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Online Appendix. Proofs of Propositions

Proof of Lemma 1. If a consumer with valuation v decides to buy and patch, then her expected payoff is
v − p − c̃p − ��z�bv. If she decides to buy but not patch, then her expected payoff is v − p − ��a�uv − ��z�bv.
Therefore, a consumer buys the product and patches in the third period in case a security vulnerability is revealed
if and only if

v≥max
(
c̃p

��a�u


p+ c̃p
1− ��z�b

)
� (A1)

Consequently, in equilibrium, if a consumer with valuation v0 buys and patches the software, then every consumer
with valuation v > v0 will also buy and patch, and hence there exists a vp ∈ 
0
1� such that a consumer with
valuation v ∈� will buy and patch if and only if v≥ vp, in which case �∗
v� = 
B
P�. We next consider the
buying decision in the second period. If a consumer with valuation v decides to buy the product, she will incur
a cost p. She will buy the software if and only if

v≥min
(

p

1− ��a�u− ��z�b


p+ c̃p
1− ��z�b

)
� (A2)

Let 0<v1 ≤ 1 and �∗
v1� ∈ �
B
P�
 
B
NP��, then by (A2), for all v > v1, �∗
v� ∈ �
B
P�
 
B
NP��, and hence there
exists a vb ∈ 
0
1�, such that a consumer with valuation v ∈� will purchase if and only if v≥ vb . By definition,
vp ≥ vb . Suppose 0<vp = vb < 1 and c̃p > 0 and consider the consumer with valuation v satisfying vb− � < v < vb .
Because u= 0 and, by (A1), vb ≥ 
p+ c̃p�/
1− ��z�b�, there exist � > 0 sufficiently small such that v≥ p+ ��z�bv is
satisfied. By (A2), �∗
v� ∈ �
B
P�
 
B
NP��, which is a contradiction. Therefore, we conclude that when 0< p≤ 1
there exist 0<vb < vp ≤ 1 satisfying �∗ given in (4):
The following three inequalities are algebraically equivalent:

p

1− ��a�u− ��z�b
≥ p+ c̃p
1− ��z�b

⇔ p

1− ��a�u− ��z�b
≥ c̃p

��a�u
⇔ p+ c̃p

1− ��z�b
≥ c̃p

��a�u
� (A3)

To see this,
p+ c̃p
1− ��z�b

≥ c̃p

��a�u
(A4)

⇔ 
p+ c̃p� ��a�u≥ c̃p
1− ��z�b�
⇔ 
p+ c̃p� ��a�u≥ 
p+ c̃p�
1− ��z�b�− p
1− ��z�b�
⇔ p
1− ��z�b�≥ 
p+ c̃p�
1− ��z�b�− 
p+ c̃p� ��a�u
⇔ p
1− ��z�b�≥ 
p+ c̃p�
1− ��a�u− ��z�b�

⇔ p

1− ��a�u− ��z�b
≥ p+ c̃p
1− ��z�b

(A5)

⇔ p
1− ��z�b�≥ p
1− ��a�u− ��z�b�+ c̃p
1− ��a�u− ��z�b�
⇔ p
1− ��z�b�≥ p
1− ��z�b�− p ��a�u+ c̃p
1− ��a�u− ��z�b�
⇔ 0≥−p ��a�u+ c̃p
1− ��a�u− ��z�b�
⇔ p ��a�u≥ c̃p
1− ��a�u− ��z�b�

⇔ p

1− ��a�u− ��z�b
≥ c̃p

��a�u
(A6)
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In words, viewing the expressions in (A3) as functions of the model variables, the three inequalities are valid on
the same region of the parameter space. When vp < 1, by (A1) and (A2), in equilibrium

vp=max
(

c̃p

��a�u
�∗�



p+ c̃p
1− ��z�b
�∗�

)
and (A7)

vb=min
(

p

1− ��a�u
�∗�− ��z�b
�∗�



p+ c̃p
1− ��z�b
�∗�

)
� (A8)

Thus, by (A3), (A7), (A8), and because vb < vp,

vb =
p

1− ��a�u
�∗�− ��z�b
�∗�
and (A9)

vp =
c̃p

��a�u
�∗�
� (A10)

By (4), it follows that

��a�
vp − vb�vp = c̃p and (A11)

vb = p+ ��a�
vp − vb�vb + ��z�
1− vb�vb� (A12)

Substituting (A11) into (A12) yields

vp =
c̃pvb

vb − p− ��z�
1− vb�vb
� (A13)

For convenience, we define the function z
p
vb�� vb − p− ��z�
1− vb�vb , and, by substituting (A13) into (A12),
we obtain

z2 = ��a�v2b 
c̃p − z�� (A14)

For vp < 1 to be satisfied, by (A13), vb > v′b � 
−1+ ��z�+ c̃p +
√

1− ��z�− c̃p�2+ 4 ��z�p�/
2 ��z�� is a necessary

condition, noting that the other root of the underlying quadratic is negative but vb ≥ 0 must be satisfied. Substi-
tuting this expression into (A14) and because 0≤ vb ≤ 1, we obtain that for vp < 1, we must have p < p̄. By (A14),
we define g
vb�� z2− ��a�v2b 
c̃p− z�, and, further, we let vzlb �min�vb� z
p
vb�= 0� and vzrb �max�vb� z
p
vb�= 0�.
Using the properties g
vzlb � = g
vzrb � = − ��a�v2b c̃p < 0, g
0� = p2 > 0, g
1� = 
1− p�2 + ��a�
1− p− c̃p� > 0, in addi-
tion to v′b > v

zr
b being satisfied, it follows that when p < p̄, only the largest root of g
 · � can satisfy vb > v′b ,

and, by (A12), this root must satisfy vb > p. However, when p ≥ p̄, substituting vp = 1 into (A12), we obtain

 ��a�+ ��z��v2b + 
1− ��a�− ��z��vb − p= 0, which has a unique positive root satisfying vb ≤ 1 and given by

vb = −1− ��a�− ��z�
2
 ��a�+ ��z��

+ 1
2
 ��a�+ ��z��

√

1− ��a�− ��z��2+ 4
 ��a�+ ��z��p� (A15)

This completes the proof. �

Proof of Proposition 1. Technically, we will show that there exist bounds �, �̄, �, and �̄ such that dW/d!z < 0
if (i) �> � and �z < �̄ or (ii) �> � and �z > �.
For (i), let �z = k/�2. By definition, p̄→ 1− cp as � grows large, hence Region I of Lemma 1 applies. By (A13)

and (A14), we obtain

vb = p+ cp +
(
k
p+ cp�
1− p− cp�
1−!z�−

c2p


p+ cp�2�a

)
1
�
+O

(
1
�2

)
� (A16)

By (7), using the implicit function theorem on (A14) to compute dvb/dp, and substituting (A16) in for vb , we
obtain

d$

dp
= 1− cp − 2p+

A1
2
p+ cp�3�a�

+O
(
1
�2

)

 (A17)

where A1 is a constant, giving

p∗ = 1− cp
2

+
(
k
1− cp�
7!z− 2+ cp
!z+ 2��

16
+ 2c

2
p
3cp − 1�

1+ cp�3�a

)
1
�
+O

(
1
�2

)

 (A18)

and, hence, p∗ < p̄ is satisfied. Substituting (A16) and (A18) into (8), we obtain

W
!z� =
3
1− cp�2
8

−
(
k
1− cp�2
8
1+ cp�− 3!z
1− cp��

32
+ c

2
p
3− cp
4− cp��

1+ cp�3�a

)
1
�
+O

(
1
�2

)

 (A19)
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which upon differentiation yields
dW

d!z
=−3k
1− cp�

3

32�
+O

(
1
�2

)

 (A20)

thus dW/d!z < 0. For (ii), we refer the reader to the proof of Proposition 3, where &= 0 is a special case. This
completes the proof. �

Proof of Proposition 2. Technically, we will prove the following:
(i) There exist �> 0 and �z ∈ 
0
1� such that if �> � and �z > �z, then
(a) if cp ≥ �a/
�a +�z�, then !∗p = 0; i.e., in the welfare-maximizing patch liability policy, the vendor has no

share of patching costs.
(b) if cp < �a/
�a+�z�, then welfare is maximized at a strictly positive vendor patch liability level !∗p ∈ 
0
1�.

