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We derive the optimal investment policy of a risk-averse investor in a market where

there is a textbook arbitrage opportunity, but where liabilities must be secured by

collateral. We find that it is often optimal to underinvest in the arbitrage by taking a

smaller position than collateral constraints allow. Even when the optimal policy is

followed, the arbitrage portfolio typically experiences losses before the final conver-

gence date. In fact, its initial performance may be indistinguishable from that of a

conventional portfolio with a poor track record. These results have important impli-

cations for the role of arbitrageurs in financial markets.

So there’s an arbitrage. So what? This desk has lost a lot of money on

arbitrages. Arbitrages aren’t particularly great trades.

—Treasury bond trader at a major Wall Street investment bank

One of the foundational principles of financial economics is that arbi-

trages cannot exist in securities markets. The reasoning is that if they did,

investors could attain infinite wealth by taking unlimited positions in

them. Economic theory implies that an arbitrage is an investment oppor-

tunity that is literally too good to be true.
In actual financial markets, however, investors may not be able to

attain infinite wealth even if arbitrage opportunities exist. The reason

for this is inherent in the corporate finance of the investment industry in
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which secured lending is the dominant type of debt contract. Recall that

the textbook strategy for exploiting an arbitrage requires taking offsetting

long and short positions and holding them until convergence. An investor

who takes a short position, however, generates a liability which must be

secured by collateral. This collateral requirement drives an important
wedge between textbook arbitrage strategies and strategies that are actu-

ally feasible. For example, consider an investor who implements an arbi-

trage strategy. If the arbitrage were then to widen rather than narrow, the

investor would experience mark-to-market losses on the position. If the

losses were severe enough, the investor might not have sufficient collateral

to meet margin calls and be forced to liquidate some or all of the position

at a loss before it had converged to its theoretical no-arbitrage value.

Because of this, even the simplest strategies to exploit arbitrages could
actually result in losses, a lesson painfully learned recently by many highly

leveraged hedge funds. This fundamental risk in taking arbitrage posi-

tions is discussed in recent articles by Shleifer and Vishny (1997) and

Loewenstein and Willard (2000b).

If arbitrages are actually risky investments from the perspective of an

investor or hedge fund manager facing collateral constraints, then a

number of interesting economic issues arise. For example, what is the

optimal investment strategy when markets have arbitrage opportunities?
Similarly, how do arbitrages compare with other investments in terms of

their risk and return characteristics? To address these issues, this article

studies a continuous-time model in which there are explicit arbitrage

opportunities. To capture the spirit of standard textbook examples, we

model the arbitrage opportunity as a security whose price converges to

zero at some specified future time. In this setting, an investor could make

arbitrage profits with certainty if he could hold the position until conver-

gence at maturity. In the short run, however, the arbitrage may widen and
force the investor to liquidate positions at a loss. Thus there is no guar-

antee that the investor can hold the position until it converges.

The results are surprising. We find that it is often optimal for the

investor to underinvest in the arbitrage opportunity. Specifically,

the investor often will not take the largest arbitrage position allowed by

the collateral constraint. This contrasts with the popular view that an

investor should take the largest position possible in any arbitrage oppor-

tunity. We also show that an investor may prefer a strategy that may
underperform the riskless asset over a strategy that dominates the riskless

asset.

Even when the investor follows the optimal investment strategy, the

returns from investing in the arbitrage may not be as attractive as those

from conventional assets. For example, we demonstrate that the investor

can experience substantial losses on his portfolio prior to the convergence

date of the arbitrage. In some cases, these losses can be more than 75% of
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the value of the portfolio. Because of this, the arbitrage strategy may

frequently look like an underperforming conventional portfolio. In some

situations, it is even possible for the investor to have a loss at the con-

vergence date of the arbitrage. In this situation, the investor ends up worse

off than if he had invested only in the riskless asset. We show that the
return distributions from following the optimal strategy are highly skewed

toward negative values during the early stages of the arbitrage, and that

the arbitrage portfolio is usually worth less than its initial value at some

point during the life of the arbitrage. Finally, we find that the Sharpe ratio

from investing in the arbitrage generally only averages about two in our

numerical examples.

Our results demonstrate that experiencing large losses during the early

stages of an arbitrage strategy is almost a hallmark of the optimal strat-
egy. From this perspective, the real problem during the hedge fund crisis

of 1998 may not have been that arbitrage funds used too much leverage or

that they were speculating, but rather that many market participants had

unrealistic expectations about how arbitrage strategies should perform

over time. These results also have important implications for the role of

arbitrageurs in financial markets. Standard economic theory takes as

given the notion that arbitrages cannot exist in the markets, since if they

did, arbitrageurs would immediately buy and sell the cheap and rich
securities until the prices came back into line. Our analysis calls this

simplistic view into question since it is not clear that an investor would

actually choose to take a position in a specific arbitrage. If investors found

it optimal to take only a very limited position in an arbitrage opportunity,

or to avoid taking any position at all, then there is no reason why the

arbitrage could not persist or even become wider. Given that collateral

requirements are pervasive in all financial markets, these results suggest

that many theoretical valuation arguments based on the absence of arbi-
trage principles may need to be reexamined.

Our research complements an important recent literature focusing on

whether arbitrage opportunities can exist in equilibrium. Key examples of

this literature include Basak and Croitoru (2000) and Loewenstein and

Willard (2000a–c). These articles demonstrate that arbitrage or mispricing

may be sustained in general equilibrium when financial markets have

frictions or imperfections. In Basak and Croitoru, however, the arbi-

trageur always takes the maximum possible position allowed by the
financial market constraints. Furthermore, Loewenstein and Willard do

not identify the optimal portfolio strategy for an arbitrageur in their

model. Our article contributes to the literature by demonstrating that

when the real-world feature of collateral constraints is introduced, arbi-

trages become risky and agents may actually choose to take smaller

positions than allowed by constraints. Furthermore, we show that returns

on the arbitrage portfolio may be observationally equivalent to those
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resulting from the ‘‘meltdown’’ of a conventional portfolio. Other impor-

tant related work includes Brennan and Schwartz (1988, 1990), De Long

et al. (1990), Duffie (1990), Dumas (1992), Tuckman and Vila (1992),

Delgado and Dumas (1994), Dow and Gorton (1994), Yadev and Pope

(1994), Chen (1995), Detemple and Murthy (1997), Zigrand (1997),
Willard and Dybvig (1999), and Xiong (2001). Our article also extends

the literature on margin constraints in financial markets. Important exam-

ples of this literature include Heath and Jarrow (1987), Hindy (1995), and

Cuoco and Liu (2000). Finally, our results corroborate Shleifer and

Vishny (1997), who show that arbitrage can be risky when there are

margin constraints. Unlike Shleifer and Vishny, however, we explicitly

study the optimal portfolio strategy for a risk-averse investor in a market

with arbitrage opportunities.
The remainder of this article is organized as follows. Section 1 presents

the dynamic portfolio choice problem in markets with arbitrage oppor-

tunities. Section 2 discusses the optimal portfolio strategy. Section 3

examines the return distributions resulting from following the opti-

mal strategy. Section 4 summarizes the results and makes concluding

remarks.

1. The Dynamic Portfolio Choice Problem

In this section we describe the continuous-time framework, explain how

we model arbitrage opportunities, and then solve for the optimal portfolio

strategy. To make the intuition as clear as possible, we focus on the

simplest version of the model.

