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Before we proceed with the proofs of the propositions, we first present the following three lemmas that will

be extensively used in the proofs.

Lemma B.1 Define

p , (1 − cp)

(

1 − cp

πaα

)

and (B.1)

p1 ,
1 − πaαν +

√

(1 − πaαν)2 + 4πaανπdcd

2
. (B.2)

Suppose p >πdcd. If πaα <cp or both πaα≥ cp and πdcd ≥ p, where p is as defined in (B.1) then

(i) if p≤ p1, then vsp = vp = 1,

vs =
πdcd

(

√

(1 − πaα)2 + 4πaα(νπdcd + (1 − ν)p) − (1 − πaα)
)

2πaα(νπdcd + (1 − ν)p)
, (B.3)

and

vb =
pvs

πdcd
; (B.4)

(ii) if p1 <p≤ 1, then vsp = vp = vb =1 and

vs =

√

(1 − πaαν)2 + 4πaανπdcd − (1 − πaαν)

2πaαν
. (B.5)

Proof of Lemma B.1: For the sake of clarity in exposition, we will defer the proofs for the statements

vsp = vp =1 when πaα≥ cp and πdcd ≥ p to Lemmas B.2 and B.3. When πaα <cp, since u≤ 1 and p> πdcd,

under both policies l and nl, we have vsp = vp =1. This is because (A.3), (A.12), and (A.17) will not hold

for all v ∈V. Now by (A.2) and (A.16), the equilibrium unpatched population is in the form

u(σ∗)= ν(vsp − vs) + (1 − ν)(vp − vb) . (B.6)

When vsp = vp =1, (B.6) implies u(σ∗)= ν(1 − vs) + (1 − ν)(1 − vb) under either policy. Suppose vb < 1.

Then, vb satisfies (A.10) which by substituting into (A.14) yields (B.4) which, in turn, by substituting into

(A.10) gives

vs − πaαvs

(

ν(1 − vs) + (1 − ν)

(

1 − pvs

πdcd

))

− πdcd = 0 . (B.7)

(B.7) has a single root greater than πdcd and this root is given in (B.3). For vb ≤ 1 to hold, by (B.4),

we must have vs ≤πdcd/p. Plugging this into (B.7), we see that vb ≤ 1 if and only if p≤ p1. For p >p1,

substituting vb =1 into (A.14) and solving the resulting quadratic equation, we obtain (B.5). �
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Lemma B.2 Suppose p >πdcd, πaα≥ cp and πdcd <p and that software pirates are allowed to patch vul-

nerabilities (i.e., ρ= l). Define

p̂1 , sup{p | p cp + πaαν(πdcd − p)(p + cp)
2 = 0} and (B.8)

p2 ,
(1 − cp)

(

1 − cp

πaα

)

− πdcdν

1 − ν
. (B.9)

Then

(i) if p≤ min(p̂1, p2), then,

vb = sup

{

vb

∣

∣

∣
(vb − p)2 − πaαv2

b

(

ν

(

cp −
πdcd(vb − p)

p

)

+ (1 − ν)(cp − vb + p)

)

= 0

}

, (B.10)

vp =
cpvb

vb − p
, (B.11)

vs =
πdcdvb

p
, (B.12)

and

vsp =
cpvs

vs − πdcd
; (B.13)

(ii) if p2 ≤ p̂1 and p2 <p≤ p1, then vsp, vp, vb, and vs are as given in part (i) of Lemma B.1;

(iii) if p2 ≤ p̂1 and p1 <p≤ 1, then vsp, vp, vb, and vs are as given in part (ii) of Lemma B.1;

(iv) if p2 > p̂1 and p̂1 <p≤ 1, then vsp satisfies (B.13), vb = vp,

vp = min(p + cp, 1) , (B.14)

and

vs = sup
{

vs | (vs − πdcd)
2 − νπaαv2

s(cp − vs + πdcd) = 0
}

. (B.15)

Proof of Lemma B.2: Suppose vb <vp < 1 and vsp < 1. Then, by Lemma A.1, vb, vp, vs, and vsp satisfy

(A.10), (A.11), (A.14), (A.15), respectively. Substituting (A.11) into (A.10) yields (B.11), (A.10) into

(A.14) yields (B.12), and (A.15) into (A.14) yields (B.13). Substituting (B.11), (B.6), and (B.12) into

(A.10) gives (B.10). Now, for vp ≤ 1 to hold, where vp is given by (B.11), we must have vb ≥ p/(1 − cp).

Substituting this quantity into (B.10), we obtain that vp ≤ 1 if and only if p≤ p2. By (A.11) and (A.15),

we have vp = vsp. In order to satisfy vp ≤ 1, and p >πdcd, p2 >πdcd has to hold, which is satisfied if and

only if πdcd <p. Therefore, under policy ρ = l, if πdcd ≥ p, then vp = vsp =1 as also indicated in Lemma

B.1. From (B.10), we define f(vb), (vb − p)2 − πaαv2
b (ν(cp − πdcd(vb − p)/p) + (1− ν)(cp − vb + p)). Then,

f(p+cp) = (cp/p)(pcp+πaαν(πdcd−p)(p+cp)
2), and therefore vb as defined in (B.10) which solves f(vb)= 0

falls to the left of p + cp, i.e., vb ≤ p + cp, if and only if

pcp + πaαν(πdcd − p)(p + cp)
2 ≥ 0 . (B.16)