Furthermore, lim�→� !∗p = 1/2.
(ii) There exist �> 0 and ��z ∈ 
0
1� such that if �> � and �z < ��z, then a patch liability policy strictly increases

social welfare if and only if cp > 6−
√
33. Furthermore, lim�→� !∗p = 
12cp − 3− c2p�/
16cp�.

For part (i), by definition, p̄→ 1− 
1−!p�cp
�a+�z�/�a. Suppose Region II of Lemma 1 applies. By (A15), we
obtain

vb = 1−
1− p


�a+�z��
+ p
1− p�

�a+�z�2�2

+O
(
1
�3

)
� (A21)

By (5) and (7), we obtain

p∗ii =
1
2
− 1
8
1−&�
�a+�z��

+O
(
1
�2

)
� (A22)

Substituting (A21) and (A22) into (5) and (8) gives

$
p∗ii
 !p�=
1

4
�a+�z��
− 1
8
�a+�z�2�2

+O
(
1
�3

)
(A23)

and
W
!p�=

1
4
�a+�z��

+O
(
1
�2

)
� (A24)

Suppose Region I of Lemma 1 applies. Then, by (A14), we obtain

vb = 1−
1− p− cp
1−!p�

�z�
+ A1
�a�

2
z�
2
+O

(
1
�3

)

 (A25)

where A1 = p
1− p��a+ cp�a
1− 2p�
1−!p�− c2p
1−!p�2 · 
�a+�z�. By (5) and (7), we obtain

p∗i =
1− cp
2

+!pcp +
(
c2p
1+!p
2!p − 3��

2�a�
− 
1− cp�

2

8�z�

)
+O

(
1
�2

)

 (A26)

and, hence, substituting (A25) and (A26) into (5) and (8) yields

$
p∗i 
 !p�=
(
c2p
1−!p�!p

�a
+ 
1− cp�

2

4�z

)
1
�
+O

(
1
�2

)
(A27)

and

W
!p�=
(
c2p!p
1−!p�

�a
+ 
1− cp�

2

4�z

)
1
�
+O

(
1
�2

)

 (A28)

respectively. Differentiating (A28) gives

dW

d!p
= c

2
p
1− 2!p�
�a�

+O
(
1
�2

)
� (A29)

By (A29), it follows that

!∗p =
1
2
+O

(
1
�

)

 (A30)

which upon substitution into (A28) yields

W
!∗p�=

1− cp�2�a+ c2p�z

4�a�z�
+O

(
1
�2

)
� (A31)

Finally, suppose p= p̄, which upon substitution into (A15) and subsequently into (5) and (8) gives

$
p̄
!p� =
cp
1−!p�
�a
1− cp
1−!p��− cp�z
1−!p��

�2a�
+O

(
1
�2

)

 (A32)
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and

W
!p� =
cp
1−!p�
�a
1− cp
1−!p��− cp�z
1−!p��

�2a�
+O

(
1
�2

)

 (A33)

respectively. Hence,

dW

d!p
= − cp
�a
1− 2cp
1−!p��− 2cp�z
1−!p��

�2a�
+O

(
1
�2

)
� (A34)

By (A34), we obtain

!∗p =
2cp
�a+�z�−�a
2cp
�a+�z�

+O
(
1
�

)

 (A35)

which upon substitution into (A33) yields

W
!∗p�=
1

4
�a+�z��
+O

(
1
�2

)
� (A36)

By the definition of p̄, (A22), and (A26), for sufficiently large �, p∗i < p̄ is satisfied if and only if !p > 1−�a
1−
cp�/
2cp�z�, and p∗ii > p̄ is satisfied if and only if !p < 1−�a/
2cp
�a+�z��. Suppose that cp < �a/
�a+�z�. In this
case, 1−�a
1− cp�/
2cp�z� < 1−�a/
2cp
�a+�z��, thus the equilibrium outcome falls in Region I whenever !p >
1−�a/
2cp
�a+�z�� and in Region II whenever !p < 1−�a
1− cp�/
2cp�z� is satisfied. If 1−�a
1− cp�/
2cp�z� <
!p < 1−�a/
2cp
�a+�z��, then by (A23) and (A27), for sufficiently large �, p∗ = p∗i is satisfied whenever

h
!p��

(
c2p
1−!p�!p

�a
+ 
1−cp�

2

4�z

)
− 1
4
�a+�z�

≥0� (A37)

Denoting

!̄p �
1
2
− 
cp�z−�a
1− cp��2
2
√
c2p�z
�a+�z�
cp�z−�a
1− cp��2


 (A38)

then, by (A37), it follows that p∗ = p∗i is satisfied if either cp < 1−
√
�z/
�a+�z� or both 1−

√
�z/
�a+�z� < cp <

�a/
�a + �z� and !̄p < !p < 1− �a/
2cp
�a + �z�� are satisfied. On the other hand, p∗ = p∗ii is satisfied whenever
1−�a
1− cp�/
2cp�z� < !p < !̄p. By (A24) and (A31), because 
�a
1− cp�2+ c2p�z�/
4�a�z� > 1/
4
�a+�z�� and the
welfare-maximizing liability share is feasible, !∗p is given by (A30).
Suppose cp > �a/
�a+�z�. Similarly, p∗ = p∗i is satisfied if !p > 1−�a
1− cp�/
2cp�z�, and p∗ = p∗ii is satisfied if

!p < 1−�a/
2cp
�a +�z��. However, for 1−�a/
2cp
�a +�z�� < !p < 1−�a
1− cp�/
2cp�z�, it follows that p∗ = p̄.
By (A30) and (A35), the interior, welfare-maximizing liability shares are not feasible, and because

lim
!p→
1−�a
1−cp�/
2cp�z��+

W
!p� <W
0�
 (A39)

we obtain !∗p = 0. The proof of part (ii) is similar to that of the proof of Proposition 3 in August and Tunca (2006),
hence we skip it here for conciseness. �

Proof of Proposition 3. For part (i), we will prove that there exist � and �̄ such that if � > � and �z < �̄,
then, denoting the unique solution to the Equation (15) in 
0
1� by z∗,
(a) if C ′
z∗�/C ′′
z∗� ≥ 3
1 − z∗�, then both welfare and vendor investment in security increase with !z, i.e.,

!∗z = 1;
(b) if C ′
z∗�/C ′′
z∗� < 3
1 − z∗�, then !∗z = 0. Furthermore, if cp < 1/4 or C ′
1 − 1/4cp� < 3cp/8, then vendor

investment in security increases, but welfare decreases with !z. Otherwise both welfare and vendor investment
in security decrease with !z.
Let �z = k/�2. By definition, p̄→1−cp
1−&� as �→�, hence Region I of Lemma 1 applies. By (A13) and (A14)

under parameters 
1−&��a, 
1−!z�
1−&��z, and 
1−&�cp, we obtain

vb = p+ cp
1−&�−

1−&�
c2p − k
−1+ p+ cp
1−&��
p+ cp
1−&��3
−1+!z��a�

�a
p+ cp
1−&��2�
+O

(
1
�2

)
(A40)

and
vp = vb +

cp


p+ cp
1−&���a�
+O

(
1
�2

)
� (A41)

By (13), differentiating $
 · �, and substituting for (A40) and (A41), it follows that
d$

dp
= 
1− 2p− cp
1−&��−


1−&�A1
2�

+O
(
1
�2

)

 (A42)
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where A1 = k*−!z + p
3p− 2�
3!z − 2�+ c2p
1−&�2
5!z − 2�+ 2cp
1−&�
1− 2!z + p
7!z − 4���+ 2c2p
p− cp
1−&��/

