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How to Discount Cashflows with Time-Varying
Expected Returns

ANDREW ANG and JUN LIU∗

ABSTRACT

While many studies document that the market risk premium is predictable and that
betas are not constant, the dividend discount model ignores time-varying risk pre-
miums and betas. We develop a model to consistently value cashflows with changing
risk-free rates, predictable risk premiums, and conditional betas in the context of a
conditional CAPM. Practical valuation is accomplished with an analytic term struc-
ture of discount rates, with different discount rates applied to expected cashflows at
different horizons. Using constant discount rates can produce large misvaluations,
which, in portfolio data, are mostly driven at short horizons by market risk premiums
and at long horizons by time variation in risk-free rates and factor loadings.

TO DETERMINE AN APPROPRIATE DISCOUNT RATE for valuing cashflows, a manager
is confronted by three major problems: the market risk premium must be esti-
mated, an appropriate risk-free rate must be chosen, and the beta of the project
or company must be determined. All three of these inputs into a standard CAPM
are not constant. Furthermore, cashflows may covary with the risk premium,
betas, or other predictive state variables. A standard Dividend Discount Model
(DDM) cannot handle dynamic betas, risk premiums, or risk-free rates because
in this valuation method, future expected cashflows are valued at constant
discount rates.

In this paper, we present an analytical methodology for valuing stochastic
cashflows that are correlated with risk premiums, risk-free rates, and time-
varying betas. All these effects are important. First, the market risk premium
is not constant. Fama and French (2002) argue that the risk premium moved to
around 2% at the turn of the century from 7% to 8% 20 years earlier.
Jagannathan, McGratten, and Scherbina (2001) also argue that the market
ex ante risk premium is time varying and fell during the late 1990s. Further-
more, a large literature claims that a number of predictor variables, including
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dividend yields (Campbell and Shiller (1988a, b)), risk-free rates (Fama and
Schwert (1977)), term spreads (Campbell (1987)), default spreads (Keim
and Stambaugh (1986)), and consumption–asset–labor deviations (Lettau and
Ludvigson (2001)), have forecasting power for market excess returns.

Second, the CAPM assumes that the riskless rate is the appropriate one-
period, or instantaneous, riskless rate, which in practice is typically proxied by
a 1-month or a 3-month T-bill return. However, it is highly unlikely that over
the long horizons of many corporate capital budgeting problems the riskless
rate remains constant. Since the total expected return comprises both a risk-
free rate and a risk premium, adjusted by a factor loading, time-varying risk-
free rates imply that total expected returns also change through time. Note
that even an investor who believes that the expected market excess return is
constant, and a project’s beta is constant, still faces stochastic total expected
returns as short rates move over time.

Finally, as companies grow, merge, or invest in new projects, their risk profiles
change. It is quite feasible that a company’s beta changes even in short intervals,
and it is very likely to change over 10- or 20-year horizons. There is substantial
variation in factor loadings even for portfolios of stocks, for example, industry
portfolios (Fama and French (1997)) and portfolios sorted by size and book-to-
market (Ferson and Harvey (1999)) ratio. The popularity of multifactor models
for computing unconditional expected returns (e.g., Fama and French (1993))
may reflect time-varying betas and conditional market risk premiums in a
conditional CAPM (see Jagannathan and Wang (1996)).

This paper presents, to our knowledge, the first analytic, tractable method
of discounting cashflows that embeds the effects of changing market risk pre-
miums, risk-free rates, and time-varying betas. Previous practice adjusts the
DDM by using different regimes of cashflow growth or expected returns (see
Lee, Myers, and Swaminathan (1999) for a recent example). These adjustments
are not made in an overall framework and so are subject to Fama’s (1996) cri-
tique of ad hoc adjustments to cashflows with changing expected returns. In
contrast, our valuation is done in an internally consistent framework.

Our valuation framework significantly extends the current set of analytic
present value models developed in the affine class (see, among others, Ang
and Liu (2001), Bakshi and Chen (2001), Bekaert and Grenadier (2001)). If
a security’s beta is constant and the market risk premium is time varying,
then the price of the security would fall into this affine framework. Similarly,
the case of a time-varying beta and a constant market risk premium can also
be handled by an affine model. However, unlike our setup, the extant class of
models cannot simultaneously model time variation in both beta and the market
risk premium. This is because the expected return involves a product of two
stochastic, predictable variables (beta multiplied by the market premium).

We derive our valuation formula under a very rich set of conditional ex-
pected returns. Our functional form for time-varying expected returns nests
the specifications of the conditional CAPM developed by Harvey (1989), Ferson
and Harvey (1991, 1993, 1999), Cochrane (1996), and Jagannathan and Wang
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(1996), among others. These studies use instrumental variables to model the
time variation of betas or market risk premiums. In our framework, short
rates also vary through time. The setup also incorporates correlation between
stochastic cashflows, betas, and risk premiums.

To adapt our valuation framework to current practice in capital budgeting,
we compute a term structure of discount rates applied to random cashflows.
Practical cashflow valuation separates the problem into two steps: first, es-
timate the expected future cashflows of a project or security, and then take
their present value, usually by applying a constant discount rate. Instead of
applying a constant discount rate, we compute a series of discount rates, or
spot expected returns, which can be applied to a series of expected cashflows.
The model incorporates the effects of changing market risk premiums, risk-free
rates, and time-varying betas by specifying a different discount rate for each
different maturity.

Brennan (1997) also considers the problem of discounting cashflows with
time-varying expected returns and proposes a term structure of discount rates.
Our model significantly generalizes Brennan’s formulation. In his setup, the
beta of the security is constant and only the risk premium changes. Further-
more, his discount rates can only be computed by simulation and were not
applied to valuing predictable cashflows. In contrast, our discount rates are
tractable, analytic functions of a few state variables known at each point in
time. We use this analytic form to attribute the mispricing effects of time-
varying discount rates.

We illustrate a practical application of our theoretical framework by working
with cashflows and expected returns of portfolios sorted by book-to-market
ratios and industry portfolios. First, we compute the term structure of discount
rates at the end of our sample, December 2000, for each portfolio. At this point
in time, the term structure of discount rates is upward sloping and much lower
than a constant discount rate computed from the CAPM. Second, we compute
the potential mispricing of ignoring the time variation of expected returns. To
focus on the effects of time-varying discount rates, we compute the value of a
perpetuity of an expected cashflow of $1 received each year, using the term
structure of discount rates from each portfolio. Ignoring time-varying expected
returns can induce large potential misvaluations; mispricings of over 50% using
a traditional DDM are observed.

To determine the source of the mispricings, we use our model to decompose
the variance of the spot expected returns into variation due to each of the
separate components betas: risk-free rates and the risk premium. We find that
most of the variation is driven by changes in beta and risk-free rates at long
horizons, while it is most important to take into account the variation of the
risk premium at short horizons.

The rest of this paper is organized as follows. Section I presents a model for
valuing stochastic cashflows with time-varying expected returns. In Section II,
we show how to compute the term structure of discount rates corresponding to
our valuation model and derive variance decompositions for the discount rates.
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We apply the model to data, which we describe in Section III. The empirical
results are discussed in Section IV. Section V concludes.

I. Valuing Cashflows with Time-Varying Expected Returns

In this section, our contribution is to develop a closed-form methodology for
computing spot discount rates in a system that allows for time-varying cashflow
growth rates, betas, short rates, and market risk premiums. We begin with the
standard definition of a security’s expected return.

An asset pricing model specifies the expected return of a security, where the
log expected return µt is defined as1

exp(µt) = Et

[
Pt+1 + Dt+1

Pt

]
, (1)

where Pt is the price and Dt is the cashflow of the security. If, in addition, the
cashflow process Dt is also specified, then the price Pt of the security can be
written as

Pt = Et

[ ∞∑
s=1

(
s−1∏
k=0

exp(−µt+k)

)
Dt+s

]
. (2)

Equation (2) can be derived by iterating equation (1) and assuming transver-
sality.

A traditional Gordon model formula assumes that the expected return is
constant, µt = µ̄, and the expected rate of cashflow growth is also constant:

Et[Dt exp(gt+1)] = Et[Dt+1] = Dt exp( ḡ ).

In this case, the cashflow effects and the discounting effects can be separated:

Pt =
∞∑

s=1

Et[Dt+s]
exp(sµ̄)

. (3)

This reduces equation (2) to

Pt

Dt
=

∞∑
j=1

exp(−s · (µ̄ − ḡ )) = 1
exp(µ̄ − ḡ ) − 1

,

which is the DDM formula, expressed with continuously compounded returns
and growth rates.

However, as many empirical and theoretical studies suggest, expected re-
turns and cashflow growth rates are time varying and correlated. When this
is the case, the simple discounting formula (3) does not hold. In particular, the
effect of the cashflow growth rates cannot be separated from the effect of the

1 In equation (1), expected returns are continuously compounded to make the mathematical
exposition simpler.
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time-varying discount rates. We must then evaluate equation (2) directly. In
order to take this expectation, we specify a rich class of conditional expected
returns.

Consider a conditional log expected return µt specified by a conditional CAPM:

µt = α + rt + βtλt , (4)

where α is a constant, rt is a risk-free rate, βt is the time-varying beta, and λt
is the time-varying market risk premium. In the class of conditional CAPMs
considered by Harvey (1989), Shanken (1990), Ferson and Harvey (1991, 1993),
and Cochrane (1996), among others, the time-varying beta or risk premium are
parameterized by a set of instruments zt in a linear fashion. For example, the
conditional risk premium can be predicted by zt:

λt ≡ Et
[

ym
t+1 − rt

] = b0 + b′
1zt , (5)

where ym
t+1 − rt is the log excess return on the market portfolio. Similarly, the

conditional beta can be predicted by zt and past betas:

Et[βt+1] = c0 + c′
1zt + c2βt . (6)

The instrumental variables zt may be any variables that predict cashflows,
betas, or aggregate returns. For example, Harvey (1989) specifies expected re-
turns of securities to be a linear function of market returns, dividend yields,
and interest rates. Jagannathan and Wang (1996) allow for conditional expected
market returns to be a function of labor and interest rates. Ferson and Harvey
(1991, 1993) allow both time-varying betas and market risk premiums to be
linearly predicted by factors such as inflation, interest rates, and GDP growth,
while Ferson and Korajzyck (1995) allow time-varying betas in an APT model.
In Cochrane (1996), betas can be considered to be a linear function of sev-
eral instrumental variables, which also serve as the conditioning information
set.

