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In this article, I explicitly solve dynamic portfolio choice problems, up to the solution

of an ordinary differential equation (ODE), when the asset returns are quadratic and

the agent has a constant relative risk aversion (CRRA) coefficient. My solution

includes as special cases many existing explicit solutions of dynamic portfolio choice

problems. I also present three applications that are not in the literature. Application 1

is the bond portfolio selection problem when bond returns are described by ‘‘quad-

ratic term structure models.’’ Application 2 is the stock portfolio selection problem

when stock return volatility is stochastic as in Heston model. Application 3 is a bond

and stock portfolio selection problem when the interest rate is stochastic and stock

returns display stochastic volatility. (JEL G11)

There is substantial evidence of time variation in interest rates, expected

returns, and asset return volatilities. Interest rates change over time, and

although expected stock returns are not directly observed, future stock

returns seem to be predictable using term structure variables and scaled
prices such as dividend yields.1 Similarly, there is well-documented evi-

dence of stochastic volatility,2 whose existence is also supported by the

‘‘smile curve’’ of volatilities implied by option prices.

Therefore, any serious study of dynamic portfolio choice must take

account of stochastic variation in investment opportunities. The seminal

work of Merton (1971) establishes the framework for dynamic portfolio

choice with stochastic variation in investment opportunities. The portfo-

lio weights in Merton’s framework are expressed in terms of the solution
to a nonlinear partial differential equation (PDE), and because there is no

closed-form solution of a nonlinear PDE in general, explicit portfolio

weights are not available in general. There are approximate solutions to
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Merton’s problem such as the asymptotic solutions of Kogan and Uppal

(2000) and log-linearization solution of Campbell and Viceira (2001) and

Chacko and Viceira (2005). Cases for which exact solutions to Merton’s

problem have been obtained include Kim and Omberg (1996), Brennan

(1998), Brennan and Xia (2000, 2001, 2002a,b), Sangvinatsos and

Wachter (2005), and Wachter (2003). In all of these studies, asset returns

are assumed to have constant volatility and the short rate and/or the risk

premium follow Ornstein–Uhlenbeck processes, which allow these vari-
ables to take on negative values.

In this article, I derive explicit solutions of dynamic portfolio choice

problems with what I term quadratic asset returns. In the context of

dynamic portfolio choice, the investment opportunity set is described by

four characteristics of the asset return dynamics: the short rate, the

maximal squared-Sharpe ratio, the hedging covariance vector (the vector

of covariances between the mean-variance efficient portfolio and the

hedging portfolios), and the unspanned covariance matrix (the covariance
matrix of the state variables that is not spanned by the covariance of the

assets). Asset returns are ‘‘quadratic returns’’ when all four characteristics

are quadratic functions of a ‘‘quadratic process,’’ which is a Markovian

diffusion processes whose drift and diffusion coefficients are quadratic

functions of the processes themselves. Quadratic processes include both

affine processes and the Ornstein–Uhlenbeck process as special cases.

Quadratic processes have the same analytical tractability as, but are

more flexible than, affine processes. Quadratic returns are common in
the literature; examples include returns of zero-coupon bonds in affine

term structure models [Duffie and Kan (1996)], stock returns with a risk

premium that follows an Ornstein–Uhlenbeck process, and stock returns

in Heston’s (1993) model of stochastic volatility.

The main analytic results of this article are explicit solutions to

dynamic portfolio choice problems when the asset returns are quadratic

and the agent has a constant relative risk aversion (CRRA) utility func-

tion. The utility function is defined over intermediate consumption and
terminal wealth when financial markets are complete and over terminal

wealth only when financial markets are incomplete. This class of dynamic

portfolio problems includes as special cases many of the dynamic portfo-

lio problems for which explicit solutions have been derived previously. In

addition, the class also accommodates models in which the short rate and/or

the risk premium follow square-root processes that ensure that the short rate

and/or the risk premium are positive, and models in which asset returns have

stochastic volatility. I also prove a separation result, showing that the bond
and stock portfolio selection problems can be decomposed into bonds-only

and stock-only portfolio selection problems when the state variables that

govern interest rates are independent of the state variables that govern only

the stock returns.
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I consider three applications. Application 1 is a bond portfolio selec-

tion problem. I first propose quadratic term structure models that nest

both the quadratic gaussian term structure models [Constantinides

(1992)] and the affine term structure models [Duffie and Kan (1996)]

that have been used in many empirical and theoretical studies. The

returns of the bonds are derived using the quadratic term structure

model to rule out arbitrage opportunities between the bonds. The port-

folio selection problem with these bond returns is then solved explicitly.
The portfolio weight of a zero-coupon bond is derived in closed-form for

the special case of the Cox–Ingersoll–Ross (CIR) term structure model.

Application 2 is a stock portfolio choice problem when the stock return is

described by Heston’s (1993) stochastic volatility model. Application 3 is

a portfolio choice problem with a stock and a bond in a stochastic interest

rate–stochastic volatility model. The stock returns in the model have both

interest rate risk as described by the CIR model and stochastic volatility

as described by the Heston model. The bond and stock portfolio weights
in this model are expressed in terms of the explicit solutions for the CIR

and Heston models by an application of the separation result.

The explicit solutions allow us to show that dynamic portfolio weights

have several properties that are different from static portfolio weights.

First, the dynamic portfolio weight of a risky asset can be negative even if

the risk premium is strictly positive. In the works of Kim and Omberg

(1996) and Brennan and Xia (2001), dynamic portfolio weights can also

be negative. However, one cannot determine whether the negative port-
folio weight in their model is due to dynamic portfolio choice or the

feature that the risk premium in their models is given by an Ornstein–

Uhlenbeck process and thus can be negative. In Application 2, the risk

premium is strictly positive, and hence, one can conclude that the negative

portfolio weight is due to dynamic portfolio choice.

Second, the dynamic portfolio weight of a risky asset may not be

decreasing in risk aversion even if the risk premium is strictly positive.

Although Kogan and Uppal (2000) independently point out that a
dynamic portfolio weight may increase with risk aversion, the example

in this article is striking because the risk premium is strictly positive.

Third, I show that the ratio of bond to stock portfolio weights increases

with risk aversion. This resolves an asset allocation puzzle identified by

Canner, Mankiw, and Weil (1997). Brennan, Schwartz, and Lagnado

(1997) were the first to study dynamic portfolio choice problems with

stocks and bonds simultaneously. These problems have since been studied

by Brennan and Xia (2000), Campbell and Viceira (2001), Wachter
(2003), and Sangvinatsos and Wachter (2005) when the interest rate

follows an Ornstein–Uhlenbeck process. Brennan and Xia (2000),

Campbell and Viceira (2001), and Wachter (2003) also show that the

puzzle of Canner, Mankiw, and Weil (1997) can be resolved in a dynamic
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portfolio choice context. The asset returns in their models are described

by Ornstein–Uhlenbeck processes, whereas they are described by square-

root processes in my examples.

Schroder and Skiadas (1999) characterize portfolio selection in com-

plete markets under stochastic differential utility, which is the

continuous-time analog of recursive utility and includes CRRA utility

as a special case. They provide a general characterization of the solution

to dynamic portfolio problems in the non-Markovian case, deriving
explicit portfolio weights for CRRA utility when asset returns are affine

and markets are complete. I obtain explicit solutions with CRRA utility

over the terminal wealth for incomplete markets and when asset returns

are quadratic, which, as mentioned earlier, include affine asset returns as

a special case.

The remainder of the article is organized as follows. In Section 1, I

set up the framework and introduce quadratic processes and quadratic

returns. Then, assuming that the asset returns are quadratic, I expli-
citly derive the optimal consumption and portfolio weights when

markets are complete and the optimal portfolio weights, assuming

no intermediate consumption when markets are incomplete. In Sec-

tion 2, I first show that under appropriate independence of state

variables, bond and stock portfolio choice problems can be separated

into bond-only and stock-only portfolio choice problems. I then

define quadratic term structure models and explicitly solve bond

portfolio selection problems when the term structure is quadratic.
Next, I solve the stock portfolio problem when the stock return

volatility is described by the Heston model. Finally, I derive in

closed-form the stock and bond portfolio weights in a model with

both stochastic interest rates and stochastic volatility, discuss proper-

ties of dynamic portfolio weights, and provide a potential resolution

of the puzzle of Canner, Mankiw, and Weil. I conclude in Section 3. I

leave calculation details to the Appendix.

1. Dynamic Portfolio Weights: General Results

1.1 The setup

I assume that the asset prices Pt ¼ ðP0t,P1t, … ,PMtÞ satisfy the following

equations:

dP0t

P0t

¼ rðXtÞdt,

dPit

Pit

¼ �iðXtÞdtþ �iðXtÞdBt, i ¼ 1, … ,M,
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where Bt is a standard M-dimensional Brownian motion. I further

assume that rðXtÞ, �iðXtÞ, and �iðXtÞ are functions of an N-dimensional

state variable vector, Xt, which follows a Markovian diffusion process,

dXt ¼ �X dtþ �X dBX
t , ð1Þ

where the drift coefficient (or ‘‘drift’’) �X and the diffusion coefficient3 (or

‘‘diffusion’’) �X �X> are an N � 1 vector function and an N �N matrix

function of Xt, respectively, and BX
t is a N-dimensional standard Brow-

nian motion. Note that > denotes the transpose of a matrix.
I use �ðXtÞ and �ðXtÞ to denote ½�1ðXtÞ, … ,�MðXtÞ� and

½�1ðXtÞ, … ,�MðXtÞ�, respectively. I assume that �ðXtÞ is invertible

almost surely. The correlation matrix between dBX
t and dBt is �ðXtÞdt,

where �ðXtÞ is a matrix function of Xt with dimension N �M. The state

variable X could be the stochastic short rate as in the CIR term

structure model, or predictors of stock returns such as dividend yields

in predictability models, or the volatility process in the stochastic vola-

tility models. I will later specify functional forms for

�X ðX Þ, �X ðXÞ, rðXÞ, �ðXÞ, �ðXÞ, and �ðXÞ that allow for explicit solu-

tions of the optimal consumption and portfolio rules. When there is no

confusion, I will denote �X ðX Þ, �X ðXÞ, rðXÞ, �ðXÞ, �ðXÞ, and �ðXÞ by

�X , �X , r, �, �, and �, respectively.

