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Past research in new product development (NPD) has conceptualized prototyping as a “design-build-test-
analyze” cycle to emphasize the importance of the analysis of test results in guiding the decisions made
during the experimentation process. New product designs often involve complex architectures and incorporate
numerous components, and this makes the ex ante assessment of their performance difficult. Still, design teams
often learn from test outcomes during iterative test cycles enabling them to infer valuable information about
the performances of (as yet) untested designs. We conceptualize the extent of useful learning from analysis of
a test outcome as depending on two key structural characteristics of the design space, namely whether the set
of designs are “close” to each other (i.e., the designs are similar on an attribute level) and whether the design
attributes exhibit nontrivial interactions (i.e., the performance function is complex).

This study explicitly considers the design space structure and the resulting correlations among design per-
formances, and examines their implications for learning. We derive the optimal dynamic testing policy, and
we analyze its qualitative properties. Our results suggest optimal continuation only when the previous test
outcomes lie between two thresholds. Outcomes below the lower threshold indicate an overall low performing
design space and, consequently, continued testing is suboptimal. Test outcomes above the upper threshold, on
the other hand, merit termination because they signal to the design team that the likelihood of obtaining a
design with a still higher performance (given the experimentation cost) is low. We find that accounting for
the design space structure splits the experimentation process into two phases: the initial exploration phase, in
which the design team focuses on obtaining information about the design space, and the subsequent exploitation
phase in which the design team, given their understanding of the design space, focuses on obtaining a “good
enough” configuration. Our analysis also provides useful contingency-based guidelines for managerial action as
information gets revealed through the testing cycle. Finally, we extend the optimal policy to account for design

spaces that contain distinct design subclasses.
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1. Introduction
Before launching a new product, firms often test mul-
tiple product prototypes to gather performance and
market data, and to decrease the technical and mar-
ket uncertainty. Various studies emphasize the impor-
tance of testing and experimentation for successful
new product development (NPD) and, at the same
time, recognize that testing may consume substan-
tial resources (Allen 1977, Clark and Fujimoto 1989,
Cusumano and Selby 1995, Thomke 2003). Thus, these
studies highlight a key trade-off involved in experi-
mentation: performance benefits versus costs of addi-
tional experiments.

Over the years, a number of studies have exam-
ined this fundamental trade-off and its associated
drivers. Early on, Simon (1969) observed the need
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to undertake multiple trials (experiments) to obtain
a high performing outcome (design). DeGroot (1968)
modeled this process as the repeated sampling of
a random variable representing the design perfor-
mance. In a seminal study, Weitzman (1979) recog-
nizes that the different design performances are not
necessarily “realizations” of the same random vari-
able. Instead, he views experimentation as a search
over a finite set of statistically independent alterna-
tives (designs) with distinct and known prior distribu-
tions of performances. His simple and elegant result
is summarized as follows: continue testing as long
as the best performance obtained so far is below a
“reservation performance.”

Clark and Fujimoto (1989) present evidence from
practice that design configuration tests are not simply
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arbitrary draws from independent performance dis-
tributions, but rather are iterative “design-build-test”
tasks. Their study forms the basis for Thomke’s (1998,
2003) conceptualization of the experimentation pro-
cess as an iterative “design-build-test-analyze” cycle.
Thomke’s (1998, 2003) research is the first to empha-
size the aspect of learning during experimentation,
and to highlight that the analysis phase enables a
design team to understand the design space better
and revise the test schedules accordingly.

Building on Thomke’s (1998) empirical findings,
Loch et al. (2001) analytically examine which mode
of experimentation (parallel versus sequential exper-
imentation) minimizes the overall experimentation
costs. In their model, the design team gradually learns
through imperfect sequential experiments, and iden-
tifies which design is the “best” in fulfilling an exoge-
nously specified functionality.

In this study, we recognize that the extent of trans-
ferable learning (i.e., relevance of the outcome from
testing one design configuration in understanding
and predicting the performance of another configura-
tion) is directly related to the design space structure
(e.g., the similarities among different design con-
figurations). Thomke et al. (1999) offer a tangible
illustration of how such transferable learning occurs
in practice: the design team, conducting simulation-
based side-impact crash tests of BMW cars, observed
during the course of testing that weakening a partic-
ular part of the body structure (specifically, a pillar)
led to superior crash performance of the vehicle. This
insight allowed them to infer the same relationship
in other related (similar) designs, and to improve the
overall safety of BMW's product offerings.

This paper seeks to answer the following research
questions: (i) How does the design space structure
influence the optimal number of experiments and (ii)
how does the design space structure drive the design
team’s learning? We motivate our formal treatment of
the problem with the following numerical example.

1.1. Motivating Example

Consider a product that can be realized through two
design configurations, A and B, and let a subset of
design attributes be identical across the two con-
figurations. The design team assesses, a priori, that
the performance of configuration A (B) is distributed
normally around a mean u, (uz) with a standard
deviation of o, (o3). The similarities in the design
attributes between the two configurations lead the
design team to expect that, if A exhibits high (low)
performance, then B has a higher likelihood of a high
(low) performance. Thus, the scalar performances of
configurations A and B (A and B, respectively) are
jointly multivariate normal and exhibit positive cor-
relation p,z =0. We assume that testing reveals the

true performance of design configurations (i.e., per-
fect testing), and suppose that the cost of testing
design configuration A (B) is C, (Cg). Consider the
following example of parameters:

CAZCBZO.l
0=0.8

ma=01 up=0
oy,=03=1

1.2. Base Line Case with No Learning

First, consider the case where the performance depen-
dencies and, thus, the possibility of learning are dis-
regarded, i.e., § = 0. Furthermore, suppose that the
best performance found so far is x (x =0 if no test
has been conducted). Given x, continuing onto test
design A at a cost C, results in the (expected) perfor-
mance E[max{x, A}]. Hence, the marginal value from
testing A is E[max{x, A}] — x — C,. Weitzman (1979)
shows that this marginal value is positive and further
experimentation is beneficial as long as the current
best solution (i.e., x) is lower than a threshold (i.e.,
the reservation price of A).! Furthermore, Weitzman'’s
(1979) reservation price (denoted by WRP) of A is
obtained by equating the above marginal value to
zero, i.e., solving for x in the equation E[max{x, A}] —
x — C, =0. In our example, the WRP for A is 1.01
and for B is 0.91. Thus, if the performance dependen-
cies between the two configurations are disregarded,
the team optimally tests A, and then continues on to
test B if and only if the outcome from testing A is less
than 0.91.

