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Abstract

We provide a formal treatment of both static and dynamic portfolio choice using the

Disappointment Aversion preferences of Gul (1991. Econometrica 59(3), 667–686), which

imply asymmetric aversion to gains versus losses. Our dynamic formulation nests the standard

CRRA asset allocation problem as a special case. Using realistic data generating processes, we

find reasonable equity portfolio allocations for disappointment averse investors with utility

functions exhibiting low curvature. Moderate variation in parameters can robustly generate
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substantial cross-sectional variation in portfolio holdings, including optimal non-participation

in the stock market.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The U.S. population displays a surprisingly large variation in equity holdings,
including a majority of households that hold no stocks at all (see, among many
others, Mankiw and Zeldes, 1991; Haliassos and Bertaut, 1995; Heaton and Lucas,
1997; Vissing-Jørgensen, 2002). Driven in part by a large equity premium, standard
portfolio choice models often predict large equity positions for most investors and
fail to generate the observed cross-sectional variation in portfolio choice (see, for
example, Campbell and Viceira, 1999). In an effort to explain these portfolio puzzles,
one approach is to combine transactions costs, such as a fixed cost to entering the
stock market, with various sources of background risk. Another approach considers
heterogeneous preferences. Standard constant relative risk aversion (CRRA)
preferences cannot resolve these puzzles, since they cannot generate non-participa-
tion at any level of risk aversion, except in the presence of large transactions costs
(see Liu and Loewenstein, 2002). However, a rapidly growing literature builds on the
framework of Kahneman and Tversky (1979) and investigates asset allocation in the
presence of loss aversion—that is, investors are assumed to maintain an asymmetric
attitude towards gains versus losses (see Benartzi and Thaler, 1995; Berkelaar and
Kouwenberg, 2000; Aı̈t-Sahalia and Brandt, 2001; Gomes, 2003).1 Portfolio choice
problems with loss aversion generate more realistic (that is, lower) equity holdings
than standard models.
We provide a formal treatment of portfolio choice in the presence of loss

aversion; however, rather than relying on Kahneman and Tversky (1979)’s
behavioral prospect theory, we use the axiomatic Disappointment Aversion (DA)
framework of Gul (1991). Gul’s preferences are a one-parameter extension of the
expected utility framework and have the characteristic that good outcomes, i.e.,
outcomes above the certainty equivalent, are downweighted relative to bad
outcomes. The larger weight given to outcomes which are bad in a relative sense
gives rise to the name ‘‘disappointment-averse’’ preferences, but they also imply an
aversion to losses.
In the literature, DA preferences have only appeared in equilibrium models with

consumption, not in portfolio choice problems. For instance, Epstein and Zin (1990,
1Roy (1952), Maenhout (2004), Stutzer (2000) and Epstein and Schneider (2004) provide an alternative

treatment of an investor’s asymmetric response to gains and losses, by modelling agents who first minimize

the possibility of undesirable outcomes.
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2001) embed a number of alternative preferences, including DA preferences, into an
infinite horizon consumption-based asset pricing model with recursive preferences.
Bekaert et al. (1997) consider asset return predictability in the context of an
international consumption-based asset pricing model with DA preferences. Both
these models endogenously generate more realistic equity premiums than models
with standard preferences. When we investigate portfolio choice under DA
preferences, we show that investors with a sufficient degree of disappointment
aversion do not participate in the equity market.
Loss aversion is not only introspectively an attractive feature of preferences, but as

we demonstrate, it also circumvents the problem posed by Rabin (2000): within the
expected utility framework, anything but near risk neutrality over modest stakes
implies manifestly unrealistic risk aversion over large stakes. Whereas both
behavioral Kahneman and Tversky (1979) loss aversion (LA) preferences and DA
preferences share this advantage, DA preferences are a useful alternative to LA
preferences for three main reasons.
First, DA utility is axiomatic and normative. Although DA utility is non-expected

utility, it is firmly grounded in formal decision theory. Gul (1991) replaces the
independence axiom underlying expected utility by a slightly weaker axiom that
accommodates the violation of the independence axiom commonly observed in
experiments (the Allais paradox), but retains all the other assumptions and axioms
underlying expected utility. The similarity between the DA utility and expected
utility frameworks yields a number of benefits. For example, DA preferences embed
CRRA preferences as a special case. Thus, the portfolio implications of loss aversion
are directly comparable to a large body of empirical work in standard preference
settings; moreover, they allow us to retain as much of the insight offered by expected
utility theory as possible.
Second, we demonstrate that with LA utility, finite optimal solutions do not

always exist, particularly with empirically relevant data generating processes
(DGPs). Third, DA preferences eliminate the arbitrary choices required by LA. In
particular, Kahneman and Tversky (1979)’s prospect theory offers no guidance with
regard to choosing and updating the reference point against which gains and losses
are compared. With DA utility, on the other hand, the reference point is the certainty
equivalent and hence is endogenous. Moreover, we propose a tractable and natural
dynamic DA setting that nests a dynamic CRRA problem and endogenously updates
the reference point.
Our paper proceeds in four steps. Sections 2 and 3 develop a portfolio choice

framework under DA preferences. Specifically, in Section 2, we focus on a static
setting and show that DA preferences can generate stock non-participation. Section
3 generalizes the set-up to a dynamic long-horizon framework that preserves CRRA
preferences as a special case of DA preferences. Given the popularity of LA
preferences, we consider them as an alternative in Section 4. Section 5 explores the
empirical implications of portfolio choice under DA preferences. We calibrate two
DGPs (one with and one without predictability) to U.S. data on Treasury bills and
stock returns and we then examine static and dynamic asset allocation for a wide set
of parameters. Finally, Section 6 concludes.
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2. Static asset allocation under DA preferences

We use the case of standard CRRA utility to set up the basic asset allocation
framework in Section 2.1. Section 2.2 extends the framework to DA preferences and
derives a stock market non-participation result.

2.1. CRRA utility

The investment opportunity set of an investor with initial wealth W 0 consists of a
risky asset and a riskless bond. The bond yields a certain return of r and the risky
asset yields an uncertain return of y, both continuously compounded. The investor
chooses the proportion of her initial wealth to invest in the risky asset a to maximize
the expected utility of end-of-period wealth W, which is uncertain. The terminal
wealth problem avoids the computational complexities of allowing for consumption
decisions and makes our work comparable to both the standard portfolio choice
literature (e.g. Kim and Omberg, 1996; Brennan et al., 1997; Liu, 1999; Barberis,
2000), and the asset allocation with loss aversion literature (e.g. Benartzi and Thaler,
1995; Berkelaar and Kouwenberg, 2000; Aı̈t-Sahalia and Brandt, 2001; Gomes,
2003).
Formally, the problem is

max
a

E½UðW Þ�, (1)

where W is given by

W ¼ aW 0ðexpðyÞ � expðrÞÞ þ W 0 expðrÞ. (2)

Denoting risk aversion by g; under CRRA preferences the utility function UðW Þ

takes the form

UðW Þ ¼
W 1�g

1� g
. (3)

Since CRRA utility is homogenous in wealth, we set W 0 ¼ 1:
The first-order condition (FOC) of Eq. (1) is solved by choosing a such thatZ 1

�1

W�gðexpðyÞ � expðrÞÞdF ðyÞ ¼ 0, (4)

where F ð
Þ is the cumulative density function of the risky asset’s return. This
expectation can be computed by numerical quadrature as described in Tauchen and
Hussey (1991). This procedure involves replacing the integral with a probability-
weighted sum, i.e.,XN

s¼1

psW
�g
s ðexpðysÞ � expðrÞÞ ¼ 0. (5)

The N values of the risky asset return, fysg
N
s¼1; and the associated probabilities,

fpsg
N
s¼1; are chosen by a Gaussian quadrature rule, where W s represents the investor’s
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terminal wealth when the risky asset return is ys: Quadrature approaches to solving
asset allocation problems have been taken by Balduzzi and Lynch (1999), Campbell
and Viceira (1999), and Ang and Bekaert (2002), among others. For future reference,
we denote the excess return expðyÞ � expðrÞ by xe:

2.2. Disappointment aversion

2.2.1. Definition

DA utility mW is implicitly defined by

UðmW Þ ¼
1

K

Z mW

�1

UðW ÞdF ðW Þ þ A

Z 1

mW

UðW ÞdF ðW Þ

 !
, (6)

where Uð
Þ is the felicity function that we choose to be power utility (i.e., of the form
UðW Þ ¼ W ð1�gÞ=ð1� gÞ), Ap1 is the coefficient of disappointment aversion, F ð
Þ is
the cumulative distribution function for wealth, mW is the certainty equivalent (the
certain level of wealth that generates the same utility as the portfolio allocation
determining W), and K is a scalar given by

K ¼ PrðWpmW Þ þ A PrðW4mW Þ. (7)

If 0pAo1; the outcomes below the certainty equivalent are weighted more heavily
than the outcomes above the certainty equivalent. These preferences are outside the
standard expected utility framework because the level of utility at the optimum (or
the certainty equivalent of wealth) appears on the right-hand side. Routledge and
Zin (2003) provide an extension of the Gul (1991) framework where the reference
point can be below the certainty equivalent, but we restrict our analysis to the case
where outcomes are compared to the certainty equivalent. Although this is a non-
expected utility function, CRRA preferences are a special case for A ¼ 1:When Ao1
individuals are averse to losses, or disappointment averse.
For DA preferences, the optimization problem becomes

max
a

UðmW Þ, (8)

where the certainty equivalent is defined in Eq. (6) and end-of-period wealth W is
given by Eq. (2). For Uð
Þ given by power utility, optimal utility remains
homogenous in wealth and we set W 0 ¼ 1: The implicit definition of mW makes
the optimization problem non-trivial (see Epstein and Zin, 1989, 2001), so we
relegate a rigorous treatment to an appendix, available upon request.
The FOC for the DA investor is

1

A
E

qUðW Þ

qW
ðexpðyÞ � expðrÞÞ1fWpmW g

� �
þ E

qUðW Þ

qW
ðexpðyÞ � expðrÞÞ1fW4mW g

� �
¼ 0, ð9Þ

where 1 is an indicator function. If mW were known, we could solve Eq. (9) for a in
the same way as in the case of expected utility. The only difference is that for states
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below mW ; the original utilities have to be scaled up by 1=A: However, mW is itself a
function of the outcome of optimization (that is, mW is a function of a). Hence,
Eq. (9) must be solved simultaneously with Eq. (6) which defines mW :
The similarity between expected utility and DA preferences allows us to derive a

new algorithm to solve the DA asset allocation problem (Eqs. (6) and (9)).
Specifically, the DA problem can be viewed as a CRRA maximization problem with
a changed probability distribution such that the probabilities above the certainty
equivalent are downweighted by A and the new probabilities are then re-normalized.
We present the details of this new approach in Appendix A.