By (B.8), (B.16) is satisfied whenever p≤ p̂1. This proves part (i). The proofs of parts (ii) and (iii) are

very similar to that of Lemma B.1.
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For part (iv), suppose p2 > p̂1 and p̂1 <p≤ 1. Then, vb ≤ p + cp can no longer be maintained while still

satisfying (B.10). Hence vb = vp and both satisfy (B.14). Substituting vb = vp and (B.13) into (A.14) we

obtain (B.15). Finally, from (B.15), we obtain that for vsp ≤ 1, we need πaαν > cp and πdcd < (1 − cp)(1 −
cp/(πaαν)), which hold if and only if p2 > p̂1. This completes the proof. �

Lemma B.3 Suppose p> πdcd. If πaα≥ cp and πdcd <p and that software pirates are not allowed to patch

vulnerabilities (i.e., ρ =nl). Define

p̂2 , sup
{

p∈ IR | p c2
p − πaαν(p + cp)

3(p − πdcd)= 0
}

, (B.17)

p̂3 , sup {p | p cp + πaαν(p + cp)(−p + πdcd(p + cp))= 0} . (B.18)

p3 , sup{p < 1 + πdcd − cp |πaα(c2
p − cp(1 + πdcd − 2p) + (πdcd − p)(ν − p)) (B.19)

+(1 − cp + πdcd − p)(cp − πdcd + p)2 =0} ,

p4 ,
1 − 2cp + 2πdcd + πaαν −

√

(1 − πaαν)2 + 4πaανπdcd

2
, (B.20)

Then,

(i) if p≤ min(p̂2, p3), then vp satisfies (B.11), vs satisfies (B.12),

vsp =
(p − πdcd + cp)vs

vs − πdcd
, (B.21)

and

vb = sup

{

vb

∣

∣

∣
(vb−p)2−πaαv2

b

(

ν

(

p − πdcd + cp −
πdcd(vb − p)

p

)

+(1−ν)(cp−vb+p)

)

=0

}

; (B.22)

(ii) if p3 ≤ p̂2 and p3 <p≤ min(p2, p̂3), then vsp =1, vp satisfies (B.11), vs satisfies (B.12) and

vb = sup

{

vb

∣

∣

∣
(vb − p)2 − πaαvbν(vb − p)

(

1 − πdcdvb

p

)

− πaαv2
b (1 − ν)(cp − vb + p)= 0

}

; (B.23)

(iii) if p3 ≤ p̂2, p̂3 ≤ p2, and p̂3 <p≤ 1; or if p3 > p̂2, p4 <p≤ 1, then vsp =1, vb = vp, vs satisfies (B.5) and

vp satisfies (B.14);

(iv) if p3 ≤ p̂2, p̂3 >p2, and p2 <p≤ p1, then vsp, vp, vb, and vs are as given in part (i) of Lemma B.1;

(v) if p3 ≤ p̂2, p̂3 >p2, and p1 <p≤ 1, then vsp, vp, vb, and vs are as given in part (ii) of Lemma B.1;

(vi) if p3 > p̂2, p̂2 <p≤ p4, then vb = vp, vp satisfies (B.14), vsp satisfies (B.21), and

vs = sup
{

vs | (vs − πdcd)
2 − πaανv2

s(p + cp − vs) = 0
}

. (B.24)

Proof of Lemma B.3: Suppose vb <vp < 1 and vsp < 1. Then, by Lemma A.2, vb, vp, vs, and vsp

satisfy (A.10), (A.11), (A.14), (A.19), respectively. Again, by substitution, we obtain (B.11) and (B.12).

Substituting (A.19) into (A.14) yields (B.21). Substituting (B.11), (B.6), (B.12), and (B.21) into (A.10)

yields (B.22). Now, for vsp ≤ 1 to hold, where vsp is given by (B.21), we must have vb ≥ p/(1−cp−p+πdcd),
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which, by (B.22), holds if and only if

πaα(c2
p − cp(1 + πdcd − 2p) + (πdcd − p)(ν − p)) + (1 − cp + πdcd − p)(cp − πdcd + p)2 ≤ 0 , (B.25)

which is satisfied only if πdcd ≤ p and p≤ p3. Now by (B.22), vb ≤ p + cp holds if and only if

p c2
p − πaαν(p + cp)

3(p − πdcd)≥ 0 , (B.26)

which is satisfied whenever p≤ p̂2. This concludes the conditions for part (i).

For part (ii), making similar substitutions as in part (i) and substituting vsp =1 yields (B.23). For

vp ≤ 1 to hold, where vp is given by (B.11), we must have vb ≥ p/(1 − cp) which, by (B.23), is satisified if

and only if p≤ p2. Similarly, vb ≤ p + cp if and only if p≤ p̂3. Parts (iii) through (vi) follow the same line

of proof and are omitted for conciseness. Finally, both p2 >πdcd and p3 >πdcd are satisfied if and only if

πdcd <p. If πdcd ≥ p, then by Lemma B.3, neither vsp < 1 nor vp < 1 can be satisfied, as stated in Lemma

B.1. �

Proof of Proposition 1: Technically, we will prove that

(i) If πdcd < (1 − cp)/2, then there exists a ω > 0 such that if πaα >ω, then Πnl(p
∗
nl)>Πl(p

∗
l ).

(ii) There exists γ, γ, ω, ω, η > 0 such that if γ <πdcd <γ, ω <πaα <ω, and ν <η, then Πnl(p
∗
nl)>Πl(p

∗
l ).