To take the expectation (2), we need to know the evolution of the instruments
zt, the betas βt, and the cashflows of the security gt, where gt+1 = ln(Dt+1/Dt).
Suppose we can summarize these variables by a K × 1 state-vector Xt, where
Xt = (gtβtz′

t)
′. The first and second elements of Xt are cashflow growth and

the beta of the asset, respectively, but this ordering is solely for convenience.
Suppose that Xt follows a VAR(1):

X t = c + �X t−1 + �1/2εt , (7)

where εt ∼ IID N(0, I). The one-order lag specification of this process is not
restrictive, as additional lags may be added by rewriting the VAR into a com-
panion form. Note that the instrumental variables zt can predict betas, as well
as market risk premiums, through the companion form � in (7).

The following proposition shows how to compute the price of the security (2)
in closed form:
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PROPOSITION 1: Let Xt = (gtβtz′
t)

′, with dimensions K × 1, follow the process in
equation (7). Suppose the log expected return (1) takes the form

µt = α + ξ ′X t + X ′
t�X t , (8)

where α is a constant, ξ is a K × 1 vector and � is a symmetric K × K matrix.
Then, assuming existence, the price of the security is given by

Pt = Et

[ ∞∑
s=1

(
s−1∏
k=0

exp(−µt+k)

)
Dt+s

]
,

Pt

Dt
=

∞∑
n=1

exp(a(n) + b(n)′X t + X ′
t H(n)′X t),

(9)

where the coefficients a(n) is a scalar, b(n) is a K × 1 vector, and H(n) is a
K × K symmetric matrix. The coefficients a(n), b(n), and H(n) are given by the
recursions:

a(n + 1) = a(n) − α + (e1 + b(n))′c + c′H(n)c − 1
2 ln det(I − 2�H(n))

+ 1
2 (e1 + b(n) + 2H(n)c)′(�−1 − 2H(n))−1(e1 + b(n) + 2H(n)c),

b(n + 1) = −ξ + �′(e1 + b(n)) + 2�′H(n)c

+ 2�′H(n)(�−1 − 2H(n))−1(e1 + b(n) + 2H(n)c),

H(n + 1) = −� + �′H(n)� + 2�′H(n)(�−1 − 2H(n))−1 H(n)�,

(10)

where e1 represents a vector of zeros with a 1 in the first place and

a(1) = −α + e′
1c + 1

2 e′
1�e1,

b(1) = −ξ + �′e1,

H(1) = −�.

(11)

The general formulation of the expected return in equation (8) can be applied
to the following special cases:

1. First, the trivial case is that µt = µ̄ is constant, so ξ = � = 0, α > 0, giving
the standard DDM in equation (3).

2. Second, equation (8) nests a conditional CAPM relation with time-varying
betas and short rates by specifying zt = rt, the short rate, so Xt = (gtβtrt)′.
The one-period expected return follows:

µt = α + rt + βt λ̄ = α + (e3 + λ̄e2)′X t , (12)

where λ̄ is the constant market risk premium and ei represents a vector
of zeros with a 1 in the ith place. Hence, we can set ξ = (e3 + λe2) and
� = 0.
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3. Third, if the market risk premium is predictable, but the security or
project’s beta is constant (βt = β̄), then we can specify Xt = (gtrtzt)′, where
zt are predictive instruments forecasting the market risk premium:

λt ≡ Et
[

ym
t+1 − rt

] = b0 + b′
1zt .

The expected return then becomes

µt = α + rt + β̄λt = α + (e2 + β̄b1)′X t ,

so we can set ξ = (e2 + β̄b1) and � = 0.
4. Finally, we can accommodate both time-varying betas and risk premiums.

If the market risk premium λt = b0 + b′
1zt and Xt is given by our full speci-

fication Xt = (gtβtz′
t)

′, then the conditional expected return can be written
as

µt = α + rt + λtβt = α + rt + b0βt + βt(b′
1zt). (13)

If rt is included in the instrument set zt, then equation (13) takes the form
of equation (8) for appropriate choices of ξ and �. The quadratic term �

is now nonzero to reflect the interaction term of βt(b′
1zt).

The quadratic Gaussian structure of the discount rate µt in equation (8)
results from modeling the interaction of stochastic betas and stochastic risk
premiums. Quadratic Gaussian models have been used in the finance literature
in other applications. For example, Constantinides (1992) and Ahn, Dittmar,
and Gallant (2002) develop quadratic Gaussian term structure models. Kim
and Omberg (1996), Campbell and Viceira (1999), and Liu (1999), among others,
apply quadratic Gaussian structures in portfolio allocation.

The pricing formula in equation (9) is analytic because the coefficients a(n),
b(n), and H(n) are known functions and stay constant through time. Prices move
because cashflow growth or state variables affecting expected returns change in
Xt. The class of affine present value models in Ang and Liu (2001), Bakshi and
Chen (2001), and Bekaert and Grenadier (2001) only have the scalar and linear
recursions a(n) and b(n). Our model has an additional recursion for a quadratic
term H(n). The extant class of present value models is unable to handle the
interaction between betas and risk premiums. Note that the quadratic H(n)
term also affects the recursions of a(n) and b(n).2

In our analysis, we consider only a CAPM formulation with time-varying
betas and time-varying market risk premiums, but Proposition 1 is general
enough to model time-varying betas for multiple factors, as well as time-varying
risk premiums for multiple factors. This generalized setting would include lin-
ear multifactor models, like the Fama and French (1993) three-factor model.
In this case, Xt would now include time-varying betas with respect to each of

2 Alternative approaches are taken by Berk, Green, and Naik (1999), who use a dynamic options
approach, and Menzly, Santos, and Veronesi (2003), who price stocks in a habit economy by spec-
ifying the fraction each asset contributes to total consumption. In contrast, we specify exogenous
cashflows in a way that is easily adaptable to current valuation practice.
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the factors, and the instrumental variables zt could predict each of the factor
premiums.

In Proposition 1, we assume that beta is an exogenous process and solve
endogenously for the price of the security. Using the exogenously specified ex-
pected returns and cashflows, we can construct return series for individual
assets, and, if the number of shares outstanding of each asset is specified, we
can construct the return series of the market portfolio. We can compute the
covariance of an individual stock return and the aggregate market portfolio,
and hence compute the implied beta of the stock from returns. Therefore, beta
is both an input to the model and an output of the model. The beta specified as
an input into the VAR in equation (7) and the resulting beta from the implied
returns from Proposition 1 are not necessarily the same. To see this, our model
assumes that the market return takes the following form:

ym
t+1 − rt = λt(X t) + σm

t (X t)vm
t+1, (14)

where λt is the same market risk premium in equation (4). The continuously
compounded returns of security i implied by the prices from Proposition 1 satisfy

yi
t+1 − rt + 1

2

(
σ i

t (X t)
)2 = βi

t

(
ym

t+1 − rt
) + σ i

t (X t)ui
t+1, (15)

where 1
2 (σ i

t (X t))2 is the Jensen’s term from working in continuously compounded
returns, yi

t+1 − rt is the excess return for asset i, and σ i
t (Xt) is the idiosyncratic

volatility of asset i that depends on state variables.3

We obtain returns in equation (15) using the relation yt+1 = (1 + Pt+1/Dt+1)/
(Pt/Dt) × exp(gt+1). Heteroskedasticity in returns arises from the nonlinear
form of equation (9), even though the driving process for Xt in equation (7) is
homoskedastic. The beta β i

t specified in the VAR in equation (7) is not the same
as covt( yi

t+1, ym
t+1)/(σm

t )2 in equation (15). If we also aggregate the returns of
individual stocks by multiplying equation (15) by the market weights ωi of each
asset i, we do not obtain equation (14). This is because of the heteroskedastic
Jensen’s term 1

2 (σ i
t (X t))2 introduced by the stock valuation equation (9). How-

ever, we would expect the discrepancy to be small, because σ i
t (Xt)2 in (15) is

small.
The model’s implied beta from returns can be made the same as the model’s

beta in the VAR in three ways. First, we can simply ignore the small Jensen’s
term in equation (15). Second, we can perform a Campbell and Shiller (1988b)
log-linearization on the returns implied from Proposition 1, equation (9),
and then rewrite equation (15) using log-linearized returns. Both of these

3 Equations (14) and (15) represent an arbitrage-free specification, since there is a strictly posi-
tive pricing kernel mt+1 that supports these returns:

mt+1 = R−1
t exp

(
−1

2
λ2

t

(σ m
t )2

− λt

σ m
t

vm
t+1

)
,

where Rt is the gross risk-free rate Rt = exp(rt).
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approximations imply that an asset’s returns satisfy a conditional version of an
APT model, where ∑

i

ωiβ
i
t = 1 and

∑
i

ωiσ
iui

t+1 = 0.

The second relation is the standard assumption of a factor or APT model. That
is, as the number of assets becomes large, diversification causes idiosyncratic
risk to tend to zero.

Finally, we can change the model specification. Proposition 1 specifies the
log discount rate to be a quadratic Gaussian process. This ensures that the
discount rate is always positive. Instead, we could work in simple returns, fol-
lowing the conditional CAPM specified by Ferson and Harvey (1993, 1999). If
we specify the simple discount rate to be a quadratic Gaussian process, then
equation (9) would become the sum of quadratic Gaussian multiplied by ex-
ponential quadratic Gaussian terms, extending Ang and Liu (2001). Then, the
implied simple returns would satisfy equation (15) without the Jensen’s term,
and the model’s beta used as an input into the VAR would be consistent with
the implied model beta from returns. However, this has the disadvantage of al-
lowing negative discount rates and does not allow a term structure of discount
rates for valuation to be easily computed (below).