2.2.2. Non-participation

In an expected utility framework investors always hold a positive amount of
equity if the risk premium is positive. However, with DA preferences it may be
optimal to not participate in the stock market.2 This immediately implies that CRRA
preferences cannot deliver the same empirically relevant dispersion in stock holdings
that we can obtain with DA preferences.

Proposition 2.1 (Non-participation under disappointment aversion). Suppose the

expected excess return EðxeÞ is positive. Then under DA preferences, there exists a

level of A, A ¼ A; such that for AoA; investors hold no equity. This non-

participation level A is independent of risk aversion g:

Proof. See Appendix B.

Appendix B shows that A is given by

A ¼ �
E½xejxep0�Prðxep0Þ

E½xejxe40�Prðxe40Þ
.

The intuition for the non-participation result is straightforward. As A decreases, a
DA investor becomes more averse to losses. Consequently, her optimal allocation to
equities decreases. At a particular A, say A; the optimal portfolio weight becomes
zero. If xe were to have a discrete distribution, then the more dramatic the negative
excess return states and the higher their probabilities, the less disappointment
aversion it takes for a to reach zero and the higher A will be. This critical point
does not depend on the curvature of the utility function since as a approaches zero,
the certainty equivalent approaches Rf ¼ expðrÞ and the marginal utility terms cancel
out in the FOCs. For AoA; the optimal allocation remains zero. Shorting is not
optimal, since the certainty equivalent is increasing in a for ao0: This occurs because
for ao0; negative excess return states have higher wealth than Rf and hence are
downweighted.
The fact that A only depends on the excess return distribution generalizes to the

multiple risky asset case when asset returns are jointly normally distributed. In that
case, two fund separation applies and the excess return distribution of the tangency
2Dow and Werlang (1992), Epstein and Schneider (2004), and Liu (2002) show that a similar non-

participation result can be obtained with ambiguity-averse preferences.
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portfolio determines A: However, under alternative distributions, non-participation
in one asset need not imply non-participation in another asset.
To illustrate non-participation, consider a binomial model to approximate the

excess return xe � expðyÞ � expðrÞ: In this simplest case, the excess return can be u

with probability p and d with probability 1� p: Note that in standard notation with
binomial trees, u and d refer to gross returns of the risky asset, but here we use them
to indicate the excess return states. Under this setting, the critical level of A which
results in non-participation is

A ¼ �
ð1� pÞd

pu
.

To calibrate the binomial tree, we assume that U.S. equity returns are log-normally
distributed. For quarterly stock return data from 1926 to 1998, we find that the mean
continuously compounded equity return is 10.63% and the volatility is 21.93% (see
Table 1). The mean continuously compounded short rate is 4.08%, so that the
continuously compounded equity premium is 6.55%. Denote the implied average
simple gross return and volatility by m and s, respectively. We match these two
moments by setting u ¼ m þ s � expðrÞ ¼ 0:3504 and d ¼ m � s � expðrÞ ¼ �0:1553;
with p ¼ 0:5: The implied simple excess return premium from the binomial
approximation is 9.76%. For this model, we find that A ¼ 0:44: That is, if an
investor’s utility in the loss region, relative to the utility in the gain region, is scaled
up by 1=0:44 ¼ 2:27; she chooses to not participate in the market. To appreciate the
importance of this result, suppose we would like to generate low stock holdings using
a CRRA utility function, assuming the binomial stock model as the DGP. For
comparison, to obtain an optimal equity allocation of 5%, g must be set equal
to 33.7.
However, the extreme states inherent in the two-date approximation exaggerate

the non-participation region. We can determine the correct answer for a log-normal
distribution by numerical integration, and determine that A ¼ 0:36: A two-period/
three-date binomial tree is sufficient to approximate the log-normal solution much
more closely. At time 0, there are two possible states to be realized at time 1, and at
time 1 (after six months), there are again two possible states for time 2 from each of
the two branches of time 1, giving a total of three possible states at the end of the
Table 1

Summary statistics of the data

Stock T-bill Excess

Mean 0.1063 0.0408 0.0655

Std 0.2193 0.0173 0.2197

Autocorrelation �0.0575 0.9273 �0.0532

All data are quarterly. Stock data represent S&P 500 returns, with dividends. The T-bill data are three-

month T-bill returns from CRSP. Excess returns refer to stock returns in excess of T-bill returns. All

returns are continuously compounded. The mean and standard deviation are annualized by multiplying by

four and two, respectively. The data sample is 1926–1998.
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year with a recombining tree. At each branch, the probability of an upward move is
p. Calibrating the tree, the three states are uu ¼ 0:4808; ud ¼ du ¼ 0:0699; and dd ¼

�0:2301: Note that only the lowest state is disappointing. In this case,

A ¼ �
ð1� pÞ2dd

p2uu þ 2pð1� pÞud
¼ 0:37. (10)

Because the historical equity premium we use is high and its estimation is subject
to substantial sampling error, Fig. 1 shows the region of stock non-participation as a
function of different expected equity returns. To produce the plot, we vary the
expected equity return in the binomial gamble from 0% to 20% and plot A on the
vertical axis. The circle shows the empirical expected total equity return of 10.63%,
or the empirical risk premium of 6.55%, which corresponds to A ¼ 0:37: For an
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Fig. 1. Stock market participation under disappointment aversion. The plot shows the critical level A

required for an investor to hold equity as a function of the total excess expected return (on the x-axis). For

any A higher than the solid line denoting A; investors hold a positive amount of equity (‘‘participation

region’’). For any A lower than the line investors hold zero equity (‘‘non-participation region’’). To

produce the plot, we use a binomial tree with three states (two periods) for excess returns and graph A

given by Eq. (10). To calibrate the binomial tree, let m̄ denote the mean and s̄ denote the standard

deviation of continuously compounded returns (10.63% and 21.93%, respectively) and let the

continuously compounded risk-free rate be r ¼ 4:08%: Define the log-normal mean for one period as

m ¼ expð1
2
m̄þ 1

2
s̄2Þ and standard deviation s ¼ expð1

2
m̄þ 1

2
s̄2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðexpðs̄2Þ � 1Þ

p
for a half-year node. The

three states uu, ud, and dd at the end of the year are given by uu ¼ ~u2 � expðrÞ; ud ¼ ~u � ~d � expðrÞ; and
dd ¼ ~d

2
� expðrÞ; where ~u ¼ m þ s and ~d ¼ m � s: The circle shows A ¼ 0:37; corresponding to the

empirical total expected return 10.63%, or an expected excess return of 6.55%.
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expected excess return of 16%, A drops to just over 0.20. Values of A above the line
in Fig. 1 induce investors to participate in the market. This is the ‘‘participation’’
region. Values of A below A define the ‘‘non-participation’’ region, where investors
hold no equity. While this is an illustration of non-participation with a simple
binomial model of equity returns, we compute optimal non-participation regions for
more realistic DGPs in Section 5.
3. Dynamic asset allocation under DA preferences

We embed DA preferences in a dynamic asset allocation setting, which nests
dynamic CRRA asset allocation as a special case. The dynamic setting is important
for several reasons. First, the recent empirical portfolio choice literature has devoted
much attention to the dynamic effects of asset allocation (see Brennan et al., 1997,
among many others). Second, our dynamic extension of DA utility has a number of
desirable mathematical and rational properties that are hard to replicate with LA
preferences. Finally, our dynamic extension enables the standard technical tools, in
particular dynamic programming, to be used with portfolio choice problems with
DA utility. Section 3.1 discusses how we solve the dynamic asset allocation problem
under CRRA utility before we present our formulation of dynamic portfolio choice
under DA preferences in Section 3.2.

3.1. Dynamic CRRA utility

Our problem for dynamic CRRA utility is to find a series of portfolio weights
a ¼ fatg

T�1
t¼0 to maximize

max
a0;...;aT�1

E0½UðW T Þ�, (11)

where a0; . . . ; aT�1 are the portfolio weights at time 0 (with T periods remaining), . . . ;
to time T � 1 (with one period remaining), and UðW Þ ¼ W 1�g=ð1� gÞ: Wealth W t

at time t is given by W t ¼ Rtðat�1ÞW t�1; with

Rtðat�1Þ ¼ at�1ðexpðytÞ � expðrt�1ÞÞ þ expðrt�1Þ.

Since CRRA utility is homogenous in wealth, we set W 0 ¼ 1 as in the static case.
Using dynamic programming, we obtain the portfolio weights at each horizon t by

using the investor’s (scaled) indirect utility, Qtþ1;T :

at ¼ arg max
at

Et½Qtþ1;T W
1�g
tþ1 �, (12)

where Qtþ1;T ¼ Etþ1½ðRT ðaT�1Þ . . .Rtþ2ðatþ1ÞÞ
1�g

� and QT ;T ¼ 1: The FOCs of the
investor’s problem are, for all t,

Et½Qtþ1;T R
�g
tþ1ðatÞxe;tþ1� ¼ 0, (13)

where xe;tþ1 ¼ ðexpðytþ1Þ � expðrtÞÞ is the excess return at time t þ 1: This
expectation can be solved using quadrature in a manner similar to that for the
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static problem. For N states, we must track N values of Qtþ1;T at each horizon. There
are also N portfolio weights, one corresponding to each state, at each horizon. Hence
at represents one of N portfolio weights at horizon t, depending on which state is
prevailing at that time in the conditional expectation of Eq. (12).
In Eq. (12), if ðytþ1; rtþ1Þ is independent of ðyt; rtÞ for all t, then Qtþ1;T is

independent of W tþ1 � R
1�g
tþ1 ðatÞ; so the indirect utility in Eq. (12) becomes

Et½Qtþ1;T W
1�g
tþ1 � ¼ Et½Qtþ1;T �Et½R

1�g
tþ1 ðatÞ�. (14)

Since Et½Qtþ1;T � does not depend on at; the objective function for the optimization
problem at time t is equivalently Et½R

1�g
tþ1 ðatÞ�: Thus, the problem reduces to a single-

period problem and there is no horizon effect.
3.2. Dynamic DA utility

The generalization of DA utility to multiple periods is non-trivial. Therefore, we
first explore a two-period example in Section 3.2.1, which highlights various
considerations we must address to generalize DA to a dynamic, long horizon set-up.
Section 3.2.2 presents our dynamic programming algorithm for the full-fledged
multi-period case.
3.2.1. Two period example