For part (i), suppose ρ = l. Re-arranging (B.8), we obtain p =πdcd + pcp/(πaαν(p + cp)
2). As a

result, and by (B.9), p̂1 converges to πdcd and p2 converges to (1 − cp − πdcdν)/(1 − ν) as πaα gets

large. When πdcd < (1 − cp)/2, for sufficiently large πaα the conditions of Lemma B.2 hold, and since

(1−cp−πdcdν)/(1−ν)>πdcd, we have p2 > p̂1. Then by part (iv) of Lemma B.2, Πl(p)= p(1−ν)(1−p−cp)

for any p> πdcd, and hence

max
p > πdcd

Πl(p)≤ (1 − ν)(1 − cp)
2

4
. (B.27)

On the other hand, when p≤πdcd, by Lemma 1 of August and Tunca 2006, if πaα≥ cp and p< p, then

vb = sup{vb |πaαv2
b (vb − cp − p)= − (vb − p)2} , (B.28)

By (4), Πl(p)= p(1 − vb), where by (B.28) vb = p + cp − (vb − p)2/(πaαv2
b ), and by writing terms in orders

of 1/πaα we obtain

vb = p + cp −
c2
p

πaα(p + cp)2
+ O

(

1

(πaα)2

)

, (B.29)

where O is the common order notation, implying f =O(g(x)) if for sufficiently large x, f(x)/g(x) is

bounded.13

By differentiating Πl(·), computing dvb/dp by the implicit function theorem using (B.28), and substi-

tuting (B.29) into the resulting expression, we obtain

dΠl

dp
=1 − cp − 2p −

c2
p(p − cp)

πaα(p + cp)3
+ O

(

1

(πaα)2

)

. (B.30)

13For a general definition, see Knuth, D. E., Fundamental Algorithms, Vol. 1 of The Art of Computer Programming,

Addison-Wesley, 1968.
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Hence, p(1 − vb) has an unconstrained maximizer at p̂ which satisfies

p̂=
1 − cp

2
+

2c2
p(3cp − 1)

πaα(1 + cp)3
+ O

(

1

(πaα)2

)

. (B.31)

Since πdcd < (1 − cp)/2, it then follows that for sufficiently large πaα, p̂ > πdcd is satisfied, and hence

max
p≤πdcd

Πl(p)= πdcd(1 − vb(πdcd)) . (B.32)

Substituting (B.29) into (B.32), we obtain

max
p≤πdcd

Πl(p) =πdcd(1 − πdcd − cp) +
c2
pπdcd

πaα(cp + πdcd)2
+ O

(

1

(πaα)2

)

, (B.33)

and therefore, by (B.27) and (B.33), it follows that

max
p

Πl(p) ≤ max

{

(1 − ν)(1 − cp)
2

4
, πdcd(1 − πdcd − cp) +

c2
pπdcd

πaα(cp + πdcd)2
+ O

(

1

(πaα)2

)

}

.(B.34)

For ρ= nl, by (B.19), we have

c2
p − cp(1 + πdcd − 2p) + (πdcd − p)(ν − p)=

(p + cp − 1 − πdcd)(cp − πdcd + p)2

πaα
, (B.35)

and hence, p3 approaches (πdcd + ν − 2cp +
√

(πdcd − ν)2 + 4cp(1 − ν))/2 as πaα gets large. Now, (πdcd +

ν − 2cp +
√

(πdcd − ν)2 + 4cp(1 − ν))/2>πdcd is always satisfied when πdcd + 2cp − ν ≤ 0. However, if

πdcd + 2cp − ν > 0, then it is satisfied if and only if (
√

(πdcd − ν)2 + 4cp(1 − ν))2 > (πdcd + 2cp − ν)2

which holds whenever πdcd < 1 − cp. Hence, for sufficiently large πaα, p3 >πdcd. Also by (B.17), we have

p=πdcd + pc2
p/(πaαν(p + cp)

3), and hence

p̂2 =πdcd +
πdcdc

2
p

πaαν(πdcd + cp)3
+ O

(

1

(πaα)2

)

. (B.36)

As a result, for sufficiently large πaα, p3 > p̂2. By (B.20), p4 is the larger root of the quadratic equation

p=1 − cp + (p − πdcd + cp − 1)(p − πdcd + cp)/(πaαν). Thus, we have

p4 =1 − cp −
πdcd(1 − πdcd)

πaαν
+ O

(

1

(πaα)2

)

, (B.37)

and hence, maxp̂2 < p≤ p4
Πnl(p) is given by part (vi) of Lemma B.3. Rearranging (B.24) and writing terms

in orders of 1/πaα, we obtain

vs = p + cp −
(p + cp − πdcd)

2

πaαν(p + cp)2
+ O

(

1

(πaα)2

)

, (B.38)
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and by differentiating (5) and substituting (B.14), (B.21), and (B.38) into the resulting expression for the

derivative, we obtain

dΠnl

dp
=1 − cp − 2p +

cpπdcd(πdcd − cp) − pπdcd(πdcd + cp)

πaα(p + cp)3
+ O

(

1

(πaα)2

)

. (B.39)

Equating (B.39) to zero and solving for p, the uconstrained maximizer p̃ satisfies

p̃=
1 − cp

2
− 2πdcd(cp(1 + cp) + πdcd(1 − 3cp))

πaα(1 + cp)3
+ O

(

1

(πaα)2

)

. (B.40)

By (B.36) and (B.37), for sufficiently large πaα, p̂2 < p̃<p4, and hence, p̃ =argmaxp̂2 < p≤ p4
Πnl(p). There-

fore,

max
p

Πnl(p)≥ max
p̂2 < p≤ p4

Πnl(p)=
(1 − cp)

2

4
− πdcd(1 − cp)(1 + cp − 2πdcd)

πaα(1 + cp)2
+ O

(

1

(πaα)2

)

. (B.41)

By (B.33), (B.41), and since πdcd < (1−cp)/2, there exists ω such that for all πaα > ω, we have maxp Πnl(p) >

maxp Πl(p).