�a
p+ cp
1−&��3�. Hence, we obtain

p∗ = 1− cp
1−&�
2

− 
1−&�A2
4�

+O
(
1
�2

)

 (A43)

where A2 = 
k/4�
1− cp
1−&��*2− 7!z − cp
1−&�
2+ !z��+ 8c2p
1− 3cp
1−&��/
�a
1+ cp
1−&��3�, thus p∗ < p̄ is
satisfied for sufficiently large �. The vendor’s optimal investment satisfies

d$

d&
= +$
+&

+ +$
+vb

· dvb
d&

+ +$
+p

· dp
d&

 (A44)

which, by using (A12), the first-order equation for price, the implicit function theorem, and subsequently substi-
tuting in (A40) and (A43), yields

d$
p∗
&�
&�
d&

= cp
1− cp
1−&��
2

−C ′
&�+ A3
16�a
1+ cp
1−&��3�

+O
(
1
�2

)

 (A45)

where A3 is a constant. By (11), (A40), and (A43), we obtain

W
!z
&
∗
!z�� =

3
1−cp
1−&∗��2
8

−C
&∗�− A4
32�a
1+cp
1−&∗��3�

+O
(
1
�2

)

 (A46)

where A4 is a constant. By (13) and (A45), it follows that &∗ = z∗ +O
1/�� for sufficiently large �, where z∗ is
the solution to (15), and exists and is unique because C ′
0� < cp
1− cp� and C ′′ is increasing. Thus, by (A45), we
obtain

d&∗

d!z
= k
1− cp
1− z

∗��2
1− 4cp
1− z∗��
8
2C ′′
z∗�− c2p��

+O
(
1
�2

)

 (A47)

hence for sufficiently large �, &∗ is increasing in !z if and only if z∗ > 1− 1/
4cp�, which, by (A45), is satisfied
whenever C ′
1− 1/
4cp�� < 3cp/8 or cp < 1/4. By (11) and (A47), it follows that

dW

d!z
= k
1− cp
1− z

∗��2A5
32
2C ′′
z∗�− c2p��

+O
(
1
�2

)

 (A48)

where

A5 = −4
1− 4cp
1− z∗��C ′
z∗�+ 3
1− cp
1− z∗��
(
cp
1− 3cp
1− z∗��− 2
1− z∗�

)
C ′′
z∗�� (A49)

Plugging C ′
z∗�= cp
1− cp
1−z∗��/2 into (A49) and, in turn, into (A48) and simplifying, we find that dW/d!z ≥ 0
if and only if

cp
1− cp
1− z∗��− 6
1− z∗�C ′′
z∗�≥ 0
 (A50)

which, in turn, is satisfied when

C ′′
z∗� <
cp
1− cp
1− z∗��
6
1− z∗� � (A51)

Substituting C ′
z∗� = cp
1 − cp
1 − z∗��/2, we obtain dW/d!z ≥ 0 if an only if C ′
z∗�/C ′′
z∗� ≥ 3
1 − z∗�. Now
(A50) is satisfied at C ′′
z∗� = c2p/2, if and only if cp
1 − cp
1 − z∗��
1 − 4cp
1 − z∗�� > 0, or equivalently, when
C ′
1− 1/
4cp�� < 3cp/8 as we have shown above. Now, because C ′′
z∗� > c2p/2, it follows that C

′
z∗�/C ′′
z∗� ≥
3
1− z∗� implies C ′
1− 1/
4cp�� < 3cp/8, and vendor investment in security increases in !z as well as the social
welfare with increased !z. Conversely, if C ′
1− 1/
4cp�� ≥ 3cp/8, then C ′
z∗�/C ′′
z∗� < 3
1− z∗�, and both social
welfare and vendor security investment decrease with !z. Finally, if C ′
z∗�/C ′′
z∗� < 3
1−z∗� and C ′
1−1/
4cp�� <
3cp/8, vendor security investment increases but the welfare decreases with an increase in !z. This completes the
proof of part (i).
For part (ii), by definition, p̄→ 1− cp− 
1−!z�cp�z/�a as �→�. If cp < 1−

√
�z/
�a+�z�, then, by Lemma 1,

Region I can apply. From (A14), we obtain

vb = 1−
1− p− cp
1−&�

1−&�
1−!z��z�

+ A1

1−&�2
1−!z�2�a�2z�2

+O
(
1
�3

)

 (A52)

where A1 = 
1− p− cp
1−&��
p+ cp
1−&��−�zc2p
1−&�2
1−!z�. By (12) and (13), the unconstrained optimizing
price for Region I satisfies

p∗i 
&� =

1− cp
1−&��
1+!z�

2
+ A2
16�a�z
1−&��

+O
(
1
�2

)

 (A53)
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where A2 =�a
1− cp
1−&��
cp
1−&�
1−!z�
2− 3!z�− 2− 3!z
1+!z��+ 8�zc2p
1−&�2
1+!z�. Substituting (A52)
and (A53) into (13) and differentiating, we obtain

d$
p∗i 
&�
&�
d&

= −C ′
&�+ 1− c
2
p
1−&�2

4
1−&�2�z�
+ A3
16
1−&�3�a�2z�2

+O
(
1
�3

)

 (A54)

where A3 = 
1− cp
1−&��*cp
−1− cp
1−&��
1−&�
2− !z�− 2
2+ !z���a − 8c3p
1−&�3�z. Thus, if C ′
0� > 0, then
&∗i = 0. However, if C ′
0�= 0, then

&∗i =
1− c2p

4�zC ′′
0��
+ A4
32�a�2zC ′′
0�3�2

+O
(
1
�3

)

 (A55)

where A4 = 2C ′′
0�2��a
1− cp�*cp
1+ cp�
!z− 2�− 2
!z+ 2��+ 8c3p�z�+�a
1− c2p�*4C ′′
0�− 
1− c2p�C ′′′
0��. By (A53),
(A55), and since, for sufficiently large �, p∗i 
&

∗
i � < p̄ if and only if cp < �a/
�a + 2�z�, which is satisfied because

cp < 1−
√
�z/
�a+�z�, by (12), we obtain

$
p∗i 
&
∗
i �
&

∗
i �=−C
0�+ 
1− cp�

2

4�z�
+O

(
1
�2

)
� (A56)

Differentiating (A55), we obtain
d&∗i
d!z

=− c3p − 3cp + 2
16�2zC ′′
0��2

+O
(
1
�3

)

 (A57)

thus &∗i is decreasing in !z for sufficiently large �. By (11), (A52), (A53), and (A55), it follows that

dWi
d!z

= −3
1− cp�
2
�a
1− cp�
1+ 3cp
1−!z�+ 3!z�− 8c2p�z�

128�a�3z�3
+O

(
1
�4

)

 (A58)

hence dWi/d!z < 0 for sufficiently large � because cp < 1−
√
�z/
�a+�z�. By Lemma 1, Region II can also apply.