Following Merton (1971), I assume that (1) there are no transaction

costs, taxes, or asset indivisibitility; (2) the agent is a price taker; (3) short

sales of all assets, with full use of proceeds, are allowed; (4) and trading in

assets takes place continuously in time.

The agent maximizes the following expected utility:

max
f�tgT

t¼0,fctgT
t¼0

E0

ZT

0

�e��t C
1��
t

1� � dtþ ð1� �Þe��T W
1��
T

1� �

2
4

3
5, ð2Þ

where �t is the M-dimensional vector of the portfolio weights of risky

assets, ct is the consumption rate, and WT is the value at T of a trading

strategy that finances fctgT
t¼0,

dWt ¼
�

Wt

�
�>t ð�� rÞ þ r

�
� Ct

�
dtþWt�

>
t �dBt:

� is the risk aversion coefficient (as well as being the inverse of the

elasticity of intertemporal substitution) and � is the subjective discount

3 Sometimes �X instead of �X �X> is referred as the diffusion coefficient.

Portfolio Selection in Stochastic Environments

5



rate. The parameter � determines the relative importance of the inter-

mediate consumption and the bequest. When � ¼ 0, expected utility only

depends on the terminal wealth and the problem is called an asset

allocation problem.

Following Merton (1971), I use the stochastic control approach to

solve the problem. Let Jðt,W ,XÞ denote indirect utility function. The

principle of optimality leads to the following Hamilton–Jacobi–Bellman

(HJB) equation [Merton (1971)] for J:

max�,C

�
@J

@t
þ 1

2
W 2�>��>�JWW þW

�
�>ð�� rÞ þ r

�
JW � CJW

þW�>��>�X>JWX þ
1

2
Trð�X �X>JXX>Þ

þ �X>JX þ �e��t C1��

1� �

�
¼ 0, ð3Þ

with boundary condition

JðT ,W ,X Þ ¼ ð1� �Þe��T W 1��

1� � ,

where @J=@t, JW , and JX denote the derivatives of J with respect to t, W ,

and X , respectively. I use similar notation for higher derivatives and the

derivatives of other functions.

J is conjectured to have the form:

Jðt,W ,X Þ ¼ e��t W 1��

1� �
�

f ðX ,tÞ
��
: ð4Þ

Under this conjecture, the optimal consumption and the optimal

portfolio weights are given by

C* ¼ �1
�Wf �1, ð5Þ

�* ¼ 1

�
ð��>Þ�1 ð�� rÞ þ ���>�X> @ ln f

@X

� �
: ð6Þ

The first term in expression (6) of �*, 1
� ð��>Þ�1ð�� rÞ, is the vector of

the mean-variance efficient portfolio weights. It is also called the myopic

demand because this is the vector of portfolio weights for an agent who

has only a single period objective or a very short investment horizon.
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The second term in Equation (6) is the intertemporal hedging demand,

which is determined by the covariance �>�1�>�>X and the indirect utility

function J. The term �>�1�>�>X selects the portfolios that have the max-

imum correlation with the state variable X . The factor @
@X

ln f measures the

sensitivity of the indirect utility function to the opportunity set and sum-

marizes the agent’s attitude toward changes in the state variable X .

Substituting the conjecture of J and the resulting optimal policies into

Equation (3), we obtain

@f

@t
þ 1

2
Tr
�
�X �X>fXX>

	
þ �X þ 1� �

�
�X���1ð�� rÞ

� �>
fX

þ 1

2f
ð� � 1Þf >X



�X �X> � �X��>�X>

�
fX

þ 1� �
2�2

ð�� rÞ>ð��>Þ�1ð�� rÞ þ 1� �
�

r� �
� �

f þ �1
� ¼ 0, ð7Þ

with condition f ðT ,X Þ ¼ ð1� �Þ
1
�.

The left-hand side of the above PDE is, up to a multiplicative factor �J,

the instantaneous expected change in the indirect utility function

Jðt,W ,X Þ ¼ W 1��

1�� f �ðt,XÞ. By Ito’s lemma, @f
@t
þ 1

2
Tr �X �X>fXX>ð Þ

þ�X>fX þ 1
2f
ð� � 1Þf >X �X �X>fX is the expected change of f �ðt,XÞ. The

�
1
� and ��f terms are due to intermediate consumption and subjective

time discount, respectively. The term 1��
2�2
ð�� rÞ>ð��>Þ�1ð�� rÞ

h
þ 1��

� r� f is due to the expected change in W 1�� from the return of the

myopic component of the optimal portfolio. Note that

ð�� rÞ>ð��>Þ�1ð�� rÞ is the maximal squared-Sharpe ratio. The term
1��
� �X���1ð�� rÞ
� �>

fX is due to the expected change in W 1�� from the

return of the intertemporal hedging component of the optimal portfolio

and the covariance between changes in W 1�� and in f � . Also note that

the N � 1 vector �X���1ð�� rÞ is the covariance between the shocks

�X dBX
t to the state variable X and the shock ½��1ð�� rÞ�>dBt to the

return on the myopic component of the optimal portfolio; I will refer it as

the hedging covariance vector. Finally, � 1
2f
ð� � 1ÞfX �X��>�X>fX is due

to the variance of the return of the intertemporal hedging component of

the optimal portfolio.

We can decompose the Brownian motions of the state variable X into

the Brownian motion dBt of the assets and Brownian motions that are

independent of dBt:
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dBX
t ¼ �dBt þ �̂dB̂>t ,

where ��̂ ¼ 0. Therefore, the covariance matrix �X �X> of the state

variable vector X may be written as

�X �X> ¼ �X��>�X> þ �X �̂�̂>�X>:

The first term, �X��>�X>, is associated with the component of dX that

can be replicated by the Brownian motions of the asset prices. The second
component, �X �̂�̂>�X>, is associated with dB̂t, the component of dX

that is independent of the Brownian motion of the asset prices. There-

fore, I refer to �X��>�X> and �X �̂�̂>�X> � �X �X> � �X��>�X> as

the spanned and unspanned (state variable) covariance matrices, respec-

tively. When �̂ ¼ 0, dBX
t is replicated by dBt, so that markets are

complete.

The assumption of complete markets is strong and is not satisfied in

many specifications of the stochastic environments that have been ana-
lyzed. For example, markets are incomplete if stock returns exhibit sto-

chastic volatility and there are no derivatives included in the set of

securities, or if stock returns are predictable and the uncertainties asso-

ciated with the predictors of stock returns cannot be replicated using

existing securities.

For the dynamic portfolio choice problems that are considered in this

article, solving PDE (7) is equivalent to solving the following PDE:4

@f̂

@t
þ 1

2
Tr
�
�X �X> f̂XX>

	
þ �X þ 1� �

�
�X���1ð�� rÞ

� �>
f̂X

þ 1

2f̂
ð� � 1Þf̂ >X



�X �X> � �X��>�X>

�
f̂X

þ 1� �
2�2

ð�� rÞ>ð��>Þ�1ð�� rÞ þ 1� �
�

r� �
� �

f̂ ¼ 0, ð8Þ

with condition f̂ ðT ,XÞ ¼ 1. When � ¼ 0, the two PDEs are the same and
f ¼ f̂ . When � > 0, I will show that if markets are complete, f can be

expressed in terms of f̂ . I would point out here that the nonlinear term in

the two PDEs drops out when markets are complete, which we will

assume when we have intermediate consumption (� > 0 ).

The key observation of this article is that the function

f̂ ðt,XÞ ¼ ecðtÞþdðtÞ>Xþ1
2X>�>QðtÞ�X is the solution of PDE (8), if all coefficients

4 This is proved in the Appendix.
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of the PDE are quadratic in �X and linear in X with some parameter

restrictions, where � is a constant N1 �N matrix and thus �X are N1 linear

combinations of X and cðtÞ, dðtÞ, and QðtÞ are a scalar, an N-dimensional

vector, and an N1 �N1 matrix functions of t, respectively. When f̂ is

substituted into the PDE, with terms removed by the parameter restric-

tions, the terms on the left-hand side of the PDE will be at most quadratic

in �X and linear in X , up to a factor of f̂ . Because the equation holds for

all X , the coefficients of these terms have to be zero, which leads to
ordinary differential equations (ODEs) for cðtÞ, dðtÞ, and QðtÞ. PDE (8)

is thus solved when these ODEs are solved.

By inspection of PDE (8), its coefficients are quadratic in �X and linear

in X if the following expressions are quadratic in �X and linear in X : the

drift and the diffusion coefficient of the state variables �X and �X �X>,

the short rate r, the maximal squared-Sharpe ratio

ð�� rÞ>ð��>Þ�1ð�� rÞ, the hedging covariance vector �X���1ð�� rÞ,
and the unspanned covariance matrix �X �X> � �X��>�X>. These are
conditions, together with additional parameter restrictions, that I will

impose next.

1.2 Quadratic processes

In order to obtain an analytical solution to the optimal portfolio problem,

I begin by imposing restrictions on the dynamics of the state variable

vector X . In particular, I assume that the state vector Xt has drift and

diffusion coefficients that are quadratic functions of itself,

�X ¼ k � KX þ 1

2
X>�> � K2 � �X , ð9Þ

�X �X> ¼ h0 þ h1 � X þ X>�> � h2 � �X , ð10Þ

where k is an N � 1 constant vector, K and h0 are N �N constant

matrices, K2 ¼ fKij
2k, i, j ¼ 1, … ,N1, k ¼ 1, … ,Ng is a constant tensor

with three indices (two upper indices and one lower index),

h1 ¼ fhi
1jk,i, j,k ¼ 1, … ,Ng is a constant tensor with three indices (one

upper index and two lower indices), and
h2 ¼ fhij

2kl ,i, j ¼ 1, … ,N1, k, l ¼ 1, … ,Ng is a constant tensor with four

indices (two upper indices and two lower indices). If M is a matrix of

appropriate dimension, then K2 �M denotes contraction of upper indices

while K2M denotes contraction of lower indices.5 For example, ifM is a

vector, then,

5 Tensor is a straightforward generalization of vector and matrix. While a vector and a matrix have a
collection of numbers with 1 or 2 indices, a tensor of rank n is a collection of numbers with n indices. So a
vector and a matrix are a rank 1 tensor and a rank 2 tensor, respectively. K2 ¼ fKij