For part (ii), define

k , min

(

c2
p

(1 − πdcd)(1 + cp)3
,

cp

(1 − πdcd(1 + cp))(1 + cp)

)

, (B.42)

and ω , k/ν. By (B.17) and (B.18), πaα <ω implies that p̂2 > 1 and p̂3 > 1. Let vb satisfy (B.22) and

πaα = k/
√

ν for 0<k <k/
√

ν. Then we have

vb = p + cp −
c2
p

√
ν

k(p + cp)2
+

(

p + cp − πdcd(1 + cp/p) +
2c3

pp

k2(p + cp)5

)

ν + O
(

ν3/2
)

. (B.43)

Now, applying the implicit function theorem to (B.22) to obtain dvb/dvp, we have

dvb

dp
=

2p3 − πaαπdcdνv3
b − p2vb(2 + πaαvb)

p
(

2p2 + 2vbp(πaα(p + cp) − 1) − 3πaαv2
b (νπdcd + (1 − ν)p)

) . (B.44)

By taking the derivative with respect to p in (5), and substituting (B.43), (B.44), and πaα = k/
√

ν into

the resulting expression, we have

dΠnl

dp
= 1 − cp − 2p −

c2
p(p − cp)

√
ν

k(p + cp)3
+ κ1ν + O(ν3/2) , (B.45)

where κ1 ∈ IR is a constant. For p>p2, parts (iv) and (v) of Lemma B.3 apply, and the vendor’s profit

approaches zero when ν is sufficiently small. Equating (B.45) to zero, solving for p and writing the terms

in orders of ν, we obtain

p∗nl =
1 − cp

2
+

2c2
p(3cp − 1)

√
ν

k(1 + cp)3
+ O(ν) . (B.46)

Hence, by (B.9) and (B.46), p∗nl <p2. As ν becomes small, by (B.19), p3 converges to the larger root of

the equation (c2
p − cp(1 + πdcd − 2p)− p(πdcd − p)= 0, and hence, p3 > (1− cp)/2 if and only if πdcd > (1−
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cp)
2/(2(1−cp)). Since (1−cp)

2/(2(1−cp))< (1−cp)/2 is always satisfied, whenever πdcd ∈ ((1−cp)
2/(2(1−

cp)), (1− cp)/2), we have p∗nl < min(p̂2, p3). Hence, substituting (B.43) and (B.46) into (5), and by part (i)

of Lemma B.3, we obtain

Πnl(p
∗
nl) =

(1 − cp)
2

4
+

2c2
p(1 − cp)

√
ν

k(1 + cp)2
+ z1ν + O

(

ν3/2
)

, (B.47)

where z1 ∈ IR is a constant satisfying

z1 =
4c3

p(c
2
p(5cp − 2) + 5cp − 4)

k2(1 + cp)6
+

(1 + cp)
2(cp + 2πdcd − 1)

8cp
. (B.48)

Similarly, under policy ρ = l, it can shown that p∗l satisfies part (i) of Lemma B.2. Then, by (B.10),

vb = p + cp −
c2
p

√
ν

k(p + cp)2
+

(

cp

p + cp
− πdcdcp

p
−

2c4
p

k2(p + cp)5
+

2c3
p

k2(p + cp)4

)

ν + O
(

ν3/2
)

. (B.49)

By the implicit function theorem and (B.10),

dvb

dp
=

2p(vb − p) + πaαv2
b

(

νπdcdvb

p + (1 − ν)p
)

2p(vb − p) + πaαvb ((νπdcd + (1 − ν)p)(vb + 2(vb − p)) − 2cp)
. (B.50)

By (4) and substituting πaα = k/
√

ν, (B.49), and (B.50) we have

dΠl

dp
=1 − cp − 2p −

c2
p(p − cp)

√
ν

k(p + cp)3
+ κ2ν + O(ν3/2) , (B.51)

and hence,

Πl(p
∗
l )=

(1 − cp)
2

4
+

2c2
p(1 − cp)

√
ν

k(1 + cp)2
+ z2ν + O

(

ν3/2
)

, (B.52)

where κ2, z2 ∈ IR are again constants with z2 satisfying

z2 =
4c3

p(c
2
p(5cp − 2) + 5cp − 4)

k2(1 + cp)6
+

cp(cp + 4πdcd) − 1

4
. (B.53)

Comparing (B.47) and (B.52), Πnl(p
∗
nl)>Πl(p

∗
l ) if and only if z1 >z2 which, by comparing (B.48) and

(B.53) and carrying out the algebra, is satisfied if and only if πdcd > (1 − c2
p)/(2(1 + 3cp)). Since

(1 − cp)
2

2(1 + cp)
<

1 − c2
p

2(1 + 3cp)
<

1 − cp

2
, (B.54)

there exist γ <πdcd <γ, where Πnl(p
∗
nl)>Πl(p

∗
l ). �

Proof of Proposition 2: We will show that

(i) There exists γ, ω, ω, η > 0 such that if πdcd <γ, ω <πaα <ω, and ν <η, then Πl(p
∗
l )>Πnl(p

∗
nl).