A final comment is that, like any present value or term structure model,
Proposition 1 has an implied stochastic singularity. By exogenously specifying a
beta, risk premium, and risk-free rate, we specify an expected return. Combined
with the cashflow process, this implies a market valuation that may not equal
the observed market price of the stock.

II. The Term Structure of Expected Returns

Current practical capital budgeting is a two-step procedure. First, managers
compute expected future cashflows Et[Dt+s] from projections, analysts’ fore-
casts, or from extrapolation of historical data. A constant discount rate is com-
puted, usually using the CAPM (see Graham and Harvey (2001)). The second
step is to discount expected cashflows using this discount rate. The DDM allows
this separation of cashflows and discount rates only because expected returns
are assumed to be constant.

Although Proposition 1 allows us to value stochastic cashflows with time-
varying returns, it is hard to directly apply the proposition to practical situ-
ations where the expected cashflow stream is separately estimated. To adapt
current practice to allow for time-varying expected returns, we maintain the
separation of the problem of estimating future cashflows and discounting the
cashflows. However, we change the second part of the DDM valuation method.
In particular, instead of a constant discount rate, we apply a series of dis-
count rates to the expected future cashflows, where each expected future cash-
flow is discounted at the discount rate appropriate to the maturity of the
cashflow.
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Et[Dt+1] Et[Dt+2] Et[Dt+3]

t t+1 t+2 t+3

µt( 1 )

µt( 2 )

µt( 3 )

Figure 1. The spot discount curve µt(n). The spot discount curve µt(n) is used to discount an
expected risky cashflow Et [Dt+n] of a security at time t + s back to time t. The spot expected return
µt(n) solves:

Et

[(
n−1∑
k=0

exp(−µt+k)

)
Dt+n

]
= Et [Dt+n]

exp(n · µt (n))
,

where µt is the one-period expected return from t to t + 1.

This series of discount rates is computed to specifically take into account the
time variation of expected returns. That is, we specify a series of discount rates
µt(n) for horizon n where

Pt = Et

[ ∞∑
s=1

(
s−1∏
k=0

exp(−µt+k)

)
Dt+s

]
=

∞∑
s=1

Et[Dt+s]
exp(s · µt(s))

. (16)

Each different expected cashflow at time t + n, Et(Dt+n), is discounted back at
its own expected return µt(n), as illustrated in Figure 1.

To show how the term structure of discount rates µt(s) can incorporate the
effects of time-varying conditional expected returns, we introduce the following
definition:

DEFINITION 1: A “spot expected return” or “spot discount rate” µt(n) is a discount
rate that applies between time t and t + n and is determined at time t. The spot
expected return is the value µt(n), which solves

Et

[(
n−1∏
k=0

exp(−µt+k)

)
Dt+n

]
= Et[Dt+n]

exp(n · µt(n))
. (17)

The series {µt(n)} varying maturity n is the term structure of expected returns or
discount rates.

In equation (17), the LHS of the equation is a single term in the pricing equa-
tion (2). Using this definition enables equation (2) to be rewritten as (16).
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The definition in equation (17) is a generalization of the term structure of
discount rates in Brennan (1997). Brennan restricts the time variation in ex-
pected returns to come only from risk-free rates and market risk premiums,
but ignores other sources of predictability (like time varying betas and cash-
flows). The spot expected returns µt(n) depend on the information set at time
t, and, as time progresses, the term structure of discount rates changes. Note
that the one-period spot expected return µt(1) is just the one-period expected
return applying between time t and t + 1, µt(1) ≡ µt.

To compute the spot expected returns µt(s), we use the following proposition:

PROPOSITION 2: Let Xt = (gtβtz′
t)

′ follow the process in equation (7) and the one-
period expected return µt follow equation (8). Then, assuming existence, the spot
expected return µt(n) is given by

µt(n) = A(n) + B(n)′X t + X ′
tG(n)X t , (18)

where A(n) is a scalar, B(n) is a K × 1 vector, and G(n) is a K × K symmet-
ric matrix. In the coefficients A(n) = (ā(n) − a(n))/n, B(n) = (b̄(n) − b(n))/n, and
G(n) = −H(n)/n, a(n), b(n) and H(n) are given by equation (10) in Proposition 1.
The coefficients ā(n) and b̄(n) are given by the recursions:

ā(n + 1) = ā(n) + e′
1c + b̄(n)′c + 1

2 (e1 + b̄(n))′�(e1 + b̄(n))

b̄(n + 1) = �′(e1 + b̄(n)), (19)

where e1 represents a vector of zeros with a 1 in the first place and

ā(1) = e′
1c + 1

2 e′
1�e1

b̄(1) = �′e1. (20)

Note that µt(n) is a quadratic function of Xt, the information set at time t.
This is because the price of the security or asset is a function of exponential
quadratic terms of Xt in equation (9). As Xt changes through time, so do the spot
expected returns. This reflects the conditional nature of the expected returns,
which depend on the state of the economy summarized by Xt. Like the term
structure of interest rates, the term structure of discount rates can take a
variety of shapes, including upward sloping, downward sloping, humped and
inverted shapes.

Besides being easily applied in practical situations, there are several reasons
why our model’s formulation of spot expected returns is useful in the context of
valuing cashflows. First, we compute the term structure of expected returns by
specifying models of the conditional expected return from a rich class of condi-
tional CAPMs, used by many previous empirical studies. We can estimate the
discount curve for individual firms by looking at discount curves for industries
or for other groups of firms with similar characteristics (e.g., stocks with high
or low book-to-market ratios).

Second, direct examination of the discount rate curve gives us a quick guide
to potential mispricings between taking or not taking into account time-varying
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expected returns. The greater the magnitude of the difference between the dis-
count rates µt(n) and a constant discount rate µ̄, the greater the misvaluation.
This difference is exacerbated at early maturities, where the time value of
money is large. Since the expected cashflows are the same in the numerator of
each expression in equations (3) and (16), by looking at the difference between
the discount curve {µt(n)} and the constant expected return µ̄ used in the stan-
dard DDM, we can compare a valuation that takes into account the effects of
changing expected returns to a valuation that ignores them.

Third, it may be no surprise that accounting for time-varying expected re-
turns can lead to different prices from using a constant discount rate from an
unconditional CAPM. What is economically more important is quantifying the
effects of time-varying expected returns by looking at their underlying sources
of variation. Our analytic term structure of discount rates in Proposition 2
allows us to attribute the effect of time-varying expected returns into their
different components. For example, are time-varying risk-free rates the most
important source of variation of conditional expected returns, or is it more im-
portant to account for time variation in the risk premium?

Finally, the discount curve is analogous to the term structure of zero-coupon
rates. In fixed income, cashflows are known, and the zero-coupon rates rep-
resent the present value of $1 to be received at different maturities in the
future. In equities, cashflows are stochastic (and are correlated with the time-
varying expected return), and µt(n) represents the expected, rather than cer-
tain, return of receiving future cashflows in the future at time t + n. In fixed-
income markets, zero-coupon yields are observable, while in equity markets the
spot discount rates are not observable. However, potentially one can obtain the
term structure of expected returns from observing the prices of stock futures
contracts of different maturities. For example, if a series of derivative securi-
ties were available, with each derivative security representing the claim on a
stock’s dividend, payable only in each separate future period, the prices of these
derivative securities would represent the spot discount curve. Given the lack of
suitable traded derivatives, particularly on portfolios, we directly estimate the
discount curves.

If a conditional CAPM is correctly specified, the constant α in equations (4) or
(8) should be zero. Since the subject of this paper is to illustrate how to discount
cashflows with time-varying expected returns, rather than correctly specifying
an appropriate conditional CAPM, in our empirical calibration, we include an
α in the stock’s conditional expected return. Proposition 2 does not require the
conditional CAPM to be exactly true. Hence, we include a constant to capture
any potential misspecifications from a true conditional CAPM.

In addition to conducting a valuation incorporating all the time-varying risk-
free, risk premium, and beta components, we also compute discount curves
relative to two more special cases. First, if an investor correctly takes into
account the time-varying market risk premium, but ignores the time-varying
beta, this also results in a misvaluation. We can measure this valuation by
estimating a system Xt = (gtrtzt)′ that omits the time-varying beta and by using
a constant beta in the expected return µt = α + rt + β̄λt . The constant beta can
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be estimated using an unconditional CAPM. Second, an investor can correctly
measure the time-varying beta, but ignore the predictability in the market
risk premium. In this second system, the investor uses an expected return
µt = α + rt + βt λ̄, where λ̄ is the unconditional mean of the market log excess
return.

A. The Time Variation in Discount Rates

To investigate the source of the time variation in discount rates, we can com-
pute the variance of the discount rate var(µt(n)), using the following corollary:

COROLLARY 1: The variance of the discount rate var(µt(n)) is given by

var(µt(n)) = B(n)′�X B(n) + 2tr
(
(�X G(n))2), (21)

where �X is the unconditional covariance matrix of Xt, given by �X =
devec((I − � ⊗ �)−1vec(�)).

It is possible to perform an approximate variance decomposition on (22), given
by the following corollary:4

COROLLARY 2: The variance of µt(n) can be approximated by

var(µt(n)) = (B(n) + 2G(n)X )′�X (B(n) + 2G(n)X ), (22)

ignoring the quadratic term in equation (21), where X = (I − �)−1c is the un-
conditional mean of Xt.