1.3. Testing Cycle with Learning

Now consider the setting where the design team
accounts for performance dependencies (i.e., correla-
tion 6 = 0.8). Suppose that design A is tested® and
results in performance a. The conditional distribution
of B (i.e., conditional on the realization a) is normal
with mean pz; + 60(a — u,) and standard deviation
o5V 1— 0% (Johnson and Wichern 2002). Because no
subsequent learning is possible (i.e., B is the only
other design), Weitzman'’s (1979) result applies from
this point on. Hence, the team continues to test B if
and only if the WRP of B (conditional on the real-
ization a) is greater than the best performance found
so far, i.e., 0.8440.28 > max(a, 0). In summary, when
6 = 0.8, the team optimally tests A and then continues
to B if and only if a € (—0.35,1.4).

! Weitzman’s (1979) results presented here have been adapted to
our setting. His reservation price result is valid under more general
settings including different costs and arbitrary distributions, as long
as the alternatives are statistically independent.

21t is suboptimal not to test any designs because by testing A (B)
and stopping immediately, the experimenter makes a strictly pos-
itive payoff = E[max{0, A}] — C, (E[max{0, B}] — C;). Furthermore,
because w, > ug, it is strictly better to test A first.
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Figure 1

Differences Between Base Line Case Without Learning and Testing Cycle With Learning

Base line case with

. CONTINUE TERMINATE |
no learning
P —0.35 0.91 1.4 A
Y 7
Optimal policy TERMINATE CONTINUE TERMINATE |
with learning
. ), ﬂ_}
~
Bad News !! Good News !!

Design B is probably inferior
Terminate testing

A graphical comparison between the two cases is
illustrated in Figure 1. The figure points toward two
key benefits of learning: (i) cost savings due to early
termination, when the acquired information and the
associated analysis suggest that the remaining config-
urations would exhibit inferior performances (i.e., the
a < —0.35 region), and (ii) gains by additional exper-
imentation when the information indicates untapped
potential from the untested designs (i.e., the 0.91 <
a < 1.4 region).

In this paper, we model the experimentation pro-
cess as an iterative search over a set of feasible design
configurations. We develop a stochastic dynamic pro-
gram, and we characterize the optimal testing pol-
icy. Our goal is to describe the effects of design
space structure on learning and, by extension, on the
optimal test schedules. Furthermore, we also aim to
develop and prescribe intuitive rules of thumb to aid
managerial decision making during experimentation.

Our contribution is threefold. First, our conceptu-
alization allows us to demonstrate how the design
space structure (i.e., the similarities among the design
configurations and the complexity of the performance
function) critically determines the optimal amount of
experimentation. Furthermore, we offer a more realis-
tic approach to understanding learning in NPD exper-
imentation, beyond Weitzman’s (1979) assumption
of independent designs/alternatives, and the highly
specific assumption of Loch et al. (2001) that testing a
design alternative signals whether or not the design is
the “best.” However, to maintain analytical tractabil-
ity, we rely on specific assumptions about some facets
of the testing process (e.g., we assume that design per-
formances are normally distributed and that testing
costs are equal within a class of designs). Yet, these
assumptions do not fundamentally relate to the learn-
ing aspect of experimentation, and we consider them
a fair price to pay for extending the analysis to inter-
related design configurations. In addition, in §4, we
offer a set of results that illustrate the mathematical
intractability in obtaining closed-form solutions once
we move beyond our assumptions.

Design B probably has high performance
Continue testing

Second, we identify and characterize the qualita-
tive effects on the testing process due to the explicit
consideration of the design space structure. Design
teams may pursue additional tests not only to iden-
tify configurations with higher performance, but also
to explore and to gain greater understanding of the
design space. We term this pattern the “exploration
phase.” Such aggressive exploration appears in the ini-
tial stages of testing and is stronger when the inter-
actions between design attributes are weaker and/or
similarities between designs are greater. Once the
team gains sufficient understanding of the design
space, the likelihood of terminating the testing cycle
increases. We term this the “exploitation phase.” We also
find that the length of the exploration phase depends
on the extent of similarities between the designs. More
similarities lead to a shorter exploration phase. Thus,
the experimentation process is split in two phases:
an exploration phase where the “design-build-test-
analyze” iterations are primarily conducted based on
what you may learn, and an exploitation phase where
the “design-build-test-analyze” cycles are driven by
what you have learned.

Third, we outline rules of thumb for guiding man-
agerial decisions contingent on the initial test out-
comes. When worse than expected performance
outcomes are observed, the design team should transi-
tion sooner to an exploitation regime if the interactions
between the design attributes are deemed weak. Thus,
the length of the exploration regime depends critically
on how the first few test results compare to the a priori
performance expectations, and on the extent of inter-
actions between the design attributes.

The model formulation is presented in §2. Subsec-
tion 3.1 presents the solution to the base case together
with several important properties of the optimal pol-
icy. Subsections 3.2 and 3.3 generalize the base case
model to settings where the parameter estimates are
uncertain, and the case where the designs belong to
different subclasses, respectively. Section 4 concludes
with managerial insights, a discussion of the limita-
tions of the current search model and some paths for
future research.
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2. A Formal Model of Learning in

Experimentation

Consider a design team who develops and tests dif-
ferent configurations before launching a new prod-
uct. The performance of the product design depends
on M distinct design attributes. Hence, each design
configuration i (i =1,2,...,N) is a point in the
M-dimensional design space and is represented as a
unique combination of the M attributes, namely x;
(j=1,2,..., M). For example, within the premises of
the Thomke et al. (1999) example, the thickness of
the pillar for a design configuration i is one design
attribute value x;;.

The team selects the values for the attributes x;
and determines the performance P, = P(x;;, ..., X;y)
of configuration #; P(-) is the performance function
that maps the design space to a real number rep-
resenting the design performance. As in most new
product designs, the performance function P(-) cannot
be ex ante-specified, due to incomplete knowledge
or inherently uncertain and complex relationships
between the attributes (Ethiraj and Levinthal 2004,
Loch and Terwiesch 2007). The Thomke et al. (1999)
crash test example offers a vivid illustration of how
complexity naturally emerges from unforeseen inter-
actions between the pillar and the rest of the design
attributes.