2kg has three indices
i, j, and k and thus is a tensor of rank 3. In this article, the indices have two ranges: N and N1. The
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ðK2 � MÞik ¼
XN1

j¼1

K
ij
2kMj,

(note thatM has dimension N1 � 1 in this case) and

ðK2MÞij ¼
XN

k¼1

K
ij
2kMk,

(note that M has dimension N � 1 in this case). Therefore,

X>�> � K2 � �X ¼ ð�X Þ> � K2 � �X is a vector of dimension N � 1 whose

k-th component is

ðX>�> � K2 � �XÞk ¼
XN1

i, j¼1

K
ij
2kð�X Þið�XÞj:

Also, h1 � X is an N �N matrix whose ðk,lÞ element is

ðh1 � XÞkl ¼
XN

i¼1

hi
1klXi:

Finally, X>�> � h2 � �X ¼ ð�XÞ> � h2 � �X is an N �N matrix whose ðk,lÞ
element is

ðX>�> � h2 � �X Þkl ¼
XN1

i,j¼1

hi
2klð�X Þið�XÞj:

I impose the following additional restrictions on parameters:

K>�> ¼ �>K̂ , K2�
> ¼ 0, h1�

> ¼ 0, h2�
> ¼ 0: ð11Þ

The parameter restrictions specified in Equation (11) ensure that �X is a

multivariate Ornstein–Uhlenbeck process. To understand this, multiply

both sides of Equation (1) to obtain the following equation satisfied by �X :

indices with the range of N (or N1) will be denoted as lower indices (or upper indices). More precisely, for
a fixed i and j, fKij

2k , k ¼ 1, … ,Ng is a column vector of dimension N, and for a fixed
k, fKij

2k , i, j ¼ 1, … ,N1 is a matrix of dimension N1 �N1. Similarly, � is a tensor with one upper
index and one lower index; for a fixed i, f�i

k , k ¼ 1, … ,Ng is a row vector of dimension N, and for a
fixed k, f�i

k , i ¼ 1, … ,N1g is a column vector of dimension N1. Products without ‘‘�’’ (or with ‘‘�’’) are just
matrix multiplications involving lower indices (or upper indices), as explained in the examples below.
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dð�X Þ ¼ ��X dtþ ��X dBX
t :

The parameter restriction implies that

��X ¼ �k � K̂>�X

noting that �KX ¼ K̂>�X because K>�> ¼ �>K̂ and �ðX>�>�
K2 � �X Þ ¼ 0 because K2�

> ¼ 0. Furthermore,

��X �X>�> ¼ �h0�
>

noting that �h1 � X�> ¼ 0 because h1�
> ¼ 0 and �ðX>�> � h2 � �X Þ� ¼ 0

because h2�
> ¼ 0. Therefore,

dð�X Þ ¼ �k � K̂>ð�XÞdtþ ��X dBX
t ,

where ��X is a constant matrix, which satisfies ��X ��X> ¼ �h0�
>.

Noting that the PDE for the indirect utility is very similar to the PDE

satisfied by the price of a zero-coupon bond, we can view these condi-

tions in the context of term structure models. Constantinides (1992)

shows that zero-coupon bond yields are quadratic functions of an
Ornstein–Uhlenbeck process if the short rate itself is a quadratic func-

tion of the Ornstein–Uhlenbeck process. It turns out that if quadratic

functions of an Ornstein–Uhlenbeck process are added to the drift and

diffusion of an affine process and the short rate is an affine functions of

the modified affine process and a quadratic function of the Ornstein–

Uhlenbeck process, zero-coupon bond yields will also be an affine

functions of the modified affine process and a quadratic function of

the Ornstein–Uhlenbeck process. A generic quadratic process is just a
collection of the modified affine process and the Ornstein–Uhlenbeck

process.

To understand the restrictions specified in Equation (11) in more

technical detail, let us substitute f̂ ¼ ecðtÞþdðtÞ>Xþ1
2X>�>QðtÞ�X into PDE (8).

Note that

�X> f̂X ¼ k � KX þ 1

2
X>�> � K2 � �X


 �
ðd þ �>Q�XÞf̂

¼ k � KX þ 1

2
X>�> � K2 � �X


 �
df̂ þ k>�>Q�Xf̂

� X>K>�>Q�Xf̂ þ 1

2
X>�> � ðK2�

>Q�X Þ � �Xf̂ :
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All except the last two terms have the quadratic form. The term
1
2

X>�> � ðK2�
>Q�XÞ � �X is cubic in X ; thus, it must be set to zero,

which implies the restriction K2�
> ¼ 0. For X>K>�>Q�X to be quad-

ratic in �X , we must have K>�> ¼ �>K̂ . Similarly, for the terms from

Trð�X �X>fXX>Þ to have the quadratic form, we must have the restric-

tions h1�
> ¼ 0 and h2�

> ¼ 0.

Definition 1. A quadratic diffusion process (‘‘quadratic process’’) is a vector

of Markovian diffusion processes Xt that satisfies Equations (9)–(11).

I now present some special cases of quadratic diffusion processes.

1. If � ¼ 0, which is equivalent to K2 ¼ 0 and h2 ¼ 0, quadratic terms

will be absent from both drift and diffusion coefficients and the

quadratic diffusion process reduces to the affine processes of Duf-

fie and Kan (1996).

2. If � ¼ I , h2 ¼ 0, and K2 ¼ 0, quadratic terms will be also absent

from both drift and diffusion coefficients and quadratic processes

become multivariate Ornstein–Uhlenbeck processes, which are a

special case of affine processes.

3. The following is an example of a quadratic process that extends

affine process (it is an affine process when the quadratic terms in

the drift of X2t and drift and diffusion coefficients of X3t are

absent.).

dX1t ¼ ðk1 � K11X1tÞdtþ 	1dB1t;

dX2t ¼ k2 � K22X2t þ ðX1t � �X12Þ2
h i

dtþ 	2

ffiffiffiffiffiffiffi
X2t

p
dB2t;

dX3t ¼ k3 � K33X3t � K12X2t � K13X3t þ X 2
1t

� 	
dt

þ 	13dB1t þ 	23

ffiffiffiffiffiffiffi
X2t

p
dB2t

þ 	3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM1X2t þM2ðX1t � �X13Þ2

q
dB3t, ð12Þ

where dB1t, dB2t, and dB3t are independent Brownian motions.

Note that the squares of X1t appear in the drifts of X2t and X3t

and in the diffusion of X3t.

A most general quadratic process Xt can be partitioned into

three processes Xt ¼ fX1t,X2t,X3tg, up to an affine transformation.

The first process, X1t, is a multivariate Ornstein–Uhlenbeck process.

The second process, X2t, is a generalization of a multivariate correlated
square-root processes, whose diffusion is a linear function of itself (the

same as a square-root process) and whose drift can depend on a

positive quadratic functions of X1t and a linear function of X2t. The
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third process, X3t, has a drift that depends quadratically on X1t and

linearly on all three processes, a diffusion term with a coefficient that is

a positive quadratic function of X1t and a linear function of X2t, and, in

addition, the diffusion terms of X1t and X2t.

1.3 Quadratic return

I now specify the remaining determinants of the dynamic portfolio choice

problem, namely the short rate r, the maximal squared-Sharpe ratio
ð�� rÞ>ð��>Þð�� rÞ, the hedging covariance vector �X���1ð�� rÞ,
and the unspanned covariance �X��>�X> � �X �X>. Recall that

together with drift and diffusion coefficients of the state variables that

have been specified above, these terms appear in the coefficients of PDE

(7) and thus determine the dynamic behavior of the optimal portfolio

weights. I require that all these terms also be quadratic functions of the

state variables with parameter restrictions exactly like those for �X and

�X �X>. Specifically, I assume that the asset returns satisfy the following
conditions:

r ¼ 
0 þ 
1X þ 1

2
X>�>
2�X , ð13Þ

ð�� rÞ> ��>
� 	�1ð�� rÞ ¼ H0 þH1X þ 1

2
X>�>H2�X , ð14Þ

�X���1ð�� rÞ ¼ g0 þ g1X þ 1

2
X>�> � g2 � �X , ð15Þ

�X��>�X> � �X �X> ¼ l0 þ l1 � X þ X>�> � l2 � �X , ð16Þ

with restrictions

g>1 �
> ¼ �>ĝ1, g>2 �

> ¼ 0, l1�
> ¼ 0, l2�

> ¼ 0, ð17Þ

where 
0 is a constant, 
1 is a constant vector of dimension N, 
2 is a

constant matrix of dimension N1 �N1, H0 is a constant, H1 is a constant

vector of dimension N, H2 is a constant matrix of dimension N1 �N1, g0

is a constant vector of dimension N, g1 is a constant matrix of dimension

N �N, g2 is a constant tensor with three indices (two upper indices

running from 1 to N1 and one lower index running from 1 to N), ĝ1 is

a constant matrix of dimension N1 �N1, l0 is an N �N constant matrix,
l1 is a constant tensor with three indices (with one upper index and two

lower indices all running from 1 to N), and l2 is a constant tensor with

four indices (with two upper indices running from 1 to N1 and two lower
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indices running from 1 to N). The tensor product is computed using the

same rules I gave earlier, so X>�> � g2 � �X is an N � 1 dimensional

vector with its k-th element given by

ðX>�> � g2 � �XÞk ¼
XN1

i, j¼1

g
ij
2kð�XÞið�XÞj;

l1 � X is an N �N matrix with its ðk,lÞ element given by

ðX>�> � l1 � �XÞkl ¼
XN

i¼1

l
ij
1klXi;

and ðX>�> � l2 � �XÞ is also an N �N matrix with its ðk,lÞ element given by

ðX>�> � l2 � �XÞkl ¼
XN1

i, j¼1

l
ij
2klð�XÞið�XÞj:

The first restriction is not empty because ĝ1 may not exist.

Conditions (13)–(16) together with parameter restrictions (17) require that

the short rate, the maximal squared-Sharpe ratio, the hedging covariance

vector, and the unspanned covariance matrix are quadratic in �X and linear

in X . The parameter restrictions (17) are required for the same reasons as

restrictions in Equation (11). Computing the indirect utility function is
equivalent to computing a zero-coupon bond price under a measure

where �X���1ð�� rÞ is added to the drift of X and

�X��>�X> � �X �X> is added to diffusion of X . The parameter restric-

tions ensure that �X is an Ornstein–Uhlenbeck process under this measure.

These conditions rule out dependence such as cubic and/or higher order

dependence on �X and quadratic and/or higher dependence on compo-

nents of X other than �X . They are imposed for tractability and, in
general, lead to less flexibility in data fitting. Nevertheless, as we will

show shortly, they are flexible enough to accommodate as special cases

widely-used models of asset returns.