Suppose there are three dates t ¼ 0; 1; 2 and two states u; d for the excess equity
return at dates t ¼ 1; 2: Hence, this is the two-period binomial tree example of
Section 2.2.2, but we allow for rebalancing after each period. Without loss of
generality we specify the risk-free rate to be zero. The distribution of returns is
independent across time. In this special setting, Rtðat�1Þ is given by 1þ at�1u in state
u and 1þ at�1d in state d. The agent chooses optimal portfolios at dates t ¼ 0 and 1.
At t ¼ 1 for each state u and d, the investor chooses a1 to maximize m1 given by

K1m
1�g
1 ¼ E½R1�g

2 ða1Þ1fR2ða1Þpm1g� þ AE½R1�g
2 ða1Þ1fR2ða1Þ4m1g�, (15)

where K1 ¼ PrðR2ða1Þpm1Þ þ A PrðR2ða1Þ4m1Þ: Since the distribution is IID, the
optimal utility m1 is the same across states, that is m


1ðuÞ ¼ m1ðdÞ:

Suppose at t ¼ 0 the investor defines the DA utility function as

K0m
1�g
0 ¼ E0½ðR1ða0ÞR2ða1ÞÞ

1�g1fR1ða0ÞR2ða1Þpm0g�

þ AE0½ðR1ða0ÞR2ða1ÞÞ
1�g1fR1ða0ÞR2ða1Þ4m0g�, ð16Þ

where K0 ¼ PrðR1ða0ÞR2ða1Þpm0Þ þ A PrðR1ða0ÞR2ða1Þ4m0Þ: That is, she
computes the certainty equivalent of end-of-period wealth, given her current
information. There are four states fuu; ud; du; ddg with portfolio returns
fð1þ a0uÞð1þ a1uÞ;ð1þ a0uÞð1þ a1dÞ;ð1þ a0dÞð1þ a1uÞ;ð1þ a0dÞð1þ a1dÞg: Since
we cannot a priori assume a0 ¼ a1; returns are not necessarily recombining (the ud

return can be different from the du return) and we must track all the return states
both at t ¼ 1 and t ¼ 0: Hence, the number of states increases exponentially with the
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number of periods. Moreover, the optimization is time-dependent, so portfolio
weights may depend on the horizon even when returns are IID.
This example highlights two related difficulties in extending DA utility to a

dynamic case, in contrast to the computationally convenient, recursive,
dynamic programming approach presented in Section 3.1 for CRRA utility. First,
the number of states increases exponentially with the horizon while the computa-
tional advantage of dynamic programming relies on the dimension of the state-space
being kept the same at each horizon. Second, while the reference point is
endogenously determined each period, it depends on all possible future return
paths. Furthermore, an interesting feature of the set-up of Eq. (16) is that even
with IID returns there are horizon effects. These complexities make solving
dynamic DA problems not only more challenging, but they also make extending
DA portfolio choice problems to a context with DGPs that require extra
state variables (to accommodate predictability, for example) next to impossible.
Therefore, we develop a dynamic extension of DA which does not suffer from
these problems. Most importantly, our approach is tractable enough to apply to
realistic DGPs.
We present a dynamically consistent way to compute the certainty equivalent

which does not increase the state-space with each horizon and which endogenously
updates the reference point. The key assumption is that future uncertainty, as far as
the choice of the future endogenous reference point is concerned, is captured in the
certainty equivalent. This assumption is similar to the way the recursive formulation
of Kreps and Porteus (1979) and Epstein and Zin (1989) captures future uncertainty.
We illustrate this dynamic DA formulation with the simple two-period example.
Instead of using actual future returns to compute the certainty equivalent at t ¼ 0;
we use the certainty equivalent at t ¼ 1

K0m
1�g
0 ¼ E0½ðR1ða0Þm1Þ

1�g1fR1ða0Þm1pm0g� þ AE0½ðR1ða0Þm1Þ
1�g1fR1ða0Þm14m0g�,

(17)

where K0 is now defined as K0 ¼ PrðR1ða0Þpm0Þ þ A PrðR1ða0Þ4m0Þ: In this
formulation, there are only two states fu; dg and we only need to track fð1þ
a0uÞm1; ð1þ a0dÞm1g: Hence, the state-space remains at two states each period.
This investor uses the next period’s indirect utility m1 to form the DA utility this

period, so (17) is a dynamic programming problem. Notice that the endogenous
reference point also updates itself and depends on the future optimal return.
Finally, this generalization of DA utility to a dynamic setting also preserves the
property that the CRRA dynamic program (using the CRRA indirect utility) is a
special case for A ¼ 1: Like CRRA utility, the DA portfolio weights in this
generalization of DA utility to a dynamic setting do not exhibit horizon effects if the
return DGP is IID.
Although the non-recombining utility specification in (16) has many undesirable

features, it remains a valid theoretical preference specification. We illustrate the
differences between the optimal asset allocations resulting from solving the problem
in (16) versus the specification in (17) in the case of the two-period binomial tree. At
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date 1, both problems look the same. Assuming a positive risk premium, we
know that a1X1: Hence, the up state has a lower weight. (If the risk premium is
negative, the down state would have a lower weight.) Therefore, the DA utility can
be written as

m1�g
1 ¼

ð1� pÞð1þ a1dÞ
1�g

þ Apð1þ a1uÞ
1�g

ð1� pÞ þ Ap
. (18)

The corresponding FOC for a1 is

ð1� pÞð1þ a1dÞ
�gd þ Apð1þ a1uÞ

�gu ¼ 0,

so the optimal portfolio weight a1 is given by

a1 ¼
k� 1

u � kd
,

where

k ¼ �
Apu

ð1� pÞd

	 
1=g

.

At date t ¼ 0; the problem in Eq. (16) remains unchanged because returns are IID
(see Eq. (13)). For the non-recombining case, the actual utility specification depends
on the magnitude of m0 relative to the four states. The ordering of the states depends
on whether a0 is smaller or larger than a1: In an appendix available upon request, we
fully analyze this case and show that the utility lies in one of four different regions.
For each region, the FOCs can be derived, and we must check whether the resulting
optimal utility is indeed in the assumed region. Corner solutions are also possible,
where the optimal solution lies at the border of a region—this may happen for low
levels of A.
Table 2 summarizes our findings for two different calibrations of the binomial

tree. On the left, we report a0 and a1 assuming one period is equal to six months
and the total horizon is one year. On the right, we assume one period is equal
to one quarter and the total horizon is six months. The a1 weight is also the
optimal solution for the specification in (15). It is clear that there are indeed
horizon effects with the specification using Eq. (16), which can be quantified
by looking at the difference between a0 and a1: Interestingly, a04a1; so longer
horizons mitigate the disappointment aversion. The differences are small for high A

but become larger for low A. Nevertheless, we still obtain non-participation
for Ao0:65:

3.2.2. Dynamic DA algorithm

Building on the DA utility defined in Eq. (17), we present an algorithm for solving
the dynamic asset allocation problem under DA preferences. Our problem is similar
to the problem described in Eq. (11), but the utility function is now DA utility. We
start the dynamic program at horizon t ¼ T � 1; and solve

max
aT�1

mT�1ðaT�1Þ, (19)
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Table 2

Optimal portfolio weights for the two-period binomial tree

A Rebalancing frequency Rebalancing frequency

is one half-year is one-quarter

a0 a1 a0 a1

1.00 0.8901 0.8901 0.9136 0.9136

0.95 0.8943 0.8144 0.8496 0.7974

0.90 0.8009 0.7286 0.7763 0.6752

0.85 0.7483 0.6383 0.6386 0.5456

0.80 0.6825 0.5431 0.4881 0.4106

0.75 0.5667 0.4423 0.3228 0.2666

0.70 0.4384 0.3354 0.1402 0.1135

0.65 0.2957 0.2214 0.0000 0.0000

0.60 0.1359 0.0995 0.0000 0.0000

The table lists optimal disappointment aversion portfolio weights in equity for the two-period (three dates)

recombining binomial tree as described in Section 3.2.1. The curvature coefficient is g ¼ 2:00 for all cases.
The binomial tree is calibrated to U.S. stock return data. In the left-hand columns labelled ‘‘rebalancing

frequency is one-half year,’’ u ¼ 0:2132 and d ¼ �0:1198; with the base period being six months, and the

horizon being one year. In the right-hand columns labelled ‘‘rebalancing frequency is one-quarter,’’ u ¼

0:1365 and d ¼ �0:0908; with the base period being one quarter, and the horizon being six months.
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where mT�1 is defined by

KT�1m
1�g
T�1 � ET�1½R

1�g
T ðaT�1Þ1fRT ðaT�1ÞpmT�1g

�

þ AET�1½R
1�g
T ðaT�1Þ1fRT ðaT�1Þ4mT�1g

� ð20Þ

with KT�1 ¼ PrðRT ðaT�1ÞpmT�1Þ þ A PrðRT ðaT�1Þ4mT�1Þ: We solve for the opti-
mal portfolio weight aT�1; with the corresponding optimal utility mT�1; as in the one-
period problem. At this horizon, the allocation problem is equivalent to the static
problem, but we solve for each quadrature state, which yields N optimal state-
dependent portfolio weights and utilities.
At horizon t ¼ T � 2 we solve

max
aT�2

mT�2ðaT�2Þ, (21)

where mT�2 is defined by

KT�2m
1�g
T�2 � ET�2½R

1�g
T�1ðaT�2ÞðmT�1Þ

1�g1ffRT�1ðaT�2ÞmT�1
pmT�2g

�

þ AET�2½R
1�g
T�1ðaT�2ÞðmT�1Þ

1�g1fRT�1ðaT�2ÞmT�1
4mT�2g

� ð22Þ

with KT�2 ¼ PrðRT�1ðaT�2ÞpmT�2Þ þ APrðRT�1ðaT�2Þ4mT�2Þ: To solve for aT�2

and mT�2 at a particular state at t ¼ T � 2; we need only track the N states for mT�1

at T � 1: We continue this process for t ¼ T � 3 until t ¼ 0:
If A ¼ 1; then at horizon t ¼ T � 2 the DA utility reduces to

m1�g
T�2 ¼ ET�2½R

1�g
T�1ðaT�2ÞðmT�1Þ

1�g
� ¼ ET�2½R

1�g
T�1ðaT�2ÞQT�1;T �, (23)
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which is the standard CRRA problem. Note that if returns are IID, then at each
horizon, exactly the same DA problem applies and the portfolio weights are
independent of the horizon. More generally, to solve the DA problem at each
horizon, we simultaneously use the FOC and the definition of the certainty
equivalent, which also occurs in the static case (see Eqs. (6) and (9)).
4. Disappointment aversion versus loss aversion

A large literature documents how the risk attitudes of individuals differ from the
predictions of expected utility theory. The behavioral work of Kahneman and
Tversky (1979) has been very influential in this area. In Section 4.1, we define LA
utility following Kahneman and Tversky (1979). Both the LA and DA preferences
capture similar features of human behavior, and we comment on how LA and DA
preferences imply risk aversion with respect to both small and large stakes, a feature
not shared by CRRA utility.
LA preferences have been far more popular than DA preferences in applied

finance work. This is surprising for a number of reasons. First, the grounding
of DA preferences in decision theory makes them more attractive to economists
using rational dynamic programming tools. Second, whereas we are able to
formulate a mathematically well-defined static and dynamic asset allocation
framework under DA preferences, this is considerably harder under LA preferences.
Sections 4.2–4.4 briefly illustrate some of the problems encountered when
applying the original Kahneman–Tversky formulation to an asset allocation
framework. These problems include the real possibility of infinite optimal
asset allocations and the sensitivity of the asset allocation to the choice of the
reference point. The shortcomings of LA have led researchers employing this
behavioral utility function to modify the original Kahneman–Tversky specification
and we discuss various implementations in Section 4.5. The attraction of the DA
framework is precisely that it accommodates loss aversion without other behavioral
implications.