Despite the presence of such complexity, the design
team can often estimate, at a high level, the extent of
potential interactions between the design attributes.’
Furthermore, because a specific choice of attribute
values constitutes a design configuration, limited
changes in a subset of the design attributes result
in similarities among designs. As the degree of
attribute commonality increases, the design configu-
rations appear more similar than others.

We model these two aspects of the design space—
potential interactions between attributes and the
similarity between configurations—through a per-
formance correlation between the designs. Specif-
ically, the performance levels of two designs are
likely to be more related if there is only a small
difference between the attribute values of the two
designs (a smaller “distance” between the designs)
and/or if the extent of interactions between the
design attributes is low (a simpler performance func-
tion). On the other hand, widely different design
attributes across configurations (a larger “distance”
between designs) and/or a design space where the
design attributes exhibit greater degree of interac-
tions (a more complex performance function) lim-
its the performance dependence among different

% This is similar to assessing the interaction parameter K in an NK
landscape model (Kauffman 1993).

configurations. To summarize, two designs are more
performance correlated if they are less distant and if
the performance function is less complex.

The design team may, at least roughly, estimate
the correlation between any two designs because it
understands the distance between the two designs
and the complexity of the performance function.
Furthermore, we assume that these correlations are
non-negative. That is, a high (low) test outcome
for a design configuration signals a higher likeli-
hood for the performance of the other designs to be
high (low). This assumption is natural in the con-
text of performance functions (fitness landscapes).*
For instance, Stadler (1992) demonstrates how fami-
lies of performance functions (landscapes), including
those generated from many combinatorial optimiza-
tion problems, can be characterized by their correla-
tions and exhibit positive correlations. Furthermore,
our assumption of positive correlations conforms to
NK landscapes and AR(1) processes, both of which
are widely used to represent performance landscapes
in complexity literature (Kauffman 1993).

Let P = (p1, P2, -, Pn) be the vector of the perfor-
mances of the N potential design configurations. Pis
random because of the design team’s limited knowl-
edge; we assume that the joint distribution of the
scalar performances is multivariate normal. Our dis-
tributional assumption is realistic for a wide range
of performance landscapes. For instance, in fitness
landscapes such as the widely used NK landscapes,
the performance at each point is approximately nor-
mally distributed (Kauffman 1993, p. 53). The nor-
mality assumption also results in a tractable model
and allows the characterization of the optimal policy
properties (our discussion in §4 illustrates that index
policies may fail to exist for arbitrary distributions).

Let the design team’s a priori expectations of the
design performances be o = (u', u?,..., uV). The a
priori performance uncertainty is summarized in a
performance covariance matrix 2. We assume that
the a priori variances of the performances of all the
designs are identical = 0. Our assumption reflects
relatively homogeneous design spaces with configu-
rations that differ with respect to a small, limited sub-
set of design attributes. We offer a limited relaxation
of this assumption in §3.3. However, as we demon-
strate in §4, the equal variance assumption is not
merely convenient, but is also necessary for mathe-
matical tractability.

* Intuitively, if the distance between two designs is low and the
performance function is simple, we would expect the performances
to be positively correlated. Alternatively, if the distance between
designs is high and the performance function is complex, we would
expect the performances to be unrelated (i.e., correlation = 0). Note
that in either case the correlations are always non-negative.



Erat and Kavadias: Sequential Testing of Product Designs: Implications for Learning

960

Management Science 54(5), pp. 956968, © 2008 INFORMS

In summary, our conceptualization assumes that
the design team has a multivariate normal prior
on the design performances. Thus, the design team
knows the following parameters of the multivari-
ate normal distribution of the design performances:
(i) the performance expectations, (ii) the performance
uncertainty (represented through the common stan-
dard deviation), and (iii) the performance correla-
tions between the design configurations. Note that
this does not imply knowledge of the exact perfor-
mance levels, but only represents the a priori knowl-
edge of design commonalities (based on, for example,
shared components).

Suppose that the team undertakes sequential test-
ing, and that the design configurations 1 through k
have been tested. We assume that the tests are perfect,
i.e., the measurement errors, if any, are negligible, and
the true performance of a design is revealed when
the design is tested. Then, the conditional joint distri-
bution (conditional on the k test outcomes observed
so far) of the remaining N — k designs is again a
multivariate normal distribution (Rencher 2002). Fur-
thermore, the conditional distribution (conditional on
the k test outcomes observed so far) of each of the
remaining N — k designs are univariate normal with
the following conditional mean and standard devia-
tion (Rencher 2002):

i =0 + R QN (P~ ) (i=k+1,...,N) (1)

6l =0/A-FQIF) (i=k+1,...,N), (2)

where fi;,, and &}, , are the conditional mean and
the standard deviation, respectively, for design con-
figuration i; 7{ is a k x 1 column vector of a pri-
ori covariances of design i with all of the k tested
designs; Q; is a k x k sub-matrix of the covariance
matrix 3y such that it contains the a priori covari-
ances of all the tested designs; fi; is a k x 1 column
vector of a priori expectations of all the k tested pro-
totypes (=(u!, 42, ..., u")); P is the k x 1 column
vector of performances of the k tested prototypes
(=71 Pas -, P)-

After the kth test, let U be the set of all untested
configurations and T the set of all the tested ones. If
the cost of testing design i is ¢;, and p = max;.rp; is
the maximum performance observed until now, the
team faces the following dynamic decision problem:

Vk(p/ /:Lkr u)
p

= max %%X(E[Vkﬂ (max(p, p;), 3)

fucpr, U—{jH]—¢))
(p, -, 2)=p. (4)

Equations (3) and (4) are the Bellman optimal-
ity equations corresponding to the decision process.
The state is described by the maximum performance
realized thus far, the set of untested design config-
urations, and the vector of the updated mean per-
formance values of the remaining tests. The upper
branch of (3) describes the payoff if the team termi-
nates the experimentation; it is equal to p, the high-
est performance observed. Upon continuation, the
expected payoff results from the choice of one of
the untested configurations. Note that the final pay-
offs are given by p = max;.rp;. Thus, we assume
that a design is available for market launch only if
it has been tested. The investment involved in set-
ting up a manufacturing process and a distribution
channel makes any launch approval unlikely, unless
a profitable business case, including testing data, is
presented.