From (A15), we obtain

vb = 1−
1− p


1−&�
�a+�z
1−!z���
+ p
1− p�

1−&�2
�a+�z
1−!z��2�2

+O
(
1
�3

)
� (A59)

By (12) and (13), the unconstrained optimizing price for Region II satisfies

p∗ii
&� =
�a+�z
1+!z�
2
�a+�z�

− 2�
2
a +�z�z
4+ 3!z�+�2z 
2+ 3!z
1+!z��

16
1−&�
�a+�z�3�
+O

(
1
�2

)
� (A60)

Substituting (A59) and (A60) into (12) and differentiating, we obtain

d$
p∗ii
&�
&�
d&

= −C ′
&�+ 1
4
1−&�2
�a+�z��

− 2�a+�z
2+!z�
8
1−&�3
�a+�z�3�2

+O
(
1
�3

)
� (A61)

Similar to the analysis from Region I, C ′
0� > 0 implies &∗i = 0 whereas C ′
0�= 0 implies

&∗ii =
1

4
�a+�z�C ′′
0��
+ A5
32
�a+�z�3C ′′
0�3�2

+O
(
1
�3

)

 (A62)

where A5 = 4C ′′
0�
�a+�z−C ′′
0�*2�a+�z
2+!z��−C ′′′
0�3
�a+�z��. By (A60), p∗ii > p̄ is satisfied if and only if
cp > �a/
2
�a+�z�� for sufficiently large �. In this case, by (12), we obtain

$
p∗ii
&
∗
ii�
&

∗
ii�=−C
0�+ 1

4
�a+�z��
+O

(
1
�2

)
� (A63)

By (A56) and (A63), $
p∗i 
&
∗
i �
&

∗
i � > $
p

∗
ii
&

∗
ii�
&

∗
ii� when �a/
2
�a + �z�� < cp < 1−

√
�z/
�a+�z�, hence (A57)

and (A58) apply for this range of cp and for cp < �a/
2
�a+�z�� because $
 · � is continuous in price. Suppose
cp > 1−

√
�z/
�a+�z�. Then, by similar logic, Region II maximizes profits. Differentiating (A62), we obtain

d&∗ii
d!z

=− �z
8
�a+�z�3C ′′
0��2

+O
(
1
�3

)

 (A64)

thus &∗i is decreasing in !z for sufficiently large �. By (11), (A59), (A60), and (A62), it follows that

dWii
d!z

=−3�z
�a+�z
1+ 3!z��
128
�a+�z�5�3

+O
(
1
�4

)

 (A65)

hence dWii/d!z < 0, which completes the proof. �
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Proof of Proposition 4. Technically, we will prove that, when C ′′
0� > c2p/2, there exist �
 �̄
 ,̄ > 0, such that
if �> �, �z < �̄, and cp
1− cp�/2− ,̄ < C ′
0�, then
(i) for C ′′
0� ≤ w1, if cp ≤ 1/3, then !∗p = 1. Furthermore, &∗ increases under the optimal liability policy, i.e.,

!∗p = 1, compared to investment under no liability. If cp > 1/3, !∗p = 0;
(ii) for w1 <C ′′
0�≤w2, !∗p = 0;
(iii) for C ′′
0� > w2, if cp ≤ 6−

√
33, then !∗p = 0; if cp > 6−

√
33, then !∗p = !0 ∈ 
0
1/2�. As �→�, �z→ 0, and

C ′
0�→ cp
1− cp�/2,
!0→

cp
1+ cp�G
cp�− 2H
cp�C ′′
0�
8cp
4C ′′
0�− cp
1+ cp��

� (A66)

Furthermore, &∗ decreases under the optimal liability policy, i.e., !∗p = !0, compared to investment under no
liability.
Let �z = k/�2. By definition, p̄→1− 
1−!p�
1−&�cp for sufficiently large �, hence Region I of Lemma 1 applies.

By (A13) and (A14) under parameters 
1−&��a, 
1−&��z and 
1−!p�
1−&�cp, we obtain

vb = p+ cp
1−&�
1−!p�−
A1
A2�

+O
(
1
�2

)

 (A67)

where A1 = 
1− &�*c2p
1− !p�2 + k�a
p+ cp
1− &�
1− !p��3
p+ cp
1− &�
1− !p�− 1�� and A2 = 
p+ cp
1− &�
1−
!p��

2�a. By (13), differentiating (12), and substituting in (A67), we obtain

d$

dp
= 1− 2p− cp
1−&�
2!p
&− 1��+O

(
1
�

)

 (A68)

from which we derive

p∗= 1−cp
1−&+2!p
&−1��
2

− 
1−&�A3
8�

+O
(
1
�2

)

 (A69)

where A3 = k
1−cp
1−&��2+16c2p
1−!p�*1+cp
1−&�
4!p−3��/
�a
1+cp
1−&��3�, hence p∗ < p̄ is satisfied for suf-
ficiently large �. Using (A14), the first-order condition on price, the implicit function theorem, and subsequently
substituting in (A67) and (A69), yields

d$
p∗
&�
&�
d&

= cp
1− cp
1−&��
2

−C ′
&�+ A4
8�a
1+ cp
1−&��3�

+O
(
1
�2

)

 (A70)

where A4 = k�a + cpk�a
1 − &� + c4pk�a
1 − &�4 + 9c5pk�a
1 − &�5 + 4c6pk�a
1 − &�6 − 2c2pM1 + 2c3p
1 − &�M2
M1 =
8
1−!p�+ 3k�a
1−&�2
 and M2 = 24− 8
7− 4!p�!p − 5k�a
1−&�2. By (11), (A67), and (A69), we obtain

W
!p
&
∗
!p�� =

3
1−cp
1−&∗��2
8

−C
&∗�+ A5
4�a
1+cp
1−&∗��3�

+O
(
1
�2

)

 (A71)

where A5 is a constant. By (13), (A70), and because C ′′
 · � > c2p/2, it follows that

&∗ = z∗ + A6
A7
c

2
p − 2C ′′
z∗���

+O
(
1
�2

)

 (A72)

where A6 = 
k/4�*1− cp
1− z∗��*−1+ cp
−1− 4cp
1− z∗��
−1+ z∗��A7 + 2c2p
1− !p�*−1− cp
1− z∗�
4!p − 3��, A7 =

−1− cp
1− z∗��3�a, and z∗ satisfies (15). By (A70), we obtain

d&∗

d!p
= 4
c2p
1+ cp
1− z∗�
8!p − 7���

1+ cp
1− z∗��3
2C ′′
z∗�− c2p��a�

+O
(
1
�2

)
� (A73)

By (11) and (A73), it follows that

dW

d!p
= A8

1+ cp
1− z∗��3
2C ′′
z∗�− c2p��a�

+O
(
1
�2

)

 (A74)

where A8 = c2p
cp
3 + A9
3
8!p − 7� − A9
8!p − 9 − A9��� − 4
1 + A9
8!p − 7��C ′
z∗� − 2
1 − z∗�
3 − A9
12 −
16!p −A9��C ′′
z∗�� and A9 = cp
1− z∗�. Reorganizing (A74) by collecting the terms with respect to !p, we obtain
that dW/d!p > 0 if and only if

c2p
1+��G
��− 2�H
��C ′′
z∗�+ 8�
c2p
1+��− 4�C ′′
z∗��!p > 0
 (A75)
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where �= cp
1− z∗� and G and H are as defined in the statement of the proposition. Now let cp
1− cp�/2− , <
C ′
0� < cp
1− cp�/2. For , small enough, z∗ converges to 0 and � converges to cp. Therefore, for small enough ,,
dW/d!p > 0 if and only if

1
!p� � cp
1+ cp�G
cp�− 2H
cp�C ′′
0�+ 8
c2p
1+ cp�− 4cpC ′′
0��!p > 0� (A76)

Now W �!p=1 ≥W �!p=0 if and only if
∫ 1
0
1
!p� d!p = cp
cp
1− c2p�− 2
3− cp�C ′′
0�� > 0
 (A77)

or equivalently

C ′′
0�≤ cp
1− c
2
p�

2
3− cp�
� (A78)

Furthermore, on *0
1�, G
cp� > 0 and H
cp� > 0 if and only if cp < 3−2
√
2 and cp < 6−

√
33, respectively. Therefore,

for cp ≤ 6−
√
33, 1
0� > 0 if and only if

C ′′
0�≤ cp
1+ cp�G
cp�
2H
cp�


 (A79)

while for cp > 6−
√
33, 1
0� > 0 if and only if (A79) does not hold. Comparing the right-hand sides of (A78) and