(ii) There exist θ, γ, ω, ω > 0 such that if πdcd <γ, cp <θ, and ω≤πaα≤ω, then Πl(p
∗
l )>Πnl(p

∗
nl).
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For part (i), for sufficiently small ν, by the proof of part (ii) of Proposition 1, p∗nl <p2, and by (B.19),

p3 < (1− cp)/2 if and only if πdcd < (1− cp)
2/(2(1− cp)). Hence, vb satisfies (B.23), and when πaα = k/

√
ν

for 0<k <k/
√

ν, where k is given by (B.42), we have

vb = p + cp −
c2
p

√
ν

k(p + cp)2
+

(

cp

p + cp
+

2c3
p

k2(p + cp)4
+

2c4
p

k2(p + cp)5
− πdcdcp

p

)

ν + O
(

ν3/2
)

. (B.55)

By (B.23) and the implicit function theorem,

dvb

dp
=

πaαπdcdνv3
b − 2p3 + p2vb(2 − πaαν + πaαvb(1 − ν))

p3(πaαν − 2) + 3pπaαv2
b (πdcdν + p − pν) + 2p2vb(1 − πaα(cp(1 − ν) + ν + νπdcd + p − pν))

.

(B.56)

By part (ii) of Lemma B.3, (5), and substituting πaα = k/
√

ν, (B.55), and (B.56) we have

dΠnl

dp
= 1 − cp − 2p −

c2
p(p − cp)

√
ν

k(p + cp)3
+ κ3ν + O(ν3/2) , (B.57)

and hence

Πnl(p
∗
nl) =

(1 − cp)
2

4
+

2c2
p(1 − cp)

√
ν

k(1 + cp)2
+ z3ν + O

(

ν3/2
)

, (B.58)

where κ3, z3 ∈ IR are again constants. Comparing (B.52) and (B.58) we see that Πl(p
∗
l )>Πnl(p

∗
nl) if and

only if z2 >z3, which is always satisfied.

To see part (ii), let 1/ν < k < 4/ν and suppose

0<πdcd < min

(

1 − 1

kν
,

1 −√
ν

2

)

. (B.59)

Since k > 1 and by (B.59), for πaα = kcp, there exists ε> 0 such that when cp <ε, πaα≥ cp and πdcd < (1−
cp)(1 − cp/(πaα)), are satisfied. Then by (B.8),

pcp + πaαν(πdcd − p)(p + cp)
2 =(p + πdcdkνp2 − kνp3)cp + O(c2

p) , (B.60)

and hence, p̂1 approaches (πdcd+
√

4/(kν) + (πdcd)2)/2, and by (B.9), p2 approaches (1−k+πdcdkν)/(−k(1−
ν)) for sufficiently small cp. Since 1− 1/(kν)< 1/2 + (k − 2)/(2kν), by (B.59), πdcd < 1/2 + (k − 2)/(2kν),

which is satisfied if and only if p2 > 1/2. Further, p̂1 > 1/2 is satisfied if and only if πdcd > 1/2 − 2/(kν),

which is always satisfied since kν < 4. By (B.2), p1 approaches 1 as cp gets small. Thus, by part (iii) of

Lemma B.2, for all δ > 0, there exists an ε > 0 such that when cp <ε, and 0<p < 1 − δ, vb < 1. Then by

(B.4), (B.10) and (B.14) vb approaches p for sufficiently small cp. It follows that p∗l = argmax0≤ p≤ 1Πl(p)

approaches 1/2. Then, since min(p2, p̂1)> 1/2, by part (i) of Lemma B.2, when p = p∗l , vb satisfies (B.10).

By (4),
dΠl

dp
=1 − vb − p · dvb

dp
. (B.61)

Substituting (B.50) into (B.61), and by (B.10), vb = p + z1cp + O(c2
p), and hence

p∗l =1/2 +
(−8z2

1 − 2k + kz1(1 − ν))cp

2(k + kν(2πdcd − 1) + 8z1)
+ O(c2

p) , (B.62)
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where

z1 =
1

8

(

√

16k + (k(1 − ν) + 2πdcdkν)2 − (k(1 − ν) + 2πdcdkν)
)

. (B.63)

By (4), (B.62), and again since vb = p + z1cp + O(c2
p), we have

Πl(p
∗
l ) =

1 − ν

4
− (1 − ν)z1cp

2
+ O(c2

p) . (B.64)

Finally, πdcd(1− πdcd)< (1− ν)/4 is satisfied if and only if πdcd < (1−√
ν)/2, which holds by (B.59), and

hence the vendor will not set p≤πdcd, which verifies the optimality of (B.62).