We model a simple two-investment financial market in which trading
takes place continuously in time. The first investment is a riskless asset

with value Rt, which earns a constant rate of interest r. The dynamics of

the riskless asset are given by

dR¼ rRdt, ð1Þ

where R0 ¼ 1. Solving this equation for the value of the riskless asset gives

Rt ¼ ert. The second investment is an arbitrage opportunity with value At,

where 0 � t � T. Intuitively At can be thought of as the value of a text-

book arbitrage portfolio that converges to zero at time T. To illustrate this

type of portfolio, consider the case where there are two bonds with

identical cash flows in all states of the world, but where the two bonds
have different market prices. An example of this might be two Treasury

STRIPS with identical maturity dates but different prices [see Daves and

Ehrhardt (1993) and Grinblatt and Longstaff (2000)]. In this case, At can

be thought of as the value of a portfolio that is long $100 notional amount

of the cheaper bond and short $100 notional amount of the richer bond.
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Note that the value of this portfolio must converge to zero at the maturity

date of the bonds.1

To capture the intuitive notion of a textbook arbitrage as a portfolio

with a value converging to zero at some future point in time T, we assume

that the dynamics of A follow the Brownian bridge process

dA¼ �aA

T � t
dtþs dZ, ð2Þ

where a and s are positive constants, 0 � t � T, and Z is a standard

Brownian motion.2 As t!T, the drift of this process approaches þ1
when At < 0, and�1 when At > 0. Thus, as t!T, the mean reversion of

the process toward zero becomes stronger and stronger, forcing AT to

converge to zero with probability one.3 The parameter a governs the speed
at which the arbitrage opportunity converges to zero. The parameter s

represents the volatility of the arbitrage and determines the distribution of

possible arbitrage opportunities. Solving this stochastic differential equa-

tion results in the following expression for As, where 0 � t � s � T,

As ¼
�
T � s

T � t

�a

At þs

Z s

t

�
T � s

T � t

�a

dZt: ð3Þ

It is easily seen that As is normally distributed for s < T. We denote the

expected value of As conditional on the value of At by Ms, where

Ms ¼
�
T � s

T � t

�a

At: ð4Þ

Similarly, the conditional variance of As, which we denote V 2
s , is given

by

V2
s ¼

s2ðT � tÞ
1� 2a

T � s

T � t

� �2a

� T � s

T � t

� �" #
, ð5Þ

for a 6¼ 1/2, and by

V2
s ¼s2ðT � sÞln

�
T � t

T � s

�
, ð6Þ

for a ¼ 1/2. As s!T, both Ms and V 2
s converge to zero.

1 Other examples of arbitrages that must converge to zero at a future time include put/call parity violations
[see Longstaff (1995)], differences between market and cost-of-carry-model stock index futures prices [see
Brennan and Schwartz (1988, 1990), MacKinlay and Ramaswamy (1988), and Duffie (1990)], and
differences between the prices of otherwise identical on-the-run and off-the-run Treasury securities [see
Amihud and Mendelson (1991), Kamara (1994), and Longstaff (2002)].

2 Strictly speaking, the process A is a Brownian bridge only when a ¼ 1. Thus we are using the term
Brownian bridge in a more general sense. The Brownian bridge process has been applied to security prices
by Ball and Torous (1983), Brennan and Schwartz (1988, 1990), Duffie (1990), and Cheng (1991).
Loewenstein and Willard (2000b) study the viability of a Brownian bridge as a return process.

3 Rather than converging to zero at time T, the arbitrage process could be generalized to converge to some
other fixed value by a simple modification of the drift term.
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The Brownian bridge process allows At to take on both positive and

negative values. When At is positive, the investor receives a positive cash

flow of At by investing in a negative number of units of the arbitrage, and

vice versa. By taking a position in the arbitrage and receiving a positive

cash flow at time t, the investor simultaneously creates a liability, since the
investor would need to pay the same amount to immediately unwind

the arbitrage position. It is easily shown that jA(t)j can exceed any fixed

value with strictly positive probability. Thus this specification implies that

there is always a risk that the arbitrage can widen further before its final

convergence date. This risk plays both a major role in this model as well as

in actual financial markets. As has been shown by Back and Pliska (1990),

Cheng (1991), Basak and Croitoru (2000), Loewenstein and Willard

(2000b), and others, the properties of the Brownian bridge process as
t!T implies that the Brownian bridge describing the dynamics ofAt in this

market does not admit the existence of an equivalent martingale measure.

Let Nt and Pt denote the number of units of the arbitrage and the

riskless asset held by the investor. The investor’s total wealth at time t is

given by

Wt ¼NtAt þPtRt: ð7Þ

Following standard portfolio choice theory, we assume that the investor

follows a self-financing strategy.4 Applying the self-financing condition

results in the following dynamics for Wt,

dW ¼NdAþ rPR dt

¼NdAþ rðW �NAÞdt

¼
�
rW �

�
rþ a

T � t

�
NA

�
dtþsN dZ: ð8Þ

This equation, along with the dynamics of At in Equation (2), implies that

Wt and At follow a joint Markov process. Thus the state of the economy is
completely specified by the current values of the state variablesWt and At.

From Equation (8), WT can also be expressed as

WT ¼Wtexp

�Z T

t

�
r�

�
rþ a

T�s

�
NA

W
� s2

2

N2

W 2

�
dsþs

Z T

t

N

W
dZ

�
: ð9Þ

Harrison and Kreps (1979) and Harrison and Pliska (1981) show that

restrictions on trading strategies are necessary to rule out unrealistic
arbitrages arising from doubling strategies. In actual financial markets,

however, even stronger restrictions on trading strategies are imposed

4 This standard assumption rules out the possibility of later capital injections, credit support, or bailouts
for the investor. This involves little loss of generality, since initial wealth can be defined to include the
value of these contingent cash flows.
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through the standard requirement that investors provide collateral as

security for their short positions. Specifically, whenever an investor gen-

erates a liability by either shorting an asset or borrowing funds (which is

the same as shorting the riskless asset), financial institutions generally

require collateral exceeding the amount of the liability as protection
against mark-to-market losses.5 As described in the Guidelines for Collat-

eral Practitioners (1999) issued by the ISDA, the mechanics of a standard

collateral agreement require that collateral (typically in the form of cash

or liquid securities such as Treasury or agency bonds) be provided by the

counterparty with the liability. As the market value of the liability fluc-

tuates, counterparties either provide additional collateral or receive col-

lateral back.6 The ISDA Collateral Survey (2000) indicates that

most collateral agreements require that security positions be revalued
and collateral transferred on a daily basis; the survey reports that 74%

of collateral calls are made at a daily frequency, and a further 17% are

made at a weekly frequency. The amount by which the required amount of

collateral exceeds the liability is referred to as the ‘‘haircut,’’ or the

investor’s equity in the position. The size of the required haircut generally

varies with the type of collateral. For example, the haircut for shorting

Treasury bonds might be $1 to $2 per $100 notional amount, while the

haircut could be $10 to $20 per $100 notional amount for corporate
bonds. Under standard collateral agreements, if the trade goes against

the investor and generates losses, or if the value of the collateral itself

decreases, investors may be forced to either provide additional collateral

in response to a margin call or have their short positions liquidated.7

Although beyond the scope of this study, one interesting question that

emerges from our analysis is why collateralization or secured lending is the

dominant form of debt contract in the financial markets. Certainly the

possibility of informational asymmetries and moral hazard problems
between lenders and arbitrageurs may play some role in explaining the

5 A recent survey of collateral practices among major over-the-counter (OTC) market participants con-
ducted by the International Swaps and Derivatives Association (ISDA) reported that large-scale estab-
lished financial institutions had collateral agreements with virtually all significant counterparties.
Furthermore, many of the firms in the survey reported that virtually all OTC derivative trading was
conducted on a collateralized basis. This indicates that collateral requirements are a pervasive feature of
the financial markets and are thus likely to be important in equilibrium.

6 Johannes and Sundaresan (2001) provide an excellent discussion of the economic implications of col-
lateralization in the swaps market.

7 There are other possible ways to deal with counterparty credit risk, although these are not as widely used
as collateralization. For example, from the Guidelines for Collateral Practitioners (1999), ‘‘As discussed
above, other credit enhancement techniques are available to market practitioners such as netting, third-
party guarantees, establishing a specialized derivatives subsidiary (a Derivatives Products Company
(DPC) or Special Purpose Vehicle (SPV)) and cash-settlement provisions. . . .Nevertheless, collateral
does appear to be the most widely used credit enhancement tool in the industry today. It is not as capital
intensive as a DPC or SPV, does not require cumbersome liquidation of positions as do early termina-
tions provisions or involve third parties as do guarantees.’’ We are grateful to the referee for raising this
point.

Losing Money on Arbitrage

617



prevalence of collateralization.8 The ISDA Collateral Survey (2000)

reports that the primary reasons offered by market participants for col-

lateralization are credit risk management and the fact that banks incur

lower regulatory capital charges for collateralized transactions.