(A79), and simplifying, we see that
cp
1+ cp�G
cp�
2H
cp�

>
cp
1− c2p�
2
3− cp�

(A80)

if and only if cp > 6−
√
33. Also note that 1 is increasing in !p if and only if

C ′′
0�≤ cp
1+ cp�
4


 (A81)

cp
1+ cp�
4

≥ cp
1+ cp�G
cp�
2H
cp�

(A82)

if and only if cp ≤ 6−
√
33, and

cp
1+ cp�
4

≥ cp
1− c
2
p�

2
3− cp�

 (A83)

for all cp ∈ *0
1�. Finally,
cp
1− c2p�
2
3− cp�

>
c2p

2

 (A84)

if and only if cp < 1/3.
Given these observations, first for cp ≤ 6 −

√
33, when 1
0� > 0, i.e., when (A79) is satisfied, (A81) will be

satisfied. Therefore, if W is increasing at !p = 0, it is increasing on !p ∈ *0
1�, i.e., it cannot have an interior
maximizer. Hence, when (A78) is satisfied, !∗p = 1, otherwise, !∗p = 0.
For 6−√

33< cp ≤ 1/3, when 1
0� > 0, i.e., when (A79) is not satisfied, (A81) is violated, and 1 is decreasing.
Furthermore, by (A76), 1
1� < 0 if and only if

C ′′
0� <
cp
1+ cp�2
2
3+ cp�


 (A85)

and because
cp
1+ cp�2
2
3+ cp�

<
cp
1+ cp�G
cp�
2H
cp�

(A86)

for cp > 6−
√
33, when (A79) is not satisfied, 1
1� < 0 implying that expected welfare is maximized at a !∗p in the

interior of *0
1�. Therefore, for 6−√
33< cp ≤ 1/3, !∗p = 1 if

c2p

2
<C ′′
0�≤ cp
1− c

2
p�

2
3− cp�

 (A87)

!∗p = 0 if
cp
1− c2p�
2
3− cp�

< C ′′
0�≤ cp
1+ cp�G
cp�
2H
cp�


 (A88)

and !∗p is in the interior otherwise.
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When cp > 1/3, (A78) cannot be satisfied for C ′′
0� > c2p/2. Therefore, for

C ′′
0�≤ cp
1+ cp�G
cp�
2H
cp�


 (A89)

!∗p = 0. For larger C ′′
0� values, the same analysis as above is valid and an interior !∗p is optimal.
When !∗p is in the interior, its value in the limit as �→� and ,→ 0 can be found by solving 1
!p�= 0, which

yields (A66). Note that

d

dC ′′
0�

(
cp
1+ cp�G
cp�− 2H
cp�C ′′
0�
8cp
4C ′′
0�− cp
1+ cp��

)
=− 
1− c

2
p�
2− 13cp + c2p�

4cp
c2p + cp − 4C ′′
0��2
> 0 (A90)

for all cp > 
13−
√
161�/2. Because 
13−√

161�/2< 6−√
33, !0 is increasing for all C ′′
0� >w2 when cp > 6−

√
33.

Now as C ′′
0� → �, !0 → 12cp − c2p − 3/16cp, and d/d
cp�
12cp − c2p − 3/
16cp�� = 
3 − c2p�/
16cp� > 0. That is,
limC ′′
0�→� !0 is increasing in cp. Furthermore, at cp = 1, limC ′′
0�→� !0 = 1/2. It follows that !0 < 1/2.
Finally, by (A73), as �→� and ,→ 0,

d&∗

d!p
−→ 1− 7cp + 8cp!p� (A91)

As we have shown above, for cp < 1/3 and C ′′
0� <w1, !∗p = 1. For a given !∗p, the corresponding change in &∗ is

&∗�!p=!∗p −&∗�!p=0 =
∫ !∗p

0

1− 7cp + 8cp!p� d!p = !∗p
1− 7cp + 4cp!∗p�� (A92)

Plugging in !∗p = 1, &∗�!p=1 −&∗�!p=0 = 1− 3cp ≥ 0 for the domain where !∗p = 1. That is when !∗p = 1, &∗ increases
compared to the base case with no patch liability, i.e., &∗ = 0. Now, by (A92), &∗�!p=!0 − &∗�!p=0 ≥ 0 if and only
if !0 ≥ 
7cp − 1�/
4cp�. However, 
7cp − 1�/
4cp� > 1/2 if and only if cp > 1/5, and as we have shown above for
cp > 6 −

√
33 and C ′′
0� > w2, !∗p = !0 < 1/2. Because 6 −

√
33 > 1/5, it follows that in this region !0 < 1/2 <


7cp − 1�/
4cp�, and hence &∗�!p=!0 is less than &∗�!p=0; i.e., vendor investment decreases at the optimal patch
liability policy. This completes the proof. �

Proof of Proposition 5. Technically, we will prove that there exist �> 0, �z ∈ 
0
1�, and !̄p ∈ 
0
1� such that
if � > � and �z > �z, then part (i) of Proposition 2 holds in the long run as well. Furthermore, there exists a
!op ∈ 
0
1� such that &∗ is weakly decreasing in !p for !p ≤ !op, and strictly increasing in !p otherwise.
First, note that for C ′
0� > 0, &∗ = 0 and the analysis collapses to that of part (i) of Proposition 2. Now for

C ′
0�= 0, by definition,
p̄ = *1− 
1−&�
1−!p�cp
1+�z/�a��*1− 
1−!p�cp/
�a���
 (A93)

and, in equilibrium, one of three cases can occur: Region I with interior price, Region II with interior price, and
a boundary outcome priced at p̄. First, suppose Region I applies. Then, by (12) and (13), we obtain

p∗i =
1− cp
1−&− 2!p
1−&��

2
+
(
c2p
1−&�
1+!p
2!p − 3��

2�a�
− 
1− cp
1−&��

2

8
1−&��z�
)
+O

(
1
�2

)
(A94)

and

&∗ = �a
1− c
2
p�− 4c2p
1−!p�!p�z
4�a�zC ′′
0��

+O
(
1
�2

)
� (A95)

Substituting (A94) and (A95) into (12) yields

$
p∗i 
&
∗�
&∗�=

(
c2p
1−!p�!p

�a
+ 
1− cp�

2

4�z

)
1
�
+O

(
1
�2

)

 (A96)

and similarly substituting into (11) gives

W
!p
&
∗
!p�� =

(
c2p!p
1−!p�

�a
+ 
1− cp�

2

4�z

)
1
�
+O

(
1
�2

)
� (A97)

Differentiating (A95) and (A97) with respect to !p, we obtain

d&∗

d!p
= c

2
p
2!p − 1�
�aC

′′
0��
+O

(
1
�2

)
and (A98)

dW

d!p
= c

2
p
1− 2!p�
�a�

+O
(
1
�2

)

 (A99)
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respectively. By (A99), it follows that

!∗p =
1
2
+O

(
1
�

)

 (A100)

which upon substitution into (A97) yields

W
!∗p
&
∗
!∗p��=


1− cp�2�a+ c2p�z
4�a�z�

+O
(
1
�2

)
� (A101)

If Region II applies, by (12), (13), and (A15), we obtain

p∗ii =
1
2
− 1
8
1−&�
�a+�z��

+O
(
1
�2

)
(A102)

and
&∗ = 1

4
�a+�z�C ′′
0��
+O

(
1
�2

)
� (A103)

Substituting (A102) and (A103) into (12) yields

$
p∗ii
&
∗�
&∗� = 1

4
�a+�z��
+ 1− 4C ′′
0�
32
�a+�z�2C ′′
0��2

+O
(
1
�3

)

 (A104)

and similarly substituting into (11) gives

W
!p
&
∗
!p�� =

1
4
�a+�z��

+ 1− 2C ′′
0�
32
�a+�z�2C ′′
0��2

+O
(
1
�3

)
� (A105)

Finally, suppose the vendor optimally prices at the boundary between Region I and II, i.e., p = p̄ as given in
(A93). By (12) and (13), we obtain

&∗ = c
2
p
1−!p�2
�a+�z�
�2aC

′′
0��
+O

(
1
�2

)

 (A106)

and, hence,
d&∗

d!p
=−2c

2
p
1−!p�
�a+�z�
�2aC

′′
0��
+O

(
1
�2

)
� (A107)

Substituting (A106) into (A93) and both into (12) yields

$
p̄
&∗�
&∗� = cp
1−!p�*�a
1− cp
1−!p��− cp�z
1−!p��
�2a�

+O
(
1
�2

)
� (A108)