4.1. Loss aversion and Rabin (2000) gambles

4.1.1. Kahneman and Tversky (1979) loss aversion

With w representing a gain or loss relative to a reference point B0; the LA utility of
Kahneman and Tversky (1979) is given by

UðwÞ ¼ �lE½ð�wÞð1�g1Þ1fwp0g� þ E½wð1�g2Þ1fw40g�, (24)

where 1 is an indicator variable, w ¼ W � B0 ¼ Rf þ axe � B0 is the gain or loss of
final wealth W relative to the benchmark B0; Rf ¼ expðrÞ is the gross risk-free rate
and xe ¼ expðyÞ � expðrÞ is the excess stock return where y is the equity return.
Kahneman and Tversky (1979) argue that the expectation in Eq. (24) should be
taken under a subjective measure, but for now we assume that the objective (real)
measure holds.
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The parameter l governs the additional weight on losses. According to Kahneman
and Tversky, l ¼ 2:25; so losses are weighted 2.25 times as much as gains, and
g1 ¼ g2 ¼ 0:12; which implies the same amount of curvature across gains and losses.
Following the behavioral literature, we consider only the case of 0pg1o1 and
0pg2o1 since the felicity function ð�lð�wÞ1�g11fwp0g þ wð1�g2Þ1fw40gÞ is monotone in
wealth only if 0pg1o1 and 0pg2o1:3 Hence, both LA and DA preferences
incorporate an asymmetric treatment of good and bad outcomes that is not present
in standard expected utility. LA utility is different from DA utility because the LA
felicity function is not globally concave in wealth. When expressed in wealth levels,
the LA utility function is S-shaped, which implies risk-seeking behavior in the loss
region and risk aversion in the gain region. The non-concavity has important
consequences for optimal portfolio choice under LA utility.
4.1.2. Rabin (2000) gambles

Rabin (2000) demonstrates a striking problem arising in the expected utility
framework. His ‘‘calibration theorem’’ is best illustrated with an example. Suppose
that for some ranges of wealth (or for all wealth levels), a person turns down gambles
where she loses $100 or gains $110, each with equal probability. Then she will turn
down 50%–50% bets of losing $1000 or gaining ANY sum of money. We call such a
gamble a ‘‘Rabin gamble.’’ Since DA preferences do not fall into the expected utility
category, they do not necessarily suffer from the Rabin-gamble problem.
Fig. 2 illustrates this. Imagine an investor with $10,000 wealth. If he has CRRA

preferences, a risk aversion level of g ¼ 10 makes him reject the initial �100=þ 110
gamble. The graphs in the left-most column show both his utility and willingness-to-
pay relative to the Rabin gamble of losing $1000 and gaining the amount on the x-
axis. The willingness-to-pay to avoid the gamble is the difference between the certain
wealth the investor has available by not participating in the gamble minus the
certainty equivalent of the gamble. If the willingness-to-pay is negative, rational
agents would accept the gamble. The last amount on the right-hand side of the x-axis
represents $25,000. It is apparent from the top graph that the marginal utility of
additional wealth becomes virtually zero very fast. The willingness-to-pay to avoid the
gamble asymptotes to about $280, even if the potential gain is over $1,000,000. The
extreme curvature in the utility function drives the continued rejection of the second
gamble even as the possible amount of money to be gained increases to infinity.
With DA preferences, an investor need not display an extremely concave utility

function to dislike the original �100=þ 110 gamble, because he hates to lose $100.
The middle column of Fig. 2 shows utility levels and willingness-to-pay for DA
utility. An investor with g ¼ 2 and A ¼ 0:85 rejects the original gamble, but this
investor loves the Rabin gambles. In fact, the willingness-to-pay decreases rapidly
and quickly becomes negative. As an example, our DA investor would be willing to
pay $3664 to enter a bet where she can gain $25,000 but may lose $1000 with equal
3Note that the utility function implies different preference orderings if w is expressed in different units

unless g1 ¼ g2 or the difference between g1 and g2 is very small. Expressing w in returns (so w has no

dimension) circumvents this problem. Note that LA utility is not defined at W ¼ B0 for g41:
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CRRA γ = 10 Utility level
Disappointment Aversion γ = 2,

A = 0.85 Utility level Loss Aversion γ = 0.18, λ = 2.25 Utility level

CRRA γ = 10 Willingness-to-pay
Disappointment Aversion γ = 2,

A = 0.85 Willingness-to-pay
Loss Aversion γ = 0.18,

λ = 2.25 Willingness to pay

Fig. 2. Rabin gambles. Utility levels (top row) and willingness to pay (bottom row) for a gamble with the

following characteristics: an initial wealth of $10,000, a 50% probability of a loss of $1000 and a 50%

probability of a gain represented on the x-axis. The left column considers CRRA utility with g ¼ 10; the
middle column Disappointment Aversion utility with curvature parameter g ¼ 2 and disappointment level

A ¼ 0:85; and the right column loss aversion utility with curvature parameter g ¼ 0:18 and loss parameter
l ¼ 2:25:
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probability. For lower g; or higher A, this amount increases. For example, if g ¼ 0
and A ¼ 0:85; the DA investor would be willing to pay $10,946 to take on this
�1000=þ 25; 000 gamble.
For LA preferences, we must first introduce a notion of willingness-to-pay because

the LA utility in Eq. (24) is defined over gains and losses. However, since gains and
losses are always evaluated relative to a benchmark, wealth is implicitly given as the
gain or loss plus the reference point. Denoting the LA utility in Eq. (24) as ULA; we
define the certainty equivalent of LA, mLAW ; as

mLAW ¼

U
1=ð1�g2Þ
LA þ B0 if ULA40;

� �
ULA

l

	 
1=ð1�g1Þ

þ B0 if ULAp0;

8>><>>: (25)

where B0 is the benchmark of the gamble, which is also our chosen initial wealth.
The last column of Fig. 2 shows utility levels and willingness-to-pay for a LA

investor with benchmark parameters g ¼ 0:18 and l ¼ 2:25 from Kahneman and
Tversky (1979). This investor also rejects the initial �100=þ 110 gamble but likes the
Rabin gambles. For example, the LA investor would be willing to pay $8671 to enter
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a bet to gain $25,000 with probability one half, and lose $1000 with probability one
half. Hence, both the DA and LA preference functions can resolve the Rabin puzzle.
From introspection, over-weighting losses relative to gains seems to yield much more
reasonable attitudes towards risk.

4.2. Characterizing optimal LA portfolio weights

When the portfolio weight in equities a is very large in absolute magnitude (so that
w ! axe as a ! �1), the utility function approaches

�la1�g1E½ð�xeÞ
1�g11fxep0g� þ a1�g2E½x1�g2

e 1fxe40g�; for a ! þ1

and

jaj1�g1E½ð�xeÞ
1�g11fxep0g� � ljaj1�g2E½x1�g2

e 1fxe40g�; for a ! �1, (26)

where xe is the excess return on equity. Hence, the term with the higher exponent on
a dominates. In particular, for g14g2 the second term dominates so there is no finite
optimal portfolio weight. The behavioral literature has mostly considered only the
case of g1 ¼ g2 ¼ g following Kahneman and Tversky (1979) (see Benartzi and
Thaler, 1995; Berkelaar and Kouwenberg, 2000; Barberis et al., 2001). Even in this
restricted case, extreme LA portfolio weights are likely. Sharpe (1998) analyzes a
closely related bilinear utility function, which can be represented as lxe1fxep0g þ

xe1fxe40g: Sharpe shows that this bilinear utility function implies extreme portfolio
weights under empirically relevant circumstances (see also Aı̈t-Sahalia and Brandt,
2001). Appendix C outlines general conditions under which finite portfolio solutions
with LA preferences are possible. Interestingly, we find that LA may produce local
maxima (see Benartzi and Thaler, 1995), even though the global maximum is either
�1 or þ1: Such local maxima exist for realistic parameter values.

4.3. Choice of the LA reference point

Kahneman and Tversky (1979)’s prospect theory gives no guidance with regard to
the choice of the reference point B0; which must be set exogenously. As noted by
Benartzi and Thaler (1995), different horizons can turn the LA optimization into a
totally different problem. For example, for very long rebalancing periods, the effect
of the benchmark is negligible if the benchmark is current wealth or current wealth
times the risk-free rate. This is because the benchmark in accumulated wealth W ¼

Rf þ axe � B0 is swamped by the equity returns over long horizons. Moreover, in a
dynamic setting there is no clear guidance about how the loss aversion reference
point should be updated. If the choice of reference point is current wealth times the
risk-free rate, as specified by Barberis et al. (2001), then the LA optimal portfolio
weight, if finite, is zero:

Proposition 4.1. If the benchmark B0 is equal to current wealth times the risk-free rate

then the optimal portfolio weight a ¼ 0 or it is unbounded.

Proof. See Appendix C.
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Hence, for this particular benchmark, the only possible portfolio weights are �1;
0, or þ1: In contrast, in DA utility, the reference point defining elating outcomes
(‘‘gains’’), versus disappointing outcomes (‘‘losses’’) is endogenous and we show that
DA portfolio weights are finite.
4.4. Subjective probability transformations

When the risk premium is zero, CRRA or DA investors hold zero equity. This is
not always the case for LA investors. Kahneman and Tversky (1979) propose to use
a subjective rather than an objective probability distribution to take the expectations
in Eq. (24). Kahneman and Tversky call the transformed objective probabilities
‘‘decision weights.’’ The transformation involves over-weighting small probability
events and under-weighting large probability events. Whereas the literature that
empirically applies loss aversion (Benartzi and Thaler, 1995; Berkelaar and
Kouwenberg, 2000; Barberis et al., 2001; Gomes, 2003) has not used these
probability transformations, it is useful to point out one of their undesirable
properties. In particular,

Proposition 4.2. If the risk premium is zero, then the optimal portfolio weight in LA

could be less than zero (ao0).