Definition 2. The returns of the assets are quadratic returns if the state

variable vector X is a quadratic process and Equations (13)–(17) are

satisfied.

The following are special cases of quadratic returns.

1. Asset returns in models with a constant investment opportunity

set: when the short rate, the risk premium, and the volatility are all

constant.
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2. Stock returns with a constant interest rate, a constant volatility of

asset returns, and a risk premium that follows an Ornstein–
Uhlenbeck process. This is the return specification that is widely

used in the literature.

3. Returns of zero-coupon bonds in quadratic gaussian term structure

models [Constantinides (1992)] and in affine term structure models

[Duffie and Kan (1996)].

Other examples of quadratic returns will be given later in this article.

As I show in the next subsection, when asset returns are quadratic, we

will be able to derive an explicit solution to PDE (7) and thus to the
optimal portfolio problem.

1.4 Optimal policies

The complete market case and incomplete market case are treated sepa-

rately. The agent’s utility is defined over both intermediate consumption

and terminal wealth when markets are complete. When markets are

incomplete, explicit solutions can be derived only if the agent’s utility is

defined over the terminal wealth.

1.4.1 Complete markets. When there is intermediate consumption, we

need markets to be complete to obtain an explicit solution to the portfolio

choice problem.6

Let cðtÞ be a scalar function of t, dðtÞ an N � 1 vector function of t,
and QðtÞ an N1 �N1 matrix function of time t. I assume that the func-

tions cðtÞ, dðtÞ, and QðtÞ satisfy the following Riccati Equations:

d

dt
cþ k þ 1� �

�
g0


 �>
d þ 1

2
d> h0 þ ð1� �Þl0½ �d þ 1

2
Tr h0�Q�>
� 	

þ 1� �
2�2

H0 þ
1� �
�


0 � � ¼ 0, ð18Þ

d

dt
d þ �K þ 1� �

�
g1


 �>
d þ 1

2
d> h1 þ ð1� �Þl1½ �d

þ �>Q�
�
h0 þ ð1� �Þl0

�
d

þ �>Q� k þ 1� �
�

g0


 �
þ 1� �

2�2
H1 þ

1� �
�


1 ¼ 0, ð19Þ

6 Technically, PDE (7) can be converted to PDE (8) only when markets are complete, as shown in the proof
of Proposition 1 in the Appendix.
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d

dt
Qþ �K̂þ1��

�
ĝ1


 �>
QþQ �K̂þ1��

�
ĝ1


 �
þQ�> h0þð1��Þl0½ ��Q

þd> h2þð1��Þl2½ �dþ1��
�

g>2 dþ1��
2�2

H2þ
1��
�

2¼0, ð20Þ

with initial conditions cðTÞ ¼ 0, dðTÞ ¼ 0, and QðTÞ ¼ 0. These equa-
tions are well known and they have well-defined solutions. Next, let us

define the following function f

f ðt,XÞ ¼ �1
�

ZT

t

ecðuÞþdðuÞ>Xþ1
2X>�>QðuÞ�X duþ ð1� �Þ

1
�ecðtÞþdðtÞ>Xþ1

2X>�>QðtÞ�X :

Proposition 1. If returns are quadratic and markets are complete

ðl0 ¼ l1 ¼ l2 ¼ 0Þ, then the optimal consumption policy C* is given by

C* ¼ �1
�Wf �1

and the optimal portfolio choice �* is given by

�* ¼ 1

�
ð��>Þ�1ð�� rÞ þ ð�>Þ�1�>�X> @ ln f

@X
:

In particular, for an asset allocation problem ð� ¼ 0Þ, f ¼ ecðtÞþdðtÞ>X

þ 1
2X>�>QðtÞ�X and

�* ¼ 1

�
ð��>Þ�1ð�� rÞ þ ð�>Þ�1�>�X>ðd þ �>Q�X Þ:

Note that I suppressed the argument t of functions dðtÞ and QðtÞ in the

above equation. From here on, I suppress the argument t of functions of t

when there is no confusion.

The first component of �* is the myopic demand and the second

component is the intertemporal hedging demand. The intertemporal hed-

ging demand depends on � [through the functions cðtÞ and dðtÞ] and T .

Note that in ODE (19)–(20), if the inhomogeneous terms
1��
2�2

H0 þ 1��
� 
0, 1��

2�2 H1 þ 1��
� 
1, and 1��

2�2 H2 þ 1��
� 
2 are zero, then

cþ ðT � tÞ�, d, and QðtÞ will be zero. For example, all three inhomoge-
neous terms are zero for logarithmic utility ð� ¼ 1Þ, so

cðtÞ þ ðT � tÞ� ¼ dðtÞ ¼ QðtÞ ¼ 0, and there is no intertemporal hedging

demand in this case, which is the well known result that a logarithmic

utility maximizer behaves like a myopic agent.
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The more interesting case is for very conservative agents ð� !1Þ.
In this case, the nonzero inhomogeneous terms are 
0, 
1, and 
2, terms

that are associated with the short rate. Thus, the intertemporal hedging

demand of an infinitely risk-averse agent is determined only by the term

structure. This is intuitively clear. The infinitely risk-averse agent only

wants to hold cash, but the return from cash is also risky because the

short rate changes. Therefore, the agent will hedge against the short rate

risk by investing in bonds; these are exactly the intertemporal hedging
demands represented by the 
iði ¼ 0,1,2Þ terms. Campbell and Viceira

(2001) and Wachter (2003) obtain a similar result when the returns are

described by Ornstein–Uhlenbeck processes.

This case has important implications. First, the contribution to the

intertemporal hedging demand is qualitatively different for the risks

associated with the risk rate and for those not associated with the interest

rate; specifically, only the interest rate risk contributes to the intertem-

poral hedging demand of an infinitely risk averse agent. Second, bond
portfolio weights may increase with the risk aversion due to its intertem-

poral hedging component for the interest rate risk, whereas stock portfo-

lio weights in general decrease with the risk aversion. It follows that, in

principle, the ratio of stock to bond portfolio weights may decrease with

risk aversion.

For the case of complete markets, Schroder and Skiadas (1999) char-

acterize the solution to optimal portfolio selection and consumption

problems when the agent has stochastic differential utility and derive
the explicit solution for CRRA utility when the asset returns are described

by affine processes, which are nested by the quadratic returns considered

in this article.

1.4.2 Incomplete markets. For asset allocation problems without inter-
mediate consumption [� ¼ 0 in Equation (2)], explicit solutions can be

obtained without the condition that markets are complete.

Proposition 2. Assume that returns are quadratic. Then the optimal portfo-

lio weight is given by

�* ¼ 1

�
ð��>Þ�1ð�� rÞ þ ð��>Þ�1��>�X>ðd þQ�XÞ: ð21Þ

The intertemporal hedging demand depends on � (through the function d)

and the investment horizon T .

Note that the function f ¼ ecðtÞþdðtÞ>Xþ1
2X>�>QðtÞ�X and the intertemporal

hedging demand and the optimal portfolio weights do not depend on c

and therefore do not depend on k, g0, h0, l0, H0, or 
0. The reason for
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this is that these parameters do not characterize the changes in the

stochastic environment. When there is intermediate consumption,

� 6¼ 0, the portfolio weights depend on c and thus the parameters,

k, g0, h0, l0, and H0, because of intertemporal substitution.

The following are special cases of the general results presented above.

First, suppose that � ¼ I , K2 ¼ 0, h1 ¼ 0, h2 ¼ 0, 
2 ¼ 0, and g0 ¼ 0.

Under these restrictions, the state variable vector X is a multivariate

Ornstein–Uhlenbeck process, both the short rate and the risk premium
are affine functions of X , and the return volatility is constant. Many

existing explicit solutions of dynamic portfolio problems belong to this

case; for example, Kim and Omberg (1996), Brennan (1998), Brennan

and Xia (2000, 2001, 2002a,b), Wachter (2003), and Sangvinatsos and

Wachter (2005). Second, suppose that � ¼ 0. In this case, the short rate, the

instantaneous Sharpe ratio, the hedging covariance vector, and the unspanned

covariance matrix are all affine functions of an affine process X . Third,

Schroder and Skiadas (2003, 2005) characterize the solution to optimal
portfolio problems in a general non-Markovian setting. For the special

case of nonstochastic r, they derive a similar ODE, but they do not solve

for nor analyze the optimal policies.

1.5 A separation result

In this subsection, I prove a separation result that provides conditions

under which dynamic portfolio choice problems with bonds and stocks

can be decomposed into separate dynamic portfolio choice problems with

bonds only and stocks only.

Suppose that the process X can be partitioned into two independent
processes X1 and X2, so that

�X ¼ �X1

�X2


 �
, ð22Þ

�X ¼ �X1 0

0 �X2


 �
: ð23Þ

We also assume that

r ¼ r1 þ r2, ð24Þ

� ¼ �1 0

��1 �2


 �
, ð25Þ
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��1ð�� rÞ ¼ ��1
1 ð�1 � r1Þ

��1
2 ð�2 � r2Þ


 �
, ð26Þ

� ¼ �1 0

0 �2


 �
, ð27Þ

where �Xi , �Xi , ri, and ��1
i ð�i � rÞ depend only on Xi and � is a constant

matrix. Note that if M risky assets are partitioned into M1 assets and M2

assets with M ¼M1 þM2, then ��1
1 denotes the inverse of �1 as an

M1 �M1 matrix, and similarly for ��1
2 .

Equation (24) states that the short rate can be written as the sum of

two functions that each only depends on X1 or X2, respectively. Equa-

tion (26) states that the risky assets can be partitioned into two classes

and the market price of risk associated with the first class depends only

on X1 and the market price of risk associated with the second class

depends only on X2. Equation (25) states that the Brownian motions
dB of the risky assets can be partitioned in such a way that the

Brownian motion dB1 appears only in the return of the first class

risky assets and the Brownian motions of the second class risky assets

have both dB1 and dB2. Equation (27) states that the Brownian motion

dBX1 of X1 is correlated only with the Brownian motion dB1 of the first

class risky assets and the Brownian motion dBX2 of X2 is correlated

only with the Brownian motion dB2. Note that, even though the state

variables are independent, the bond and stock returns can be corre-
lated; for example, a stock return can have both interest risk and

stochastic volatility.

Although conditions (22)–(27) might look contrived and restrictive, the

following arguments suggest that they arise naturally in arbitrage-free

models with bonds and stocks simultaneously. The partition of risky

assets is natural: bonds are in the first class and stocks are in the second.