When an investor invests in Nt units of the arbitrage, the investor
receives an immediate cash flow of �NtAt and has a current mark-

to-market liability of the same amount. For example, imagine that two

bonds with identical future cash flows have prices of 100 and 101. Define

the arbitrage as a long position in the first and a short position in the

second. Thus At ¼ 100 � 101 ¼ �1, and taking a position in 10 units of

the arbitrage generates an immediate cash flow of �NtAt ¼ 10 and a

liability of NtAt ¼ 10. To capture the economics of collateralization in a

simple, yet realistic way, we assume that the investor is required to hold
liquid securities in the amount of the liability plus a margin of l per unit

(per notional amount) of the arbitrage held, where l is a nonnegative

constant. Thus we require that

PtRt � jNtAtj þ ljNtj: ð10Þ

Assuming NtAt � 0 (which we show later to be satisfied by the optimal
strategy), the collateral constraint can be expressed as a simple wealth

constraint,

Wt � ljNtj: ð11Þ

Since l is nonnegative, satisfying this constraint generally satisfies the

less-restrictive condition that Wt > 0 for all t, 0 � t � T.
This form of the collateral requirement closely follows actual OTC

derivatives market practice. For example, the ISDA Collateral Survey

states that, ‘‘The amount by which the value assigned to the collateral is

less than full face value is termed the ‘haircut’, usually expressed as a

percentage of face value.’’ Since a unit of the arbitrage should be inter-

preted as being relative to a fixed face or notional amount in our frame-

work, l is directly a percentage of the face value or notional amount.

Similarly margin requirements for exchange-traded financial futures at
major futures exchanges such as the Chicago Board of Trade and the

Chicago Mercantile Exchange are defined in terms of a fixed amount per

contract or per notional amount, which is consistent with our specifica-

tion. Repo lending for Treasury, agency, and mortgage-backed securities

is typically done by requiring a haircut equal to a fixed fraction of the face

amount of the bond. Thus our model of the haircut as a fixed amount or

fraction per unit or notional amount of the arbitrage is also consistent

8 For discussions of the role that secured lending plays in mitigating informational asymmetries and moral
hazard problems, see Johnson and Stulz (1985), James (1988), Rajan and Winton (1995), Demarzo and
Duffie (1999), Habib and Johnsen (1999), and Morellec (2001).
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with market practice in the primary fixed-income markets.9 Finally, we

observe that our basic results are robust to the specific form of the

collateral requirements; similar results are obtained when the required

haircut is assumed to be proportional to jAtj.10
The collateral requirement ensures that the counterparty taking the

other side of the arbitrage position has collateral at least equal to the

amount owed by the investor. Thus, if l ¼ 1, the investor in the above

example who invested in Nt ¼ 10 units of the arbitrage would have a long

position of 1,000 in the first bond and a short position of 1,010 in the

second bond, implying NtAt ¼ �10. The investor would need to have

collateral of PtRt ¼ 20 to cover the net liability of jNtAtj ¼ 10 generated

by the arbitrage and to post the additional ljNtj ¼ 10 collateral required.

In this example, the investor has a liability of 1,010 and needs total
collateral of 1,020 consisting of a long bond position with value 1,000

and 20 of the riskless asset.

It is important to observe that requiring collateral is fundamentally

different from short-selling restrictions. In fact, as we show later, the

optimal portfolio strategy has the property that the portfolio weight for

the arbitrage can take on any negative value. Collateral constraints are

also fundamentally different from transaction costs. Intuitively this is

because investors receive all of the interest, dividends, and appreciation
on the securities held as collateral in margin accounts. Thus the investor

incurs no direct economic costs or losses from holding securities in margin

accounts. Finally, collateral requirements differ from position limits such

as those in futures markets.

The investor is endowed with strictly positive initial total wealthW0 and

has a finite investment horizon T corresponding to the date at which the

arbitrage converges to zero. To simplify the exposition, we assume that the

investor only consumes at time T, although this assumption can be relaxed
without affecting the basic results. In particular, the investor dynamically

chooses a portfolio Nt to maximize an expected utility function defined

over the logarithm of his terminal wealth WT,

Et½lnWT �: ð12Þ
We use this simple preference structure to focus more directly on the

intuition of how the arbitrage opportunity affects the portfolio problem.

9 By requiring that collateral be held against the net value of the arbitrage, we are making the conservative
assumption that netting across both legs of the arbitrage is possible. This is feasible when both legs of a
position are executed with the same counterparty. Gross margining could easily be modeled within this
framework by setting l to a larger value. Margin requirements where the total required collateral is
proportional to the value of an asset are considered in Cuoco and Liu (2000).

10 Specifically, we solve for the optimal portfolio strategy in the case where the haircut per unit of the
arbitrage l(jAtj) is an increasing function of jAtj, where l(0) > 0. An underinvestment result similar to
that presented in the next section holds for this more general (but less common) form of the collateral
restriction (proof available upon request).
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Define the derived utility of wealth function J(W,A, t) by the following

expression

JðW , A, tÞ¼max
N

Et½lnWT �, ð13Þ

subject to the budget constraint in Equation (9) andwhereN is amember of

the set of admissible strategies satisfying the collateral constraint. Because

the problem and collateral constraint are homogeneous inWt, we demon-

strate in the followingproposition thatNtmust beof the formFtWt,whereF

is a function of A and t only. Substituting this into Equation (9) implies

JðW , A, tÞ¼ lnWt þmax
F

Et

�Z T

t

r�
�
rþ a

T � s

�
FA� s2

2
F 2ds

�

¼ lnWt þ rðT � tÞ�max
F

Et

�Z T

t

�
rþ a

T � s

�
FAþ s2

2
F2ds

�
:

ð14Þ

Because of the quadratic form of the integrand in F and the fact that the

dynamics of A are independent of F, the optimal portfolio strategy can be

determined in closed form by a state-by-state minimization.

Proposition 1. The Optimal Arbitrage Position. The optimal portfolio

strategy for the investor is

Nt ¼

1

l
Wt, if At <�1

l

s2

ðrþ a
T�t

Þ,

�
rþ a

T�t

s2
AtWt, if jAtj �

1

l

s2

ðrþ a
T�t

Þ,

�1

l
Wt, if At >

1

l

s2

ðrþ a
T�t

Þ :

8>>>>>>>><
>>>>>>>>:

ð15Þ

Proof of Proposition 1. See the appendix.

This optimal portfolio strategy has many interesting features that are

discussed in the next section. By substituting the optimal portfolio strat-

egy into Equation (14) and evaluating the expectations, it can be shown

that if jAtj < 1, Wt < 1, and l > 0, then J(W,A, t) < 1 for all t,

0 � t � T (proof available upon request). This result that the derived
utility of wealth is finite depends critically on the condition that l> 0. If

l ¼ 0, then it is easily shown that the strategy

Nt ¼�
rþ a

T�t

s2
AtWt ð16Þ

implies that E [ln WT] ¼ 1. Thus the collateral constraint fundamentally

changes the economicsof the arbitrage opportunity in this financialmarket.
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2. The Optimal Portfolio Strategy

In this section we examine in more detail the optimal portfolio strategy.

Several key properties of the optimal strategy are immediately apparent

from Proposition 1. First, the optimal strategy always requires taking a

position in the arbitrage opposite in sign from the value of the arbitrage
At. Thus taking a position in the arbitrage generates an immediate cash

inflow to the investor. Since there are collateral requirements, however,

the investor must keep liquid assets at least equal in amount to the cash

inflow plus ljNtj. Thus the investor is constrained in the way this cash can

be used.

Since the investor faces collateral constraints, it is perhaps not surpris-

ing that the investor only takes a finite position in the arbitrage. For

example, if At < 0, the maximum value ofNt that the collateral restriction
allows is 1

l
Wt. Thus ifWt ¼ 100 and l ¼ 1, the maximum number of units

of the arbitrage the investor can hold is Nt ¼ 100, independent of how

large the arbitrage opportunity At becomes. Note, however, that this does

not limit the leverage that the investor can utilize in his portfolio. In

particular, since the portfolio weight for the arbitrage is NtAt/Wt, the

maximum portfolio weight for the arbitrage in this example is

�100At/100 ¼ �At, which is unbounded. Thus, while the number of

units of the arbitrage that can be held is bounded for a given Wt, the
portfolio weight invested in the arbitrage is not.