3. Effect of Learning on Optimal
Testing

In this section, we derive the optimal dynamic search
policy and we demonstrate its key structural proper-
ties. We proceed in three stages: In §3.1, we assume
that the performance dependencies between any pair
of design configurations are identical, that is, the cor-
relations among the design performances are iden-
tical. The assumption represents settings where the
design configurations lie within a specific scien-
tific domain, and they share a substantial number
of attributes (i.e., each design configuration is of
the form (xy,x,,...,xy), and the first r attributes
X1, Xy, ..., X, have the same value across all configura-
tions). The design team knows the performance corre-
lations among the designs, but not the test outcome.
As stated in the introduction, this reflects knowledge
about the distance between design configurations, and
the complexity of the performance function. In §3.2,
we relax this assumption and allow for uncertain cor-
relations. In §3.3, we relax the assumption of identical
correlations between the design configurations.

3.1. Base Case: Identical Correlations

For now, we assume that any pair of design config-
urations has the same correlation factor. The overall
performance uncertainty of the design configurations
is summarized by the covariance matrix X, (defined
in §2). It also summarizes the dependencies across
the performance random variables, that is, the ijth
element a; is the covariance between the perfor-
mance random variables of design configurations i
and j. Then,

o ifi=j
6a? otherwise (0 <0 <1),

where 0 is the correlation factor.
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The experimentation cost is composed of two ele-
ments (Thomke 2003): (i) the direct cost of specialized
resources required to conduct the experiments, and
(ii) the indirect opportunity cost resulting from prod-
uct introduction delays. We assume that the direct
testing costs are constant and independent of the
tested configuration (=c’). This is realistic when the
cost is driven by the experimentation process rather
than the experimentation subject. For example, in
some athletic gear products, the designers conduct
wind tunnel tests to refine a product’s aerodynamic
properties (The Globe and Mail 2004). These costs are
substantial and are usually independent of the tested
design configuration.’ Furthermore, our constant cost
assumption coincides with similar assumptions made
in the extant literature (Loch et al. 2001). In §4, we
offer a formal discussion of the limitations imposed
by the constant cost assumption.

The second component of the experimentation cost,
the opportunity cost from delayed product introduc-
tions, can be significant. Clark (1989, p. 1260) notes
that “each day of delay in market introduction costs
an automobile firm over $1 million in lost profits.” We
account for such losses as follows: a firm that tests
k designs before terminating the test cycle incurs a
delay loss L(k). Using the total effective cost of the kth
test ¢, = ¢ + L(k) — L(k — 1) allows us to derive the
optimal policy for general loss function structures (see
the online appendix, provided in the e-companion).®
This explicit loss function has two advantages over
a discount factor: (i) we posit that factors, such as
competition and the short product life cycle, affect
the opportunity loss significantly more than the time
value of money captured through a discount factor
(Kavadias and Loch 2003); and (ii) using identical
discounting for both the costs and the performance
levels is misleading in an NPD context, as the risks
associated with the two may be very different (for
instance, technical risks versus market commercializa-
tion/acceptance risks).

Suppose that testing is sequential, and configura-
tions 1 to k have been tested. Due to the performance
dependencies, the outcomes of the tested configu-
rations also convey information about the untested
configurations. Proposition 1 outlines this dynamic
information updating.

ProrosITION 1. Assume that k configurations have
been tested. The updated (marginal) performance distribu-
tion of an untested configuration i is normal with mean

® “Before the 2003 Tour (de France), Armstrong spent about $15,000
an hour, for wind tunnel tests to create a new helmet” (San Jose
Mercury News 2004).

¢ An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.

and standard deviation

() Ay = AL + O —AD/(KO+1-0) = pi +
(0/(k0+1—0)(X)_, (p; — ),

(ii) 6;,,= a/1—(k6%/(k6 +1—6)).

All the proofs are given in the online appendix.
Given the learning and the evolution of knowledge
outlined in Proposition 1, Theorem 1 presents the
optimal testing policy for the base case.

THEOREM 1. Index the design configurations in de-
scending order of their a priori expected performances, i.e.,
i>j=pu' <. Define

o= matp) = (' + ﬁi_e(,«é(”f -))]

Then, there exist constant thresholds ©; (i =1,...,N)
such that, after the completion of the kth configuration
test, stop if and only if xi,, > Oy, for all i > k, other-
wise test the design configuration with the largest expected
performance.

An interesting insight emerges from the follow-
ing interpretation of the optimal policy. The term
—Xiy1 (=fj, —max;{p;}) expresses a normalized
value that accounts for the remaining potential from
testing, i.e., the difference between the expected per-
formance of the next configuration and the best
performance achieved so far. The term —@,,; is a
constant threshold. Thus, our policy has an intu-
itive economic interpretation: the design team termi-
nates experimentation when the remaining potential
drops below a threshold value (i.e., —x,; < —0y,,).
If testing continues, the configuration with the largest
remaining potential (or alternatively the design with
the largest mean) is tested next.

Our optimal policy exhibits certain structural simi-
larities with the Weitzman (1979) policy, adapted for
our specific distributional assumptions to enable a
meaningful comparison. O, represents a normalized
value that makes management indifferent between
proceeding or stopping, a quantity very similar to the
classic definition of a reservation price. Reinterpreting
Xi+1 (=p — fi},,) as the normalized value obtained so
far (normalized by accounting for the mean) allows
us to also see the parallel between our policy and
Weitzman's (1979) policy: testing stops when the nor-
malized value x,, obtained from testing exceeds a
reservation price.

Our choice rule, i.e., which configuration to test
next, is the same as Weitzman’s rule. We can verify
the claim as follows: consider two search oppor-
tunities X ~ N(u,, o) and Y ~ N(u,, o), and test-
ing costs ¢, =c and ¢, = c. The difference between
the Weitzman reservation prices of X and Y is
equal to the difference between their means, ie.,
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WRP(X) - WRP(Y) =, — u,.” Hence, the priority
ranking induced by the reservation prices is iden-
tical to the one induced by the means, and Weitz-
man’s (1979) adapted policy translates into testing the
design with the highest mean.