Proof. See Appendix C.

Short positions may result with LA even with zero risk premiums since the LA
probability transformation downweights probabilities, rather than events. Similar to
LA, DA also involves an implied probability transformation. However, Appendix A
shows that DA uses a CRRA maximization problem with transformed probabilities
such that the probabilities for wealth above the certainty equivalent are down-
weighted. The major difference between the probability transformation of DA and
LA is that DA’s probability transformation is endogenous, while LA’s is arbitrary.
The subjective probability transformation of LA also violates first-order stochastic
dominance and transitivity. In contrast, these properties are maintained under DA
preferences (see Machina, 1982; Gul, 1991).
4.5. Loss aversion in the literature

The possible non-finite optimal portfolio weight under LA preferences is due to
the global non-concavity of the LA utility function. Specifically, LA utility, as
defined by Kahneman and Tversky (1979) and used by Benartzi and Thaler (1995), is
finite for negative wealth. Proposition 4.2 shows that LA investors may be more risk-
seeking than CRRA investors. An important consequence is that there is no
guarantee that non-corner solutions can be found. Various approaches have been
taken in the literature to practically implement LA. Most of these approaches rely on
imposing additional restrictions on the original specification so that the utility
function is sufficiently negative, or negative infinity, at zero wealth. This allows the
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original LA utility to be ‘‘pseudo-concavified’’ (Berkelaar and Kouwenberg, 2000),
but changes the fundamental nature of the original specification.4

For example, to avoid corner solutions, Gomes (2003) adds a term to the LA
utility function, which for sufficiently large losses makes the utility function again
concave:

UðW Þ ¼ VBL � lE½ðð�wÞÞð1�g1Þ1fW oWpB0g� þ E½ðwÞð1�g2Þ1fW4B0g�,

where VBL is defined by Gomes as

VBL ¼ E½W 1�g1fWpW g� � c

and c is a constant set to make the utility function continuous at W ¼ W : By using
another CRRA term, negative wealth can be assigned negative infinite utility, forcing
wealth to be positive. Another approach is taken by Berkelaar and Kouwenberg
(2000), who do not modify Kahneman and Tversky (1979)’s original specification,
but instead explicitly restrict wealth to be positive.
Barberis et al. (2001)’s utility function has two components. The first component is

a log-utility function defined over consumption. The second component is defined
over wealth and embeds loss aversion. The loss aversion component is piece-wise
linear (g1 ¼ 0 and g2 ¼ 0), following Benartzi and Thaler (1995). In an asset
allocation framework, their utility function can be written as

UðW Þ ¼ E½logðW Þ� � lE½ð�wÞ1fWpB0g� þ E½w1fW4B0g�. (27)

The log utility function endogenously enforces a positive wealth constraint, since
wealth at zero yields negative infinite utility. Barberis et al. choose the reference
point as current wealth times the risk-free rate. In the original Kahneman and
Tversky (1979) formulation without the Barberis–Huang–Santos log-utility term, we
know from Proposition 4.1 that the only finite optimal equity portfolio weight for
this choice of reference point is zero. These practical implementation problems
inherent in LA preferences make DA preferences a very viable alternative to model
loss aversion.
5. Disappointment aversion and stock holdings

5.1. Data and data generating processes

To examine portfolio choice under realistic DGPs, we use quarterly U.S. data
from 1926 to 1998 on nominal stock returns and Treasury bill interest rates. We use
two main DGPs in this paper that largely conform to the DGP’s prevalent in the
extensive literature on dynamic asset allocation (e.g. Kandel and Stambaugh, 1996;
4Benartzi and Thaler (1995), although working with the original Kahneman and Tversky (1979) LA

specification, do not perform an optimization problem. They evaluate LA utility as a function of the equity

portfolio holding, but only between zero and one. Calibrating a binomial tree to the U.S. stock market, we

find that this is likely a local optimum, with utility being maximized at a ¼ þ1:
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Balduzzi and Lynch, 1999; Campbell and Viceira, 1999; Barberis, 2000). In our first
model, stock returns are IID over time and the interest rate follows a first-order
autoregressive system. In our second model, we accommodate predictability.
Following most of the dynamic asset allocation literature, we consider only one
possible predictor of stock returns and consider a system in which an instrument
linearly predicts stock returns in the conditional mean of equity returns. Whereas
many authors have focused on yield variables, we use the interest rate itself. This has
the advantage of reducing the state space and introduces an interesting dynamic
since the predictor itself is the return on an investable asset. We are also unlikely to
lose much predictive power, since Ang and Bekaert (2003) find that the short rate is
the most robust predictor of international stock returns. Ang and Bekaert (2003) and
Goyal and Welch (2003) demonstrate that the dividend yield, which has been
previously used by many authors to forecast returns, has no forecasting power when
data of the late 1990s are added to the sample.
Our two DGPs for nominal data are special cases of a bivariate vector

autoregression (VAR) on stock returns and interest rates

X t ¼ c þ FX t�1 þ S1=2�t, (28)

where X t ¼ ð ~yt rtÞ
0; ~yt ¼ yt � rt�1 is the continuously compounded excess equity

return and rt is the risk-free rate, measured by the quarterly T-bill interest rate, and
�t � Nð0; IÞ:
The ‘‘No Predictability’’ model imposes the condition that all elements of F equal

zero except F22; and the ‘‘Predictability’’ model constrains all elements of F except
F12 and F22 to be zero. Estimates for these DGPs are reported in Table 3. In both
systems, there is negative contemporaneous correlation between shocks to short
rates and stock returns. The predictability system reveals that the short rate is not a
significant predictor of stock returns over the full sample period. In fact,
predictability is much stronger in the post-1940 period. Although we do not report
results for this alternative sample explicitly, we investigate a DGP estimated on post-
1940 data. With this DGP, equity is relatively more attractive, but our main results
are unchanged.
We now derive optimal asset allocations for various parameter configurations

under the two DGPs. Since the DGPs are first-order Markov processes, they lend
themselves easily to discretization, which we detail in Appendix D.

5.2. No predictability case

In this system, the excess premium is constant and IID, while short rates are
autoregressive and negatively correlated with equity returns. For a given risk
aversion, portfolio allocations in this system depend on the horizon, but they do not
depend on the level of the short rate (as we show later). This is not surprising given
that our set-up is similar to that of Liu (1999). Liu proves this result analytically in a
continuous-time problem with the short rate following a Vasicek (1977) model.
Under the Vasicek term structure model, excess returns of bonds have a constant risk
premium, have constant volatilities, and are perfectly correlated with the short rate.
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Table 3

Parameter estimates for the data generating processes

No predictability system Predictability system

c1 0.0161 0.0223

(0.0064) (0.0099)

c2 0.0008 0.0008

(0.0003) (0.0003)

F12 — �0.6049

(0.7416)

F22 0.9273 0.9273

(0.0219) (0.0219)

s1 0.1095 0.1094

(0.0015) (0.0015)

s2 0.0032 0.0032

(0.0000) (0.0000)

r �0.0474 �0.0475

(0.0585) (0.0585)

The model is

X t ¼ mþ FX t�1 þ S1=2�t,

with X t ¼ ð ~yt rtÞ
0; ~yt the excess one-period stock return, and rt the short rate. Stock returns are S&P500

returns and the short rate is the three-month T-bill interest rate. All returns are continuously compounded.

All elements of F are constrained to be zero except for F22 in the no predictability system. In the

predictability system, F11 and F21 are constrained to be zero. The correlation between the errors of ~yt and

rt is denoted r: The data sample is quarterly from 1926 to 1998.
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Similarly, in our no predictability system, excess stock returns have a constant risk
premium and a constant volatility. Although in our setting the correlation between
equities and the short rate is not unity, Liu’s result obtains. Given there is no short
rate dependence, we only discuss general patterns in optimal equity portfolio
weights.
Because there is little guidance on the choice of parameter values, we characterize

portfolio choice for DA preferences (which include CRRA as a special case) across a
wide set of parameter values. Fig. 3 establishes benchmark asset allocations for
CRRA preferences restricting the curvature parameter g to the interval ½2; 10�; a
range suggested by decades of empirical research, with g ¼ 2 as the most popular
choice (see Friend and Blume, 1975). Moderately risk-averse CRRA agents (g ¼ 2)
should put close to 100% of their portfolio in equities. Equity allocations of 50% to
60% start to appear at g’s between 3 and 4, but CRRA utility never produces a
non-participation result. Fig. 3 also shows that the equity proportion is slightly
larger for longer horizons and hence agents gradually decrease their equity
proportions as they age.
Table 4 reports the asset allocation results for g ¼ 2 and 5 (the middle of the ½2; 10�

range) and two horizons (three months and ten years), and also reports standard
errors for the weights, computed using the delta method (see Ang and Bekaert,
2002). We check the accuracy of these standard errors using a small-scale Monte
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Carlo (with 400 parameter draws); this is extremely time-consuming because of the
long computation time required to solve the DA problem for every parameter draw.
The Monte Carlo standard errors are very similar to the standard errors computed
using the delta-method. For low levels of A, the delta-method tends to overstate the
standard errors because it fails to fully account for the non-linearity induced by non-
participation.
Because the equity return mean is measured with large sampling error, these

standard errors are quite large. Nevertheless, the weights at g ¼ 2 (0.927) and g ¼ 5
(0.370) are both significantly different from zero at the 1% level and, using a Wald
test, significantly different from each other (p-value ¼ 0.0006). However, for both
g ¼ 2 and 5, the equity weight is no longer statistically significant from zero once A

reaches 0.80. The Wald test for the hypothesis that the one-quarter horizon portfolio
weights corresponding to A ¼ 1:00 and 0.65 for g ¼ 2 are the same rejects the
null with p-value less than 0.0001; similarly, a test that the one-quarter horizon
portfolio weights for A ¼ 1:00 and 0.65 are equal for g ¼ 5 also rejects with p-value
less than 0.0001.
Table 4 shows one of our main results. For the no predictability system, the critical

A required to induce investors to participate in the market is A ¼ 0:6030: That is,
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Table 4

Portfolio weights for the no predictability system

A Curvature parameter g ¼ 2 Curvature parameter g ¼ 5

1 qtr 10 yr w2 test p-value 1 qtr 10 yr w2 test p-value

1.00 0.9270 0.9359 0.9870 0.3703 0.3835 0.9524

(0.2728) (0.2730) (0.1098) (0.1110)

0.95 0.8331 0.8455 0.9815 0.3324 0.3473 0.9459

(0.2729) (0.2638) (0.1094) (0.1106)