What is surprising, however, is that the investor often finds it optimal to

take a smaller position in the arbitrage opportunity than the collateral

restrictions allow. For example, when

� 1

l

s2

ðrþ a
T�t

Þ <At <
1

l

s2

ðrþ a
T�t

Þ , ð17Þ

the optimalNt is less in absolute value than the maximum number of units

of the arbitrage that could be held while satisfying the collateral con-

straint. In fact, when jAtj is close to zero, the optimal Nt may only be a

small fraction of the maximum allowable number of units of the arbitrage.
To illustrate this, we simulate how often an investor following the optimal

strategy will reach the collateral constraint. In particular, we simulate

paths of At and report the percentage of paths where the bounds shown

in Equation (17) are exceeded for different values of t < T.

In doing this, our approach is to report the results for a variety of

realistic parameter values. Admittedly there is little empirical evidence in

the literature about the dynamic properties of arbitrages. Despite this,

there are a few recent empirical papers documenting the properties of
apparent arbitrages or deviations from the law of one price. For example,

Amihud and Mendelson (1991) and Kamara (1994) study the differences

between the prices of Treasury bills and Treasury bonds that have paid
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their next to last coupon and have essentially become Treasury bills.

Longstaff (2004) studies the differences between the prices of Treasury

zero coupon bonds or STRIPS and the prices of Treasury-guaranteed zero

coupon bonds issued by government agencies. Cornell and Shapiro (1989)

and Boudoukh and Whitelaw (1991) document differences in the pricing
of Treasury and government bonds with identical cash flows. The type of

pricing anomalies studied in these articles, where two bonds with identical

cash flows in all states of the world trade at different prices, closely

matches the notion of a textbook arbitrage in this article. In particular,

the arbitrage would consist of taking a long $100 notional position in the

cheaper of the two bonds and taking an offsetting short $100 notional

position in the richer of the two bonds.

For simplicity, we assume a one-year horizon in all of our numerical
examples. To parameterize the model, we first note that the distribution of

the maximum value x of the arbitrage during the investment horizon is

given by (4/s2)x exp(�2x2/s2) whenA0 ¼ 0 and a ¼ 1. The expected value

of the maximum is E½x� ¼ ðs=2Þ
ffiffiffiffiffiffiffiffiffi
p=2

p
. Thus the expected maximum value

is 0.6267 and 1.2533 for s ¼ 1 and s ¼ 2, respectively. Given this,

we consider initial values of the arbitrage of A0 ¼ 0 and A0 ¼ 1. The

value A0 ¼ 1 represents the 86th percentile that the maximum can attain

when s ¼ 1, and the 39th percentile when s ¼ 2.
Turning first to the estimation of the speed of the mean reversion

parameter a, Table 1 of Longstaff (2004) reports serial correlations for

Table 1
Percentage of times that margin constraint is binding

A0 l a s t ¼ .25 t ¼ .50 t ¼ .75 t ¼ .999

0 1 1 1 9.44 32.40 56.58 97.32
0 1 1 2 .09 5.17 25.26 94.70
0 1 2 1 33.18 51.82 66.26 98.14
0 1 2 2 5.11 19.40 38.03 95.93

0 10 1 1 86.18 92.41 95.83 99.77
0 10 1 2 73.18 84.93 91.37 99.50
0 10 2 1 91.86 94.86 96.51 99.86
0 10 2 2 84.23 90.05 93.05 99.59

1 1 1 1 53.27 53.43 62.20 97.28
1 1 1 2 .66 7.72 26.47 94.47
1 1 2 1 70.77 59.94 66.72 98.13
1 1 2 2 11.78 21.68 37.98 95.93

1 10 1 1 96.96 95.51 95.98 99.78
1 10 1 2 81.82 85.57 90.68 99.47
1 10 2 1 97.49 95.31 96.80 99.86
1 10 2 2 88.22 90.52 93.16 99.59

This table reports the percentage of 10,000 simulated paths for which the margin constraint is binding at
the indicated horizons. The initial value of the arbitrage is set equal to zero, the final convergence date
for the arbitrage is one year and the simulation uses 10,000 discretization points per year in modeling the
arbitrage process. The initial value of the arbitrage is A0. The parameter l represents the margin
requirement. The parameters a and s represent the speed of convergence and the volatility of the
arbitrage process. The riskless rate is 6%.
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the price differences between Treasury-guaranteed bonds with identical

cash flows. Mapping from these serial correlations into the speed of the

mean reversion parameter implies an estimate of a ¼ 2.33 for the

one-year zero-coupon case, roughly corresponding to a five-month half

life. Similarly Cornell and Shapiro (1989) document an apparent arbitrage
involving on- and off-the-run Treasury bonds following the auction of

May 1986. This arbitrage lasted for several months, but was gone after

12 months. Based on this evidence, we believe that values of a in the range

of one to two appear reasonable for this calibration exercise. To para-

meterize s, we observe that Kamara (1994) finds that the maximum

apparent arbitrage for three-month Treasury bills and notes during a

seven-year sample period is on the order of 160 basis points, implying a

maximum price difference of about $0.40 per $100 notional amount.
Similarly Longstaff reports a maximum size for differences between one-

year zero-coupon bonds for a 10-year sample period of 80 basis points,

implying a maximum price difference of $0.80 per $100 notional amount.

Based on this, in conjunction with the results for the expected maximum

value of a Brownian bridge mentioned above, we chose to use values of s

in the range of one to two. These values are likely conservative given that

Cornell and Shapiro (1989) and Boudoukh and Whitelaw (1991) find

maximum values for the differences between bonds with identical cash
flows on the order of $7.00 per $100 notional.

Table 1 shows that the collateral constraint often does not bind. Thus

the underinvestment region shown in Equation (17) is far from trivial. The

intuition for why the investor does not always take the largest possible

position in the arbitrage is directly related to the risk of the arbitrage

widening (combined with the usual trade-off between risk and expected

return). When At differs only slightly from zero, it is almost as likely that

the arbitrage will widen as narrow, since the drift is close to zero. Further-
more, when At is close to zero, the potential loss from the arbitrage

widening can be much larger than the possible gain from the arbitrage

converging, at least in the near term. Specifically, the investor can realize a

small gain per unit of the arbitrage if it converges to zero over the next

short interval, but can experience a large loss if it widens to several times

its current value. If the investor suffers large losses in the early stages, he

clearly has less wealth to exploit arbitrages at a later stage. By being too

aggressive with small arbitrages, the investor risks finding himself in a
state of the world where there is a large arbitrage, but his ability to exploit

the arbitrage is severely reduced because of losses suffered as the arbitrage

widened. It is important to stress that while the percentages shown in

Table 1 depend on the parameter values chosen, the basic underinvest-

ment result is robust to the choice of parameters. Specifically, the existence

of the middle underinvestment region given in Proposition 1 holds for all

positive values of l, a, and s. Thus the qualitative nature of the results in
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Table 1 (and all subsequent tables in this article) are generic properties of

the model and do not depend on the specific parameterization used.

Table 1 also shows that the lower the collateral requirement l, the less

frequently the collateral constraint binds. Similarly, the riskier the arbi-

trage as measured by s2, the less frequently the investor finds it optimal to
take the maximum position. As the speed of convergence a increases, the

investor takes a more aggressive position and the collateral constraint is

more likely to be binding. Finally, while the collateral constraint often

does not bind, it is important to observe that the probability that the

constraint binds approaches one as t!T. Thus, while the constraint does

not bind at every instant, it binds in the global sense of Loewenstein and

Willard (2000b).

It is useful to put these results into perspective with those in the
literature. In an interesting recent article, Basak and Croitoru (2000)

demonstrate that arbitrage opportunities or mispricing can exist within a

general equilibrium model in which investors face constraints on their

portfolio weights. In their framework, however, investors always take the

largest possible position in the arbitrage whenever there is mispricing.