However, our stopping rule, i.e., when experimen-
tation should be terminated, exhibits key differences
from Weitzman’s rule. We rewrite our policy state-
ment in Corollary 1 to enable easier comparison to
Weitzman's (1979) stopping conditions.

COROLLARY 1. Index the design configurations in
descending order of the a priori performance expectations,
ie,i>j= u' <. Define

0 0 k-1 )
Q — k+1 k ol 0] ,
e =h = +k0+1_0§(n 1)+ Oy

and A, = 0/(k0+1—0). After the kth test, optimally
continue if and only if p, € (max;_y){p;} — L) /Ax,
Q. /(1 — Ayp)). Otherwise terminate testing.

Corollary 1 shows that accounting for performance
dependencies changes the stopping rule. Continua-
tion is optimal only when the current test outcome
is within an interval. This result stands in contrast
to Weitzman (1979), where continuation occurs only
when the test outcome is below a threshold. Thus, the
structure illustrated in Figure 1 generalizes. The key
difference between the two policies is driven by the
ability to learn during the experimentation process.
Low test outcomes signal low future performances
and, hence, decrease the attractiveness of additional
experimentation. High design performances, on the
other hand, signal a high remaining potential making
additional experimentation worthwhile.

Our results add to the discussion initiated by Loch
et al. (2001) concerning the impact of learning on
experimentation strategies. Our stopping conditions
emerge endogenously, and they involve balancing
the performance benefits and learning against exper-
imentation costs. The results also demonstrate that
the stopping conditions depend on the design space
structure and the realized performance levels as
opposed to an exogenously prespecified confidence
level.

In Proposition 2, we characterize the properties
of the stopping thresholds ®,. They qualitatively
describe the optimal test termination decisions of the
design team.

7Let WRP(X) = R, and WRP(Y) = R,. Then, by definition, 0 =
E[max{X, R}] - R, — ¢ and 0= E[max{Y, R,}] — R, — c. Because X
and Y are different only in their means, the distribution of X is iden-
tical to the distribution of (Y — u, +u.). Hence, 0 = E[max({X, R,}] -
R, — ¢ = E[max{Y — u, + p,, R,}] = R, — ¢ = 0 = E[max{Y, R, +
My — mi}] = (Ry =y — i) — c. That is, the reservation price of Y is
equal to Rx +/“’y — My i'e'/ Ry = Rx +lu’y — My = (R; - Ry) = (lu’r - :u’y)

ProrosITION 2. Define WRP;, = {x: E[max{x, X;}] —
x = c} where X, ~N(0, 0>(1 —k6?/(k6 +1— 6))). WRP,
expresses the Weitzman stopping threshold for search
opportunity X,. Then,

(A) O, is a real constant, and is decreasing in k.

(B) Oy is increasing in o.

(C) Oy is decreasing in 6.

(D) O, > WRP,.

Claim (A) characterizes the normalized stopping
thresholds, ®,, as decreasing in the number of tests
conducted. This occurs for two reasons: (i) fewer
design configurations remain to be tested and, hence,
the learning possibilities are fewer, and (ii) the resid-
ual uncertainty is lower.

Claims (B) and (C) demonstrate the effect of the
residual uncertainty on the optimal stopping val-
ues. Higher residual uncertainty may arise from
fewer commonalities between design configurations
(lower 0), greater complexity of the performance func-
tion (lower 6), or greater a priori uncertainty con-
cerning the configuration performances (higher o).
Irrespective of the source, higher residual uncertainty
makes testing more attractive by increasing the nor-
malized reservation price. The result resembles the
value-enhancing nature of uncertainty (variance) in
a traditional option setting: because the design team
is assured of retaining the highest performing design
configuration upon stopping, the downside loss of
conducting one more test is bounded by the test-
ing cost. At the same time, the upside benefits from
experimentation depends on the amount by which the
performance can vary upward, which increases with
higher residual uncertainty (variance).

Claim (D) demonstrates that the stopping thresh-
olds in the optimal policy may be larger compared to
Weitzman’s (1979) optimal stopping thresholds WRP,,
which do not consider design correlations and learn-
ing. This result illustrates the relevance of learning in
experimentation and highlights one of our key con-
tributions. As opposed to myopic stopping proposed
in past studies (Weitzman 1979, Loch et al. 2001), we
find that testing may continue to provide information
about the design space.

Our results stand in contrast to Adam (2001),
who examines the search problem where the exper-
imenter has priors about the distributions of the
search alternatives and updates these priors as the
search proceeds. However, he assumes that “learn-
ing exhibits enough monotonicity to prevent the
searcher from optimally going through a ‘payoff val-
ley’ to reach a ‘payoff-mountain’ later on” (Adam
2001, p. 264). Under this assumption, an extension of
the Weitzman’s (1979) policy, where stopping is still
myopic, remains optimal. In contrast, we do not con-
strain the form of learning, and we find that optimal
stopping becomes nonmyopic.
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To summarize, experimentation offers two bene-
fits: (i) the direct benefit of identifying configurations
with higher performance (a key goal identified in
the past NPD literature), and (ii) the indirect benefit
from learning about the untested design configura-
tions. Because of the second benefit, the design team
may keep experimenting for the purpose of learn-
ing about the design space even when the remain-
ing untested alternatives by themselves do not justify
experimentation.

We illustrate the result with a modified version
of the introductory numerical example. Consider the
parameters:

CA=CB=0'1
0=0.1

B = pp = —091
o,=0p=1

The expected one-step benefit from testing A
(=E[max{0, A}] — C,) is 0. Thus, the myopic stopping
rule (Weitzman 1979, Adam 2001) dictates immedi-
ate termination without testing any of the configura-
tions. However, we can learn about the performance
of configuration B from analyzing the test result of
configuration A (say, # = 0.1). Hence, testing A and
obtaining a test result a4, prompts the design team to
optimally test B if and only if the reservation price of
B, 0.89 +(—0.91) 4+ 0.1(a — (—0.91)), is greater than the
maximum obtained so far, max{a, 0}.> Hence, testing
B is optimal if and only if a € (—0.71, 0.079). Because
there is a nonzero probability of testing B, this implies
that the optimal policy involves testing A and then
testing B if and only if a € (—0.71, 0.079).