0.90 0.7337 0.7499 0.9764 0.2925 0.3091 0.9395

(0.2728) (0.2748) (0.1090) (0.1113)

0.85 0.6283 0.6485 0.9716 0.2503 0.2688 0.9319

(0.2743) (0.2921) (0.1085) (0.1089)

0.80 0.5165 0.5408 0.9645 0.2057 0.2262 0.9229

(0.2717) (0.2741) (0.1080) (0.1044)

0.75 0.3976 0.4324 0.9537 0.1584 0.1809 0.9126

(0.2698) (0.3281) (0.1075) (0.0985)

0.70 0.2710 0.3116 0.9399 0.1080 0.1327 0.9142

(0.2689) (0.2701) (0.1069) (0.1224)

0.65 0.1357 0.1824 0.9240 0.0542 0.0844 0.8906

(0.2667) (0.2233) (0.1062) (0.1138)

Critical A to induce participation

1 qtr 10 yr

A 0.6030 0.6001

Optimal portfolio weights for disappointment aversion utility for various horizons for curvature

parameter g ¼ 2 and 5 for the system without predictability. Portfolios are rebalanced quarterly. The

critical level of A required to participate in the equity market is given by A: Standard errors are given in

parentheses. The w2 test reports a p-value that the one-quarter horizon portfolio weight is the same as the

ten-year horizon portfolio weight.
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scaling up the utility of disappointing outcomes by 1.66 (1/0.6030) produces
non-participation. Note that all investors hold zero equity at A irrespective of g (see
Proposition 2.1). Hence, variation in A (from 1 to 0.6030) for a CRRA investor with
the ‘‘normal’’ curvature in the utility function of g ¼ 2 leads to variation in equity
holdings from close to 100% to 0%. For g ¼ 2; dropping A to 0.85 is sufficient to
bring the equity allocation close to 60%. The effect on asset allocation of lower A is
less dramatic for higher g; which is apparent from the column with g ¼ 5:
Turning now to horizon effects, Table 4 shows that the portfolio weights for one-

quarter and ten-year horizons are very similar. The columns labeled w2 p-value in
Table 4 report the p-value of a Wald test that the portfolio weights for the one-
quarter and ten-year horizons are the same. This tests overwhelmingly fails to reject
for all g and A. Looking at the point estimates of the portfolio weights across
horizons, the horizon effect becomes larger when A is decreased, reaching a 4.67%
difference for A ¼ 0:65 and g ¼ 2:
While the statistical significance and economic magnitude of the horizon effects

are small, their existence in a system without predictability warrants some further
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elaboration. In our estimated system, portfolio weights do not depend on the short
rate but there is a weak positive horizon effect: agents with longer horizons hold
more equity. From Samuelson (1991) and others, processes with positive persistence
induce negative horizon effects (they are ‘‘riskier’’ over longer periods), whereas
negatively correlated processes induce positive horizon effects. In our empirical
estimates, shocks to stock returns and short rates are slightly negatively correlated
(�0:0474) (see Table 3), which induces weak positive hedging demands.
The size of hedging demands is primarily determined by the rebalancing horizon,

the predictor variable used to forecast equity returns and the correlation between
predictor innovations and returns. Brandt (1999) and Ang and Bekaert (2002) find
that frequent rebalancing reduces the size of hedging demands and Aı̈t-Sahalia and
Brandt (2001) and Lynch (2001) also find that the magnitude of hedging demands
depends very much on the choice of predictor variable.
We also consider a system with heteroskedasticity, changing the interest rate

process in Eq. (28) to a simple square root model rtþ1 ¼ cr þ rrt þ sr
ffiffiffiffi
rt

p
�tþ1;r with

the equity return given by ytþ1 ¼ cy þ sy;r
ffiffiffiffi
rt

p
�tþ1;r þ sy�tþ1;y to match the same

unconditional moments implied by the VAR (28). Because sr and the conditional
correlation between interest rates and excess equity returns are small, the results are
rather uninteresting. The portfolio weights are invariably slightly smaller than what
we obtain for the homoskedastic case, with the differences becoming slightly larger
with the horizon. However, the differences are very small, never exceeding 0.008, and
we do not report the results to conserve space. We also incorporate heteroskedas-
ticity into the predictability system in Section 5.4 with a square root process for
interest rates, and find it totally dominated by the conditional mean effects.

5.3. The impact of the rebalancing frequency

With LA preferences, the rebalancing frequency is very important. For example, if
the benchmark is current wealth, the longer the rebalancing frequency, the more
irrelevant the benchmark becomes. This observation is critical to the argument of
Benartzi and Thaler (1995), who claim that it is myopic loss aversion which accounts
for the puzzling lack of equity holdings among investors. Of course, in our
framework, the rebalancing frequency is likely to be less important, since the
reference point is endogenous and changes with the rebalancing frequency in an
internally consistent fashion.
Table 5 confirms this conjecture. The first line of the table simply expands on the

results of Table 4, showing that longer horizons induce slightly higher equity
allocations. The table then displays results for three other rebalancing frequencies:
two quarters, one year, and two years. These portfolio weights are computed by
temporally aggregating the one-quarter VAR (see Appendix D) and then discretizing
the resulting dynamic system as a first-order VAR over the myopic frequency.
Formally, temporal aggregation leads to a VARMA(1,1) system in the new
frequency, but taking the MA component into account in the optimal asset
allocation is infeasible. For a myopic horizon, the VAR approximation should be
very accurate.
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Table 5

Portfolio weights with different rebalancing frequencies for the no predictability system

Rebalancing frequency Horizon

1 qtr 2 qtrs 1 yr 2 yrs

Portfolio weights for different rebalancing frequencies

1 qtr 0.6283 0.6290 0.6332 0.6403

(0.2743) (0.2724) (0.2743) (0.2991)

2 qtrs 0.6348

(0.2717)

1 year 0.6683

(0.2714)

2 years 0.6462

(0.2741)

Critical A for different rebalancing frequencies

1 qtr 0.6030 0.6028 0.6024 0.6017

2 qtrs 0.5965

1 year 0.5656

2 years 0.5927

The table lists optimal portfolio weights for various horizons for disappointment aversion utility with

curvature parameter g ¼ 2 and disappointment level A ¼ 0:85 for the system without predictability. For

the portfolio weights in the row labelled ‘‘1 qtr,’’ we report optimal portfolio weights for the quarterly

VAR rebalanced each quarter, for different horizons from one quarter to two years. For the rows labelled

‘‘2 qtrs’’ to ‘‘2 years,’’ the DGP is a time-aggregated VAR. For example, for the two-quarter rebalancing

frequency, we use a VAR time-aggregated over two quarters. These portfolio weights are myopic. The

critical level of A required to participate in the equity market is given by A: Standard errors are given in

parentheses.
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Table 5 shows that the effect of changing the rebalancing frequency is very small.
Because there is no predictability, the main effect comes from changes in the
annualized volatility of interest rates with different rebalancing frequencies, which
first decreases from 0:0173�

ffiffiffi
4

p
¼ 0:0346 at the one-quarter horizon to 0:0286 at

the one-year horizon (making equities relatively more attractive) and then increases
back to 0:0560C2 ¼ 0:0396 for the two-year frequency. The mechanism here is very
different from the drastic change in the benchmark level that drives the results in
Benartzi and Thaler (1995). Our results are driven by changes in the DGP at the
different frequencies.

5.4. Predictability case

Table 6 reports myopic portfolio weights corresponding to three annualized
interest rates levels 0.0392, 0.0816, and 0.1208 for g ¼ 2; 5 and various
disappointment levels A, for the system with predictability of excess returns. The
special case of CRRA utility is given by A ¼ 1: The interest rates represent a state
close to the unconditional mean (r ¼ 0:0392), an extremely high interest rate
(r ¼ 0:1208), and one in the middle of the range. As interest rates increase, the equity
holding decreases. The effect is quite pronounced. For example, a g ¼ 2 investor
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Table 6

Myopic portfolio weights for the predictability system

A r ¼ 0:0392 r ¼ 0:0816 r ¼ 0:1208

g ¼ 2 g ¼ 5 g ¼ 2 g ¼ 5 g ¼ 2 g ¼ 5

1.00 0.9379 0.3747 0.6704 0.2675 0.4224 0.1685

(0.2735) (0.1101) (0.4172) (0.1668) (0.6769) (0.2701)

0.95 0.8438 0.3367 0.5758 0.2296 0.3278 0.1308

(0.2736) (0.1097) (0.4171) (0.1664) (0.6768) (0.2695)

0.90 0.7443 0.2967 0.4760 0.1897 0.2283 0.0911

(0.2735) (0.1093) (0.4170) (0.1660) (0.6768) (0.2690)

0.85 0.6389 0.2545 0.3705 0.1477 0.1235 0.0493

(0.2737) (0.1088) (0.4187) (0.1656) (0.6665) (0.2682)

0.80 0.5269 0.2098 0.2590 0.1033 0.0130 0.0052

(0.2724) (0.1083) (0.4118) (0.1652) (0.6687) (0.2677)

0.75 0.4079 0.1625 0.1408 0.0562 0.0000 0.0000

(0.2715) (0.1078) (0.4127) (0.1645)

0.70 0.2810 0.1120 0.0153 0.0061 0.0000 0.0000

(0.2697) (0.1072) (0.4097) (0.1634)

0.65 0.1455 0.0581 0.0000 0.0000 0.0000 0.0000

(0.2675) (0.1065)

A ¼ 0:5998 A ¼ 0:6941 A ¼ 0:7943

The table lists myopic (three-month horizon) portfolio weights for the system with short rate

predictability. We list weights corresponding to three (annualized) interest rate states 0.0392, 0.0816,

and 0.1208 for g ¼ 2 and 5 and various disappointment levels A. The critical disappointment level required

to participate in the equity market is given as A:
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holds 64% in the market portfolio for A ¼ 0:85 at r ¼ 0:0392: When r increases to
0.0816 this investor’s portfolio weight decreases to 37%. This is not surprising. In the
system with predictability, higher interest rates lower the conditional equity premium
(Table 3 shows that a 1% increase in the short rate decreases the equity premium by
60 basis points). Of course, the standard errors on the weights remain large.
The critical A required for investors to participate in the equity market now

depends on the interest rate and rises from 0.60, over 0.69 to 0.79 for the three
interest rates reported in Table 6. The critical level A increases with the interest
rate because higher short rates lower the equity premium, giving stocks more
room to disappoint. Stock non-participation now occurs for smaller degrees of
Fig. 4. Equity portfolio weights and A under disappointment aversion utility in the predictability system.