Making similar substitutions into (11) gives

W
!p
&
∗
!p�� =

cp
1−!p�*�a
1− cp
1−!p��− cp�z
1−!p��
�2a�

+O
(
1
�2

)

 (A109)

and, hence,

dW

d!p
= − cp*�a
1− 2cp
1−!p��− 2cp�z
1−!p��

�2a�
+O

(
1
�2

)
� (A110)

By (A110), we obtain

!∗p =
2cp
�a+�z�−�a
2cp
�a+�z�

+O
(
1
�

)

 (A111)

which upon substitution into (A109) yields

W
!∗p
&
∗
!∗p��=

1
4
�a+�z��

+O
(
1
�2

)
� (A112)

Given (A93)–(A112), the determination of !∗p proceeds with similar steps as given in the proof of Proposition 2.
To see the behavior of investment &∗ with the vendor’s liability share !p, note from the proof of Proposition 2
that if cp < �a/
�a+�z�, then the optimal price is p∗i and & is given by (A95), and by (A98) &∗ is decreasing in !p
if and only if !p < 1/2. For cp > �a/
�a+�z�, on the other hand, again similar to the proof of Proposition 2, p∗ = p∗ii
for !p < 1−�a/
2cp
�a +�z�� and users are not patching for these !p values; p∗ = p̄, for 1−�a/
2cp
�a +�z�� <
!p < 1−�a
1− cp�/
2cp�z�; and p∗ = p∗i for !p > 1−�a
1− cp�/
2cp�z�. Hence, first, for !p < 1−�a/
2cp
�a+�z��,
&∗ is independent of !p. Second, for 1−�a/
2cp
�a+�z�� < !p < 1−�a
1− cp�/
2cp�z�, by (A107) &∗ is decreasing
in !p. Finally, when !p > 1−�a
1− cp�/
2cp�z�, because cp > �a/
�a+�z�, we have !p > 1/2, and hence, by (A98),
it follows that &∗ is increasing in !p. Therefore, we conclude that &∗ is weakly decreasing in !p up to a certain !p
value and increasing beyond that threshold. This completes the proof. �

Proof of Proposition 6. Technically, we will prove that there exist �, �, and �̄ such that when �> �,
(i) if �z < �̄, then &∗s → 4∗ as �→�. Furthermore, there exist 0< c < c̄ < 1 such that (a) if cp < c, then &∗s is

increasing in cp; and (b) if cp > c̄, then &∗s is decreasing in cp if and only if 4
∗ < 1/2.



August and Tunca: Electronic Companion—Who Should Be Responsible for Software Security?
Management Sci. 1–15, © 2011 INFORMS ec11

(ii) if �z > �, then &∗s → 0 as �→ �. Furthermore, (a) if C ′
0�= 0 and cp < 1 −
√
�z/
�a+�z�, then &∗s is

decreasing in cp; (b) otherwise &∗s is constant in cp.
For part (i), following closely to the proof of Proposition 3, we obtain

vb = p+cp
1−&s�−

1−&s�*c2p+k�a
−1+p+cp
1−&s��
p+cp
1−&s��3�


p+cp
1−&s��2�a�
+O

(
1
�2

)
(A113)

and

p∗ = 1− cp
1−&s�
2

− 
1−&s�A1
8�

+O
(
1
�2

)

 (A114)

where A1 = k
1− cp
1− &s��2 + 16c2p
1− 3cp
1− &s��/
�a
1+ cp
1− &s��3�, hence p∗ < p̄ is satisfied. By (14) and
substituting in (A113) and (A114), we obtain

W
&s�=
3
1− cp
1−&s��2

8
−C
&s�+O

(
1
�

)

 (A115)

which upon differentiation yields

dW

d&s
= 3cp
1− cp
1−&s��

4
−C ′
&s�−

A2
4�a
1+ cp
1−&s��4�

+O
(
1
�2

)

 (A116)

where A2 is a constant; hence, we obtain &∗s = 4∗ +O
1/��. By (21) and (A115), for sufficiently large cp, we obtain
d&∗s
dcp

= 3− 64∗

3− 4C ′′
4∗���

+O
(
1
�2

)

 (A117)

hence d&∗s /dcp < 0 if and only if 4
∗ < 1/2. Similarly, for sufficiently small cp, we obtain

d&∗s
dcp

= 3
4C ′′
4∗��

+O
(
1
�2

)

 (A118)

hence d&∗s /dcp > 0.
For part (ii), if C ′
0� > 0 it is easy to show that &∗ = 0. Now suppose C ′
0� = 0. When Region I applies, we

obtain

vb = 1−
1− p− cp
1−&s�

1−&s��z�

+O
(
1
�2

)

 (A119)

and, by (19), it follows that

p∗i =
1− cp
1−&s�

2
+
(
c2p
1−&s�
2�a�

+ 
1− cp
1−&s��
2

8
1−&s��z�
)
+O

(
1
�2

)

 (A120)

and, which upon substitution into the profit function yields

$
p∗i 
&s�
&s�=−C
&s�+

1−cp
1−&s��2
4�z
1−&s��

+O
(
1
�2

)
� (A121)

Furthermore, p∗i < p̄ if and only if cp
1−&s� < �a/
�a+ 2�z� for sufficiently large �.
When Region II applies, we obtain

vb = 1−
1− p


1−&�
�a+�z��
+O

(
1
�2

)
(A122)

and
p∗ii =

1
2
− 1
8
1−&�
�a+�z��

+O
(
1
�2

)

 (A123)

where p∗ii ≥ p̄ if and only if cp
1− &s� > �a/
2
�a + �z�� for sufficiently large �. Plugging (A123) into the profit
function yields

$
p∗ii
&s�
&s� = −C
&s�+
1

4
1−&s�
�a+�z��
+O

(
1
�2

)
� (A124)

Thus, if cp
1 − &s� ≤ �a/
2
�a + �z��, the vendor prices in Region I; if cp
1 − &s� ≥ �a/
�a + 2�z�, the vendor
prices in Region II; and, in between, the outcome is determined by comparing (A121) and (A124), in which
case, $
p∗i 
&s�
&s� > $
p

∗
ii
&s�
&s� if and only if cp
1 − &s� < 1 −

√
�z/
�a+�z�. Since �a/
2
�a + �z�� < 1 −√

�z/
�a+�z� < �a/
�a+ 2�z�, it follows that (A121) applies if cp
1−&s� < 1−
√
�z/
�a+�z�, and (A124) applies

if cp
1−&s�≥ 1−
√
�z/
�a+�z�.
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For Region I, substituting (A119) and (A120) into W
&s� and optimizing gives

&∗s =
1− c2p

4�zC ′′
0��
+O

(
1
�2

)

 (A125)

and, hence,

W
&∗s �=

1− cp�2
4�z�

+O
(
1
�2

)
� (A126)

Similarly, for Region II, we obtain

&∗s =
1

4
�a+�z�C ′′
0��
+O

(
1
�2

)
(A127)

and
W
&∗s �=

1
4
�a+�z��

+O
(
1
�2

)
� (A128)

By (A126) and (A128) and because, by (A125) and (A127), &∗s = O
1/��, it follows that the welfare-maximizing
outcome lies in Region I if cp < 1−

√
�z/
�a+�z� and in Region II otherwise. By (A125), &∗s is decreasing in cp in

Region I and clearly constant in cp otherwise. This completes the proof. �

Proof of Proposition 7. Technically, we will prove that there exist �> 0, �̄ > 0 such that if �> � and �z < �̄,
then
(i) &∗s >max�&

∗
!∗z�
&
∗
!∗p��; and

(ii) W
&∗s � >max
W
!
∗
z�
W
!

∗
p��.