Our result exhibits properties of “strong learning”
(Adam 2001), that is, experimentation for the purpose
of learning. Figure 2 illustrates this phenomenon. It
plots the probability of continuation as a function of
the number of tests conducted, for different levels of
design performance dependencies.’

We observe that the dependencies across configu-
rations (a higher correlation 6) lowers the likelihood
of early termination, but increases the probability of
later termination. Define the case with no dependen-
cies (i.e, § =0 or no learning) as the “benchmark
curve.” Then, we may call the phase with greater than
the benchmark setting continuation probability the
exploration phase, because in this phase, tests are con-
ducted for the purpose of learning about the design

8 The argument is identical as in §1.

°Figure 2 was generated for the specific problem instance with
N=8,0>=80,c=30,u,=140Vi=1,...,8and 0 € {0, 0.1, 0.4}. For
each parameter setting of 6, 10,000 simulation experiments were
conducted and the probability of continuation after the kth test was
calculated as the fraction of experiments where the optimal policy
proceeds beyond the kth test.

Figure 2 Learning Effects Arising from Performance Dependencies

Exploration phase
6=0.1

Exploitation phase

Probability of continuation

Il Il Il Il Il Il >
T T T T T

6
Number of tests

Exploration phase Exploitation phase

6=04

space. Similarly, we call the phase with lower con-
tinuation probability the exploitation phase, where con-
tinuation, if pursued, is for the explicit purpose of
obtaining a better performance. The precise transition
from “exploration” to “exploitation” would be dif-
ficult to measure in practice, as the parameters are
never precisely known. Still, an important qualitative
insight for managers emerges: early on, conduct more
“design-build-test” iterations than what the remain-
ing alternatives seem to justify, in order to learn.
Later on, conduct “design-build-test” iterations only
to exploit the remaining promising alternatives.

Our insight offers an explanation of earlier obser-
vations by Ward et al. (1995) and Sobek et al. (1999)
about Toyota’s product development process, where a
large number of different design options are explored
upfront before converging to a final solution. Toyota
follows this approach “to explore broad regions of the
design space simultaneously” (Ward et al. 1995, p. 49)
and to “refine [their] map of the design space before
making decisions” (Ward et al. 1995, p. 56). Although
the mechanism of experimentation we examine in this
paper is different (sequential as opposed to simultane-
ous testing), the underlying driver of the exploration
phase is similar, namely, the potential to learn about
the design space.

The following additional insights can be drawn
from Figure 2: the likelihood of continuation during
the initial tests and the duration of the exploration
phase decrease in the complexity of the performance
function and the distance between designs. This
occurs for the following reason: the test outcomes
hold greater information in design spaces where
the complexity of the performance function is lower
and/or where the distance between designs is lower.
However, intensive testing continues for a shorter
period of time as learning accumulates after fewer
tests.
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To further build intuition about the drivers of the
total number of tests, we perform comparative statics
with respect to the design space characteristics. It is
important, from a practitioner perspective, to outline
such contingency-based guidelines (Loch et al. 2006).
For ease of exposition, assume that the performance
expectations of all the design configurations are iden-
tical (=u). Let N (u, o) be the total number of tests
conducted under the premises of the optimal policy,
when the expected configuration performance is u

and the uncertainty is 0.

ProrosiTION 3.

(i) The number of tests increases in the initial expecta-
tions of design performance, i.e., 0N (w, 0)/du > 0.

(if) The number of tests increases in the initial design
performance uncertainty, i.e., IN(u, o)/do > 0.

Proposition 3 states formally that more experiments
should be conducted on a design space where con-
figurations have higher a priori performance expec-
tations and higher performance uncertainty. These
results confirm intuition, but they emerge for dif-
ferent reasons. High initial expectations lead to the
design team foreseeing a higher potential value (as
expressed by the —x/ term), and thus result in addi-
tional testing. In contrast, higher initial performance
uncertainty leads to increase in the stopping thresh-
old (0,), and leads to increased experimentation so as
to reduce the (residual) uncertainty.

Next, we examine the impact of performance corre-
lations (i.e., similarities between design configurations
and the complexity of the performance function) on
the number of experiments. The effect is not unidi-
rectional. It depends on the performance realizations
of the initially tested designs. Therefore, we perform
a contingency analysis: we assume that k configura-
tions have been tested and have yielded performances
P1,-- -, Pr- The following definitions describe different
contingency scenarios.

DErFINITION 1. Suppose k design configurations
have been tested yielding the following performances:
P1,---,Pr- Then, we define the scenario (test out-
comes) as

e worse than expected if the average configura-
tion performance realized is lower than the average
expected one, i.e., Y5 p;/k < X5, ui/k;

e better than expected if the average configura-
tion performance realized is higher than the average
expected one, i.e., Y5 p;/k > Y5 wi/k.

Given these two contingencies, Proposition 4 de-
scribes the optimal actions:

PrROPOSITION 4. Assume k configurations have been
tested.

(A) If the test outcomes are worse than expected, the
design team should transition to exploitation phase when
the design performances are strongly correlated (high ).

(B) If the test outcomes are better than expected, there
is no unidirectional result.

(C) If the test outcomes are better than expected with
a sufficiently high difference, the design team should con-
tinue exploration phase when the design performances are
strongly correlated (high 0).

Proposition 4 highlights the subtle moderating role
of the performance correlations (due to the design
space structure) on optimal contingency actions. Sup-
pose that the test outcomes are, on average, poorer
than initially expected. The information that these
test results convey about the rest of the configu-
rations depends on the underlying structure of the
design space. When the performance correlations are
greater, reflecting similar design configurations and
a simple performance function, the initial test out-
comes are more informative about the performances
of the remaining configurations. Hence, the design
team extrapolates the initial poor performances to the
rest of the design space, and, consequently, transitions
to the exploitation mode (i.e., increased likelihood of
termination). On the other hand, if the performance
correlations are weak, the initial poor test outcomes
are not necessarily indicative of the remaining design
performances. Consequently, the team may continue
exploration even when worse-than-expected test out-
comes are encountered at the early stages.