Now, by (B.19), p3 =πdcd + z2cp + O(c2
p) where z2 is the larger root of

z2
2 + (2 + k(πdcd − ν))z2 + 1 − k + πdcdk =0 , (B.65)

and, by (B.17), p̂2 =πdcd + cp/(kν(πdcd)
2) + O(c2

p). Substituting z2 =1/(kν(πdcd)
2) into (B.65), it follows

that p3 ≤ p̂2 if and only if 1+kνπdcd(πdcd−1)≥ 0, which is satisfied since kν ≤ 4. By (B.18), p̂3 approaches

1/(kν(1 − πdcd)) as cp gets small, and by (B.59), p̂3 <p2. Further, for any δ > 0, there exists a ε> 0 such

that when 0< cp <ε, for p >πdcd + δ, by parts (ii) and (iii) of Lemma B.3, vsp =1 and νp < 1.

When vb <vp by (B.23), vb satisfies

(vb − p)2 − πaαvbν(vb − p)

(

1 − πdcdvb

p

)

− πaαv2
b (1 − ν)(cp − vb + p)= 0 , (B.66)

and by the implicit function theorem, dvb/dp satisfies (B.56). By part (ii) of Lemma B.3, vsp =1, and

hence by (5),
dΠnl

dp
=1 − vb − p · dvb

dp
. (B.67)

Substituting (B.56) into (B.67), and by (B.66), vb = p + z3cp + O(c2
p). Substituting again into (B.67), the

unconstrained maximizer of Πnl when vb <vp then satisfies

p=1/2 +
(k(1 − ν)(z3 − 2) − 8z2

3)cp

2(k + kν(2πdcd − 3) + 8z3)
+ O(c2

p) , (B.68)

where

z3 =
1

8

(

√

16k(1 − ν) + (k − 3kν + 2kνπdcd)2 − (k − 3kν + 2kνπdcd)
)

, (B.69)

and hence,

Πii
nl ≤

1 − ν

4
− (1 − ν)z3cp

2
+ O(c2

p) , (B.70)

where Πii
nl is the maximum profit attained when p3 ≤ p̂2 and p3 <p≤ min(p2, p̂3). By (B.64) and (B.70),

Πl(p
∗
l )>Πii

nl if z1 <z3 which holds if and only if πdcd < 1/2 + (k − 2)/(2kν), which is satisfied by (B.59).

For the case when vb = vp, by part (iii) of Lemma B.3 and (5), Πnl(p)= p(1− ν)(1− p− cp), which has

an unconstrained maximizer at p =(1 − cp)/2, and therefore,

Πiii
nl ≤

1 − ν

4
− (1 − ν)cp

2
+ O(c2

p) , (B.71)
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where where Πiii
nl is the maximum profit attained when p3 ≤ p̂2, p̂3 ≤ p2 and p̂3 <p≤ 1. By (B.64) and

(B.71), Πl(p
∗
l )>Πiii

nl if z1 < 1 which holds if and only if πdcd > 1/2− 2/(kν), which is always satisfied since

kν < 4. Therefore Πnl(p
∗
nl)≤ max

(

Πii
nl, Π

iii
nl

)

, and the proof is complete. �

Proof of Proposition 3: We will prove that if πdcd < (1 −
√

cp(2 − cp))/2, there exist 0<πaα <πaα

such that if ν > cp(2 − cp), 0<ω1 <πaα and ω2 >πaα then

Πnl(p
∗
nl)|πaα=ω2

= max
ρ∈{l,nl}

Πρ(p
∗
ρ)

∣

∣

∣

∣

πaα=ω2

> max
ρ∈{l,nl}

Πρ(p
∗
ρ)

∣

∣

∣

∣

πaα=ω1

. (B.72)

When p≤πdcd, by Lemma 1 of August and Tunca 2006, if πaα < cp or both πaα≥ cp and p ≥ p, then

vp =1 and

vb = − 1 − πaα

2πaα
+

1

2πaα

√

(1 − πaα)2 + 4πaαp . (B.73)

By this fact and Lemma B.1, vsp =1 for sufficiently small πaα, and hence, by (4) and (5), Πl(p)= Πnl(p).

Further, Πnl(p)> 0 if and only if p<p1. Hence, by (B.73) and (B.4), vb = p + O(πaα). Since πdcd <

(1 −
√

cp(2 − cp))/2,

max
0 < p≤πdcd

Πnl(p) <

(

1 −
√

cp(2 − cp)

2

)(

1 +
√

cp(2 − cp)

2

)

=
(1 − cp)

2

4
, (B.74)

for sufficiently small πaα. By (5) and since vb = p + O(πaα), we also have

max
πdcd < p≤ 1

Πnl(p) <
1 − ν

4
. (B.75)

On the other hand, by the proof of Proposition 1, when πaα is sufficiently large, maxp Πnl(p)> maxp Πl(p),

where maxp Πnl(p) approaches (1 − cp)
2/4. Then, by (B.74), (B.75), and since (1 − cp)

2 > (1 − ν) holds if

and only if ν > cp(2 − cp) is satisfied, the result follows. �

Proof of Proposition 4: We will prove that if cp < 1/3 and πaα≥ω ,

(i)
dΠρ∗ (p∗)

d(πdcd) < 0 if πdcd <
1+cp

4 , and

(ii)
dΠρ∗ (p∗)

d(πdcd) > 0 if
1+cp

4 <πdcd <
1−cp

2 .