We can use equation (22) to attribute the variation of µt(n) to variation of each
of the individual state variables in Xt. However, some of the sources of variation
we want to examine are transformations of Xt, rather than Xt itself. For example,
a variance decomposition with respect to cashflows (gt) or betas (βt) can be
computed using equation (22) because gt and βt are contained in Xt. However,
a direct application of equation (22) does not allow us to attribute the variation
of µt(n) to sources of uncertainty driving the time variation in the market risk
premium λt, since λt is not included in Xt, but is a linear transformation of Xt. To
accommodate variance decompositions of linear transformations of Xt, we can
rewrite equation (22) using the mapping Zt = L−1(Xt − l) for L a K × K matrix
and l a K × 1 vector:

var(µt(n)) = (B(n) + 2G(n)X )′L�Z L′(B(n) + 2G(n)X ), (23)

where �Z = L−1�X (L′)−1.
Orthogonal variance decompositions can be computed using a Cholesky, or

similar, orthogonalizing transformation for �X or �Z. However, in our work,

4 The variance from the higher-order terms are extremely small, for our empirical values.



2758 The Journal of Finance

our variance decompositions do not sum to 1. For a single variable, we count
all the contributions in the variance of that variable, together with all the co-
variances with each of the other variables. Hence, our variance decompositions
double count the covariances, but are not subject to an arbitrary orthogonaliz-
ing transformation.

III. Empirical Specification and Data

The model presented in Section II is very general, only needing cashflows
and betas to be included in a vector of state variables Xt. To illustrate the
implementation of the methodology, we specify the vector Xt that we use in
our empirical application in Section A. Section B describes the data and the
calibration.

A. Empirical Specification

We specify Xt as Xt = (gtβt�potrtcaytπt)′, where gt is cashflow growth, βt is
the time-varying beta, �pot is the change in the payout ratio, rt is the nomi-
nal short rate, cayt is Lettau and Ludvigson’s (2001) deviation from trend of
consumption–asset–labor fluctuations, and πt is ex post inflation. We motivate
the inclusion of these variables as follows.

First, to predict the risk premium, we use nominal short rates rt and cayt. To
be specific, we parameterize the market risk premium as

λt = b0 + brrt + bcaycayt . (24)

While many studies use dividend yields to predict market excess returns (see
Campbell and Shiller (1988a)), we choose not to use dividend yields because
this predictive relation has grown very weak during the 1990s (see Ang and
Bekaert (2002), Goyal and Welch (2003)). In contrast, Ang and Bekaert (2002)
and Campbell and Yogo (2002) find that the nominal short rate has strong
predictive power, at high frequencies, for excess aggregate returns. Lettau and
Ludvigson (2001) demonstrate that cayt is a significant forecaster of excess re-
turns, at a quarterly frequency, both in-sample and out-of-sample. Both of these
predictive instruments have stronger forecasting ability than the dividend yield
for aggregate excess returns.

Second, to help forecast dividend cashflows gt, we use the change in the
payout ratio, which can be considered to be a measure of earnings growth in
Xt. Vuolteenaho (2002) shows that variation in firm-level earnings growth ac-
counts for a large fraction of the variation of firm-level stock returns. However,
earnings growth is difficult to compute for stock portfolios with high turnover.
Instead, we use the change in the payout ratio, the ratio of dividends to earnings.
This is equivalent to including earnings growth, since the change in the pay-
out ratio, together with gt, contains equivalent information. To show this, if we
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denote earnings at time t as Earnt, then gross earnings growth Earnt/Earnt−1
can be expressed as

Earnt

Earnt−1
=

(
1/pot

1/pot−1

)
exp(gt),

where pot = Dt/Earnt represents the payout ratio.
Finally, since movements in nominal short rates must be due either to move-

ments in real rates or inflation, we also include the ex post inflation rate πt in
Xt. This has the advantage of allowing us to separately examine the effects of
the nominal short rate or the real interest rate.

To map the notation of Propositions 1 and 2 into this setup, we can specify
the formulation of the one-period expected return in equation (8) as follows:

µt = α + rt + λtβt

= α + e′
4 X t + (b0 + brrt + bcaycayt)βt

= α + ξ ′X t + X ′
t�X t , (25)

where ξ = (e4 + b0e2) and � is given by

� =




0 0 0 0 0 0

0 0 0 br/2 bcay/2 0

0 0 0 0 0 0

0 br/2 0 0 0 0

0 bcay/2 0 0 0 0




.

By applying Corollary 2, we can attribute the variation of µt(n) to linear
transformations of Xt. For example, to compute the variance decomposition
of µt(n) to the risk premium λt, we can transform Xt = (gtβt�potrtcaytπt)′ to
Zt = (gtβt�potrtλtπt)′ using the mapping

X t = l + LZt ,

where l is a constant vector and L is a 6 × 6 matrix given by

L =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 − br
bcay

1
bcay

− br
bcay

0 0 0 0 0 1




.
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B. Data Description and Estimation

To illustrate the effect of time-varying expected returns on valuation, we
work with 10 book-to-market sorted portfolios and the Fama and French (1997)
definitions of industry portfolios.5 We focus on these portfolios because of the
well-known value effect and because industry portfolios have varying exposure
to various economic factors (see Ferson and Harvey (1991)). For the book-to-
market portfolios, we focus on the deciles 1, 6, and 10, which we label “growth,”
“neutral,” and “value,” respectively. We use data from July 1965 to December
2000 for the book-to-market decile portfolios and from January 1964 to Decem-
ber 2000 for the industry portfolios. All portfolios are value-weighted.

To estimate dividend cashflow growth rates of the portfolios, we compute
monthly dividends as the difference between the portfolio value-weighted re-
turns with dividends and capital gains, and the value-weighted returns exclud-
ing dividends:

Pt+1/12 + Dt+1/12

Pt
− Pt+1/12

Pt
= Dt+1/12

Pt
,

where the frequency 1/12 refers to monthly data. The bar superscript in the
variable Dt+1/12 denotes a monthly, as opposed to annual, dividend. To compute
annual dividend growth, we sum up the dividends over the past 12 months, as
is standard practice to remove seasonality (see Hodrick (1992)):

Dt =
11∑

i=0

Dt−i/12.

Growth rates of cashflows are constructed taking logs gt = log(Dt/Dt−1). These
cashflow growth rates represent annual increases of cashflows but are mea-
sured at a monthly frequency.

To estimate time-varying betas on each portfolio, we employ the following
standard procedure, dating back to at least Fama and MacBeth (1973). We run
rolling 60-month regressions of the excess total return of the portfolio on a
constant and the excess market risk return:

ȳτ/12 − r̄(τ−1)/12 = αt + βt
(

ȳm
τ/12 − r̄(τ−1)/12

) + uτ , (26)

where all returns are continuously compounded, ȳτ/12 is the portfolio’s log total
return over month τ , r̄(τ−1)/12 is the continuously compounded 1-month risk-free
rate (the 1-month T-bill rate) from (τ − 1)/12 to τ/12, and ȳm

τ/12 is the market’s
log total return over month τ . The regression is run at a monthly frequency
from τ = t − 60/12 to τ = t. The time series of the estimated linear coefficients
in the regression (26) is the observable time series of the portfolio betas βt. We
compute an α in equation (4) so that the average portfolio excess return in the
data is matched by this series of betas.

5 We exclude the industry portfolios Health, Miscellaneous, and Utilities because of missing
data.
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While this estimation procedure is standard and has been used by several
authors to document time-varying betas, including recently Fama and French
(1997), it is not the optimal method to estimate betas. If the VAR is correctly
specified, then we should be able to infer the true, unobservable betas from the
data of realized returns, as well as the other observable variables in Xt, in a
more efficient fashion. For example, Adrian and Franzoni (2002) use a Kalman
filter to estimate time-varying betas, while Ang and Chen (2002) and Jostova
and Philipov (2002) employ a Gibbs sampler. However, these estimations are
complex, and it is not the aim of this paper to use sophisticated econometric
methods to estimate betas. Rather, we focus on discounting cashflows under
time-varying betas, using a simple, standard procedure for estimating betas as
an illustration.

To predict the market risk premium, we estimate the coefficients in the re-
gression implied from equation (24):

ym
t+1 − rt = b0 + brrt + bcaycayt + εt+1, (27)

where ym
t+1 − rt is an annual market excess return, using a 1-year ZCB risk-free

rate. To form annual monthly returns, we first compute monthly log total re-
turns on the market portfolio from month t/12 to (t + 1)/12 and then aggregate
over 12 months to form annual log returns:

ym
t+1 =

12∑
i=1

ȳm
t+i/12.

We use the monthly data in Lettau and Ludvigson (2002) to construct a series
of cayt, which uses data only up to time t to estimate a cointegrating vector to
estimate the consumption–wealth–labor deviation from trend at time t. This
avoids any look-ahead bias in the construction of cayt (see Brennan and Xia
(2002), and Hahn and Lee (2002)). All returns are continuously compounded,
and the regression is run at a monthly frequency, but with an annual horizon.

We estimate our VAR in equation (7) and the predictability regression of ag-
gregate excess returns in equation (27) at an annual horizon. That is, t to t + 1
represents 1 year. Hence, we use 1-year ZCB risk-free rates rt, year-on-year log
CPI inflation πt, and an annual change in the payout ratio, �pot, in the VAR.
We define the payout ratio of year t to be the ratio of the sum of annual div-
idends to summed annual earnings per share, excluding extraordinary items,
of the companies in the portfolio. To compute this, we use the COMPUSTAT
annual file, and extract dividends and earnings of companies in the portfolio in
December of year t. We exclude any companies with negative earnings.