The top plot shows equity portfolio weights under DA utility for the system with short rate predictability

for curvature parameter g ¼ 2 and disappointment level A ¼ 0:85: The short rate is on the horizontal axis,
and the portfolio weights are on the vertical axis. We show portfolio weights corresponding to four

different horizons (three months, one year, five years, ten years); rebalancing is always quarterly. The

bottom plot shows the corresponding minimum A required to induce equity participation corresponding

to the same horizons as the top plot.
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disappointment aversion (higher A). At high interest rate levels, since A is high,
modest cross-sectional variation in A produces substantial variation in equity
participation. The naı̈ve reaction of some retail investors to pull out of the stock
market when money market rates are high is thus optimal in this framework.
In Fig. 4, we graph optimal equity weights under DA preferences with g ¼ 2 and

A ¼ 0:85 for various horizons as a function of the interest rate. As is also the case for
CRRA utility, the portfolio weight curve is downward sloping and hedging demands
are small. At first, hedging demands are positive and increase with higher interest
rates. For very high interest rates, they become negative. At interest rates above
approximately 12%, as the horizon increases, the interest rate at which the investor
switches entirely to risk-free bonds decreases. To help gain intuition on this result,
the bottom panel graphs A as a function of the interest rate for various horizons. At
very high interest rates, A increases with horizon which causes equity holdings to
decrease and produces the negative hedging demands. This is because for longer
horizons, A is determined not only by the one-period-ahead distribution of excess
returns, but also depends on future certainty equivalents of wealth. For very high
interest rates (above 14.7%), the equity premium is negative. At high interest rate
levels, for long horizons the probability of landing in the negative equity premium
region is larger than for short horizons. This effect increases A for longer horizons
at high interest rates. For low interest rates, around 2–4%, the probability of ending
in the negative equity premium region is almost zero, so at low interest rates we find
small positive hedging demands, as in the no predictability case.
In Table 6, the drop in equity holdings going from A ¼ 1:0 to 0.85 is about 30%,

and more generally, the portfolio weights decline almost linearly with the interest
rate. This prompts the question whether the state dependence of DA utility is
different from CRRA utility. If this is the case, we may find DA outcomes using
CRRA utility with a higher risk aversion coefficient. Fig. 5 vividly illustrates that
CRRA utility cannot replicate DA asset allocations. For each short rate, we start
from the optimal equity weight at a horizon of one quarter for a DA investor with
g ¼ 5 or g ¼ 2 and with A ¼ 0:85: We then find a CRRA investor characterized by g
who chooses the same portfolio. If the above claim were true, we should find a
horizontal line. In contrast, the line starts out relatively flat but then rapidly ratchets
upward non-linearly for higher short rates, so the aversion of the DA investor to
stocks increases non-linearly with higher interest rates. The implied CRRA risk
aversion increases as a function of the short rate because the higher the short rate,
the lower the equity premium, and thus the more stocks can disappoint. At very high
interest rates, a DA investor with A ¼ 0:85 holds zero equity, which can only be
captured by infinite CRRA risk aversion.
6. Conclusions

In this article, we use the disappointment aversion preference framework
developed by Gul (1991) to study the dynamic asset allocation problem. DA
preferences incorporate loss aversion in that they treat gains and losses
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asymmetrically, but are fully axiomatically motivated and admit easy comparison
with standard expected utility. From the perspective of the smooth concave nature of
constant relative risk averse (CRRA) preferences, the behavior of many investors
often appears puzzling: investors often do not invest in the stock market, and a
portfolio choice model with predictable equity returns often leads to substantially
levered equity positions. Investors who are averse to disappointing outcomes should
hold significantly less equity even with moderate curvature in the utility function.
Moreover, we show that for high enough disappointment aversion, an investor’s
optimal equity position is zero.
By calibrating a number of data generating processes to U.S. data on stock and

bond returns, we find very reasonable portfolios for disappointment-averse investors
with utility functions exhibiting quite low curvature. DA preferences induce horizon
effects and state dependence of asset allocation in such a way as to not be replicable
by a CRRA utility function with higher curvature. Despite the large equity premium,
stocks may disappoint! Whereas the primary focus of the recent literature has been
on the effects of predictability or background risk on portfolio choice, our results
suggest the importance of understanding the investor’s attitude towards risk. The
proper specification of an investor’s utility function matters as much as, if not more
than, the proper specification of the stochastic environment. Consequently, it is
encouraging to see related work such as Barberis et al. (2001) who embed prospect
theory in a dynamic portfolio choice model with consumption.
Whether heterogeneity in preferences or heterogeneity in circumstances is the

more fruitful direction to pursue to explain the portfolio choice evidence remains to
be seen. There is a scarcity of experimental work on risk preferences, and almost
none on the kind of preferences we examine in this paper. Loomes and Segal (1994)
focus on the implications of different utilities for the order of risk aversion. Standard
CRRA preferences exhibit second-order risk aversion (the insurance premium the
investor is willing to pay to avoid a gamble is proportional to the variance of the
gamble), while DA preferences exhibit first-order risk aversion (the insurance
premium is proportional to volatility). They observe both first- and second-order
risk aversion in their subjects. Although they note that the first-order risk aversion
embedded in DA preferences may not be strong enough relative to their
experimental evidence, their results coupled with ours definitely suggest to take
heterogeneity in preferences as a potentially important determinant of portfolio
choice.
There are a number of interesting avenues for future work. Disappointment-averse

agents dislike negative skewness much more than standard CRRA agents. Hence,
the regular occurrence of equity market crashes inducing such skewness may further
scare investors away from equity investments or it may induce them to buy (costly)
insurance against such crashes. This may account for the recent popularity of put-
protected products which seem to have lured many investors into the stock market.
In an international context, the occurrence of correlated bear markets (see, e.g., Ang
and Bekaert, 2002; Das and Uppal, 2004) may induce home bias in asset preferences
for disappointment-averse investors. Although DA preferences yield portfolio
allocations promisingly close to actual holdings in partial equilibrium settings, we
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must ultimately investigate whether DA preferences can be accommodated in an
equilibrium model of risk.
Appendix A. Solving the DA portfolio allocation problem

To solve Eqs. (6) and (9) numerically, we use quadrature to approximate the
definition of mW in Eq. (6) by

m1�g
W ¼

1

K

X
s:W spmW

psW
1�g
s þ

X
s:W s4mW

ApsW
1�g
s

 !
, (A.1)

and the FOC in Eq. (9) byX
s:W spmW

psW
�g
s ðexpðysÞ � expðrÞÞ þ

X
s:W s4mW

ApsW
�g
s ðexpðysÞ � expðrÞÞ ¼ 0.

(A.2)

We solve Eqs. (A.1) and (A.2) simultaneously to yield the portfolio weight a that
maximizes the utility of this disappointment-averse investor. Appendix D discusses
the discretization procedure.
Let xe ¼ ðexpðyÞ � expðrÞÞ denote the excess stock return. With N quadrature

points there are N outcomes for xe; fxesg
N
s¼1; with probability weights fpsg

N
s¼1:

Without loss of generality, we can order xe from low to high across states s. The
utility equivalent mW corresponding to the optimal portfolio weight a can be in any
of N intervals:

½expðrÞ þ axe1; expðrÞ þ axe2Þ;

½expðrÞ þ axe2; expðrÞ þ axe3Þ;

..

.

½expðrÞ þ axe;N�1; expðrÞ þ axeNÞ:

Suppose mW lies in ½expðrÞ þ axei; expðrÞ þ axe;iþ1Þ for some state i. Then a solvesX
s:W sp expðrÞþaxe;i

psðW

s Þ

�gxes þ
X

s:W s4 expðrÞþaxe;iþ1

ApsðW

s Þ

�gxes ¼ 0, (A.3)

where W 
s ¼ expðrÞ þ axes: Eq. (A.3) is a CRRA maximization problem with a

changed probability distribution pi ¼ fpisg
N
s¼1; where the probabilities for wealth

above the certainty equivalent are downweighted, i.e., the probabilities pis are
transformed from the original quadrature probabilities ps by the relation

pi �
ðp1; . . . ; pi;Apiþ1; . . . ;ApN Þ

0

ðp1 þ 
 
 
 þ piÞ þ Aðpiþ1 þ 
 
 
 þ pNÞ
. (A.4)

Our algorithm is as follows. We start with a state i and solve the CRRA problem
with probability distribution pi: Then we compute the certainty equivalent, mWi;
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given by

mWi ¼
XN

s¼1

ðW 
s Þ
1�gpis

 !1=ð1�gÞ

. (A.5)

Then, we check if in this state the following is true:

mWi 2 ½expðrÞ þ ai xei; expðrÞ þ ai xe;iþ1Þ. (A.6)

If this is true for i ¼ i; then a ¼ ai and mW ¼ mWi: As the states are ordered in
increasing wealth across states for a given portfolio weight, it is easy to do a bisection
search algorithm (with intermediate CRRA optimizations) to obtain the DA portfolios. If
we start our search for i at the midpoint of the N states and find that mWi4ðoÞ expðrÞ þ
ai xe;iþ1; then we begin a search in the upper (lower) half of the state space.
Gul (1991)’s appendix describes a similar algorithm. Both our algorithm and Gul’s

require the solution of an optimization problem in each discrete state. The difference
is that in our algorithm we solve a simple smooth CRRA problem, whereas Gul
requires a non-linear maximization involving an indicator function. For his
optimization problem, gradient-based search algorithms cannot be used, and thus
our algorithm is numerically more tractable.
We can extend this solution to the dynamic DA problem in Section 3.2.