Let ξ , 1/(πaα). For sufficiently large πaα, by part (vi) of Lemma B.3, the proof of part (i) of Proposition

1, and (B.24), we obtain

vs = p + cp −
(p + cp − πdcd)

2ξ

ν(p + cp)2
+ O(ξ2) , (B.76)

and by (B.21) and (B.76),

vsp = p + cp +
πdcd(p + cp − πdcd)ξ

ν(p + cp)2
+ O(ξ2) . (B.77)
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By part (vi) of Lemma B.3 and (B.14), vb = p + cp for 0≤ p≤ 1− cp as πaα gets large. Substituting vb and

(B.77) into (5) and differentiating yields

dΠnl(p)

dp
= 1 − cp − 2p +

πdcd(cp(cp − πdcd) + p(cp + πdcd))ξ

(p + cp)3
+ O(ξ2) . (B.78)

Equating (B.78) to zero yields the first order condition, solving which we obtain the optimal price as

p∗ =
1 − cp

2
− 2πdcd(cp(1 + cp) + πdcd(1 − 3cp))ξ

(1 + cp)3
+ O(ξ2) . (B.79)

Hence it follows that

Πnl(p
∗) =

(1 − cp)
2

4
− πdcd(1 − cp)(1 + cp − 2πdcd)ξ

(1 + cp)2
+ O(ξ2) . (B.80)

By (B.80), we obtain dΠnl(p
∗)/d(πdcd) = (1−cp)(1+cp)

−2(4πdcd−1−cp)ξ+O(ξ2). Therefore, for sufficiently

large πaα and by Proposition 1, dΠnl(p
∗)/d(πdcd)< 0 for πdcd < (1 + cp)/4 and dΠnl(p

∗)/d(πdcd)> 0 for

(1 + cp)/4< πdcd < (1 − cp)/2. Since ρ∗ = nl, by Proposition 1, the result follows. �

Proof of Proposition 5: Technically, we will first show that there exist threshold values ω > 0 and

γ̂ < (1 − cp)/2 such that if πaα≥ω, then

lim
πdcd→γ̂−

Wρ∗(p
∗) < lim

πdcd→γ̂+
Wρ∗(p

∗) . (B.81)

We will then prove that

lim
γ→γ̂−

dWnl(p
∗
nl)

d(πdcd)

∣

∣

∣

∣

πdcd = γ

> 0 . (B.82)

Let ξ , 1/(πaα). Suppose that p=πdcd < (1 − cp)/2. As πaα grows large, by (B.28), we have

vb =πdcd + cp −
c2
pξ

(πdcd + cp)2
+ O(ξ2) . (B.83)

By (4) and (5), Πnl(πdcd)= Πl(πdcd) and by substituting (B.83), we obtain

Πnl(πdcd)= πdcd(1 − cp − πdcd) +
πdcdc

2
pξ

(πdcd + cp)2
+ O(ξ2) . (B.84)

Suppose that p> πdcd. By (B.24) and part (vi) of Lemma B.3,

vs = p + cp −
(p − πdcd + cp)

2ξ

ν(p + cp)2
+ O(ξ2) . (B.85)

Substituting (B.14), (B.21), and (B.85) into (5) gives

Πnl(p) = p(1 − p − cp) −
pπdcd(p − πdcd + cp)ξ

(p + cp)2
+ O(ξ2) , (B.86)
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and by taking first order conditions yields

p∗nl =
1 − cp

2
− 2πdcd(cp(1 + cp) + πdcd(1 − 3cp))ξ

(1 + cp)3
+ O(ξ2) . (B.87)

By (B.86) and (B.87), we obtain

Πnl(p
∗
nl) =

(1 − cp)
2

4
− πdcd(1 − cp)(1 + cp − 2πdcd)ξ

(1 + cp)2
+ O(ξ2) , (B.88)

and by equating (B.84) and (B.88), it follows that γ̂ , {πdcd | Πnl(πdcd)= Πnl(p
∗
nl)} is given by

γ̂ =
1 − cp

2
−
√

cp(1 − cp)ξ

1 + cp
+ O(ξ) . (B.89)

By (B.84) and (B.88), we have

d[Πnl(πdcd) − Πnl(p
∗
nl)]

d(πdcd)
= 1 − cp − 2πdcd +

(

−1 +
2

1 + cp
− 4πdcd(1 − cp)

(1 + cp)2
+

c2
p(cp − πdcd)

(cp + πdcd)3

)

ξ + O(ξ2) ,

(B.90)

and further by evaluating (B.90) at γ̂, we have

d[Πnl(πdcd) − Πnl(p
∗
nl)]

d(πdcd)

∣

∣

∣

∣

πdcd = γ̂

=

√

4cp(1 − cp)ξ

1 + cp
+ O(ξ) , (B.91)

and therefore d[Πnl(πdcd) − Πnl(p
∗
nl)]/d(πdcd)> 0 for all 0≤πdcd ≤ γ̂. This implies that at πdcd = γ̂, the

vendor switches price from p∗nl to πdcd. As πdcd → γ̂−, by (7), (B.85), (B.87), and (B.89), we obtain

Wnl(p
∗
nl)=

3(1 − cp)
2

8
+

πdcd

(

πdcd + cp(3 + 4cp + c2
p − πdcd(8 + cp)

)

ξ

(1 + cp)3
+ O(ξ3/2) . (B.92)

However, as πdcd → γ̂+, by (7), (B.83), and (B.89), we have

Wnl(πdcd) =
3(1 − cp)

2

8
+

1 − cp

2

√

cp(1 − cp)ξ

1 + cp
+ O(ξ) , (B.93)

which proves that limπdcd→γ̂− Wρ∗(p
∗) < limπdcd→γ̂+ Wρ∗(p

∗). By (B.92), we obtain

lim
γ→γ̂−

dWnl(p
∗
nl)

d(πdcd)