The first class of state variables are state variables that appear in the drift

and diffusion of the bond returns; thus, conditions (22)–(23) are satisfied.
It is possible that the state variables of the first class consist of all the state

variables. In this case, r ¼ r1 and r2 ¼ 0 so Equation (24) is satisfied,

� has the form of Equation (25), ��1ð�� rÞ has the form of Equation

(26), and � has the form of Equation (27). Conditions (25)–(26) also

require that � be a constant and both �2 and ��1
2 ð�2 � r2Þ depend only

on X2, which is restrictive.

Asset return models with both bonds and stocks that satisfy the parti-

tion conditions (22)–(27) are given by Brennan and Xia (2000),
Mamaysky (2002), and Sangvinatsos and Wachter (2005). This partition

decomposes the dynamic portfolio problem with stocks and bonds into

separate bond-only and stock-only portfolio problems, as shown in the
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proposition below. In this case, the stock portfolio weight is the same as if

there were no interest rate risk and the bond portfolio weight has a term

that is proportional to the stock portfolio weight. The interest rate risk

associated with this term offsets the interest rate risk of the stock in the

optimal portfolio.

Proposition 3. (Separation Theorem) Assume conditions (22)–(27) hold.

Then

�* ¼ �*
1 � �>�*

2

�*
2


 �
,

with

�*
i ¼

1

�
��1>

i ��1
i ð�i � riÞ þ ð�X

i �i�
�1
i Þ
> @

@Xi

ln f

� �
, i ¼ 1,2:

The function f(t,X) is given by

f ðt,XÞ ¼ �1
�

ZT

t

f1ðu,X1Þf2ðu,X2Þduþ ð1� �Þ
1
�f ðt,X1Þf ðt,X2Þ,

with functions fiðt,XiÞ satisfying

@fi

@t
þ 1

2
Tr
�
�Xi �Xi>fiXiX

>
i

	
þ �Xi þ 1� �

�
�Xi�i�

�1
i ð�i � riÞ

� �>
fXi

þ 1

2fi

ð� � 1Þf >Xi



�Xi �Xi> � �Xi�i�

>
i �Xi>

�
fXi

þ 1� �
2�2

ð�i � riÞ>ð�i�
>
i Þ
�1ð�i � riÞ þ

1� �
�

ri

� �
fi ¼ 0,

with the initial condition fiðT ,XiÞ ¼ 1, i ¼ 1,2. When there is no intermedi-

ate consumption, � ¼ 0, the portfolio weights can be characterized in more

detail:

�* ¼ �*
1 � �>�*

2

�*
2


 �
,

where �*
1 is the vector of optimal portfolio weights for risky assets when

there are only assets from the first class and only X1 risk is present

(similarly for ��2Þ:
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�*
i ¼

1

�
��1>

i ��1
i ð�i � riÞ þ ð�X

i �i�
�1
i Þ
> @

@Xi

ln fi

� �
, i ¼ 1, 2:

Note that the form of � means that there are X1 risks in the second class

of assets and these risks are proportional to those in the first class, with

proportionality constant �. The corollary implies that in this case, the X1

risks in the second class of assets are hedged by the first class of assets.

2. Dynamic Portfolio Weights: Applications

In this section, I consider three applications. In Application 1, I first

explicitly solve the bond portfolio selection problem for quadratic term

structure models. For the special case of a one-factor CIR model, I derive
a closed-form portfolio weight for a zero-coupon bond. Financial mar-

kets are complete in this case, and agent’s utility depends on both inter-

mediate consumption and the terminal wealth. In Application 2, I solve a

stock portfolio selection problem, assuming that the stock return is

described by Heston’s stochastic volatility model. In this case, financial

markets are incomplete and there is no intermediate consumption. In

Application 3, I present a model with a bond and a stock in which the

bond return is given by the CIR model and the stock returns have
exposure to both interest rate risk and additional stochastic volatility

risk as described by the Heston model. This model shares many features

with several empirical models of stock returns that have both interest rate

risk and stock volatility risk. The closed-form solutions of the bond and

stock portfolio weights are obtained by an application of the separating

proposition using the explicit bond and stock portfolio weights of the

CIR and Heston models, respectively. In this case, markets are incom-

plete and there is no intermediate consumption.

2.1 Bond portfolio selection

Application 1 is an application of Proposition 1. In this case, the risks are

interest rate risks, the risky assets are zero-coupon bonds, and financial

markets are complete. This application is important for the following

reasons. First, bond portfolio selection problems are important in them-

selves and are one component of the bond and stock portfolio selection

problem. Second, the solution is empirically relevant because quadratic
term structure models nest both the quadratic gaussian term structure

models [Constantinides (1992)] and the affine term structure models

[Duffie and Kan (1996)], both of which are used in many empirical

studies. Finally, dynamic portfolio choice effects are likely to be strongest

in bonds.
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2.1.1 Quadratic term structure models. I assume that the interest rate

dynamics are determined by an Nr-dimensional quadratic process X r and

denote its Brownian motion by dBr
t and its parameters by

kr, Kr, �r, Kr
2, hr

0, hr
1, hr

2, and K̂
r
. Let �I denote a constant Nr � 1 vector

and �I
1 a constant Nr

1 � 1 vector.

Definition 3. Quadratic term structure models are term structure models in

which 1) the short rate r is a quadratic function of a quadratic process

X r, r ¼ 
0 þ 
1X r þ 1
2

X r>�r>
2�
rX r and 2) the market price of risk is

ð�I þ �I
1�X rÞ>�X r

, where �I
1 satisfies hr

1�
I
1� ¼ 0 and hr

2�
I
1� ¼ 0.

For zero-coupon bond yields to be quadratic function of a quadratic

process, we need X r to be a quadratic process under the risk-neutral

measure. The pricing kernel of quadratic term structure models can be

obtained by using the standard formula that links pricing kernels to the

short rate and the market price of risk:

exp �
Z t

0

rudu

0
@

1
A exp

Z t

0

ð�I þ �I
1�

rX r
uÞ
>�X r

u dBr
u

0
@

� 1

2
ð�I>�X r

u �X r>
u �I þ X r>

u �r>�I>
1 hr

0�
I
1�

rX r
uÞduÞ:

The second factor in the above pricing kernel is the Radon–Nykodym

derivative that links the physical measure to the risk-neutral measure.

Using Girsanov’s theorem, one can easily check that the restrictions

hr
1�

I
1� ¼ 0 and hr

2�
I
1� ¼ 0 imply that X r is a quadratic process under the

risk-neutral measure.
As mentioned earlier, quadratic term structure models nest both the

quadratic gaussian term structure models (Kr
2 ¼ 0 and hr

1 ¼ hr
2 ¼ 0) of

Constantinides (1992) and affine term structure models ð�r ¼ 0Þ of Duffie

and Kan (1996). The above pricing kernel for the special case of the CIR

model is derived from an equilibrium model [CIR (1985)]. The main

advantage of specifying a pricing kernel is that the bond returns derived

from it will be free of arbitrage.7

There are Nr þ 1 assets: an instantaneously riskless asset with an
instantaneously riskless return of rt and Nr bonds. The price of a zero-

coupon bond is similar to that in the works of Constantinides (1992) and

Duffie and Kan (1996):

7 The bond returns are determined from an expectation hypothesis of Brennan, Schwartz and Lagnado
(1997).
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Prðt,T1Þ ¼ exp aðtÞ þ bðtÞ>X r
t þ

1

2
X r>

t �r>GðtÞ�rX r
t


 �
,

where aðtÞ is a scalar function of t,bðtÞ is an N � 1 vector function of t,

and GðtÞ is an Nr
1 �Nr

1 matrix function of time t. They depend on
maturity 
1 ¼ T1 � t, where T1 is the vector of maturity dates.

For simplicity, I choose Nr zero-coupon bonds with Nr different

maturity dates T1 > 0, so T1 is a constant Nr vector. Because there are

Nr bonds for Nr sources of uncertainties, markets are complete. Note

that as time changes, the maturities of the bonds T1 � t change, but not

the bonds themselves (the maturity dates T1 do not change). This is

different from investing in constant maturity bonds as described by

Campbell and Viceira (2001). If we let T1 � t be constant so that
T1 ¼ 
1 þ t with constant 
1, then our following observations apply also

to the constant maturity case discussed by Campbell and Viceira (2001).

One can easily check that the bond price Pr satisfies

dPrðt,T1Þ
Prðt,T1Þ

¼
h
rt þ ðbþ G�rX rÞ>�X r

�X r>ð�I þ �I
1�

rX rÞ
i
dt

þ ðbþ G�rX rÞ>�X r

dBr
t :

In terms of notation in Section 1, one can verify that

��1ð�� rÞ ¼ �X r>ð�I þ �I
1�

rX rÞ, � ¼ I :

Therefore,

r ¼ 
0 þ 
1X r þ 1

2
X r>�r>
2�

rX r,

ð�� rÞ>ð��>Þ�1ð�� rÞ ¼ �>I �X r

�X r>�I þ 2�I>hr
0�

I
1�

rX r

þ X r>�r>�I>
1 hr

0�
I
1�

rX r,

�X���1ð�� rÞ ¼ �r�r>�I þ hr
0�

I
1�

rX r,

�X��>�X> ¼ �X �X>,

h1�
> ¼ 0,

gr>
1 �r> ¼ �r>�I>

1 hr
0�

r>ðso ĝr
1 ¼ �I>

1 hr
0�

r>Þ,

implying that Condition 1 is satisfied. Let cr, dr, and Qr be a scalar, an

Nr
1 � 1 vector, and an Nr

1 �Nr
1 matrix functions of time t, respectively.

Equations (18)–(20) become
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d

dt
cr þ kr þ 1� �

�
hr

0�
I


 �>
dr þ

1

2
d>hr

0d þ 1

2
Tr hr

0�
rQr�

r>� 	
þ 1� �

2�2
�I>hr

0�
I þ 1� �

�

0 � � ¼ 0, ð28Þ

d

dt
drþ �Krþ1��

�
ðhr

1�
Iþhr

0�
I
1�

rÞ
� �>

drþ
1

2
d>r hr

1drþ�r>Qr�
rhr

0dr

þ�r>Qr�
r krþ1��

�
hr

0�
I


 �
þ1��
�2

�r>�I>
1 hr

0�I

þ1��
2�2

�I>hr
1�

Iþ1��
�

1¼0, ð29Þ

d

dt
Qrþ �K̂rþ1��

�
�I>

1 hr
0�

r>

 �>

QrþQr �K̂rþ1��
�
�I>

1 hr
0�
>


 �
þQr�r>hr

0�
rQrþd>r hr

2drþKr>
2 dr

þ1��
2�2

�I>hr
2�

Iþ�I>
1 hr

0�
I
1

� 	
þ1��

�

2¼0: ð30Þ

Note that a subscript r (for short rate r) is added to the functions c, d,
and Q. The optimal consumption and the optimal portfolio weights can

be obtained by a straightforward application of Proposition 1.