To gain efficiency in estimating the VAR and the predictability regression,
we use monthly data. Since we have annual horizons but monthly data, the
residuals from each regression in the VAR and in the predictability regression
have an MA(11) form induced by the use of over-lapping observations. While all
parameter estimates are consistent even with the overlap, the standard errors
of the parameters are affected by the MA(11) terms. To account for this, we
report standard errors computed using 12 Newey–West (1987) lags.
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Table I
Sample Moments

Panel A reports summary statistics mean, standard deviation (stdev), and annual autocorrela-
tion (auto) for total returns, cashflow growth gt, and betas βt of book-to-market decile portfolios 1
(growth), 6 (neutral), and 10 (value) and the average mean, average standard deviation, and av-
erage autocorrelation across 46 industry portfolios. All growth rates and returns are continuously
compounded and have an annual horizon but are sampled at a monthly frequency. The column
labeled α denotes the CAPM alpha, from running a regression of monthly excess portfolio returns
onto a constant (α) and the excess market return. The alpha is reported as an annualized number.
The sample period is July 1965 to December 2000 for the book-to-market portfolios and January
1965 to December 2000 for the industry portfolios. Panel B reports the result of a predictive re-
gression of ym

t+1 − rt = α + βrrt + βcaycayt, where ym
t is the annual market return, rt is a 1-year zero

coupon bond rate, and cay is Lettau–Ludvigson (2002)’s consumption–asset–labor deviations, esti-
mated recursively. The sample period is June 1965 to December 2000, and the regression is run at
a monthly frequency.

Panel A: Selected Summary Statistics

Returns Dividend Growth (gt) Beta (βt) Payout Ratio (pot)

Mean Stdev α Mean Stdev Auto Mean Stdev Auto Mean Stdev Auto

Growth 0.10 0.22 −0.02 0.05 0.28 −0.27 1.18 0.10 0.76 0.26 0.11 0.69
Neutral 0.13 0.15 0.02 0.07 0.13 −0.11 0.96 0.07 0.76 0.42 0.08 0.64
Value 0.16 0.18 0.04 0.09 0.19 0.06 0.99 0.17 0.86 0.41 0.12 0.62

Average 0.13 0.21 −0.01 0.05 0.21 0.04 1.07 0.19 0.76 0.36 0.13 0.38
industry

Panel B: Risk Premium Regression

Estim Std Err p-Value

const 0.08 0.05 0.13
r −0.71 0.90 0.43
cay 1.97 1.66 0.24

Panel A of Table I presents some selected summary statistics of the repre-
sentative book-to-market portfolios and the average industry. The numbers in
the average industry row are averages of the statistics over all industries. Div-
idend growth is quite volatile: 28% (19%) for growth (value) stocks and 21%
for the average industry. Payout ratios, as expected, are highest for neutral
and value stocks, at approximately 42%, and lowest for growth stocks, at 26%.
The average change in the payout ratios is close to zero for all portfolios. The
annualized portfolio alpha we report is estimated using a monthly regression
of the portfolio excess returns onto a constant α and the excess market return
over the whole sample. The alphas for the book-to-market portfolios reflect
the well-known value spread, increasing from −2% for growth stocks to 4% for
value stocks.

The betas of the portfolios display significant time variation. The betas of
growth (value) stocks have an annual volatility of 10% (17%), and the average
industry beta volatility is 19%. These betas are also quite persistent, over 75%
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Figure 2. Time-varying betas of book-to-market portfolios. The figure shows time-varying
betas of growth, neutral, and value stocks, computed using rolling 60-month regressions of excess
portfolio returns on market excess returns.

at an annual horizon. We plot the time-varying betas at a monthly frequency in
Figure 2. The betas for growth stocks and value stocks have generally diverged
across the sample, with the betas for growth stocks increasing and the betas for
value stocks decreasing. For example, at the beginning of the 1970s, value stocks
have a beta of around 1.2, which decreases to just above 0.7 by the year 2000.
The betas of industry portfolios (not shown), while exhibiting time variation,
appear more stationary.

The upward trend in the growth beta and downward trend in the value beta
post-1965 have been emphasized by, among others, Adrian and Franzoni (2002),
Ang and Chen (2002), Campbell and Vuolteenaho (2002), and Franzoni (2002).
Campbell and Vuolteenaho (2000) discuss some reasons for the trends in growth
and value stocks, related to changing discount rate and cashflow sensitivi-
ties. Our VAR requires stationarity of all variables, including beta, to make
econometric inferences, particularly for computing variance decompositions in
Corollary 1. The stationary assumption for beta may appear to be violated from
Figure 2. However, Adrian and Franzoni (2002) and Ang and Chen (2002) show
that because betas are very persistent series, it is hard to differentiate a highly
persistent beta series from a beta process with a unit root in small samples.
This is analogous to interest rates, where unit root tests fail to reject the null
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of a unit root in small samples because of low power, but term structure models
require the short rate to be a stationary process.

We list the estimates of the regression (27) in Panel B of Table I. The coeffi-
cient on the interest rate is negative, so higher interest rates cause decreases
in market risk premiums. This is the same sign found by many studies since
Fama and Schwert (1977). However, while Ang and Bekaert (2002) and Camp-
bell and Yogo (2002) document strong predictive power of the short rate at
monthly horizons, the significance is greatly reduced at an annual horizon.
Lettau and Ludvigson (2001) find that, in-sample, cayt significantly predicts
market risk premiums with a positive sign. However, without look-ahead bias
at an annual horizon, the predictive power of cayt is reduced. Nevertheless, it
is the same sign found by Lettau and Ludvigson (2001).

Since the risk premium is a function of instrumental variables, it is possible
to infer the variation of the risk premium from the regression coefficients br
and bcay in (27) using

σλ =
√

ζ ′�X ζ , (28)

where ζ = (000brbcay0)′ and �X is the unconditional covariance matrix of Xt.
From the estimated parameters in Panel B of Table I, the unconditional volatil-
ity of the risk premium is 2.66%, and the risk premium has an autocorrelation
of 0.54.

IV. The Calibrated Term Structure of Expected Returns

In this section, we concentrate on presenting the term structure of discount
rates for the growth, neutral, and value portfolios. The term structure of dis-
count rates from these portfolios are representative of the general picture of
the spot expected returns from other portfolios. However, we look at mispric-
ings from valuations incorporating time-varying expected returns from both
book-to-market and industry portfolios.

A. VAR Estimation Results

We report some selected VAR estimation results in Table II for growth, neu-
tral, and value stocks. The average industry refers to a pooled estimation of the
VAR across all industry portfolios. Table II shows that there are some signif-
icant feedback effects from the instruments rt, cayt, and �pot to growth rates
and time-varying betas. For example, for growth (value) stocks, lagged interest
rates (cayt) predict future cashflows, and, for neutral stocks, interest rates and
�pot predict growth rates and betas. For the average industry, rt, cayt, and πt
significantly predict dividend growth and betas.

In Table II, while cashflows gt are predictable, particularly by short rates
and cayt for industry portfolios, cashflows have weak forecasting ability for the
variables driving conditional expected returns, βt, rt, and cayt. The VAR results
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Table II
Companion Form Φ Parameter Estimates

The table reports estimates of the companion form � of the VAR in equation (7). The estimation is
done at an annual horizon, using monthly (overlapping) data. For the average industry results, we
pool data across all industries. Standard errors are computed using Newey–West (1987) 12 lags.
Parameters significant at the 95% level are denoted in bold. The sample period is July 1970 to
December 2000 for the book-to-market sorted portfolios and from January 1970 to December 2000
for the industry portfolios.

gt βt �pot rt cayt πt

Growth stocks gt −0.35 0.45 0.37 −4.06 1.86 1.69
B/M Decile = 1 (0.17) (0.32) (0.32) (1.43) (2.40) (1.23)

βt −0.00 0.68 −0.08 0.48 0.85 −0.74
(0.03) (0.11) (0.08) (0.48) (0.54) (0.44)

�pot 0.04 0.11 −0.37 0.71 −0.19 −0.31
(0.02) (0.15) (0.18) (0.58) (1.42) (0.68)

rt −0.00 −0.02 −0.04 0.60 0.21 0.14
(0.00) (0.03) (0.03) (0.12) (0.18) (0.14)

cayt 0.00 0.03 −0.01 0.09 0.54 0.07
(0.01) (0.01) (0.02) (0.08) (0.09) (0.05)

πt 0.01 −0.04 −0.03 −0.09 0.07 0.73
(0.00) (0.04) (0.03) (0.16) (0.16) (0.15)

Neutal stocks gt −0.13 0.03 0.61 −1.60 −0.06 1.22
B/M Decile = 6 (0.18) (0.27) (0.24) (0.91) (1.58) (1.12)

βt −0.00 0.57 −0.11 1.20 −0.23 −0.10
(0.05) (0.12) (0.09) (0.38) (0.50) (0.34)

�pot 0.12 −0.02 −0.32 0.83 0.11 −0.38
(0.07) (0.10) (0.13) (0.51) (0.57) (0.34)

rt 0.02 0.02 −0.01 0.58 0.12 0.14
(0.01) (0.03) (0.04) (0.13) (0.15) (0.12)

cayt 0.00 0.01 −0.00 0.06 0.65 0.02
(0.01) (0.02) (0.01) (0.08) (0.08) (0.05)

πt 0.00 0.03 −0.01 −0.16 −0.09 0.81
(0.02) (0.05) (0.03) (0.18) (0.20) (0.15)

Value stocks gt −0.06 0.20 −0.16 1.37 5.83 −1.26
B/M Decile = 10 (0.12) (0.20) (0.13) (1.19) (1.50) (1.48)

βt −0.04 0.84 −0.12 −0.12 0.40 0.74
(0.04) (0.07) (0.07) (0.42) (0.82) (0.44)

�pot 0.16 −0.15 −0.43 1.16 0.72 0.44
(0.05) (0.14) (0.20) (0.42) (1.09) (0.46)

rt 0.01 0.02 −0.04 0.57 0.16 0.16
(0.01) (0.01) (0.01) (0.11) (0.14) (0.14)

cayt 0.00 0.00 0.01 0.06 0.63 0.01
(0.00) (0.01) (0.01) (0.06) (0.09) (0.05)

πt 0.03 0.05 −0.04 −0.17 −0.08 0.65
(0.01) (0.02) (0.01) (0.14) (0.15) (0.14)

(Continued)
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Table II—Continued

gt βt �pot rt cayt πt

Average industry gt −0.16 −0.04 0.19 −0.75 1.41 1.02
(0.24) (0.19) (0.22) (0.00) (0.00) (0.00)

βt 0.00 0.91 −0.02 −0.03 0.10 0.10
(0.01) (0.13) (0.26) (0.02) (0.00) (0.00)

�pot −0.01 0.02 −0.45 0.40 0.40 0.14
(0.01) (0.02) (0.14) (0.02) (0.01) (0.00)

rt 0.00 0.00 −0.00 0.58 0.11 0.18
(0.01) (0.03) (0.00) (0.02) (0.01) (0.02)

cayt 0.00 0.00 −0.00 0.07 0.64 0.02
(0.01) (0.01) (0.00) (0.00) (0.01) (0.03)

πt 0.01 0.01 −0.00 −0.11 −0.11 0.80
(0.11) (0.08) (0.00) (0.00) (0.00) (0.02)

for the “Average Industry” pools across all 45 industry portfolios and does not
find any evidence of predictability by cashflows. Hence, we might expect the
feedback effect of cashflows on time-varying expected returns to be weak.