For part (i), let �z = k/�2. As �→�, by Proposition 3, &∗
!∗z� converges to z∗, which satisfies (15). Similarly,
by Proposition 4, under a patching liability policy, &∗
!∗p� also converges to z

∗. Under a security standards policy,
by part (i) of Proposition 6, the optimal investment satisfies &∗s = 4∗ + 1/�, where 4∗ satisfies (21). We define the
function

5
x
50�� 50cp
1− cp
1− x��− 2C ′
x�
 (A129)

where 50 is a constant satisfying 50 > 0. By (A129), there exists K > 0 such that if C ′
0� < K, then, by the assump-
tions on C
 · � and its derivatives, 5
x
50�= 0 has a unique solution. Defining

x̃
50�� �x� 5
x
50�= 0�
 (A130)

it follows that dx̃/d50 > 0, and, by comparing (15) and (21), it follows that 4∗ > z∗. Therefore, we conclude
&∗s >max�&

∗
!∗z�
&
∗
!∗p�� for sufficiently large �.

Referring to the proofs of Propositions 3 and 4, by (A46) and (A71), under both loss and patching liability
policies, we obtain

W
!∗8 �=
3
1− cp
1−&∗��2

8
−C
&∗�+O

(
1
�

)

 (A131)

where 8 ∈ �p
 z�. Comparing (A115) and (A131), noting that &∗s = 4∗ +O
1/�� is the unique maximizer of (A115),
and because 4∗ > z∗, we conclude W
&∗s � >max
W
!

∗
z�
W
!

∗
p��. �

Proof of Proposition 8. For part (i), by Proposition 3, !∗z = 0. Thus, by (14) and (20), it follows that W
!∗z�≤
min
W
!∗p�
W
&

∗
s �� because !p = 0 and &s = &
!∗z� can replicate the outcome of the loss liability policy. For part (ii),

suppose �z ≤�a
1−cp�/cp. Then, by Proposition 5, the optimal liability share is given by (A100), and the outcome
is in Region I. Substituting (A100) into (A95), we obtain

&∗
!∗p�=
�a
1− c2p�− c2p�z
4�a�zC ′′
0��

+O
(
1
�2

)
� (A132)

Further, suppose �z < �a
1− cp�2/
cp
2− cp��. By the proof of Proposition 6, under this condition, the welfare-
maximizing investment induces Region I in equilibrium and is given by (A125). Comparing (A125) and (A132),
it follows that &∗s > &

∗
!∗p� is always satisfied in this range of parameters. Suppose instead that �a
1− cp�2/
cp
2−
cp�� < �z <�a
1− cp�/cp is satisfied. By the proof of Proposition 6, &∗s satisfies (A127). However �z <�a
1− cp�/cp
implies that 1/
4
�a+�z�C ′′
0�� < 
�a
1−c2p�−c2p�z�/
4�a�zC ′′
0��, hence &∗s < &

∗
!∗p�, which proves part (a) of (ii).
For part (b), if �z < �a
1− cp�2/
cp
2− cp��, then, by Proposition 6, W
&∗s � satisfies (A126). By Proposition 5,

W
!∗p� satisfies (A101). Comparing (A101) and (A126), W
!
∗
p� > W
&

∗
s � is always satisfied. However, if �a
1 −

cp�
2/
cp
2 − cp�� < �z < �a
1 − cp�/cp, then, by the proof of Proposition 6, W
&∗s � satisfies (A128). In this case,

comparing (A101) and (A128), it again follows that W
!∗p� > W
&
∗
s �. Finally, if �z > �a
1 − cp�/cp, then !∗p = 0,

which is established in the last part of the proof of Proposition 5. Therefore, W
!∗p�≤W
&∗s � by similar reasoning
as in part (i). This completes the proof. �
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Proof of Proposition 9. For part (i) of the proposition, technically, we will prove that there exist �, �̄ > 0
such that if �> � and �z < �̄, then
(a) if cp > 6 −

√
33 and C ′
1 − 
6 − √

33�/cp� > 3cp

√
33 − 5�/4, then there exists M > 0 such that W
�∗� ≤

W
&∗s �+M/�; and
(b) otherwise, W
�∗�=W
&∗s �.
Let �z = k/�2. Under the coupled policy �, by definition, p̄→1 − 
1 − !cp�
1 − &cs �cp for sufficiently large �,

hence Region I of Lemma 1 applies. By (A13) and (A14), under parameters 
1− &cs ��a, 
1− !cz�
1− &cs ��z and

1−!cp�
1−&cs �cp, we obtain

vb = p+ cp
1−&cs �
1−!cp�−
A1
A2�

+O
(
1
�2

)

 (A133)

where

A1 = 
1−&cs �
c2p
1−!cp�2+ k�a
1−!cz�*p+ cp
1−&cs �
1−!cp��3*p+ cp
1−&cs �
1−!cp�− 1�� and
A2 = 
p+ cp
1−&cs �
1−!cp��2�a�

By (23), differentiating (22), and substituting in (A133), we obtain

p∗ = 1− cp
1−&
c
s + 2!cp
&cs − 1��
2

− 
1−&
c
s �A3

16�
+O

(
1
�2

)

 (A134)

where A3 = k
1− cp
1−&cs ��*2− 7!cz− cp
1−&cs �
2+!cz��+ 32c2p
1−!cp�*1+ cp
1−&cs �
4!cp− 3��/
�a
1+ cp
1−&cs ��3�,
hence p∗ < p̄ is satisfied for sufficiently large �. Substituting (A133) and (A134) into (11), we obtain

W
�� = 3
1− cp
1−&
c
s ��
2

8
−C
&cs �+

A4
32�a
1+ cp
1−&cs ��3�

+O
(
1
�2

)

 (A135)

where A4 is a constant, and which upon differentiation yields

+W
��

+!cz
=−3k*1− cp
1−&

c
s ��
3
1−&cs �

32�
+O

(
1
�2

)

 (A136)

hence !cz = 0 for sufficiently large �. Similarly, differentiating W
�� with respect to !cp, then

!cp =
cp
1−&cs �
12− cp
1−&cs ��− 3

16cp
1−&cs �
+O

(
1
�

)

 (A137)

satisfies the first-order condition. Now suppose that cp > 6−
√
33 is satisfied such that, by (A137), !cp > 0 can

be satisfied for some &cs ∈ *0
1�. Further, suppose that C ′
1− 
6−√
33�/cp� > 3cp


√
33− 5�/4 is satisfied as well.

Differentiating W
�� with respect to &cs and substituting in (A137), we obtain

+W
��

+&cs
= −3cp
1− cp
1−&

c
s ��

4
−C ′
&cs �+

A5
32
1+ cp
1−&cs ��2�a�

+O
(
1
�2

)

 (A138)

where A5 = 
1− cp
1− &cs ���c2p
3+ cp
1− &cs ��− 8k*−1− cp
1+ 4cp
1− &cs ��
−1+ &cs ��
1+ cp
1− &cs ��2�a�. Thus, by
(21) and (A138), &cs satisfies

&cs = 4∗ +

−1+ cp
1− 4∗��A6

8�a
1+ cp
1− 4∗��2
3c2p − 4C ′′
4∗���
+O

(
1
�2

)

 (A139)

where A6 = 3c2p+c3p
1−4∗�−8k*−1+cp
−1+4cp
−1+4∗��
−1+4∗��
1+cp
1−4∗��2�a. By (21), (A139), and because
C ′
1− 
6−√

33�/cp� > 3cp

√
33− 5�/4, it follows that &cs < 1− 
6−

√
33�/cp, which, by (A137), implies that !cp > 0.