Thus our results differ fundamentally from theirs. Loewenstein and

Willard (2000b) present an example of an economy in which there is a

risky asset where the logarithm of its price follows a Brownian bridge
process similar to ours. They show that there is an optimum for an

investor who has limited credit capacity. In one sense, this parallels our

result, since we also find that the investor’s problem has an optimal solu-

tion. Loewenstein andWillard, however, do not provide a characterization

of the optimal portfolio strategy for the agent in their example, focusing

instead on the important issue of the viability of the process. Thus our

emphasis on optimal portfolio strategies and the resulting implications for

the nature of return differs in a fundamental way from their focus.
Finally, our results complement those of Shleifer andVishny (1997), who

study a model in which a risk-neutral arbitrageur can trade a security at a

price whichmay deviate temporarily from its fundamental value. Capital is

provided to the arbitrageur by investors on the basis of past return per-

formance (rather than future investment opportunities). This creates an

agency conflict for the arbitrageur who attempts to maximize the amount

of funds under management. In their equilibrium, the total amount of

funds invested in the arbitrage can be less than the total funds available to
arbitrageurs for some sets of parameters. It is important to observe,

however, that a price-taking arbitrageur in their model has first-order

conditions that are unrelated to the size of his position in the arbitrage.11

11 This follows directly from Shleifer and Vishny [1997; Equation (8)]. Their first-order condition for the
price-taking arbitrageur does not depend on the amount D1 invested in the arbitrage, and is satisfied for
specific combinations of the market prices p1, p2, and the probability q, independent of the individual
atomistic arbitrageur’s choice of D1.
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Thus the arbitrageur in their equilibrium is indifferent between taking a

fully invested position or a partially invested position in the arbitrage.

Because of this, their underinvestment result is not due to optimizing

behavior by the arbitrageur, but rather to the special structure of the

equilibrium demands of the nonstrategic noise traders and investors in
their model. In fairness to Shleifer and Vishny, however, their focus is on

the important issue of the effects of agency conflicts between portfolio

managers and investors rather than on the optimal portfolio choices of the

investors in their model.

In some sense, one of the most striking features of the optimal portfolio

strategy is that the investor essentially treats the arbitrage opportunity as

if it were simply a conventional investment opportunity. For example,

when the inequality in Equation (17) holds, the optimal portfolio strategy
is proportional to the instantaneous expected return on the arbitrage

divided by its instantaneous variance. This closely parallels the standard

Merton (1971) result for a logarithmic investor who allocates his wealth

between a risky and a riskless asset. Thus the investor in our model does

not have any special ‘‘arbitrage’’ motive for taking a position in the

arbitrage; the investor takes a position in the arbitrage that is essentially

the same as the usual ‘‘hedging and speculative’’ position he would take in

an asset with the same instantaneous risk and return trade-off. What is
different in this framework, of course, is that the risk and return trade-off

for the arbitrage portfolio tends to get progressively better as t!T.

To further explore this, we also solve for the optimal portfolio when

there is a third investment available to the investor which follows a

standard geometric Brownian motion and can be interpreted as a stock

index fund. We find that the investor acts as if there were simply two

conventional risky assets available to him. Furthermore, while his port-

folio holding in the arbitrage is affected by the instantaneous correlation
between the arbitrage and the stock index fund, the investor often fails to

take the largest position in the arbitrage opportunity allowed by the

collateral requirements. Thus the underinvestment result holds even

when there are additional risky assets in the economy.12

From Proposition 1 it is clear that the optimal Nt is continuous even at

the boundary where the collateral constraint becomes binding. Thus there

are no abrupt changes in the size of the arbitrage position when the

boundary is reached. Over time, however, the absolute value of Nt tends
to decrease after the boundary is reached. To see the intuition for this,

12 The exception, of course, is when the additional risky asset is perfectly correlated with the dynamics of the
arbitrage. In this special case, the investor can form a riskless portfolio that earns a return that differs
from the riskless rate. We abstract from this type of arbitrage since there is no clear sense in which there is
a convergence date for the arbitrage, prior to which the arbitrage could widen. We are grateful to the
referee for suggesting the inclusion of additional assets in the analysis. See also Cheng (1991), F€oollmer
and Imkeller (1993), Pikovsky and Karatzas (1996), and Loewenstein and Willard (2000b).
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consider the case where the boundary is just reached and the value of the

arbitrage thenmoves back toward zero. The constraint is no longer binding

and the size of the arbitrage position is reduced since the arbitrage is no

longer as large. On the other hand, if the boundary is reached and the

arbitrage widens, the investor then suffers a decrease in his wealth. Because
of this decline in wealth, the constraintWt � l jNtj can only be satisfied by

reducing the absolute value ofNt in this self-financing framework. Thus the

investor must partially liquidate his position in the arbitrage at a loss.

Since the optimal strategy involves taking a position in the arbitrage

opposite in sign to At, the portfolio weight for the arbitrage position,

wt ¼
NtAt

Wt

, ð18Þ

is less than or equal to zero. Because wt is the ratio of the investor’s

liabilities to his total wealth, wt can also be interpreted as a leverage

ratio. To give a sense of the distribution of portfolio weights that results

from following the optimal portfolio, Table 2 provides summary statistics

for the percentage portfolio weights for different values of t and of the
parameters. As shown, the optimal portfolio strategy can be highly lever-

aged even when there are collateral constraints. For example, whenA0 ¼ 0

and s ¼ 2, the portfolio leverage ratio jwtj can be greater than four.

3. The Returns from Arbitrage

In this section we examine the wealth distributions obtained from follow-

ing the optimal investment strategy in a market with arbitrage oppor-

tunities. Specifically, the investor’s wealth at time t can be expressed as

Wt ¼W0e
rtexp

�Z t

0

�
�
rþ a

T � s

�
FA� s2

2
F2dsþs

Z t

0

F dZ

�
: ð19Þ

It can be shown that the investor’s wealth is strictly positive for all

t, 0 � t � T. Thus the optimal investment strategy satisfies the
positive wealth constraint of Dybvig and Huang (1988). Because of the

boundedness of F, it follows from Proposition 1 that Wt is finite with

probability one.

In specific cases, the range of possible returns that can be obtained from

investing optimally in the arbitrage opportunity can be narrowed. The

following proposition gives sufficient conditions for the optimal invest-

ment portfolio to dominate the riskless asset at time T (proof available

upon request).

Proposition 2. Dominance of the Optimal Strategy. If 0 < a � 1, then

WT � W0e
rT a.s. when the optimal strategy is followed.

Thus, when 0 < a � 1, the optimal investment strategy cannot achieve a

lower return than the riskless rate. In this sense, the optimal strategy
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generates a pure arbitrage at time T. When a> 1, however, the returns

from the arbitrage do not dominate the riskless asset. To illustrate this,

Table 3 provides summary statistics for the wealth distributions at differ-

ent horizons obtained from following the optimal portfolio strategy.

Table 3 confirms the dominance result that when a ¼ 1, the optimal
arbitrage portfolio ends up doing better than the riskless asset at time T.

When a > 1, however, the final value of the arbitrage portfolio can be less

than the value of the riskless portfolio, and can even be less than the initial

value of the investor’s wealth. Thus the arbitrage portfolio is no longer an

arbitrage, even in the classic sense.

This latter result is particularly interesting given that it is actually

possible to find an investment strategy that dominates the riskless asset

Table 2
Summary statistics for the percentage portfolio weights invested in the arbitrage

A0 l a s t Min. Mean Median Max. Std. Dev.

