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Before we proceed with the proofs of the propositions, we first present the following three lemmas that will

be extensively used in the proofs.

Lemma B.1 Define

P2 (1-g)(1- L) and B.1
po= (Umal{l-2g) o (B.1)
1- 1— 214
D1 L TaQV + \/( ;aal/) + 4 avmgcy . (B2)
Suppose p>mgcq. If moa <cp or both mea> ¢, and mycqg > P, where P is as defined in (B.1) then
(i) if p<Dy, then vsy=vp=1,
Tacq (\/(1 — aq)2 + dmga(vmgeqg + (1 —v)p) — (1 — 7Ta0<)>
- B.3
o 2mga(vmgcq + (1 — v)p) ) (B.3)
and
vy= (B.4)
TdCd
(ZZ) Zfﬁl <p§ ]-7 then Usp :Up =Vp = ]_ and
Vo= V(1 = maav)? + dravmicy — (1 — maav) ' (B.5)

Y e 1%

Proof of Lemma B.1: For the sake of clarity in exposition, we will defer the proofs for the statements
Vsp =Vp = 1 when m,a > ¢, and mycq > D to Lemmas B.2 and B.3. When m,a < ¢p, since u <1 and p > mgcq,
under both policies | and nl, we have vy, =v,=1. This is because (A.3), (A.12), and (A.17) will not hold
for all v€V. Now by (A.2) and (A.16), the equilibrium unpatched population is in the form

u(o™) =v(vsgy —vs) + (1 —v)(vp — p). (B.6)

When vg, =v, =1, (B.6) implies u(c*) =v(1 —vs) + (1 — v)(1 — vp) under either policy. Suppose v, < 1.
Then, v, satisfies (A.10) which by substituting into (A.14) yields (B.4) which, in turn, by substituting into
(A.10) gives

TdCd

Vs — Taas <y(1 — )+ (1 —v) (1 - p“)) — Tacq=0. (B.7)

(B.7) has a single root greater than mycq and this root is given in (B.3). For v, <1 to hold, by (B.4),
we must have vy <mgcg/p. Plugging this into (B.7), we see that v, <1 if and only if p<p;. For p>p,,
substituting v, =1 into (A.14) and solving the resulting quadratic equation, we obtain (B.5). O
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Lemma B.2 Suppose p> mycq, Tq@ > ¢, and macq <P and that software pirates are allowed to patch vul-
nerabilities (i.e., p=1). Define

P £ sup{p|pecy + maav(maca — p)(p + ¢p)* = 0} and (B-8)
(1—c¢p) (1 — Tcpa) — TqCqV

_ a . B.

P2 1—» (B.9)

Then

(i) if p< min(p1,D,), then,

= sup {un | (0 9 = macef (v (= L= (-, - wp)) =o)L (B0

p
CpUp
v, = 22 B.11
p= 2 (B.11)
cqu
v, = 14%d% (B.12)
p
and
CpUs
Vgp = ; B.13
S —— (B.13)
(i) if Py <p1 and Py <p <Py, then vspy, vy, vy, and vs are as given in part (i) of Lemma B.1;
(111) if Py <p1 and p; <p <1, then vy, vp, vy, and vs are as given in part (it) of Lemma B.1;
(iv) if Dy>p1 and p1 <p <1, then vy satisfies (B.13), vy =vp,
vp=min(p + ¢p, 1), (B.14)
and
Vs = SUp {vs | (vs — 7rdcd)2 — Vﬂaavf(cp — Vs + mgeq) = O} . (B.15)

Proof of Lemma B.2: Suppose v, <v, <1 and vs, < 1. Then, by Lemma A.1, vy, vp, vs, and v, satisfy
(A.10), (A.11), (A.14), (A.15), respectively. Substituting (A.11) into (A.10) yields (B.11), (A.10) into
(A.14) yields (B.12), and (A.15) into (A.14) yields (B.13). Substituting (B.11), (B.6), and (B.12) into
(A.10) gives (B.10). Now, for v, <1 to hold, where v, is given by (B.11), we must have v, >p/(1 — ¢;).
Substituting this quantity into (B.10), we obtain that v, <1 if and only if p <p,. By (A.11) and (A.15),
we have v, =vg,. In order to satisfy v, <1, and p>m4cq, Dy > mgcq has to hold, which is satisfied if and
only if mgcq <P. Therefore, under policy p=I, if mgcq >p, then v, =v4 =1 as also indicated in Lemma
B.1. From (B.10), we define f(vp) £ (vp — p)? — maav (v(cp — maca(ve —p)/p) + (1 —v)(cp — vp +p)). Then,
f(p+cp) = (cp/p)(pep+maav(maca—p)(p+cp)?), and therefore vy, as defined in (B.10) which solves f(vp) =0
falls to the left of p + ¢, i.e., vy <p+ ¢p, if and only if