Thus, substituting (A137) and (A139) into W
��, we obtain

W
�∗� = 3
1− cp
1− 4
∗��2

8
−C
4∗�

+O
(
1
�

)
� (A140)

Under the conditions of this proposition, part (ii) of Proposition 7 applies. Thus, under a security standards
policy only, by part (i) of Proposition 6, (A116), and substituting &∗s into (A115), we obtain

W
&∗s � =
3
1− cp
1− 4∗��2

8
−C
4∗�

+O
(
1
�

)
� (A141)
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Comparing (A140) and (A141), the result in part (a) of this proposition follows. On the other hand, if either
cp ≤ 6−

√
33 or C ′
1− 
6−√

33�/cp�≤ 3cp

√
33− 5�/4 is satisfied, then, by Lemma 1, (21), (A137), and (A139), it

follows that !cp = 0 and part (i) of Proposition 6 again applies. This proves part (b) of the proposition.
For part (ii) of the proposition, technically, we will prove that there exist �
 � > 0 such that if �> �, then
(a) if � <�z <�a
1− cp�/cp, then there exists M > 0 such that W
�∗�≤max
W
!∗p�
W
&∗s ��+M/�2; and
(b) if �z ≥�a
1− cp�/cp, then we have W
�∗�=max
W
!∗p�
W
&∗s ��.
Under the coupled policy �, by definition, p̄→ 1− 
1− !cp�
1−&cs �cp
�a +�z
1− !cz��/�a for sufficiently large

�. Suppose Region I of Lemma 1 applies, which implies that & > w1 � 1−�a/
cp
1− !cp�
�a + 
1− !cz��z�� must
be satisfied for sufficiently large �. By (A13) and (A14), under parameters 
1 − &cs ��a, 
1 − !cz�
1 − &cs ��z, and

1−!cp�
1−&cs �cp, we obtain

vb = 1−
1− p− cp
1−&cs �
1−!cp�

1−&cs �
1−!cz��z�

+O
(
1
�2

)
� (A142)

By (23), differentiating (22), and substituting in (A142), we obtain

p∗i =
1− cp
1−&cs �
1− 2!cp +!cz�+!cz

2
− A1
16
1−&cs ��a�z�

+O
(
1
�2

)

 (A143)

where A1 = 
1− cp
1−&cs ��
2+ 3!cz
1+ !cz�+ cp
1−&cs �
1− !cz�
3!cz − 2���a + 8c2p
1−&cs �2
−1+ !cp�
1− 2!cp + !cz��z.
Substituting (A142) and (A143) into (22) yields

$
p∗i 
��
�� = −C
&cs �+
1
�

(
c2p
1−&cs �
1−!cp�!cp

�a
+ 
1− cp
1−&

c
s ��
2

4�z
1−&cs �
)
+O

(
1
�2

)

 (A144)

noting that, for sufficiently large �, p∗i < p̄ if and only if &
c
s >w2 � 1−�a/
cp�a+ 2cp�z
1−!cp��.

Suppose Region II of Lemma 1 applies. By (A15), we obtain

vb = 1−
1− p


1−&cs �
�a+�z
1−!cz���
+O

(
1
�2

)
� (A145)

By (23), differentiating (22), and substituting in (A145), we obtain

p∗ii =
�a+�z
1+!cz�
2
�a+�z�

− 2�
2
a +�a�z
4+ 3!cz�+�2z 
2+ 3!cz
1+!cz��

16
1−&cs �
�a+�z�3�
+O

(
1
�2

)
� (A146)

Substituting (A145) and (A146) into (22) yields

$
p∗ii
��
�� = −C
&s�+
1

4
�a+�z�
1−&cs ��
+O

(
1
�2

)

 (A147)

noting that, for sufficiently large �, p∗ii ≥ p̄ if and only if &cs ≤w3 � 1−�a/
2cp
1−!cp�
�a+�z��.
Suppose !cp ≤ 1/2. Then, w1 ≤w2 ≤w3; hence, as long as &cs ≤w2 is satisfied, we obtain p∗ = p∗ii with the optimal

profit given by (A147). Similarly, if &cs > w3, then p
∗ = p∗i because only p∗i is interior, and the optimal profit is

given by (A144). When w2 < &cs ≤ w3, both region unconstrained prices are feasible, and by (A144) and (A147),
p∗ = p∗i if and only if

g
&cs � � �a
�a+�z�
1− cp
1−&cs ��2+ 4�z
�a+�z�c2p!cp
1−!cp�
1−&cs �2−�a�z ≥ 0
 (A148)

where g is minimized at &cs = w4 � 1− �a/*cp
�a + 4�z!cp
1− !cp���. Defining &g � sup�&cs � g
&cs � = 0�, it follows
that, under these conditions, w2 ≤ &g ≤w3 is satisfied, where &g satisfies

&g = 1
c2p
�a+�z�
�a+ 4!cp�z
1−!cp��

·
{
cp
�a+�z�*4cp�z!cp
1−!cp�−�a
1− cp��−

√
�2a�z
�a+�z�c2p
1− 2!cp�2

}
� (A149)

Because w4 ≤ w2, we can conclude that p∗ = p∗ii for &cs ≤ &g and p∗ = p∗i for &cs > &g . Suppose &g > 0. If &cs ≤ &g ,
substituting (A145) and (A146) into (11) yields

Wii
�� = −C
&cs �+
1

4
�a+�z�
1−&cs ��
− 1
16
�a+�z�2
1−&cs �2�2

− 3!
c
z�z
2�a+�z
2+ 3!cz��
256
�a+�z�5
1−&�3�3

+O
(
1
�4

)
� (A150)

from which it follows that !cz = 0. Further, by (A150), it follows that &cs = 0 when C ′
0� > 0 and

&cs =
1

4
�a+�z�C ′′
0��
+ 1−C ′′
0�
8
�a+�z�2C ′′
0�2�2

+O
(
1
�3

)

 (A151)
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when C ′
0� = 0. Thus, &cs ≤ &g is indeed satisfied for sufficiently large �. Substituting (A151) into (A150), we
obtain

Wii
�� =
1

4
�a+�z��
+ 1− 2C ′′
0�
32
�a+�z�2C ′′
0��2

+O
(
1
�3

)
� (A152)

On the other hand, if &cs > &g , then substituting (A142) and (A143) into (11) yields

Wi
�� = −C
&cs �+
1
�

(
c2p
1−&cs �
1−!cp�!cp

�a
+ 
1− cp
1−&

c
s ��
2

4�z
1−&cs �
)
+O

(
1
�2

)
� (A153)

Because Wi
� �&cs > &g� < 0, by (A152) and (A153), the optimal welfare when &g > 0 is given by Wii
�). Suppose
&g ≤ 0 such that, by (A153), we obtain &cs = 0 when C ′
0� > 0 and

&cs =
�a
1− c2p�− 4�z!cpc2p
1−!cp�

4�a�zC ′′
0��
+O

(
1
�2

)

 (A154)

when C ′
0�= 0. Upon substitution of (A154) into (A153) yields

Wi
��=
1
�

(
c2p!

c
p
1−!cp�
�a

+ 
1− cp�
2

4�z

)
+O

(
1
�2

)
� (A155)

Because, by (A149), &g is decreasing in !cp when !
c
p ≤ 1/2, for &g < 0 to be satisfied, a necessary condition is

cp < �a/
�a+�z� under sufficiently large �. By (A153), we obtain

!cp =
1
2
− cp

16�a�
+O

(
1
�2

)
� (A156)

Substituting (A156) into (A155), we obtain

Wi
��=
�a
1− cp�2+�zc2p

4�a�z�
+O

(
1
�2

)
� (A157)

Comparing (A152) and (A157), we obtain Wi ≥Wii, hence W
�∗�=Wi for cp < �a/
�a+�z� and W
�∗�=Wii for
cp ≥ �a/
�a +�z�. Suppose instead that !cp > 1/2 such that w1 ≤w3 ≤w2. In this case, p∗ = p∗ii for &cs ≤w3, p∗ = p̄
for w3 < &cs ≤ w2, and p∗ = p∗i for &cs > w2. Because the maximal value of welfare for both Region I and II can
already be achieved under !cp ≤ 1/2, only the case where p∗ = p̄ remains. It is straightforward to show that the
optimal welfare in this boundary region is bounded above by (A152) and (A157), which we omit for brevity. By
Proposition 5, part (ii)(b) of Proposition 8, and comparing (A101) and (A157), part (a) of the proposition follows.
For part (b) again, by part (ii)(b) of Proposition 8, the result is immediate because W
�∗�=Wii. This completes
the proof. �


