )′

(
µ + AXt + σtσ

′
t γ ) + d(T )′σtε

Q
t+1

)]
= ea(T )+(−e1+e3+b(T ))′(σt σ

′
t γ+µ+AXt )e

1
2 (−e1+e3+b(T ))′σσ ′

t (−e1+e3+b(T ))

× (c(T ) + d(T )′(µ + AXt + σtσ
′
t γ ) + d(T )′σtσ

′
t (−e1 + e3 + b(T ))). (E.4)

The last equality is obtained by employing Lemma A.1. Equating coefficients gives us the
result. To obtain the initial conditions we directly evaluate EQ

t (zt+1) using Lemma A.1.
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Notes

1. Penman (1991) argues that the RIM has implications for ratio analysis, particularly for the price-to-book and
price-to-earnings ratios.

2. Zhang (1998) demonstrates that for a given level of earnings the relationship between book and equity value
is ambiguous.

3. See Fama and French (2000) and Ou and Penman (1989), among others.
4. Nissim and Penman (2000) demonstrate that interest rates have predictive power to forecast future accounting

returns.
5. Feltham and Ohlson (1999) use the notation ξt+1 for the pricing kernel. We use the notation πt+1 as we save

ξt+1 to describe a component of πt+1 more in line with standard asset pricing notation. In certain situations the
pricing kernel has a known form, such as the case of consumption-based asset pricing (Lucas, 1978), or with
complete markets (Black and Scholes, 1973). Both of these functional forms are not valid here because we do
not specify a representative agent who has utility over consumption and because markets are incomplete with
respect to accounting information (market prices are not available for earnings or book values).

6. An equivalent representation of the pricing kernel is:

mt Pt = Et (mt+1 Zt+1)

where mt+1 satisfies the equation:

πt+1 = mt+1

mt
.

See Harrison and Kreps (1979).
7. Although this parameterization may look restrictive, it is very flexible. The strict positivity requirement is

almost equivalent to specifying ξt+1 = exp( f (εt+1)) for some function f (·). The sources of risk arise from
the shocks of the driving variables in the economy, which are εt+1. For small variability in the driving factors,
we can approximate the variable part of f (εt+1) by a first-order approximation γ ′σtεt+1. This leads to the form
of the pricing kernel in equation (5). This form of pricing kernel has been used in many financial applications
including Duffie and Liu (2001), Bakshi and Chen (2001), Bekaert and Grenadier (2001), and others.

8. Strictly speaking Feltham and Ohlson (1999) consider a countable state space and a finite horizon. This can be
generalized to most uncountable state spaces with some technical assumptions (see Harrison and Kreps, 1979),
and applied to an infinite horizon sum by assuming transversality.

9. The process ξt+1 converts the risk-neutral measure to the real measure. By definition the following relationship
holds between the real measure and Q: EQ

t [Zt+1] = Et [ξt+1 Zt+1] for any t + 1 measurable random variable
Zt+1. In technical terms, the process ξt+1 is a Radon-Nikodym derivative of the real measure with respect to
the risk-neutral measure Q. See Harrison and Kreps (1979).

10. We omit this proof as the derivation is very similar to the derivation of Proposition 3.1.
11. Note that gt does not appear in the first term of the infinite sum. The reason is that at time t +1, the opportunity

costs of the firm are (ert − 1)yt , which are known at time t . At time t + 2 the opportunity costs of the firm are
based on yt+1 = yt egt . This lag in the timing of gt disappears if the model is formulated in continuous time.
See Ang and Liu (1998).

12. The sample mean of Xt is X̄t = (0.0817/4, 0.1366, 0.2773)′ where the interest rate is annualized, but used
as quarterly.
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