B. Discount Curves

Figure 3 plots the term structure of discount rates µt(n) for growth, neutral,
and value stocks. The discount curve for the full model is shown in circles. At
the end of December 2000, the term structure of discount rates is upward slop-
ing. At December 2000, the risk-free rate and cayt both predict low-conditional
expected returns for the market. This markedly lowers the short end of the
discount curve. Since the risk premium is mean-reverting, the discount rates
increase with maturity and asymptote to a constant.6

In Figure 3, the spot discount curve for growth stocks lies below the discount
curve for value stocks. However, in Figure 2, the betas of growth stocks are
higher than value stocks. The discrepancy is due to two reasons. First, the
constant α term in equation (4) is negative (positive) for growth (value) stocks.
This reflects the well-known value effect (see, e.g., Fama and French (1993))
and brings down the spot discount curve for growth stocks relative to value
stocks. Second, the discount curves also incorporate the effect of cashflows on
time-varying expected returns in the VAR in equation (7).

Figure 3 also superimposes the discount curves for the three special cases.
First, the term structure of discount rates for an unconditional CAPM is a hor-
izontal line, since it is constant across horizon. Second, the shape of the term
structure of discount rates ignoring the time variation in beta is similar to the
shape of the full model, particularly for growth and neutral stocks. There is a
faster gradient for value stocks, but the similarities may result in a relatively

6 As n → ∞, µ(n) → µ̄, where µ̄ is a constant. This is proved in the Appendix.
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Figure 3. Discount curves. The figure shows discount curves µt(n), with n in years on the x-axis,
computed at the end of December 2000 for various book-to-market portfolios.
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small degree of misvaluation if we ignore the time variation in beta. However,
there is a large change in the shape of the term structure when we ignore time
variation in the risk premium. In this case, the discount curves are much higher
because when we ignore time variation of the risk premium, we cannot capture
the low-conditional expected returns of the market portfolio at December 2000.
For growth and value stocks, the term structure of discount rates ignoring the
time-varying risk premium takes on inverse humped shapes, illustrating some
of the variety of the different shapes the discount curves may assume.

C. Mispricing of Cashflow Perpetuities

In Table III, we use the term structure of discount rates in Figure 3 to value a
perpetuity of expected cashflows of $1 received at the end of each year. The date
of the valuation is at the end of December 2000. Table III reports the perpetuity
valuation for portfolios sorted by book-to-market ratios and selected industry

Table III
Mispricing of Portfolios

We value a perpetuity of an expected cashflow of $1 received at the end of each year using the time-
varying expected returns for each book-to-market portfolio at the end of December 2000. We report
percentage mispricing errors (wrong-correct)/correct for valuation using a wrong model versus the
full model valuation. Three wrong models are considered: using a constant discount rate, ignoring
the time-varying betas, and ignoring the time-varying market risk premium.

Mispricing Errors %

Perpetuity Unconditional Ignoring Ignoring
Value CAPM Beta Risk Premium

Book-to-market sorted portfolios
1 Growth 11.17 −13.41 3.72 −8.33
2 16.39 −31.98 −9.69 −28.74
3 10.81 −7.65 12.39 −9.29
4 10.90 −15.09 1.18 −16.31
5 10.97 −15.48 0.84 −18.45
6 8.93 −13.96 −2.34 −14.42
7 9.09 −9.89 −0.22 −13.21
8 7.78 −13.30 −6.85 −14.09
9 7.25 −18.83 −9.44 −8.63
10 Value 7.02 −13.54 −4.04 −7.56

Average mispricings across book-to-market sorted portfolios
Mean error −15.31 −1.45 −13.39
Stdev error 6.59 6.67 6.39

Selected Industries
FabPr 17.65 −32.85 −7.04 −16.77
Ships 16.10 −57.87 −51.84 4.84

Average mispricings across all industry portfolios
Mean error −16.89 −4.81 −12.74
Stdev error 9.94 9.05 6.82
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portfolios. Table III also illustrates the large misvaluations that may result by
(counter-factually) assuming expected returns are constant, ignoring the fact
that betas vary over time, or ignoring the time variation in the market risk
premium.

To compute the perpetuity values, we set Et[Dt+s] = 1 for each horizon s in
equation (16). We value this perpetuity within each book-to-market decile or in-
dustry, under our model with time-varying conditional expected returns. These
perpetuities do not represent the prices of any real firm or project because they
are not actual forecasted cashflows. By keeping expected cashflows constant
across the portfolios, we directly illustrate the role that time-varying expected
returns play, without having to control for cashflow effects across industries in
the numerator. However, in the denominator, the discount rates still incorporate
the effects of cashflows on time-varying expected returns in the VAR.

After computing perpetuity values from our model, we compute perpetuity
values from three mispricings relative to the true model: (1) using a constant
discount rate from an unconditional CAPM, which is a traditional DDM val-
uation; (2) ignoring the time variation in β but recognizing the market risk
premium is predictable; and (3) ignoring the predictability of the market risk
premium, but taking into account time-varying β. We report the mispricings as
percentage errors:

mispricing error = wrong − correct
correct

, (29)

where “correct” is the perpetuity value from the full valuation and “wrong” is
the perpetuity value from each special case.

We turn first to the results in Table III for the book-to-market portfolios. The
perpetuity values are from the baseline case of time-varying short rates, betas,
and risk premiums. There is a general pattern of high perpetuity values for
growth stocks to low perpetuity values for value stocks, but the pattern is not
strictly monotonic. This follows from the low (high) discount rates for growth
(value) stocks in Figure 3. The perpetuity values are almost monotonic, except
for the second book-to-market decile. This is mostly due to the more negative
alpha for the second decile (−0.03) than the first decile (−0.02). In addition,
the growth firms (decile 1) have low payout ratios. This may understate the
potential predictability of discount rates by cashflows.

The second column in Table III reports large mispricing errors from apply-
ing a DDM, with a mean error of −15%. The maximum mispricing, in absolute
terms, is −32% for the second book-to-market decile portfolio. The DDM pro-
duces much higher cashflow perpetuity values, because at the end of December
2000, the conditional expected returns from our model are low, while the un-
conditional expected return implied by the CAPM is much higher.

The case presented in the column labeled “Ignoring Beta” in Table III
allows for time-varying expected returns, but only through the risk premium
and short rate. Ignoring time-varying betas results in overall smaller mispric-
ings, but at this point in time the effect of time-varying betas can still be large
(e.g., 12% for the third book-to-market decile portfolio). The largest effect in
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misspecifying the expected return at December 2000 comes from ignoring the
time-varying market return, in the last column, rather than misspecifying the
time-varying beta. Like the DDM, ignoring variation in the risk premium pro-
duces consistently higher values of the cashflow perpetuity relative to the base-
line case. This is because, as the level of the market is very high at December
2000, the conditional risk premium is very low. When we use the average risk
premium, we ignore this effect.

The same picture is repeated for the industry portfolios, except the extreme
mispricings are even larger. At December 2000, the discount rates for individ-
ual industries take on a similar shape to the discount rates for book-to-market
portfolios in Figure 3, because of the low-conditional risk premium versus the
relatively high-unconditional expected return. Table III lists the two portfo-
lios with the two largest absolute pricing errors from the unconditional CAPM,
which are the ship industry (−58%) and fabricated products (−33%), respec-
tively. The ship industry has a low beta at December 2000 (0.63), which causes
it to have a very high perpetuity value. The unconditional beta is much higher
(1.06), which means that using the DDM with the unconditional CAPM results
in a large incorrect valuation. On average, using an unconditional CAPM for
valuation produces a mispricing of −17% across all industry portfolios. Like
the book-to-market portfolios, ignoring the risk premium at December 2000
produces larger misvaluations on average (−13%) than ignoring the time vari-
ation of beta (−5%). In summary, the effect of time-varying expected returns
on valuation is important.

D. Variance Decompositions

That ignoring time-varying expected returns, or some component of time-
varying expected returns, produces different valuations than the DDM is no
surprise. What is more economically interesting is to investigate what is driving
the time variation in the discount rates. We examine this by applying Corollary
2 to compute variance decompositions of the spot expected returns.