pep + Taaw(Tacq — p)(p + ¢p)> > 0. (B.16)

By (B.8), (B.16) is satisfied whenever p <p;. This proves part (i). The proofs of parts (i) and (iii) are
very similar to that of Lemma B.1.
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For part (iv), suppose Py > p1 and p; <p <1. Then, v, <p+ ¢, can no longer be maintained while still
satisfying (B.10). Hence v, =v, and both satisfy (B.14). Substituting v, =v, and (B.13) into (A.14) we
obtain (B.15). Finally, from (B.15), we obtain that for vy, <1, we need maav > ¢, and mgcq < (1 —¢,)(1 —
¢p/(mqar)), which hold if and only if Dy > p1. This completes the proof. [

Lemma B.3 Suppose p>mqcq. If mooe> ¢, and macq <D and that software pirates are not allowed to patch

vulnerabilities (i.e., p=nl). Define

P2 = sup {p61R|pc]2) —WaaV(p—l-Cp)S(p—ﬂ'dCd):O} , (B.17)
ps = sup{p|pcy+ meav(p+ cp)(—p + maca(p + cp)) =0} . (B.18)
Ps = sup{p<l+maca—cp] 7raa(612o — cp(1 4+ mgcq — 2p) + (wacqa — p)(v — p)) (B.19)
+(1 = ¢p + macqg — p)(cp — maca + p)? =0},
1-2 2 — 1- 244
_ ¢p + 2mgcq + maow ;/( Taav)? + 7TaOéV7TdCd7 (B.20)

Then,
(1) if p< min(p, p3), then v, satisfies (B.11), vs satisfies (B.12),

Usp = (p —Mact Cp)vs ’ (B'Ql)

Vs — TqCd

and

Wdcd(;b - p) >

vp = Sup {vb ‘ (vp—p)? —T g} <1/ (p — Tacq + ¢p — +(1y)(cpvb+p)> _0} ; (B.22)

(i) if p3 <p2 and ps <p < min(Py, p3), then vy, =1, v, satisfies (B.11), vs satisfies (B.12) and

vp = Sup {vb ‘ (vy — p)? — maaupv(vy — p) (1 - m?”’) — maavp (1 — v)(cp — vy + p) :0} i (B.23)

(1it) if Py < P2, p3 <Po, and p3 <p<1; or if P3 > P2, Py <p <1, then vy, =1, vy =vp, v, satisfies (B.5) and
vy satisfies (B.14);
() if D3 < P2, P3 > Dy, and Dy <p <Py, then vgp, vy, vy, and vs are as given in part (i) of Lemma B.1;

(v) if D3 < P2, P3>Dy, and Py <p <1, then vy, vy, vy, and vs are as given in part (ii) of Lemma B.1;

(vi) if P3 > P2, P2 <p <Dy, then vy =y, v, satisfies (B.14), vsy satisfies (B.21), and

vs = sup {vs | (vs — Tacq)? — maavvi(p 4 cp — vs) = 0} . (B.24)
Proof of Lemma B.3: Suppose v, <v, <1 and vsp, <1. Then, by Lemma A.2, v, vp, vs, and vy
satisfy (A.10), (A.11), (A.14), (A.19), respectively. Again, by substitution, we obtain (B.11) and (B.12).