Specifically, if wealth W s is increasing across states s for a given portfolio weight,
and the certainty equivalent for horizon t, ms;t; is also increasing across states for a
given portfolio weight, then ~W s ¼ Rsms;t is also increasing across states s.
Appendix B. Proof of Proposition 2.1

Define

A ¼ �
E½xejxep0�Prðxep0Þ

E½xejxe40�Prðxe40Þ
. (B.1)

As we formally show, A is the level of disappointment such that for ApA; a ¼ 0
and for A4A; a40:Note that this definition of A is independent of risk aversion g:
Considering optimality at a ¼ 0 is a special case since the certainty equivalent

equals the gross risk-free rate Rf ¼ expðrÞ and since the definition of disappointing
or elating states switches when a changes from negative to positive (if xe40; Rf þ

axe4Rf only for positive a). Therefore, we must consider left- and right-hand side
derivatives to determine optimality.
Consider first AoA:We show that the optimal asset allocation at A is a ¼ 0:We

start by denoting the certainty equivalent nðA; aÞ as a function of the disappointment
level A and the portfolio weight a

nðA; aÞ1�g
¼

1

K
fE½UðW Þ1fWpnðA;aÞg� þ AE½UðW Þ1fW4nðA;aÞg�g, (B.2)

with K ¼ PrðWpnðA; aÞÞ þ A PrðW4nðA; aÞÞ: Recall that W ¼ Rf þ axe in our
setting.
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The derivative of nðA; aÞ with respect to a is given by

nðA; aÞ�g


qnðA; aÞ

qa
¼

1

K
fE½W�gxe1fWpnðA;aÞg� þ AE½W�gxe1fWonðA;aÞg�g. (B.3)

This is the well-known first-order condition, derived for instance in Epstein and Zin
(2001) and Bekaert et al. (1997). This expression is the same as the derivative of the
terms in the integrands in (B.2). However, taking the derivative of nð
Þ with respect to
a also involves taking the derivatives of K with respect to a and the derivatives of the
certainty equivalent in the integration limits, both with respect to a: In the NBER
working version of this paper, we explicitly show that the latter two derivatives of the
indicator functions sum to zero.
When a approaches zero, we have W ¼ Rf and nðA; 0Þ ¼ Rf : Hence, we can

equivalently express 1fWpnðA;aÞg as 1faxep0g and, analogously, 1fW4nðA;aÞg as 1faxe40g:
Clearly, the value of these indicator functions depends on whether we approach zero
from the left or the right. Let us first take the LHS derivative of nð
Þ at a ¼ 0: First,
note that because ao0;

1faxep0g ¼ 1fxeX0g and 1faxe40g ¼ 1fxeo0g. (B.4)

Second, the terms nðA; 0Þ�g and W�g cancel on each side of the equation.
Consequently, we obtain

qn
qa

����
a¼0�

¼
1

K
fE½xe1fxeX0g� þ AE½xe1fxeo0g�g, (B.5)

where K ¼ PrðxeX0Þ þ A Prðxeo0Þ: Since ao0; states in which xeo0 have higher
wealth than the certainty equivalent and these are now downweighted by A, since
Ap1: But then

qn
qa

����
a¼0�

X
E½xe�

K
40 (B.6)

by the assumption of a positive risk premium E½xe�40 and because K40: Hence, we
conclude that qn=qa40 and it must be that aX0 because the utility function is
globally concave in a:
Now let us consider the case of the RHS derivative and a40: In this case, we have

1faxep0g ¼ 1fxep0g and 1faxe40g ¼ 1fxe40g. (B.7)

Consequently, we obtain

qn
qa

����
a¼0þ

¼
1

K
fE½xe1fxep0g� þ AE½xe1fxe40g�g. (B.8)

Here, as is usual, the good states are positive excess return states, since a40 and they
are downweighted by A. By assumption, ApA; so

qn
qa

����
a¼0þ

o
1

K
fE½xe1fxep0g� þ AE½xe1fxe40g�g ¼ 0, (B.9)

where the equality follows by definition of A: Hence, it must be the case that ap0:
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Combining the two cases above, we have a ¼ 0: Note that in the above argument
for the utility function increasing in a for ao0; we only used the fact that E½xe�40
and Ap1: We use the extra assumption AoA to show the utility function is
decreasing in a for a40: When A4A; the utility function is increasing at a ¼ 0þ as
well as at a ¼ 0�; therefore a40: Note that the RHS of Eq. (B.9) also constitutes
the FOC at A:
Appendix C. Optimal portfolio solutions under LA utility

The following proposition gives conditions under which a finite portfolio choice
solution with LA preferences is possible.

Proposition C.1 (Existence of optimal LA portfolio weights). Consider the LA utility

function in Eq. (24), with g1 ¼ g2 ¼ g and 0pgo1: Then there exists a finite solution

for the optimal portfolio weight a only when both B1o0 and B2o0; where B1 and B2

are given by

B1 ¼ �lE½ð�xeÞ
1�g1fxep0g� þ E½x1�g

e 1fxe40g�

and

B2 ¼ E½ð�xeÞ
1�g1fxep0g� � lE½x1�g

e 1fxe40g�. (C.1)

Under these conditions, the optimal weight a depends on the benchmark B0 but is

independent of l:

Proof. When the portfolio weight a ! þ1 then

U ! ðaÞ1�gB1,

so U ! þ1 if B140 and there is no optimal weight. Similarly,

U ! ðjajÞ1�gB2,

when a ! �1; so U ! þ1 if B240 and there is no optimal weight. Therefore, the
optimal portfolio weight can only exist if B1o0 and B2o0:
If both B1o0 and B2o0; then as a ! 1; U ! �1 and as a ! �1; U ! �1:

Since U is monotonic in wealth for 0pgo1 there must exist an optimal solution
a: &

Proof of Proposition 4.1. If B0 ¼ W expðrÞ; then LA utility becomes

U ¼ ðjajÞ1�gB21ap0 þ a1�gB11a40, (C.2)

where B1 and B2 are defined in Eq. (C.1). If B1o0 and B2o0; the utility U is
maximized at a ¼ 0: If B240; then a ! �1 and U ! þ1; so a ¼ �1: Similarly,
if B140; then U ! þ1 as a ! þ1; so a ¼ þ1: &

Proof of Proposition 4.2. Suppose the risk premium is zero, and the probability of a
negative equity return occurring is smaller than the probability of a positive equity
return. Then the probability transformation of prospect theory assigns a higher
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probability weight to the negative return, which makes the risk premium negative
under the subjective measure. Hence an agent with these preferences shorts the
stock. &
Appendix D. Data generating processes

We estimate the following VAR:

X t ¼ c þ FX t�1 þ ut, (D.1)

where ut � IID Nð0;SÞ: For our system X t ¼ ð ~yt rtÞ
0; where ~yt ¼ yt � rt�1 is the

excess equity return and rt is the short rate. The optimal lag choice by the Bayesian
Information Criteria (BIC) is one lag.
The system without predictability has

F ¼
0 0

0 r

 !
and in the system with predictability,

F ¼
0 b

0 r

 !
.

Eq. (D.1) can be written in compact form as

X ¼ BZ þ U , (D.2)

where X ¼ ðX 1 . . .X T Þ ð2� TÞ; B ¼ ½cF� ð2� 3Þ; U ¼ ðu1 . . . uT Þ ð2� TÞ; Z ¼

ðz0 . . . zT�1Þ ð3� TÞ with zt ¼ ½1X 0
t�
0 ð3� 1Þ: The restrictions are written as Rb ¼ r

with b ¼ vecðBÞ: The unrestricted maximum likelihood estimator, where F is
unconstrained is given by

b̂ ¼ ððZZ0Þ
�1Z � IÞY ,

where Y ¼ vecðX Þ: The restricted maximum likelihood estimator is given by

b̂
c
¼ b̂þ ððZZ0Þ

�1
� IÞR0ðRððZZ0Þ

�1
� IÞR0Þ

�1
ðr � Rb̂Þ (D.3)

and B̂ ¼ devecðb̂
c
Þ:

The estimate of S is given by Ŝ ¼ 1=T ðÛ
0
ÛÞ; where Û ¼ X � B̂Z: The estimated

covariance of b̂c is given by

dcovðb̂cÞ ¼ G� Ŝ� ðG� ŜÞR0ðRðG� ŜÞR0Þ
�1RðG� ŜÞ, (D.4)

where G ¼ ðZZ0Þ
�1: The estimated covariance of vechðŜÞ is given by

dcovðvechðŜÞÞ ¼ 2

T
D�1ðŜ� ŜÞðD�1Þ

0, (D.5)

where D�1 is the Moore-Penrose inverse of D, the duplication matrix which makes
vecðCÞ ¼ D vechðCÞ for a symmetric matrix C.
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D.1. Time aggregation of VARs

Define the time-aggregated process X̄ tþk;k ¼ X tþ1 þ 
 
 
 þ X tþk over k horizons. If
X t follows the VAR given by X tþ1 ¼ mþ FX t þ �tþ1; with �tþ1 � IID Nð0;SÞ; then
we can define a time-aggregated VAR as

X̄ tþk;k ¼ m̄þ F̄X̄ t;k þ utþk;k. (D.6)

The companion form of the time-aggregated VAR F̄ is simply F̄ ¼ Fk and m̄ is given
by

m̄ ¼ ðI þ Fþ 
 
 
 þ FkÞm. (D.7)

The conditional covariance Etðutþk;ku0
tþk;kÞ ¼ S̄ is given by

S̄ ¼ Sþ ðI þ FÞSðI þ FÞ0 þ 
 
 
 þ ðI þ Fþ 
 
 
 þ FkÞSðI þ Fþ 
 
 
 þ FkÞ
0

þ ðFþ F2 þ 
 
 
 þ FkÞSðFþ F2 þ 
 
 
 þ FkÞ
0

þ ðF2 þ 
 
 
 þ FkÞSðF2 þ 
 
 
 þ FkÞ
0
þ 
 
 
 þ FkSðFkÞ

0. ðD:8Þ

D.2. Discretization of VARs

We construct an approximate discrete Markov chain to the VAR in Eq. (D.1)
using the quadrature-based methods of Tauchen and Hussey (1991). For the system
for X t ¼ ð ~ytrtÞ; with ~yt ¼ yt � rt�1 the excess equity return and rt the short rate, ~yt

may be dependent on lagged rt but not vice versa, so rt is the driving variable in the
system. We choose N ¼ 50 points for the short rate over a uniform grid and denote
these as frig: The short rate is very persistent, so many points are necessary for an
accurate approximation (see Tauchen and Hussey, 1991). We use a uniform grid
because points chosen by Gaussian-Hermite quadrature perform poorly in
optimization as they are too widely spaced. We construct the transition probabilities
Pr ðN � NÞ for going from state ri to rj ; 1pi; jpN by evaluating the conditional
density of rj (which is conditionally Normal) and then normalizing the densities so
that they sum to unity. This is the driving process of the discretized system.
We choose M ¼ 30 discrete states for ~yt: These states are chosen using Gaussian-

Hermite points approximating the unconditional distribution of ~yt implied by Eq.
(D.1). To include ~yt in the discretization we note that for each state ri; an N � M

vector pi can be constructed giving the transition probabilities going from state ri

ð1pjpNÞ to ðrj ; ~yjÞ ð1pjpN � MÞ: The distribution of ~yt conditional on ri is
normal, and is discretized by evaluating the distribution of ~yt conditional on ri for
going from state ri to state ðrj ; ~yjÞ: A Choleski decomposition is used to take account
of the contemporaneously correlated error terms ut in Eq. (D.1). The vectors pi can
be stacked to give a N � NM probability transition matrix Pry giving the
probabilities from frig; 1pipN to frj ; ~yjg; 1pjpNM: The Markov chain
constructed in this way matches first and second moments of the VAR in Eq.
(D.1) to three-to-four significant figures. It is possible to also construct a square P
matrix, but this matrix will have repeated rows.
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