0 1 1 1 .250 �202.65 �23.20 �11.65 .00 23.81
.500 �196.48 �34.09 �23.26 .00 33.07
.750 �187.47 �32.50 �29.13 .00 27.40
.999 �15.16 �2.60 �2.21 .00 1.97

0 1 1 2 .250 �405.30 �25.61 �11.65 .00 36.29
.500 �392.95 �48.17 �23.26 .00 61.11
.750 �374.95 �56.07 �34.45 .00 57.60
.999 �30.33 �5.19 �4.42 .00 3.94

0 1 2 1 .250 �179.28 �25.91 �17.72 .00 25.23
.500 �150.16 �28.35 �25.56 .00 24.36
.750 �115.83 �21.98 �19.15 .00 17.78
.999 �7.83 �1.54 �1.30 .00 1.17

0 1 2 2 .250 �358.55 �36.69 �17.72 .00 46.53
.500 �300.32 �47.03 �26.53 .00 50.58
.750 �231.66 �40.13 �29.56 .00 37.61
.999 �15.67 �3.08 �2.61 .00 2.34

1 1 1 1 .250 �241.25 �70.80 �75.11 .00 45.64
.500 �246.48 �54.13 �52.36 .00 43.00
.750 �201.68 �38.29 �34.01 .00 31.04
.999 �15.06 �2.60 �2.21 .00 1.97

1 1 1 2 .250 �407.51 �44.89 �23.56 .00 56.06
.500 �442.95 �58.52 �29.55 .00 70.22
.750 �378.36 �59.20 �37.54 .00 59.86
.999 �30.23 �5.20 �4.41 .00 3.94

1 1 2 1 .250 �201.96 �56.70 �56.65 .00 36.19
.500 �174.46 �34.78 �31.78 .00 28.36
.750 �115.76 �22.49 �19.49 .00 18.20
.999 �7.83 �1.54 �1.30 .00 1.17

1 1 2 2 .250 �347.68 �54.13 �29.91 .00 60.25
.500 �323.93 �50.68 �30.03 .00 53.30
.750 �225.41 �40.41 �29.74 .00 37.84
.999 �15.67 �3.08 �2.61 .00 2.34

This table reports summary statistics for the percentage portfolio weights for the indicated horizons based
on 10,000 simulated paths. The final convergence date for the arbitrage is one year and the simulation uses
10,000 discretization points per year in modeling the arbitrage process. The initial value of the arbitrage is
A0. The parameter l represents the margin requirement. The parameters a and s represent the speed of
convergence and the volatility of the arbitrage process. The riskless rate is 6%.
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even when a > 1. Specifically, letDt denote the portfolio strategy given by

Dt ¼

1

l
Wt, if At <� s2

2rl
,

0 if jAtj �
s2

2rl
,

� 1

l
Wt, if At >

s2

2rl
:

8>>>>><
>>>>>:

ð20Þ

We call this strategy the barrier strategy since it is zero until the arbitrage

reaches a specific level. Because jDtj is always less than or equal to the
collateral constraint, this portfolio strategy is always feasible. It can be

shown that for all a > 0, WT � W0e
rT a.s. when the barrier strategy is

Table 3
Summary statistics for the value of the optimal portfolio

A0 l a s t Min. Mean Median Max. Std. Dev.

0 1 1 1 .250 20.63 105.27 111.33 119.64 15.39
.500 20.79 118.32 128.70 151.15 28.82
.750 23.78 144.88 149.04 220.03 44.69

1.000 113.53 278.85 266.45 763.86 88.83

0 1 1 2 .250 8.30 105.38 111.38 119.64 15.45
.500 6.67 120.39 131.62 151.15 30.13
.750 5.69 158.30 176.55 223.09 53.44

1.000 131.45 482.73 453.52 1413.09 186.92

0 1 2 1 .250 22.02 110.98 118.60 139.39 22.99
.500 28.58 135.44 137.98 214.04 40.09
.750 39.94 183.14 176.55 428.22 65.85

1.000 98.83 420.94 387.01 1457.41 179.84

0 1 2 2 .250 5.94 112.72 122.03 139.39 24.70
.500 7.87 147.22 162.17 214.16 48.42
.750 11.79 228.79 230.84 430.42 97.04

1.000 90.10 995.53 873.80 5488.36 583.91

1 1 1 1 .250 22.37 126.10 123.85 201.28 43.63
.500 19.43 155.30 156.46 252.65 58.47
.750 28.49 199.18 195.50 366.68 76.16

1.000 184.98 390.99 366.18 1049.28 141.19

1 1 1 2 .250 9.36 111.29 119.89 136.56 24.49
.500 4.35 131.71 145.59 172.88 38.60
.750 5.53 176.57 197.01 251.04 63.33

1.000 139.82 541.30 512.30 1664.83 214.64

1 1 2 1 .250 33.05 150.73 142.36 278.51 52.08
.500 39.56 201.94 197.95 414.53 72.05
.750 65.25 278.91 261.88 739.87 109.86

1.000 182.21 640.59 580.94 2669.69 287.75

1 1 2 2 .250 7.38 129.38 142.73 179.41 40.08
.500 6.85 174.35 189.56 273.14 65.14
.750 12.45 272.57 270.88 547.72 123.60

1.000 88.47 1183.89 1029.33 6326.61 717.29

This table reports summary statistics for the value of the optimal portfolio at the indicated horizons based
on 10,000 simulated paths. The initial value of the portfolio is 100. The final convergence date for the
arbitrage is one year and the simulation uses 10,000 discretization points per year in modeling the arbitrage
process. The initial value of the arbitrage is A0. The parameter l represents the margin requirement. The
parameters a and s represent the speed of convergence and the volatility of the arbitrage process. If the
initial wealth of 100 was invested in the riskless asset only, its value in one year would be 106.18.
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followed, implying that the investor can achieve a wealth distribution that

dominates the riskless asset. Even though this strategy is available to the

investor when a > 1, the investor finds it optimal to ignore it. Surprisingly,

the optimal strategy is to invest in a way that runs the risk of under-

performing the riskless asset even though there is a strategy available
that guarantees the investor’s return cannot be less than the riskless asset.

Another interesting feature relates to the shape of the distribution of

investment returns. During the early stages of the investment horizon, the

mean value of the portfolio is often substantially lower than the median

value. As the final convergence date approaches, the distribution typically

becomes skewed toward higher values and the mean exceeds the median.

To illustrate this, Figure 1 graphs the distribution of values for the optimal

arbitrage portfolio at times t ¼ .25, t ¼ .50, t ¼ .75, and t ¼ 1.00.
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Figure 1
The distribution of wealth
From top down, the graph shows the distribution of the value of the optimal portfolio at time t ¼ .25,
.50, .75, and 1.00. The initial value of the portfolio is 100. The initial value of the arbitrage A0 is zero. The
parameter values are a ¼ 1, l ¼ 1, and s ¼ 1.
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The distribution at t ¼ .25 is highly skewed toward the left. This is also

true for t ¼ .50. At t ¼ .75, however, the nature of the distribution begins

to change and a more symmetrical pattern appears. At the final maturity

date T, the distribution now becomes highly skewed toward higher values,

and values less than the riskless value of 106.18 disappear since a ¼ 1 in
this example. This clearly has important implications for the typical

value-at-risk analysis currently widely used among practitioners.

The value of the optimal arbitrage portfolio is highly variable over time.

Starting from an initial value of 100, the arbitrage portfolio can actually

lose more than 75% of its value by t ¼ .25. Analyzing these particular

paths reveals that the investor takes a large position in the arbitrage

portfolio at an early date, but then loses significant amounts as the

arbitrage continues to widen. When the investor reaches the collateral
constraint, the investor is forced to unwind his position at a loss in order

to satisfy the collateral constraint as the arbitrage widens further. Al-

though the arbitrage ultimately converges to zero at time T, the investor

is unable to fully participate at later stages since his wealth is now much

lower. Thus investors who experience large losses early during the life of

the arbitrage end up with lower returns at time T. This can be seen in

Figure 2, which graphs the final value of the portfolio at time T against the

minimum value of the portfolio during the life of the arbitrage. Thus early
losses due to the widening of the arbitrage do not entirely ‘‘come back’’

later on as the arbitrage ultimately converges to zero.

The mean values of the arbitrage portfolios display an interesting

pattern. Initially they tend to be somewhat larger than the value of the

riskless portfolio. Over time, however, the means grow rapidly and ulti-

mately far exceed the value of the riskless portfolio. The farther the initial

value of the arbitrage is from zero, the higher the final expected value of

the optimal portfolio. This is intuitive, since when A0 6¼ 0, the investor
immediately has the opportunity to invest in an arbitrage. The distribu-

tion of returns is typically shifted toward higher values when the value of a

increases. Intuitively, a higher value of the speed of mean reversion implies

that an arbitrage tends to converge more rapidly. On the other hand, the

investor finds it optimal to take a larger position in the arbitrage for any

given value of At. Because of this latter effect, there can be paths where the

investor does worse than would be the case for a smaller value of a. The

standard deviation of the value of the arbitrage portfolio demonstrates
that uncertainty about the ultimate value of the portfolio is not resolved

evenly over time. In the early stages in the life of the arbitrage, the

standard deviation of the value of the optimal portfolio is fairly small.