We first illustrate the volatility of the spot expected returns,
√

var(µt(n)), at
each maturity in the left column of Figure 4. As the maturity increases, the
volatility of the discount rates tends to zero. This is because as n → ∞, µt(n)
approaches a constant because of stationarity, so var(µt(n)) → 0. At a 30-year
horizon, the µt(30) discount rate still has a volatility above 2.5% for growth
and neutral stocks, and above 7.0% for value stocks. While the volatility curve
must eventually approach zero, it need not do so monotonically. In particular,
for value stocks, there is a strong hump-shape, starting from around 4.7% at a
1-year horizon, increasing to near 8.0% at 13 years before starting to decline.
The strong hump in

√
var(µt(n)) for value stocks compared to growth and neu-

tral stocks is due to the much larger persistence of the value betas (0.84 com-
pared to 0.68 (0.57) for growth (neutral) stocks in the VAR estimates of Table II).
Note that the current beta is known in today’s conditional expected return. A
shock to the beta only takes effect next period and the more persistent the beta,
the larger the contribution to the variance of the discount rate.
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Figure 4. Variance decomposition for the term structure of discount rates. The left-
hand column plots

√
var(µt (n)), for each n on the x-axis. The right-hand column attributes the

var(µt(n)) into proportions due to dividend growth, beta, the risk-free rate, and the risk premium.
The proportions double count the covariances and so do not sum to 1.
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In the right-hand column of Figure 4, we decompose the variance of the dis-
count rates. Our first result is that the time variation in cashflows makes
only a very small contribution to the variance of the spot expected returns. We
add both the variance decomposition to gt and the variance decomposition to
�pot together to determine the total variance decomposition to cashflows. The
small effect of cashflows on discount rates is expected, because cashflows or
payouts weakly predict the variables driving time-varying expected returns:
time-varying betas, short rates, and cayt. The persistence of cashflows is also
very low (see Table I), and so shocks to cashflows have little long-term effect
on the variances of the discount factors.

Second, Figure 4 shows that at very short maturities, the attribution of the
variance of µt(n) to nominal risk-free rates is large, the attribution to the market
risk premium is also large, and the attribution to beta is smaller than the
variance decomposition to risk-free rates or to the market risk premium. For
example, for neutral stocks, approximately 65% of var(µt) is accounted for by
risk-free rates, 72% by the market risk premium, and 20% by time-varying
beta. Hence, at short horizons, it is crucial to account for time-varying short
rates and risk premiums. The effect of beta is secondary.

Some intuition for this result can be gained by more closely examining the
one-period expected return:

µt = rt + βtλt

= (rt + r̄ − r̄) + (βt + β̄ − β̄)(λt + λ̄ − λ̄)

= const + (rt − r̄t) + β̄(λt − λ̄) + λ̄(βt − β̄) + (βt − β̄)(λt − λ̄), (30)

where r̄, β̄, and λ̄ represent the unconditional means of nominal interest rates,
beta, and risk premiums, respectively. Ignoring the covariance and other higher-
order terms in (30), we have

var(µt) ≈ var(rt) + β̄2var(λt) + λ̄2var(βt). (31)

The variance of rt enters one for one and so has a large effect, but var(λt) and
var(βt) are scaled by the effects of β̄ and λ̄. Since β̄ is approximately 1, the
variance of the risk premium also has a large effect. However, the average log
risk premium in the data is of the order of 5%, which means that var(βt) has a
smaller effect on the variance of µt than risk-free rates or market risk premia.
For value stocks, the variance of betas is relatively large, allowing betas to
account for up to 41% of the variance of µt(1), but this is still smaller than the
one-period variance decompositions to risk-free rates (71%) and risk premia
(72%).

Third, the variance decomposition of the risk premium decreases as n in-
creases. While the time variation in the market is very important for the value
of short-term cashflows, we can pay less attention to the predictability of the
market premium for long-term cashflows. Mathematically, the risk premium is
a linear function of the instrumental variables rt and cayt. The autocorrelation
of rt is around 0.74 at an annual horizon, and cayt is much less autocorrelated
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(0.63 at an annual horizon). The risk premium is a linear function of both rt
and cayt, and is less autocorrelated than the short rate (0.54). This means that
at long horizons, shocks to the risk premium are less persistent than shocks to
the short rate and other variables in the system, leading to a reduction in the
variance decomposition to the risk premium as n increases.7

Finally, the variance decomposition of the risk-free rate can increase or de-
crease with horizon, and can dominate, or be dominated by the variance of
time-varying beta. For growth stocks, the attribution of var(µt(n)) to the in-
terest rate only slightly decreases as n increases, while for value stocks the
risk-free rate variance decomposition becomes much smaller at long horizons.
Hence, growth stocks are more sensitive to movements in the nominal term
structure than value stocks. This is in line with intuition as growth stocks have
few short-term cashflows but potentially large long-term cashflows.

The mechanism by which the nominal risk-free rate or βt can dominate the
variance decomposition of var(µt(n)) at long horizons is due to the relative per-
sistence of the interest rate versus beta and the size of the predictive coefficients
in the risk premium. Since the interest rate is very persistent, shocks to rt tend
to dominate at long horizons unless the autocorrelation of beta is large enough,
relative to the autocorrelation of real rates, to offset its effects. The autocorrela-
tion of beta (0.86) is much larger than the autocorrelation of the beta of growth
stocks (0.76), which allows the variance attribution to β to dominate at long
horizons for the value portfolio.

In Figure 5, we perform a more detailed variance decomposition of var(µt(n))
to risk-free rates. Figure 5 repeats the variance decompositions to rt from Figure
4 and also plots the variance decompositions to actual (or ex post) real rates
rt − πt and expected (or ex ante) real rates Et(rt+1 − πt+1). First, the variance
decompositions to nominal, actual, and expected real rates all follow the same
patterns in absolute magnitude. In particular, at short horizons, the variance
decompositions to real rates, like nominal rates, is large. The same intuition
for these results for the nominal rate using the approximation in equation (31)
also applies to the ex ante or ex post real rates.

Second, the variance decomposition to ex ante and ex post real rates is
negative, compared to the positive variance decompositions to rt. The rea-
son is that while rt is unconditionally positively correlated with the other
state variables, the actual and expected real rates are negatively correlated
with the other state variables. For example, for value stocks, the correlation
of rt with βt is 56%, whereas the correlation of rt − πt with βt is −25%, and
the correlation of Et(rt+1 − πt+1) with βt is −35%.8 By definition, the variance

7 If dividend yields are used instead of cayt, the variance decomposition to the risk premium falls
across all horizons. While the dividend yield is more persistent than both the nominal or ex post
real risk-free rate, the predictive coefficient of the dividend yield in the risk premium regression
is almost zero in our sample.

8 The fact that the actual and expected real rates are negatively correlated with inflation (at
−58% and −43%, respectively), while there is a positive correlation of nominal risk-free rates and
inflation (70%), is the well-known Mundell (1963) and Tobin (1965) effect.
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Figure 5. Risk-free rate variance decompositions. The figure shows risk-free variance de-
compositions for growth, neutral, and value stocks for nominal risk-free rates (rt), ex post real rates
(rt − πt), and ex ante real rates Et(rt+1 − πt+1). The proportions double count the covariances and
so do not sum to 1.
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decompositions to risk-free rates, ex ante real rates, and ex post real rates that
do not count the covariances must be positive. Hence, the negative variance
decompositions result solely from the unconditional negative correlations of
real rates with other state variables. Finally, the variance decompositions of
actual real rates are larger than the variance decompositions of ex ante real
rates. This is expected, as the actual real rate comprises the ex-ante real rate
plus unpredictable inflation noise.

V. Conclusion

Despite the strong evidence for time variation in the market risk premium,
factor loadings, and risk-free rates, the main tool of valuation, the DDM, does
not take into account any of these stylized facts. We develop a valuation method-
ology that incorporates time-varying risk premiums, betas, and risk-free rates
by computing a series of discount rates that differ across maturity. The price of
a security has an analytical solution, which depends only on observable instru-
ments.

For application to practical capital budgeting problems, we develop an ana-
lytical, tractable term structure of discount rates. This series of discount rates
differs across maturity and can be applied to value a series of expected cash-
flows. The discount curve is constructed in such a way to consistently model
the dynamics of time-varying risk-free rates, betas, and risk premiums.

We estimate the term structure of discount rates for book-to-market and in-
dustry portfolios, and find the effect of time variation in risk-free rates, betas,
and risk premiums is large. By computing a variance decomposition of the dis-
count rates, we show that at short horizons, investors should be most concerned
with the impact of time-varying interest rates and risk premiums for discount-
ing cashflows. At long horizons, the time variation in risk-free rates or beta is
more important.

While we provide an easily applicable methodology for handling the effects
of time-varying risk premiums, risk-free rates, and beta, and demonstrate that
all these are important for valuation, future research must deal with some
practical issues. For example, parameter uncertainty in the predictability of
the market risk premium and estimating betas will affect the capital budgeting
problem. Time-varying risk-free rates, betas, and risk premiums can only make
potential mispricings in these situations even larger.

Appendix A: Proof of Proposition 1

Before proving Proposition 1, we first prove a useful lemma:

LEMMA 1: Let ε be a K × 1 vector, where ε ∼ N(0, �), A a K × K matrix, and �

a symmetric K × K matrix. If (�−1 − 2�) is strictly positive definite, then

E[exp(Aε + ε′�ε)] = exp
( − 1

2 ln det(I − 2��) + 1
2 A′(�−1 − 2�)−1 A

)
.
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Proof:

E[exp(Aε + ε′�ε)] =
∫

(2π )−K | det �|−1/2 exp
(

−1
2

ε′�−1ε

)
exp(A′ε + ε′�ε) d K ε

=
∫

(2π )−K | det �|−1/2 exp
(

−1
2

ε′(�−1 − 2�) + A′ε
)

d K ε.

(A1)

If (�−1 − 2�) is strictly positive definite, then there exists a K × K lower trian-
gular matrix M, det M 	= 0, such that (�−1 − 2�) = (MM′)−1. Substituting this
into the above expression, we obtain

E[exp(Aε + ε′�ε)] =
∫

(2π )−K |det �|−1/2 exp
(

−1
2

ε′(M ′)−1M−1ε + A′ε
)

d K ε.

(A2)

Now substitute u = M−1ε:

E[exp(Aε + ε′�ε)] =
∫

(2π )−K |det �|−1/2 |det M | exp
(

−1
2

u′u + A′Mu
)

d K u

= |det M | |det �|−1/2 exp
(

1
2

A′M M ′ A
)

= |det M | |det �|−1/2 exp
(

1
2

A′(�−1 − 2�)−1 A
)

. (A3)

Finally, looking at the determinant terms we have

|det M | |det �|−1/2 =
( |det(�−1 − 2�)−1|

|det �|
)(1/2)

=
(

1
det �(�−1 − 2�)

)(1/2)

= exp
(

−1
2

ln |det(I − 2��)|
)

. (A4)

Substituting into (A3) we obtain the required result. Q.E.D.