Corollary 1. Under the quadratic term structure model, the optimal con-

sumption and optimal portfolio weights are

C* ¼ �1
�Wf �1

r ,

�*
r ¼

�
bþ G�rX r

	�1 1

�
ð�I þ �I

1�
rX rÞ þ @ ln fr

@X r

� �
,

with

fr ¼�
1
�

ZT

t

ecrðuÞþdrðuÞ>X rþ1
2X r>�r>QrðuÞ�rX r

duþ ð1� �Þ
1
�ecrðtÞþdðtÞ>r X rþ1

2X r>�r>QrðtÞ�rX r

:
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Note that ðbþ G�rX rÞ�1 exists if the bonds are not instantaneously

redundant.

For the asset allocation problem ð� ¼ 0Þ,

�*
r ¼ b�1 1

�
�I þ dr þ �r>Qr�

rX r


 �
:

Furthermore, for the special case of an affine term structure model

ð�r ¼ 0Þ, the optimal portfolio choice is given by

�*
r ¼ b�1 1

�
�I þ dr


 �
:

In this case, the portfolio weights are independent of the state variable X r,

so there is no market timing issue and how much to invest in different

bonds will not depend on the realization of the short rate.

Note that the above ODEs [Equations (28)–(30)] for functions cr, dr,

and Qr, and thus the functions cr, dr, and Qr themselves, are independent

of the type or the maturity of the bonds. This is because markets are

complete. More generally, we can choose as risky assets any Nr term
structure instruments, such as coupon bonds or bond derivatives. The

only advantage of using zero-coupon bonds as the risky assets is that the

matrix � is known (up to the solution to an ODE). For other term

structure instruments, � may not be explicitly given, but Equations

(28)–(30) remain the same and the optimal utility level will be the same

as long as the number of the bonds is the same as the number of the state

variables.

If � ¼ 1, one can show that

dðT � tÞ ¼ bðT � tÞ,

in which case the portfolio weight becomes

�* ¼ bðT1 � tÞ�1
bðT � tÞ:

If we choose the first zero-coupon bond to have the same maturity as the

investment horizon, T1 ¼ ðT ,…Þ>, then we get

�* ¼ ð1,0, … ,0Þ>:

Therefore, an infinitely risk-averse agent puts all of his wealth in the zero-

coupon bond with the maturity that is the same as the investment hor-

izon. Intuitively, an infinitely risk-averse agent with the end of period

utility at time T wants to consume exactly the same amount for different
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realizations of the state at T , and the zero-coupon bond with the same

maturity as the investment horizon delivers exactly that. Campbell and

Viceira (2001) and Wachter (2003) obtain a similar result for the special

case when the term structure model is affine.8

2.1.2 Bond allocation problem in the CIR model. I now derive the expli-

cit bond portfolio weight for an asset allocation problem ð� ¼ 0Þ when

the short rate is described by the CIR model. In the one factor ðNr ¼ 1Þ
CIR model, the interest rate state variable X r

t is the short rate itself,

X r
t ¼ rt, which satisfies

drt ¼ ðkr � KrrtÞdtþ 	r ffiffiffiffi
rt

p
dBr

t ,

where kr, Kr, and 	r are constants. The price Pðt,T1Þ of a zero-coupon

bond with maturity 
1 ¼ T1 � t is given by [Cox, Ingersoll, and

Ross(1985)]

Pðt,T1Þ ¼ exp
�
aðtÞ þ bðtÞrÞ,

with

aðtÞ ¼ 2kr

	r2
ln

2~� exp
ðKrþ�I	r2þ~�Þ
1

2


 �
ðKr þ �I	r2 þ ~�Þ exp

�
~�
1

	
� 1

� �
þ 2~�

0
@

1
A,

bðtÞ ¼ �
2 exp

�
~�
1

	
� 1

� �
ðKr þ �I	r2 þ ~�Þ exp

�
~�
1

	
� 1

� �
þ 2~�

,

where ~� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKr þ �I	r2Þ2 þ 2	r2

q
and �I is the price of interest risk.9

Note that b < 0; that is, the bond prices vary inversely with the short rate.

The return at time t of a zero-coupon bond Prðt,T1Þ maturing at time

T1 satisfies the following equation:

dPrðt,T1Þ
Prðt,T1Þ

¼ rt þ b�I	r2rt

� 	
dtþ b	r ffiffiffiffi

rt

p
dBr

t :

This is derived by Cox, Ingersoll, and Ross (1985). The bond return has a

risk premium bðtÞ�I
1rt that changes with time t both implicitly (through

the dependence on rt) and explicitly (through the dependence on b). As

8 I remark that the affine case of bond portfolio problems has been extended to the case with an infinite
number of factors by Collin-Dufresne and Goldstein (2003). Bond-only portfolio selection problems have
also been studied by Campbell and Viceira (2001), Kargin (2003), and Tehranchi and Ringer (2004).

9 A notational clarification: the price of the interest rate risk �I is �=	r given in the study of Cox, Ingersoll,
and Ross (1985).
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pointed out by Cox, Ingersoll, and Ross, �I < 0, if the bond risk pre-

mium is positive.

Note that the optimal portfolio weight does not depend on cr when

� ¼ 0, as we pointed out before, and Qr ¼ 0. We only need to solve for

function d of Equation (29), which becomes

d

dt
dr � Kr � 1� �

�
	r2�I


 �
dr þ

1

2
	r2d2

r þ
1� �
2�2

	r2�I2 þ 1� �
�
¼ 0, ð31Þ

with initial conditions drðTÞ ¼ 0.

Define 
r ¼ �
1� �
2�2

ð�IÞ2	r2 þ 1� �
�

� �
, ~Kr ¼ Kr � 1� �

�
�I	r2,

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Kr2 þ 2
r	r2

q
, and �r ¼ �i�r:

Corollary 2. The function drðtÞ is given by

drðtÞ ¼
�

2 exp
�
�r

	
�1

� �
ð ~Krþ�rÞ exp

�
�r

	
�1

� �
þ2�r


r,if �r2 � 0;

� 2

~Krþ�r
cosð�r
=2Þ
sinð�r
=2Þ


r,if �r2 > 0:

8>><
>>:

The optimal bond portfolio weight is given by

�*
r ¼

1

�
b�1ð�I þ �drÞ:

From the above formula, one can verify that the bond portfolio weight is

always positive and decreases monotonically to 1 as risk aversion increases to

1, if 2Kr�I	r2 þ ð�I	r2Þ2 þ 2	r2 	 0. More interestingly, the bond portfo-
lio weight is negative for small risk aversion and increases monotonically to

1 as the risk aversion increases to 1 if 2Kr�I	r2 þ ð�I	r2Þ2 þ 2	r2 > 0,

even though the risk premium is strictly positive. This happens only in a

dynamic setting. In a static choice setting, a bond is just another risky asset

like a stock and the holding of both bonds and stocks goes to zero as the

risk aversion increases. In a dynamic setting, when the interest rate is

stochastic, bonds have an extra function. As the risk aversion increases,

the agent wants to hold more of the instantaneously riskless asset, which
has risks in the future when the short rate changes. In this case, more bonds

need to be held to hedge the short rate risk.

It is also interesting that, in this case, the optimal terminal wealth W *
T

for � ¼ 1 is a constant and thus riskless, but it has the highest exposure
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to dBr
t risk (because �*

r is the highest for � ¼ 1) among the optimal

wealth levels for different risk aversion �.

2.2 Stock allocation in a stochastic volatility model

Application 2 is an application of Proposition 2. I explicitly solve a stock

portfolio selection problem. I assume that there are two assets: a riskless

asset with a constant return r and a risky asset which is the stock. The

stock return volatility is described by the Heston (1993) model. The
markets are incomplete in this case and there is no intermediate consump-

tion. I solve for the optimal stock portfolio weight.

The stock price Ps in the Heston (1993) model satisfies

dPs
t

Ps
t

¼ ðrþ �sVtÞdtþ
ffiffiffiffiffi
Vt

p
dBt,

where the volatility Vt is a square-root process

dVt ¼ ðkv � KvVtÞdtþ 	v

ffiffiffiffiffi
Vt

p
dBv

t :

The correlation between Bt and Bv
t is a constant �v.10 Because there are

two sources of risk, dBt and dBv
t , and there is only one risky asset, the

markets are incomplete.

In terms of the notation of Section 1,

�X ¼ 	v

ffiffiffiffi
V
p

, � ¼
ffiffiffiffi
V
p

, � ¼ �v, �� r ¼ �sV :

These specifications imply

r ¼ 
0,

ð�� rÞ>ð��>Þ�1ð�� rÞ ¼ �2
s V ,

�X���1ð�� rÞ ¼ �v	v�sV ,

�X ð��> � IÞ�X> ¼ �ð1� �2
vÞ	2

vV :

Note that the optimal portfolio weight does not depend on c when � ¼ 0,

as we pointed out before, and Q ¼ 0; we only need to solve for function d

of Equation (19), which becomes

10 This model captures a number of features of stock returns and is applied by Heston (1993), Bates (2000),
and Pan (2002) to empirical data. When �v < 0, this model produces an asymmetric smile curve [Bates
(2000) and Pan (2002)].
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d

dt
dv � Kv �

1� �
�

�s	v�v


 �
dv þ

	2
v

2
1� ð1� �Þð1� �2

vÞ
� �

d2
v

þ 1� �
2�2

�2
s ¼ 0, ð32Þ

with initial conditions dvðTÞ ¼ 0. Note that a subscript v (for volatility) is

added to function d.