As the final convergence date T is approached, however, the standard

deviation of the value of the arbitrage portfolio grows rapidly.

A detailed analysis of the returns from following the optimal strategy

reveals that returns have three primary sources. First, the investor benefits
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by investing directly in an arbitrage which then eventually converges. The

more frequently there is an arbitrage which then converges, the higher the

value of the portfolio at the final maturity. Second, the final value of

the portfolio is adversely affected by reaching the collateral constraint.

This can be seen in Figure 3, which graphs the final value of the portfolio
against the percentage of times that the collateral constraint is binding

along a path. There is a strong negative relation between the final value of

the portfolio and the frequency with which the collateral constraint is

binding. Intuitively this is because when the collateral constraint is bind-

ing and there is an increase in the size of the arbitrage, the investor is

forced to reduce his position at a loss rather than more aggressively

exploiting the wider arbitrage.

Figure 2
Graph of wealth versus the minimum value of wealth
The graph shows the relation between the final value and the minimum value of the optimal portfolio.
The initial value of the portfolio is 100. The initial value of the arbitrage A0 is zero and one, respectively,
in the the top and bottom graph. The parameter values are a ¼ 1, l ¼ 1, and s ¼ 1.
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Given these two effects, the investor does best when the value of the

arbitrage tends to return frequently to zero and stays away from larger

values which would then cause the collateral constraint to be binding more

frequently. This surprising implication is illustrated in Figure 4, which

plots the final value of the portfolio against the average value of the

arbitrage during its life. When the arbitrage is initially zero, the highest
final value of the portfolio tends to be for those paths for which the

average value of the arbitrage is close to zero. Similarly, when A0 ¼ 1,

the highest final values of the arbitrage portfolio tend to occur for paths

where the arbitrage returns quickly to the neighborhood of zero, resulting

in average values of At of between zero and one. Thus the highest returns

occur along paths where there is a steady flow of small arbitrages that

converge rapidly and where large widenings in the value of At do not

Figure 3
Graph of wealth versus the fraction of times the constraint is binding
The graph shows the relation between the final value of the optimal portfolio and the fraction of times
that the collateral constraint is binding. The initial value of the portfolio is 100. The initial value of the
arbitrage A0 is zero and one, respectively, in the top and bottom graph. The parameter values are a ¼ 1,
l ¼ 1, and s ¼ 1.
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occur. This is consistent with the well-known Wall Street description of

the business of relative value or arbitrage investing as ‘‘picking up nickels

in front of a steamroller.’’ The third source of returns is more subtle.

Because of the collateral constraint, the investor is forced to place any

cash generated by taking a position in the arbitrage into the riskless asset.

Since the arbitrage is a source of cash, the balance invested in the collateral

account tends to be larger when the investor takes a position in the
arbitrage. Over time, the excess funds in the riskless asset generate addi-

tional returns from the accrual of interest.

Although the eventual value of the optimal portfolio is on average

much higher than the riskless asset, the intermediate values of the port-

folio typically reflect losses at some point during the life of the arbitrage.

Table 4 reports pathwise statistics from following the optimal portfolio.

These pathwise statistics indicate that for a very high percentage of paths,

Figure 4
Graph of wealth and the average of the arbitrage
The graph shows the relation between the final value of the optimal portfolio and the average of the
arbitrage. The initial value of the portfolio is 100. The initial value of the arbitrage A0 is zero and one,
respectively, in the the top and bottom graph. The parameter values are a ¼ 1, l ¼ 1, and s ¼ 1.
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the minimum value of the optimal portfolio is actually less than its initial

value of 100. Specifically, the percentage of paths for which there is an

actual capital loss at some point during the life of the arbitrage is typically

in excess of 96%. Note that this is also true for the case where a ¼ 1, which
guarantees that the final value of the arbitrage is strictly greater than the

riskless asset. Clearly, the probability of the value of the portfolio drop-

ping below the value of the riskless asset at some point is even higher than

the probability of dropping below 100; Table 4 shows that the probability

of underperforming the riskless asset at some point during the investment

horizon is typically greater than 97%.

These results have many interesting implications for performance

expectations for hedge funds investing in arbitrage opportunities. These
results indicate that experiencing capital losses prior to the final horizon is

part of the inherent nature of investments in arbitrage opportunities in

markets with collateral constraints. Thus there is a definite ‘‘darkest

before dawn’’ nature to arbitrage investments. This contrasts dramatically

with the widely held view that investors in arbitrage opportunities should

never experience significant losses. An immediately corollary of this

widely held view is that arbitrage funds can experience losses only if they

Table 4
Pathwise summary statistics for the value of a portfolio following the optimal strategy

A0 l a s Percent
<100

Percent
<Rt

Percent
max. >WT

Average
tMin

Average
tMax

Average
min.

Average
max.

0 1 1 1 99.89 100.00 .17 .3605 .9999 75.34 278.85
0 1 1 2 99.91 100.00 .49 .4366 .9999 67.09 482.73
0 1 2 1 99.94 99.98 .57 .2532 .9997 75.81 420.94
0 1 2 2 99.96 99.99 1.74 .3170 .9985 65.64 995.60

0 10 1 1 99.50 99.86 .00 .1722 1.0000 96.85 120.27
0 10 1 2 99.71 99.89 .00 .2271 1.0000 93.13 135.31
0 10 2 1 99.38 99.72 .00 .1269 1.0000 97.27 125.42
0 10 2 2 99.69 99.84 .01 .1625 1.0000 94.00 147.20

1 1 1 1 98.60 98.66 .14 .1980 .9999 72.17 390.99
1 1 1 2 99.18 99.33 .50 .3538 .9999 65.27 541.30
1 1 2 1 97.86 97.98 .53 .1182 .9999 80.04 640.59
1 1 2 2 98.77 98.83 1.80 .2272 .9980 63.67 1183.97

1 10 1 1 97.64 98.49 .00 .1036 1.0000 97.67 125.20
1 10 1 2 98.63 99.00 .00 .1877 1.0000 93.32 138.73
1 10 2 1 96.55 97.42 .00 .0547 1.0000 98.42 131.35
1 10 2 2 98.26 98.65 .01 .1273 1.0000 94.89 151.57

This table reports summary statistics taken over 10,000 paths for the value of a portfolio where the
optimal strategy is followed. The final convergence date for the arbitrage is one year and the simulation
uses 10,000 discretization points per year in modeling the arbitrage process. The initial value of the
arbitrage is A0. The parameter l represents the margin requirement. The parameters a and s represent
the speed of convergence and the volatility of the arbitrage process. The riskless rate is 6%. Percent<100 is
the percentage of paths for which the minimum value of the portfolio was less than 100. Percent <Rt is the
percentage of paths for which the return on the portfolio was less than the riskless asset at some point.
Percent max. > WT is the percentage of paths for which the maximum value of the portfolio occurred
prior toT. The values of Average tMin and Average tMax are the average of the times at which the minimum
and maximum values of the arbitrage occurred. The values Average min. and Average max. are the
average minimum and maximum values of the portfolio.
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are not really investing in arbitrage opportunities, but speculating in

conventional types of investments. Our analysis, however, demonstrates

that this common wisdom is flawed. Losses during the early stages of an

arbitrage opportunity are almost inevitable for an investor pursuing an

optimal investment strategy in the arbitrage; during the early stages of the
arbitrage strategy, its returns may be observationally indistinguishable

from those of a severely distressed conventional portfolio. Finally,

Table 4 shows that the average minimum ranges from about 60 to 98 for

a portfolio initially worth 100. Thus an investor following an optimal

strategy can expect to be down as much as 40% at some point for some

parameter values. This again contrasts with the common view that true

arbitrage positions should never show losses.