∣

∣

∣

∣

πdcd = γ

=
(1 + cp(6 + cp)(2cp − 1))ξ

(1 + cp)3
+ O(ξ3/2) , (B.94)

which is positive for all 0<cp < 1. This completes the proof. �

Proof of Proposition 6: We will show that there exist θ, ω, ω > 0 such that if cp <θ, and ω≤πaα≤ω,

then

(i) there exists η > 0 that if 0<πdcd < (1 −√
ν)/4 and ν <η, then Wl(p

∗
l )≥Wnl(p

∗
nl);

(ii) there exist 0<λ <λ that if λ < πdcd <λ, then Wnl(p
∗
nl)> Wl(p

∗
l ).
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For convenience in exposition, define vs, ρ, vsp, ρ, vb, ρ and vp, ρ as the corresponding threshold values under

policy ρ. Since πdcd < (1−√
ν)/4 and by part (ii) of the proof of Proposition 2, both p∗l and p∗nl approach

1/2 for sufficiently small cp. Again, by part (ii) of the proof of Proposition 2, since min(p2, p̂1)> 1/2, by

part (i) of Lemma B.2, we have vsp,l < 1. Now, suppose ul >unl, where ul and unl are the sizes of the

unpatched populations under policy l and nl as given by (B.6), respectively. By (A.14), vs, l =πdcd/(1 −
πaαul) and vs, nl =πdcd/(1 − πaαunl), hence vs, l >vs, nl. By (A.15), vsp, l = cp/(πaαul), and by (A.19),

vsp, nl = min(1, (p + cp − πdcd)/(πaαunl)), and hence vsp, nl >vsp, l. Now, defining uL
ρ and uH

ρ as the sizes of

the unpatched populations under policy ρ in the Type L and Type H consumer populations, respectively, it

follows that uρ =uL
ρ +uH

ρ . Since vsp, nl >vsp, l and vs, l >vs, nl, we obtain uH
nl >uH

l , and since ul >unl, we have

uL
nl <uL

l . By part (i) of Lemma B.2, vb, l < vp, l, and by (A.5), (A.8), and (A.9), we have vb, l = p/(1−πaαul)

and vp, l = cp/(πaαul). Since vb, l <p + cp and ul >unl, we obtain vb, nl = p/(1 − πaαu)<vb, l <p + cp. By

(A.5) and (A.8), vp, nl = min(1, cp/(πaαunl)), and hence, vp, nl >vp, l. It follows that uL
nl >uL

l , which is a

contradiction. Therefore, ul ≤unl, and hence, vs, l ≤ vs, nl.

Now, by (B.18), we know that for sufficiently small cp, p̂3 > 1/2 for k < 2/ν. Then, by part (ii) of

Proposition 2, vp < 1 and p∗nl satisfies (B.68). Comparing with (B.62), it then follows that p∗nl−p∗l = νcp/2+

O(ν2) and therefore, for sufficiently small ν, p∗nl >p∗l and hence vb, l ≤ vb, nl. As a result, (v − C(v, θ, σ∗))+

is greater under ρ = l than ρ =nl for each consumer and by (7), it follows that Wl(p
∗
l )≥Wnl(p

∗
nl). This

proves (i).

For (ii), first notice that (1 −√
ν)/2< 1 − 1/(kν) if and only if k > 2/(ν(1 +

√
ν)) and that 2/(ν(1 +√

ν))> 1/ν for all ν ∈ (0, 1). Let 2/(ν(1 +
√

ν))<k < 4/ν and 0<πdcd < (1 −√
ν)/2. Then (B.59) is

satisfied and since k > 1, for πaα = kcp, there exists ε> 0 such that when cp <ε, πaα≥ cp and πdcd < (1 −
cp)(1 − cp/(πaα)). By (B.64), (B.70) and (B.71), we then have Πl(p

∗
l )> maxp > πdcd

Πnl(p). By (4), (5),

and (B.28),

Πl(πdcd)=Πnl(πdcd)= πdcd(1 − πdcd) − z0cp + O(c2
p) , (B.95)

where z0 = (πdcd)
2(kπdcd−

√

4k + (kπdcd)2)/2. Carrying out the algebra, it follows that z0 <z1 as given in

(B.63). Therefore, by (B.64), and (B.95), there exists ε> 0 such that for any cp <ε, there exists δ > 0 such

that if (1 − √
ν)/2 − δ < πdcd < (1 − √

ν)/2 then Πl(πdcd) =Πnl(πdcd)>Πl(p
∗
l ). Consequently, by (B.64)

and the continuity of Πl(πdcd) as in (B.95), there exist λ, λ ∈ (0, (1−√
ν)/2) such that when λ <πdcd <λ,

maxp > πdcd
Πnl(p)<Πl(πdcd)= Πnl(πdcd)<Πl(p

∗
l ). Hence p∗nl =πdcd and p∗l is characterized by (B.62). But

by (7), for sufficiently small cp, Wnl(πdcd) approaches (1 − (πdcd)
2)/2 and by (B.62), Wl(p

∗
l ) approaches

(3 + ν(1− 4(πdcd)
2))/8. Since πdcd < 1/2, it follows that Πl(p

∗
l )>Πnl(p

∗
nl) and W ∗

nl >W ∗
l . This completes

the proof. �
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