Let us define 
v � 1��
2�2 �

2
s , ~Kv ¼ Kv � 1��

� �s	v�v, �v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K2

v þ 2
v½�2
v þ �ð1� �2

vÞ�	2
v

q
, and �v ¼ �i�v:

Corollary 3. The function dvðtÞ is given by

dvðtÞ ¼
�

2 exp
�
�v

	
�1

� �
ð ~Kvþ�vÞ exp

�
�v

	
�1

� �
þ2�v


v, if �2
v � 0;

� 2

~Kvþ�v
cosð�v
=2Þ
sinð�v
=2Þ


v, if �2
v � 0:

8>><
>>:

The optimal stock portfolio weight �*
s is given by

�*
s ¼

1

�
�s þ �v	vdv:

From the above formula, one can verify that the stock portfolio weight is
always positive and decreases monotonically to 0 as the risk aversion

increases to1, if 2Kv�v�s	v þ ð�s	vÞ2 	 0. More notably, the stock port-

folio weight is negative for small risk aversion and reaches a maximum

value and then decreases to 0 as the risk aversion increases to 1, if

2Kv�v�s	v þ ð�s	vÞ2 < 0, even though the risk premium is strictly positive.

In static portfolio choice, a risk-averse agent will always hold a positive

amount of a risky asset with a positive risk premium. This property

requires only risk aversion and a positive risk premium and thus holds
quite generally. Because of this property, some researchers have termed

the fact that many agents do not hold stocks even though the market risk

premium is positive, the nonmarket participation puzzle.

However, this property need not hold in dynamic portfolio choice

theory; as we pointed earlier, the stock portfolio is negative for small

risk aversion in the stochastic volatility model. Why an agent with small

(but positive) risk aversion would short a risky asset with a positive

premium can be understood as follows. The utility function of this
agent, W 1��

1�� , is bounded from below and unbounded from above for

� < 1, implying that a positive return followed by a high Sharpe ratio
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(good future opportunity) yields a big utility gain and a negative return

followed by a low Sharpe ratio (bad future opportunity) does not yield a

big utility loss. In our model, a positive return is more likely to be

followed by a low Sharpe ratio and a negative return is more likely to

be followed by a high Sharpe ratio because the correlation between the

return and the Sharpe ratio is negative (for both a bond and a stock). The

agent will hold the risky asset later when the horizon is short and the

myopic demand dominates. By shorting the risky assets now, the agent
effectively creates a trading strategy that has the pattern of high returns

more likely being followed by a high Sharpe ratio.

In the works of Kim and Omberg (1996) and Brennan and Xia (2001),

the agent also shorts stock. However, the risk premium in their models

can be negative; therefore, it is not possible to determine whether the

shorting in their models is due to the potential negative risk premium or

dynamic choice.

Also, in static choice settings, a more risk-averse agent will always
hold less of a risky asset with a positive risk premium. This property too

can be proved under quite general conditions. On the basis of this

property, an agent’s holding of risky assets is often used as a proxy for

the agent’s risk aversion because the risk aversion coefficient is difficult

to measure; in industry practice and often in academic studies, the

agents’ risk aversion coefficients are inferred from their holdings of

stocks.

However, as pointed out earlier, the stock portfolio weight in the
stochastic volatility model is a nonmonotonic function of the risk

aversion. To explain this phenomenon, first note that the myopic

component decreases when the risk aversion increases. However, the

effect of increasing risk aversion on the intertemporal hedging com-

ponent is not clear. On one hand, the smaller myopic amount implies

a smaller amount to be hedged and therefore a smaller intertemporal

hedging component; on the other hand, a more risk-averse agent

values more the mean-reversion effect of the risky asset, which will
lead to a larger intertemporal hedging component. If the latter effect

is big enough, the portfolio weight will increase with risk aversion and

a risk-averse agent may want to short the risky asset with a positive

risk premium.

In the works of Kim and Omberg (1996) and Brennan and Xia (2001),

the stock holdings are also nonmonotonic in �. However, the risk pre-

mium in their models is not strictly positive; therefore, it is not possible to

determine whether this is due to a negative risk premium or dynamic
choice. For example, the mean-variance portfolio weight, �� r=�	2, is

increasing in � if �� r < 0.

One striking property of the optimal stock portfolio weight is that it is

independent of the variance V . One might expect the agent to hold more
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stocks when the volatility is low and less when the volatility is high.

However, this is only true if the risk premium is independent of the

volatility. In general, the risk premium depends on the volatility at least

for the market portfolio. In our model, the risk premium is proportional to

the conditional variance. Therefore, when the variance is high, the risk

premium is also high in such a way that the myopic demand is independent

of the stochastic variance. The independence of the intertemporal hedging

demand on the variance is a special feature of our model.11

Note that the Sharpe ratio in my model is �s

ffiffiffiffi
V
p

, which is increasing in

volatility. Evidence for this feature is provided by Campbell and

Cochrane (1999). Chacko and Viceira (2005) derive approximate portfo-

lio weights in a stochastic volatility model that is similar to the Heston

model. The risk premium is constant in their model, and thus, the Sharpe

ratio decreases with volatility. If the risk premium is proportional to
ffiffiffiffi
V
p

instead of V ,12 the instantaneous Sharpe ratio is constant and the inter-

temporal hedging component will be zero. The myopic component will
depend on V and is given by

�*
s ¼

�s

�
V
�1

2 :

In this case, the compensation (risk premium) for volatility is not ‘‘attrac-

tive’’ enough (the Sharpe ratio is constant instead of increasing in V ), so

the portfolio weight is decreasing in volatility.

2.3 Bond and stock allocation in a stochastic interest rate–stochastic

volatility model

Application 3 is an application of Proposition 3. I derive the bond and

stock portfolio weights in a model with stochastic volatility and a sto-

chastic short rate by an application of Proposition 3 using the results of

Corollaries 2 and 3. There are three assets in this case: an instantaneously
riskless asset with an instantaneously riskless return rt, a zero-coupon

bond, and a stock. In this case, the markets are incomplete and there is

no intermediate consumption. The bond and stock portfolio weights are

derived in closed-form and their properties are analyzed.

The short rate rt is given by the CIR model as in Section 2.1.2. The

zero-coupon bond is the same as one in Section 2.1.2. The stock price Ps
t

satisfies

11 We could easily incorporate Vt dependence in the portfolio weight by specifying
dPs

t=Ps
t ¼ ðrþ jðVtÞ�sVtÞdtþ jðVtÞ

ffiffiffiffiffi
Vt

p
dBt, where jðVtÞ is any positive function of Vt. Under this

specification, one can easily check that the indirect utility f is the same as obtained above. Therefore,
the optimal portfolio weight is �*

s ¼ j�1 1
� �s þ �v	vdv


 �
.

12 Cochrane and Sá-Requejo (2001) use this model to study option prices.
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dPs
t

Ps
t

¼ ðrt þ �sVt þ �	r2�I rtÞdtþ
ffiffiffiffiffi
Vt

p
dBt þ �	r ffiffiffiffi

rt

p
dBr

t ,

where as before the volatility Vt satisfies

dVt ¼ ðkv � KvVtÞdtþ 	v

ffiffiffiffiffi
Vt

p
dBv

t :

I assume that there is no correlation between the Brownian motions Br
t

and Bv
t and between Br

t and Bt. The correlation between Bt and Bv
t is �v.

The ‘‘shock’’ to the stock return is the sum of two contributions:
ffiffiffiffiffi
Vt

p
dBt

and �	
ffiffiffiffi
rt
p

dBr
t . The volatility of the stock return is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vt þ �2	2rt

p
and so

depends on Vt as well as on the short rate rt.
13 The correlation between

the shock to the stock return and the shock to the short rate is time

varying and given by
�	
ffiffiffi
rt
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vtþ�2	2rt

p , implying that the magnitude of the

correlation is high at low Vt’s and high rt’s. Note that because bond

returns are negatively correlated with the short rate, the correlation

between bond and stock returns is positive for � < 0. The correlation

between the ‘‘shocks’’ to the stock returns and the ‘‘shocks’’ to the

stochastic volatility Vt is time varying and given by �v

ffiffiffiffi
Vt

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtþ�2	2rt

p . The

magnitude of the correlation is decreasing in rt but increasing in Vt.

Both dBt and dBr
t risks are compensated in terms of the risk premium.

The Sharpe ratio is time varying and is given by �sVtþ�	2�I rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtþ�2	2rt

p . For � < 0, the

Sharpe ratio will be high at high Vt’s and low rt’s.

This model is the continuous-time version of the model estimated by

Scruggs (1998). The risk premium of the stock is similar to that assumed
by French, Schwert, and Stambaugh (1987), Harvey (1989), and Glosten,

Jagannathan, and Runkle (1993). Fama and Schwert (1977) assume that

the expected stock returns depend linearly on nominal T-bill yields. For

short horizons, the interest rate can be treated as a constant; in this case,

the above model for stock returns reduces to Heston’s (1993) stochastic

volatility model.

Note that with the markets for the interest rate risk complete, the

absence of arbitrage dictates the risk premium associated with the
dBr

t risk in the stock return. In other words, the premium �	2�I rt of

the risk �	
ffiffiffiffi
rt
p

dBr
t is determined by the bond-pricing kernel (when

markets for interest rate risk are complete, the pricing kernel for the

13 Glosten, Jagannathan, and Runkle (1993) find evidence suggesting that the conditional volatility of stock
returns is predicted by the short rate.
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interest rate risks is uniquely determined; thus is the market price of

dBr
t risks).

In terms of the notation of Section 1, we have

�X ¼ 	r
ffiffi
r
p

0
0 	v

ffiffiffiffi
V
p


 �
, �X ¼ kr � Krr

kv � KvV


 �
,

and

� ¼ 1 0

0 �v


 �
, � ¼ b	r

ffiffi
r
p

0

�	r
ffiffi
r
p ffiffiffiffi

V
p


 �
, ��1ð�� rÞ ¼ �I	r

ffiffi
r
p

�s

ffiffiffiffi
V
p


 �
:

Therefore, the condition of Proposition 3 holds and we have the following

corollary.

Corollary 4. The optimal portfolio weight is given by

�*
r � �b�1�*

s

�*
s


 �
, ð33Þ

where �*
r ¼ b�1ð�I

� þ drÞ is the bond portfolio weight in the CIR model and

�*
s ¼ 1

� �s þ �v	vdv is the stock portfolio weight in the Heston model.

The proof is a straightforward application of Proposition 3 and Corol-

laries 2 and 3.

The stock portfolio weight is the same as that in the Heston model
because the interest rate risk is completely hedged by the bond and the

interest rate can be treated as a constant as far as stock portfolio selection

is concerned. The second term in the bond portfolio weight offsets the

interest rate risk exposure of the stock precisely. When � ¼ 0, the bond

portfolio weight is the one for the bond-only portfolio selection problem.