Claims (B) and (C) follow a similar (but more com-
plex) line of reasoning. If the test results are better
than expected, the design team uses the initial test
outcomes as a signal that the remaining designs have
higher than the (initially) expected performances. This
signal is stronger when the design performances are
more correlated, and, thus, results in continued explo-
ration. At the same time, greater dependencies also
result in faster learning (rapid uncertainty reduction)
and an earlier transition to exploitation phase. Which
of these opposing effects is stronger depends on the
specific parameter values. When the realized perfor-
mance levels are much better than expected, the effect
of the “high performance potential” dominates, lead-
ing to continued exploration.

Table 1 summarizes the potential managerial con-
tingency actions: After testing a few designs, the
design team assesses the actual performance realiza-
tions and their difference from the initial expectations.
If the test outcomes are below the a priori expecta-
tions, then the design team assesses that a worse-
than-expected scenario has emerged. In the event that
performance function is simple and/or the distance
between design configurations is lesser, such initial
bad news implies that there is not much more to
expect from the design space at hand; thus, the team
should most probably attempt to reduce the remain-
ing experimentation cost by transitioning to exploita-
tion phase. If, on the other hand, the performance
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Table 1 Impact of Design-Space Structure on the Contingency Plan

Much better than expected Worse than expected
(Very good news) (Bad news)

High correlation 6

(Simple performance Continue exploration Transition to

function less distance exploitation
between designs) Increased continuation Lower continuation
probability probability

Low correlation 6

(Complex performance Transition to exploitation
function greater distance Lower continuation
between designs) probability

Continue exploration
Increased continuation
probability

function is complex and/or the distance between
design configurations is greater, then targeting reduc-
tion of the remaining experimentation costs is proba-
bly misplaced, as the initial bad news is not indicative
of the remainder of the design space. Similarly, if test
outcomes emerge significantly better than expected,
then the design team should plan on further exploring
the design space due to the high remaining potential.
As before, this continued exploration is more likely
when the initial good news is more indicative of the
design space (i.e., when the performance function is
simple and/or when the distance between designs is
lesser).

The importance of Table 1 stems from the fact that it
outlines guidelines for decision making and it demon-
strates the nontrivial impact of the design space struc-
ture on the optimal test schedule. In that light, the
contingency actions outlined may also be viewed as
guidelines to achieve more reliable project monitoring
and control (Loch et al. 2006).

3.2. Uncertain Performance Dependencies
Thus far, we have implicitly assumed that the design
team can at least estimate the performance correla-
tions between the design configurations. However,
when the designs involve highly innovative technolo-
gies, the performance correlations arising from the
configuration similarities may be unknown. In such
cases, we assume that the design team specifies a
likelihood for the performance correlations. In this
section, we analyze the impact of uncertainty in per-
formance correlations on optimal experimentation.'
The design team holds the belief that the perfor-
mance correlations are weak (low 6;) with probabil-
ity p or strong (high 6) with probability (1 — p).
The sequential experiments yield an additional sig-
nal &, in addition to the design performance result.
We assume that the signal S; received after the kth test
reveals the true correlation with probability A, and
it is independent from past performances p;, ..., p;.
In other words, understanding the true performance

1"We thank the referee team for suggesting this extension.

correlations require additional information, such as
exploring relevant scientific theories, and formulat-
ing abstract explanatory models of the design space.
These signals are far more general than the perfor-
mance outcome information; therefore, we assume
that the dependence between S, and the past perfor-
mances is negligible. Theorem 2 presents the optimal
policy.

THEOREM 2. If the uncertainty regarding the perfor-
mance correlations has been resolved, then use Theorem 1.
Otherwise, index the design configurations in the descend-
ing order of their a priori expected performance, i.e.,
i>j=p <. Define pii = max; (p;} as the highest
realized configuration performance. There exist path depen-
dent thresholds, Fk+1(2;‘(:1 pj) (i=1,...,N), such that
after the kth test the design team should stop if and only if
pitl > T 4. Else they should proceed with the design con-
figuration with the highest updated expected performance.

The optimal policy shows marked similarity in
structure to Theorem 1. However, the stopping thresh-
olds are no longer path independent, and they
depend on the sum of the realized configuration per-
formances. Mirroring Corollary 1, the following corol-
lary gives an alternative formulation of the optimal
policy.

COROLLARY 2. There exists thresholds 7, and T, such

that there is an optimal policy where after the kth test ter-
mination is optimal if p, <1, or p, > T,

Corollary 2 suggests a surprising robustness of
our initial results. Termination of the experimentation
process occurs either because: (i) the test outcome is
high enough so that the design team does not expect
to receive a much higher value from additional exper-
imentation (p, > 7,); or (ii) the test outcome is so low
that the design team expects the remaining designs to
be low performing as well (p, < 7).

3.3. General Case: Multiple Design Classes
In this section, we extend our base case model to more
general design space topographies. We consider that
there exist distinct subclasses with stronger configura-
tion dependencies within classes and weaker across.
The new setup represents design problems that can
be solved through substantially different approaches
(e.g., recent efforts to substitute bar codes with radio-
frequency identification tags imprinted on different
materials like paper, polymers, etc; see PRC 2004).
Consider M distinct classes of design configura-
tions. Each class j contains N; different configura-
tions. A priori, the design configurations of class j
have unknown performances with identical' expec-
tations (u;) and performance uncertainties ((a'j)z).

" We restrict the performance expectations to be identical within a
class to reduce the notational burden. Extensions to a more general
setting are straightforward.
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In addition, the attributes that define a class (for in-
stance the underlying technology) lead to significantly
correlated performances within a class (6 = 6, within
a class), and negligible dependencies across classes
(6 =0 across classes).

Suppose the design team has sequentially tested k
design configurations, Theorem 3 provides the dy-
namic optimal policy for the new setting.

THEOREM 3. Define the surplus performance observed
thus far as the following normalization, i.e., )(]k“ =
[max]<k{p1} Ak“] Then, there exist constants (9]1 ji=
1,...,M,i=1,. N such that after the kth test the
design team should stop if and only zf)(’”rl > G) for all
design classes, otherwise continue with the class that has

the highest ©; — /™.