Constantinides (1992) states a continuous-time version of Lemma 1, except
his result is only for a univariate case.

To prove Proposition 1, consider one cashflow at time t + n in the term in
equation (2) divided by Dt:

Et

[(
n−1∏
k=0

e−µt+k

)
Dt+n

]/
Dt . (A5)
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We show that

Et

[(
n−1∏
k=0

e−µt+k

)
Dt+n

Dt

]
= exp(a(n) + b(n)′X t + X ′

t H(n)′X t). (A6)

Summing up over n gives Proposition 1.
The initial condition is given by

Et[exp(µt)Dt+1]
Dt

= Et[exp(−α − ξ ′X t − X ′
t�X t + e′

1 X t+1)]

= exp
(−α − ξ ′X t − X ′

t�X t + e′
1(c + �X t) + 1

2 e′
1�e1

)
. (A7)

Equating coefficients gives equation (11).
Using induction, for arbitrary time t + n + 1, we can evaluate

Et

[(
n∏

k=0

e−µt+k

)
Dt+n+1

Dt

]

= Et{exp(−α − ξ ′X t − X ′
t�X t + e′

1 X t)

×Et[exp(a(n) + b(n)′X t+1 + X ′
t+1 H(n)X t+1)]}

= exp(a(n) − α − ξ ′X t + −X ′
t�X t)

×Et[exp((e1 + b(n))′X t+1 + X ′
t+1 H(n)X t+1)]

= exp(a(n) − α − ξ ′X t + −X ′
t�X t)

× exp((e1 + b(n))′(c + �X t) + (c + �X t)′H(n)(c + �X t))

×Et[exp((e1 + b(n))′εt+1 + 2(c + �X t)′H(n)εt+1 + ε′
t+1 H(n)εt+1)], (A8)

which involves taking the expectation of a quadratic Gaussian. This can be
done using Lemma 1 to obtain:

exp(a(n) − α + (e1 + b(n))′c + c′H(n)c − ξ ′X t + (e1 + b(n))′�X t

+ 2c′H(n)�X t − X ′
t�X t + X ′

t�
′H(n)�X t)

× exp
(− 1

2 ln det(I − 2�H(n)
) + 1

2 D′(�−1 − 2H(n))−1 D), (A9)

where D = (e1 + b(n) + 2H(n)(c + �Xt)). Expanding the expression gives equa-
tion (10). Q.E.D.

Our methodology can easily be extended to allow for heteroskedasticity of
an affine form in the conditional volatility, along the lines of Duffie and Kan
(1996) in continuous-time or the discrete-time setup in Ang and Liu (2001). To
implement this, specify the now-constant conditional volatility � of the system
as time-varying

X t = c + �X t−1 + ut , (A10)
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where ut ∼ IID N(0, �t−1), where

�t = Q0 + Q 
 X t (A11)

and “
” represents a tensor product:

Q 
 X t ≡
K∑

j=1

X t j Q ( j ),

where Xtj refers to the jth element of the K × 1 vector Xt. The K × K matrices
Q0 and Q(j) are symmetric. In this setup, µt(n) still has the same quadratic
form as equation (18), and the recursions for a(n), b(n), and H(n) take a sim-
ilar form as equation (10), except with additional terms to accommodate the
heteroskedasticity.

Appendix B: Proof of Proposition 2

To prove Proposition 2, we determine separately the expressions of the nu-
merator and the denominator of the fraction in the expression:

µt(n) = 1
n

ln




Et[Dt+n]/Dt

Et

[(
n−1∏
k=0

e−µt+k

)
Dt+n

] /
Dt


 (B1)

in Definition 1 of the spot expected return.
We first begin by showing that

Et[Dt+n]/Dt = exp(ā(n) + b̄(n)′X t), (B2)

where ā(n) and b̄(n) given in equations (19) and (20). The solution method is
similar to those used in discrete-time affine economies such as Ang and Liu
(2001) and Bekaert and Grenadier (2001). The initial condition is given by

Et[Dt+1]/Dt = Et[exp(gt+1)] = Et[exp(e′
1 X t+1)]

= exp
(
e′

1c + 1
2 e′

1�e1 + e′
1�X t

)
. (B3)

Equating coefficients gives the initial conditions in equation (20). For the re-
cursion, we use proof by induction and take iterative expectations:

Et[Dt+n+1]
Dt

= Et

[
Dt+1

Dt
Et+1

[
Dt+n

Dt

]]

= Et[exp(e′
1 X t+1 + ā(n) + b̄(n)′X t+1)]

= exp(e′
1c + e1′�X t + ā(n) + b̄(n)′c + b̄(n)′�X t)

× Et

[
exp

(
(e1 + b̄(n))′�

1
2 εt+1

)]
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= exp
(
e′

1c + ā(n) + b̄(n)′c + (e1 + b̄(n))′�X t

+ 1
2 (e1 + b̄(n))′�(e1 + b̄(n))

)
. (B4)

Equating coefficients gives the recursion in equation (19).
Proposition 1 shows that the denominator of (B1) has the form

Et

[(
n−1∏
k=0

e−µt+k

)
Dt+n

Dt

]
= exp(a(n) + b(n)′X t + X ′

t H(n)′X t), (B5)

where a(n), b(n), and H(n) follow the recursions in equation (10).
This allows us to write µt(n) in equation (B1) as

µt(n) = A(n) + B(n)′X t + X ′
tG(n)X t , (B6)

where A(n) = (ā(n) − a(n))/n, B(n) = (b̄(n) − b(n))/n, and G(n) = −H(n)/n. Q.E.D.

Appendix C: Variance of the Discount Rate

Proof of Corollary 1: To compute the variance of the discount rate, var(µt(n)),
in Corollary 1, we use the following lemma:

LEMMA 2: For an arbitrary matrix M, the following relationships are true (see
Harville (1997)):

∂

∂λ
ln detM = tr

(
M−1 ∂M

∂λ

)
∂

∂λ
M−1 = −M−1 ∂M

∂λ
M−1. (C1)

Since, from Proposition 2, µt(n) = A(n) + B(n)′Xt + X ′
tG(n)Xt we have

var(µt(n)) = B(n)′�X B(n) + var(X ′
tG(n)X t). (C2)

We use a moment generating function to evaluate the last term. Let

g (λ) = E[exp(λε′Mε)]. (C3)

Then

var(ε′Mε) = ∂2 g (λ)
∂λ2

∣∣∣
λ=0

−
(

∂ g (λ)
∂λ

∣∣∣
λ=0

)2

. (C4)

Using Lemma 1, we have

g (λ) = exp
(− 1

2 ln det(I − 2λ�M )
)
, (C5)

where � is the variance matrix of ε. Using Lemma 2, we have

∂

∂λ
g (λ) ln detM = g (λ)tr((I − 2λ�M )−1�M ), (C6)
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and

∂2

∂λ2
g (λ) ln detM = g (λ)

{
(tr(I − 2λ�M )−1�M ))2

+ tr((I − 2λ�M )−12�M (I − 2λ�M )−1�M )
}
. (C7)

Therefore, we have

var(ε′Mε) = tr((�M )2), (C8)

evaluating equation (C5). Hence,

var(µt(n)) = B(n)′�X B(n) + 2tr((�X G(n))2) (C9)

given in equation (21). Q.E.D.

Proof of Corollary 2: From the definition of µt(n) = A(n) + B(n)′Xt + X ′
tG(n)Xt,

we can write

µt(n) = (A(n) − B(n)′X ) + B(n)′(X t − X ) + (X t − X + X )′G(n)(X t − X + X )

= (A(n) − B(n)′X + X
′
G(n)X ) + (B(n) + 2G(n)X )′(X t − X )

+ (X t − X )′G(n)(X t − X ).

(C10)

Ignoring the quadratic term, we have

var(µt(n)) = (B(n) + 2G(n)X )′�X (B(n) + 2G(n)X ). (C11)

Since �X = L�ZL′, we can rewrite this expression as

var(µt(n)) = (B(n) + 2G(n)X )′L�Z L′(B(n) + 2G(n)X ), (C12)

giving us equation (22). Q.E.D.

Appendix D: Long-Term Discount Rates

It is possible to compute the long-term discount rate µ(∞) using the following
proposition:

PROPOSITION 3: Suppose the following limits exist:

lim
n→∞

ā(n)
n

= ā∞,

lim
n→∞

a(n)
n

= a∞,

lim
n→∞ b̄(n) = b̄∞,

lim
n→∞ b(n) = b∞,

lim
n→∞ H(n) = H∞,

(D1)
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then the long-term discount rate µ(∞) is given by

µ(∞) = (ā∞ − a∞), (D2)

where

ā∞ = e′
1c + b̄′

∞c + 1
2 (e1 + b̄∞)′�(e1 + b̄∞),

a∞ = −α + (e1 + b∞)′c + c′H∞c − 1
2 ln det(I − 2�H∞). (D3)

Given H∞, b̄∞, and b∞ are given by

b̄∞ = (I − �′)−1�′e1,

b∞ = (I − �′ − 2�′H∞(�−1 − 2H∞)−1)−1

× (−ξ + �′e1 + 2�′H∞c + 2�′H∞(�−1 − 2H∞)−1(e1 + 2H∞c)). (D4)

The matrix H∞ solves the relation

H∞ = −� + �′H∞� + 2�′H∞(�−1 − 2H∞)−1 H∞�. (D5)

In practice, it is easy to solve for H∞ by iterating the recursion for H(n) in
equation (10) to a very large number. After n > 100 years, H(n) is constant.
Once H∞ is found, ā∞ and a∞ are closed form.
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