One popular measure of the attractiveness of a portfolio’s return is the
traditional Sharpe ratio. To make our analysis of Sharpe ratios com-

patible with the ratios typically reported by the financial industry, we do

the following. For each simulated path, we compute the sample standard

deviation of changes in the value of the portfolio. We do this for horizons

of .25, .50, .75, and 1.00 year and take the excess return of the portfolio at

the same horizons over that of the riskless asset. Dividing the annualized

excess return by the annualized return gives the estimated Sharpe ratio.

We repeat this process for 10,000 paths and provide summary statistics for
the resulting distribution of Sharpe ratios at the various horizons. These

summary statistics are reported in Table 5. Figure 5 graphs the distribu-

tion of Sharpe ratios for selected values of the parameters.

The Sharpe ratios for investing in the arbitrage are quite variable. This

is particularly true at the early stages. At the convergence date, however,

the average Sharpe ratio is about two for all of the examples shown in

Table 5. Curiously, this is about the same as the average Sharpe ratio of

1.82 for the relative-value hedge funds reported as of December 3, 2001,
by the Web site HedgeFund.net, which tracks the performance of more

than 2,000 hedge funds.13 Figure 5 shows that most of the Sharpe ratios at

the final convergence date are between zero and four. Thus there is no

guarantee that a hedge fund following the optimal investment strategy will

have a Sharpe ratio even as large as that for the S&P 500.14

4. Conclusion

We examine the optimal investment policy of a risk-averse investor in a

market where there are textbook arbitrage opportunities and where the

13 On December 3, 2001, HedgeFund.net reports that the average Sharpe ratio for convertible arbitrage
hedge funds is 2.57, for fixed-income arbitrage funds is 1.86, for options arbitrage hedge funds is 2.10, and
for risk arbitrage hedge funds is 0.90.

14 For evidence about the return performance and trading strategies of hedge funds, see Fung and Hsieh
(1997, 1998) and Ackermann, McEnally, and Ravenscraft (1999).
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investor must post collateral against the risk of short positions. We find

that the optimal policy often results in the investor underinvesting in the

arbitrage by taking a smaller position than would be allowed by the

collateral constraint. Even when the optimal policy is followed, the initial

returns from the arbitrage strategy may be indistinguishable from those
from an ordinary portfolio with a losing track record.

There are many possible extensions of this analysis. Alternative pre-

ference structures or objective functions could be used in solving the

investor’s or hedge fund manager’s problem. A simple perturbation argu-

ment, however, suggests that our basic results hold for preference struc-

tures sufficiently close to logarithmic, and are not an artifact of the

myopic nature of logarithmic preferences. In fact, we conjecture that our

Table 5
Summary statistics for the annualized sharpe ratio

A0 l a s t Min. Mean Median Max. Std. Dev.

0 1 1 1 .250 �8.95 1.05 1.24 8.03 1.97
.500 �4.00 .85 1.00 5.98 1.38
.750 �2.51 .86 .85 5.13 1.03

1.000 .12 1.66 1.60 5.13 .67

0 1 1 2 .250 �9.05 1.08 1.24 8.03 1.94
.500 �3.98 .95 1.09 5.98 1.32
.750 �2.81 .99 1.10 5.13 1.06

1.000 .34 1.82 1.76 4.79 .63

0 1 2 1 .250 �7.70 1.07 1.20 7.99 2.00
.500 �2.97 .95 .92 5.94 1.26
.750 �1.64 1.06 1.01 5.02 .89

1.000 �.18 2.19 2.18 5.17 .70

0 1 2 2 .250 �7.72 1.23 1.37 7.99 1.91
.500 �3.96 1.12 1.23 5.94 1.29
.750 �2.10 1.15 1.12 5.02 .98

1.000 �.18 2.19 2.17 5.17 .70

1 1 1 1 .250 �6.36 .99 .86 8.14 2.06
.500 �3.10 1.05 .99 6.91 1.33
.750 �1.88 1.11 1.05 4.72 .95

1.000 .68 1.83 1.75 4.68 .61

1 1 1 2 .250 �6.22 1.14 1.29 8.11 1.96
.500 �3.91 1.06 1.20 5.48 1.33
.750 �2.86 1.07 1.16 4.79 1.05

1.000 .45 1.86 1.79 4.60 .62

1 1 2 1 .250 �4.45 1.56 1.35 8.11 1.80
.500 �1.83 1.50 1.42 6.71 1.11
.750 �.68 1.46 1.38 4.68 .80

1.000 .60 2.29 2.25 5.27 .65

1 1 2 2 .250 �6.11 1.38 1.57 8.27 1.92
.500 �3.07 1.26 1.32 5.58 1.28
.750 �1.98 1.24 1.20 4.96 .97

1.000 �.17 2.22 2.20 5.17 .70

This table reports summary statistics for the distribution of annualized Sharpe ratios based on 10,000
simulated paths. The final convergence date for the arbitrage is one year and the simulation uses 10,000
discretization points per year in modeling the arbitrage process. The Sharpe ratios are computed pathwise
from the annualized mean and standard deviations of changes in the value of the optimal portfolio. The
initial value of the arbitrage is A0. The parameter l represents the margin requirement. The parameters a
and s represent the speed of convergence and the volatility of the arbitrage process.
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results are true for virtually all risk-averse preferences. Furthermore,

using a simple binomial tree example, we can show that our results hold

in a discrete-time setting and are not an artifact of continuous-time

modeling. The primary message of this article, however, is that when the

real-world feature of collateral constraints is introduced, the economics of

arbitrage become fundamentally different. In particular, arbitrages be-

come risky investments, and the issue of whether there would be sufficient

demand from investors to completely eliminate them becomes relevant.

Appendix

Proof of Proposition 1. We first prove that because of the homogeneity of the problem, the

optimal portfolio strategy Nt must be of the form FtWt, where Ft is a function of t and At

only. The agent’s optimization problem is

max
N

Et½lnWT �, ðA:1Þ

Figure 5
Distribution of the Sharpe ratio
From top down, the graph shows the distribution of the annualized Sharpe ratio at time t ¼ .25, .50, .75,
and 1.00. The initial value of the portfolio is 100. The initial value of the arbitrage A0 is zero. The
parameter values are a ¼ 1, l ¼ 1, and s ¼ 1.
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subject to the constraints

dW ¼
�
rW �

�
rþ a

T � t

�
NA

�
dtþsNdZ,

Wt �ljNtj, ðA:2Þ

where Wt > 0 for all t, 0 � t � T. Since Wt > 0, Ft ¼ Nt

Wt
is well defined and the original

optimization problem is equivalent to the optimization problem

max
F

Et½lnWT �

subject to the constraints

dW ¼
�
r�

�
rþ a

T � t

�
FA

�
WdtþsFWdZ,

jFtj �
1

l
: ðA:3Þ

By an application of Itôo’s lemma,

lnWT ¼ lnWt þ rðT � tÞ�
Z T

t

��
rþ a

T � s

�
FAþ s2

2
F2

�
dsþsFdZ,

and the optimal F solves the following problem,

min
F

Et

�Z T

t

��
rþ a

T � t

�
FAþ s2

2
F2

�
ds

�
, ðA:4Þ

subject to the constraint

jFsj �
1

l
:

However, sinceWt does not appear in Equation (A.4) or the constraint, the optimal control F

can only depend on At and t. Hence Nt is of the form FtWt.

Turning now to the optimal F, note that a realization of a path of At does not depend on

the control F. Thus, minimizing the integral in Equation (A.4) pathwise for At clearly

minimizes the conditional expectation in Equation (A.4). Given a path of At, the problem

min
F

Z T

t

��
rþ a

T � s

�
FAþ s2

2
F2

�
ds, ðA:5Þ

subject to the constraint

jFsj �
1

l
,

can then be solved using standard calculus of variation techniques [see, e.g., Kamien and

Schwartz (1991)]. Given the quadratic form of the integrand in Equation (A.5), it is now

easily shown that the optimal portfolio strategy Nt is given by

Nt ¼

1

l
Wt, if At <�1

l

s2

ðrþ a
T�t

Þ,

�
rþ a

T�t

s2
AtWt, if jAtj �

1

l

s2

ðrþ a
T�t

Þ,

�1

l
Wt, if At >

1

l

s2

ðrþ a
T�t

Þ:

8>>>>>>>><
>>>>>>>>:

ðA:6Þ
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