Theorem 3 demonstrates that the stopping deci-
sion (“how many more experiments should we under-
take”) is relatively robust and is structurally similar to
Theorem 1. Our policy permits an interesting analogy
to Weitzman (1979), if we view the design subclasses
as Weitzman’s (1979) boxes. Under this interpretation,
the optimal decision is equivalent to terminating the
test cycle only if the best performance obtained so
far is greater than the (updated) reservation prices
and continuing with the box which has the highest
(updated) reservation price. However, note that this
analogy can only be taken so far because, in our mul-
tiple class setting, repeated sampling of a box (design
class) is feasible, unlike in the one-trial-per-box case
analyzed by Weitzman.

Also, similar to Corollary 1, it can be verified
that the design team should stop testing the designs
within a given subclass when an observed outcome
from the subclass is either too high or too low (i.e.,
continuation only when the outcome is within an
interval). Furthermore, the overall test cycle is ter-
minated when any of the observed test outcomes is
very high, because this would indicate that the like-
lihood of obtaining a still higher performance from
any of the design classes is low, given the experimen-
tation cost.

4. Discussion

This study examines the learning aspect of iterative
testing cycles during the experimentation stage of
a NPD process. We conceptualize each design con-
figuration as a vector of attributes. These attributes
jointly affect the final performance of each config-
uration in complex ways, due to possible coupling
effects that are not fully known to the design team.
Designs also may exhibit similarities with respect
to their attributes, thus making some designs closer
to others in the design space. Past experience and
domain knowledge may allow the design team to

approximate such a design space structure through
a surrogate metric that accounts for both the com-
plexity of the performance function and the distance
between the designs: the correlation between design
performances. We develop a normative model and we
derive the optimal dynamic testing policy for design
configurations that have different and uncertain per-
formance levels.

Test continuation is optimal when the previous test
outcomes range between two thresholds. Test out-
comes below the lower threshold indicate an over-
all low-performing design space, where subsequent
tests are unprofitable. Test outcomes above the upper
threshold, on the other hand, indicate that the design
team cannot expect a much higher value (than the
highest value already found) by undertaking addi-
tional experiments. The upper threshold result is con-
sistent with the optimal policy of Weitzman (1979).
Furthermore, we also demonstrate that the design
team may optimally pursues experimentation even
after a “good” design is found, which, in the absence
of performance correlations, would justify stopping.
The potential to learn about the design space adds
value to the testing process above and beyond the
immediate performance benefits.

These results help us understand the role of the de-
sign space structure on learning and on optimal ex-
perimentation: less experiments with cost savings,
when the information suggests that the untested
design configurations may be performing low; or
additional experimentation seeking higher perfor-
mance outcomes, when the information indicates
untapped potential.

Furthermore, we demonstrate that the considera-
tion of learning splits the overall experimentation pro-
cess into two distinct phases. An exploration phase
that occurs at the beginning of the testing process
and is characterized by a strong tendency to con-
tinue testing even when outcomes are good. During
this phase, the “design-build-test-analyze” iterations
allow the design team to learn about the remaining
design options. We also find that greater correlations
among the design performances enable faster learning
and thus reduce the length of the exploration phase.
Once the design team gains sufficient understanding
about the design space, experimentation transitions
into an exploitation phase. At that point, the likelihood
of terminating testing and choosing the best design
(found so far) increases. During this phase, the design
team, based on what they have learned, conducts the
“design-build-test-analyze” iterations only to test the
remaining promising alternatives.

Finally, we analyze how the optimal continuation
decisions change with the initial test outcomes. Our
findings are summarized in Table 1, and they provide
a useful guideline for contingency planning. When
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the performance correlations of designs are high, poor
test outcomes at the initial stages imply that there is
not much more to expect from the remaining design
space. Thus, the team should stop or transition to the
exploitation phase to minimize the experimentation
cost. If, on the other hand, the design correlations are
low, then extrapolating from initial poor results is pre-
mature and exploration may continue.

Our policy exhibits a robust structure along two
extensions: (i) the design team uncertainty about
the performance dependencies (i.e., unknown correla-
tion), and (ii) nonhomogeneous performance depen-
dencies (i.e., a design space with distinct subclasses).

4.1. Limitations and Future Research

In our analytical model, we employed a set of
assumptions in order to develop a qualitative under-
standing of the impact of the design space structure
on learning and on the optimal amount of experimen-
tation. However, three of these assumptions challenge
the mathematical generality of our model and thus
merit further discussion: [Al] normal distribution of
design performances; [A2] equal testing cost within a
class; and [A3] equal variance (uncertainty) in design
performances within a class.

Theorem 4 offers an impossibility result that
demonstrates that the three key assumptions (listed
above) are not merely made for convenience, but are,
in fact, necessary to achieve mathematical tractability.

THEOREM 4. Index policies are suboptimal if any one of
the three assumptions, Al, A2, or A3 is relaxed to account
for arbitrary structures.

Theorem 4 demonstrates that the three key assump-
tions do indeed place our model at the boundaries
of mathematical tractability (defined as the existence
of an index policy). Despite of this inherent limit of
generalizability, the model does offer an increased
understanding of the key implications of design
space structure on optimal experimentation. We con-
sider our balance between realism and mathematical
tractability to be a fair price to pay for developing this
understanding. Loch et al. (2001) highlight the effect
of problem parameters, such as test fidelity and the
delay costs, on the total experimentation cost. Dahan
and Mendelson (2001) examine the tradeoff between
performance benefits and experimentation cost when
experiments are run in parallel (thus eliminating any
potential for learning). Our approach thus comple-
ments these past efforts by explicitly accounting for
the design space structure and its effects on learning
and on the amount of experimentation.

Finally, the limitations of the current conceptu-
alization of the optimal experimentation and some
of the emerging industry practices suggest a need
for re-evaluating the search theoretic model as a

whole. Firms are increasingly seeking innovation
through collaborative efforts; such settings present
challenges in understanding how firms manage dis-
tributed (or delegated) experimentation (Terwiesch
and Loch 2004). At the same time, it is also impera-
tive to recognize that experimentation and search are
performed by individuals and, hence, are subject to
behavioral traits (see Zwick et al. 2003, for a discus-
sion of how certain behavioral elements affect sequen-
tial choices). Such extensions would require further
field observation of how actual testing teams arrive at
decisions/judgments during experimentation cycles.

5. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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