3. Conclusion

I explicitly solve dynamic portfolio choice problems, up to the solution

of a system of ODEs when asset returns are quadratic. The solutions

include as special cases many existing explicit solutions to dynamic

portfolio choice problems and can be used to study agents’ portfolio
choice when interest rates, expected returns, and volatilities of returns

are stochastic.

I consider the following three applications: Application 1 is a bond

portfolio choice with quadratic term structure models; Application 2 is a

stock portfolio choice with Heston’s stochastic volatility model; and
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Application 3 is a bond and stock portfolio choice when both the interest

rate and the stock volatility are stochastic.

Using explicit portfolio weights, I show that the properties of dynamic

portfolio choice can be quite different from those of static portfolio

choice. For example, a risk-averse agent may short a risky asset with a

strictly positive risk premium, and a more risk-averse agent may hold

more of it. Explanations for these departures from static portfolio choice

theory can ultimately be traced to the rebalancing that occurs under
dynamic portfolio choice.

Appendix

I will first prove two lemmas. Define operator L on any function f by

Lf ¼ k � KX þ 1

2
X>�> � K2 � �X þ 1� �

�
g0 þ g1X þ 1

2
X>�> � g2 � �X


 �� �>
fX

þ 1

2
Tr



ðh0 þ h1 � X þ X>�> � h2 � �XÞfXX>

�

þ 1� �
�

1

2�
H0 þH1X þ 1

2
X>�>H2�X


 �
þ 
0 þ 
1X þ 1

2
X>�>
2�X


 �� �
f � �f :

Lemma 1. Let f̂ ðt,XÞ ¼ ecðtÞþdðtÞ>Xþ1
2
X>�>Q�X . If c, d, and Q satisfy Equations (18), (19), and

(20), respectively, with l0 ¼ l1 ¼ l2 ¼ 0, then f̂ satisfies

@f̂

@t
þ Lf̂ ¼ 0, ðA1Þ

and f̂ ðT ,XÞ ¼ 1.

Proof. First, noting that h1�
> ¼ 0, h2�

> ¼ 0 and

f̂XX> ¼ �>Q� þ ðd þ �>Q�XÞðd þ �>Q�XÞ>

 �

f̂ ,

we get

Tr



h0 þ h1 � X þ X>�> � h2 � �X
� 	

f̂XX>

�

¼ Tr



h0�

>Q�

�
f̂ þ X>�>Q�h0�

>Q�Xf̂ þ d> h0 þ h1 � X þ X>�> � h2 � �X
� 	

df̂

þ d>h0�
>Q�X þ X>�>Q�h0d

� 	
f̂ : ðA2Þ

Second, noting that K�> ¼ �>K̂ , K2�
> ¼ 0, g>1 �

> ¼ �>ĝ1, g>2 �
> ¼ 0, and

f̂X ¼ ðd þ �>Q�XÞf̂ ,

we get
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k � KX þ 1

2
X>�> � K2 � �X þ 1� �

�
g0 þ g1X þ 1

2
X>�> � g2 � �X


 �� �>
f̂X

¼ k � KX þ 1

2
X>�> � K2 � �X þ 1� �

�
g0 þ g1X þ 1

2
X>�> � g2 � �X


 �� �>
df̂

þ k þ 1� �
�

g0


 �>
�>Q�Xf̂ � X>�>K̂Q�Xf̂ þ 1� �

�
X>�>ĝ1Q�Xf̂ : ðA3Þ

Finally,

@f̂

@t
¼ d

dt
cþ d

dt
d>X þ 1

2
X>�>

d

dt
Q�X


 �
f̂ : ðA4Þ

Substituting Equations (A2)–(A4) into PDE (A1), the PDE’s left-hand side has three classes

of terms: the first class is independent of X , the second class is linear in X , and the third class

is in the quadratic in �X . For the equation to be true for all X , the three classes of term have

to be zero separately, which leads to Equations (18)–(20). It is obvious that f̂ ðT ,XÞ ¼ 1 since

cðTÞ ¼ 0, dðTÞ ¼ 0, and QðTÞ ¼ 0. QED

Note that restrictions h1�
> ¼ 0, h2�

> ¼ 0, K�> ¼ �>K̂, K2�
> ¼ 0, g>1 �

> ¼ �>ĝ1, and

g>2 �
> ¼ 0 are essential for the left-hand side of Equation (A1) to be quadratic in �X and

linear in X .

Lemma 2. Suppose that

@f̂

@t
þ Lf̂ ¼ 0,

and f̂ ðT ,XÞ ¼ 1. Then the function f defined by

f ðt,XÞ ¼ �1
�

ZT

t

f̂ ðu,XÞduþ ð1� �Þ
1
� f̂ ðt,XÞ

satisfies

@f

@t
þ Lf þ �1

� ¼ 0

and f ðT ,XÞ ¼ ð1� �Þ
1
� .

Proof. It is obvious that f ðT ,XÞ ¼ ð1� �Þ
1
� . Furthermore,

@f

@t
þ Lf ¼ �� 1

� f̂ ðt,XÞ þ � 1
�

ZT

t

Lf̂ ðu,XÞdu ¼ �� 1
� f̂ ðt,XÞ � � 1

�

ZT

t

@f̂

@u
du

¼ �� 1
� f̂ ðt,XÞ � �1

� f̂ ðT ,XÞ � f̂ ðt,XÞ
h i

¼ ��1
� ,

where the assumption @ f̂
@t
þ Lf̂ ¼ 0 is used in the first and second equality. QED
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Proof of Proposition 1. Using the specification of �X and �X and Condition 1, the PDE (7)

can be written as
@f

@t
þ Lf þ �1

� ¼ 0:

Therefore, f specified in the proposition is the solution to PDE (7) by Lemmas 1 and 2. The

optimal consumption and portfolio weights are obtained using Equations (5) and (6). QED

Proof of Proposition 2. The PDE satisfied by f in this case is in the same form (with different

coefficients) as the PDE for f̂ . So the proof is exactly the same. The optimal portfolio weight

is obtained using Equations (5) and (6). QED

Lemma 3. Suppose that the state variable X can be partitioned into X1 and X2 and the assets

are also partitioned into two classes, such that r ¼ r1 þ r2,

�X ¼ �X1 0

0 �X2


 �
, �X ¼ �X1

�X2


 �
, � ¼ �1 0

0 �2


 �
, ��1ð�� rÞ ¼ ��1

1 ð�1 � r1Þ
��1

2 ð�2 � r2Þ


 �
,

where ri, �Xi , �Xi , and ��1
i ð�i � rÞ depend only on Xi . Then the solution to PDE

@f

@t
þ 1

2
Tr �X �X>fXX>
� 	

þ �X þ 1� �
�

�X���1ð�� rÞ
� �>

fX

þ 1

2f
ð� � 1Þf >X



�X �X> � �X��>�X>

�
fX

þ 1� �
2�2

ð�� rÞ>ð��>Þ�1ð�� rÞ þ 1� �
�

r

� �
f ¼ 0,

with the initial condition f ðT ,XÞ ¼ 1 is given by

f ðX ,tÞ ¼ f1ðX1,tÞf2ðX2,tÞ

where fiðX1,tÞ satisfies:

@fi

@t
þ 1

2
Tr �Xi �Xi>fiXi X

>
i


 �
þ �Xi þ 1� �

�
�Xi�i�

�1
i ð�i � riÞ

� �>
fXi

þ 1

2fi

ð� � 1Þf >Xi



�Xi �Xi> � �Xi�i�

>
i �Xi>

�
fXi

þ 1� �
2�2

ð�i � riÞ>ð�i�
>
i Þ
�1ð�i � riÞ þ

1� �
�

ri

� �
fi ¼ 0,

ðA5Þ

with the initial condition fiðT ,XiÞ ¼ 1, i ¼ 1,2.

Proof. It is straightforward to verify that the PDE for f is satisfied with the assumed form of

f ¼ f1 f2. QED

Proof of Proposition 3. The functional form of f is obtained as an application of Lemma 3

and Proposition 1. Noting that
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��1> ¼
��1>

1 ��>��1>
2

0 ��1>
2

 !
,

the optimal portfolio weight is obtained. QED

Proof of Corollary 2. The proof is exactly the same as that of Corollary 3 below.

Proof of Corollary 3. The Equation (32) can be written as

d

dt
dv � ~Kvdv þ

1

2
�2

v þ �ð1� �2
vÞ

� �
	2

v d2
v � 
v ¼ 0,

dvðTÞ ¼ 0. Define DðtÞ ¼ dvðtÞ

v

and 	̂2 ¼ 
v½�2
v þ �ð1� �2

vÞ�	2
v . The function DðtÞ satisfies the

following ODE

d

dt
D� ~KvDþ 1

2
	̂2D2 � 1 ¼ 0,

DðTÞ ¼ 0. This ODE is solved by Cox, Ingersoll, and Ross (1985) as

DðtÞ ¼ � 2 expð�v
Þ � 1½ �
ð ~Kv þ �vÞ expð�v
Þ � 1½ � þ 2�v

,

with 
 ¼ T � t and �v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K2

v þ 2	̂2

q
. Substituting the definition of DðtÞ and 	̂2, we get

dðtÞ ¼ � 2 expð�v
Þ � 1½ �
ð~Kv þ �vÞ expð�v
Þ � 1½ � þ 2�v


1,

where �v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K2

v þ 2½�2
v þ �ð1� �2

vÞ�	2
v

q
.

When ~K2
v þ 2½�2

v þ �ð1� �2
vÞ�	2

v < 0, �v is imaginary, although dv is still real. It is more

convenient to express d in terms of real variables. To accomplish this, we define �v ¼ �i�v,

which is real when �v is imaginary. In terms of �v, the function dvðtÞ can be expressed as

dvðtÞ ¼ �
2 expði�v
Þ � 1½ �

ð~Kv þ i�vÞ expði�v
Þ � 1½ � þ 2i�v


v

¼ � 2 sinð�v
=2Þ
~Kv sinð�v
=2Þ þ �v cosð�v
=2Þ


v ¼ �
2

~Kv þ �v
cosð�v
=2Þ
sinð�v
=2Þ


v:

From the last equality, the function dv is manifestly real even when �v is imaginary. Note

that dv ! þ1 at a finite 
 in this case. QED
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