Substituting (A.19) into (A.14) yields (B.21). Substituting (B.11), (B.6), (B.12), and (B.21) into (A.10)
yields (B.22). Now, for vy, <1 to hold, where vy, is given by (B.21), we must have v, > p/(1—c, —p+mgcq),
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which, by (B.22), holds if and only if
mac(cy — (1 + maca — 2p) + (waca — p) (v —p)) + (1 = ¢p + maca — p)(cp — maca +p)* <0, (B.25)

which is satisfied only if m4cq <P and p <p3. Now by (B.22), vy <p + ¢, holds if and only if

pcf) — maav(p + )3 (p — macq) >0, (B.26)
which is satisfied whenever p <p,. This concludes the conditions for part (i).

For part (ii), making similar substitutions as in part (i) and substituting ve, =1 yields (B.23). For
vp <1 to hold, where v, is given by (B.11), we must have v, >p/(1 — ¢,) which, by (B.23), is satisified if
and only if p <p,. Similarly, v, <p+ ¢, if and only if p < ps. Parts (iii) through (vi) follow the same line
of proof and are omitted for conciseness. Finally, both py > mgcq and Py > mycq are satisfied if and only if
macq <p. If mgcq > P, then by Lemma B.3, neither vy, <1 nor v, <1 can be satisfied, as stated in Lemma
B.1. O

Proof of Proposition 1: Technically, we will prove that
(i) If mgcqa < (1 —¢p)/2, then there exists a w >0 such that if Toa > w, then IL,(p),;) > II;(p]).
(ii) There exists v,%,w,w, 7 > 0 such that if v <7Tgcq <7, w < mea <w, and v <7, then ILy(p};) > I (p]).

For part (i), suppose p=I. Re-arranging (B.8), we obtain p=mscq + pcp/(meav(p + ¢p)?). As a
result, and by (B.9), p1 converges to mgcq and p, converges to (1 — ¢, — mgcqv)/(1 — v) as maov gets
large. When m4cq < (1 — ¢p)/2, for sufficiently large mq the conditions of Lemma B.2 hold, and since
(1—cp—mgcqr)/(1—v) > macq, we have Py > pr1. Then by part (iv) of Lemma B.2, ITj(p) = p(1—v)(1—p—cp)
for any p > mycq, and hence

max II;(p) < Ml

B.27
p>Tacq 4 ( )

On the other hand, when p <74cq, by Lemma 1 of August and Tunca 2006, if 7, > ¢, and p <D, then
vy = sup{vy | Taap (v — ¢, — p) = — (vp — p)?}, (B.28)

By (4), I (p) =p(1 — vp), where by (B.28) v, =p + ¢, — (vp — p)%/(meav}), and by writing terms in orders
of 1/m,a we obtain

2 1
= — p B.2
vp=p+¢ reap + o) +0 (<7raa)2) , (B.29)

where O is the common order notation, implying f=0O(g(x)) if for sufficiently large =, f(z)/g(x) is
bounded.!3

By differentiating II;(-), computing duvy/dp by the implicit function theorem using (B.28), and substi-
tuting (B.29) into the resulting expression, we obtain

dil, _ 3 (p— ) +O( 1 )

=1—c¢c, —2p — -
dp P il + )’ (Ta)?2

(B.30)

3For a general definition, see Knuth, D. E., Fundamental Algorithms, Vol. 1 of The Art of Computer Programming,
Addison-Wesley, 1968.
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Hence, p(1 — vp) has an unconstrained maximizer at p which satisfies

. 1—g, 2012,(301, —1) 1
p=—y (1 + ¢p)? +0 (re)2 )~ (B.31)

Since mgcq < (1 — ¢p)/2, it then follows that for sufficiently large macr, p > mqcy is satisfied, and hence

max I (p) =mgeq(1 — vp(macq)) - (B.32)

p<Tdcqd

Substituting (B.29) into (B.32), we obtain

m(p) ( )+ i +O< L > (B.33)
max =macq(l — maeq — ¢ —r , )
e 1\p dCd dCd 4 Waa(cp+77dcd)2

and therefore, by (B.27) and (B.33), it follows that

— v —C 2 027T C,
maxIL;(p) < max{(l)(lp),ﬂdcd(l—ﬂdcd—cp)-i- p_dd —i—O(( 1)2)}(334)

p 4 Taa(ep + Tacq)? ToQ
For p=nl, by (B.19), we have

+ep—1—mgeg)(e, — mgcq + p)?
& — eyl -+ maca — 20) + (raca — ) — p) = L0~ LT TG Taca £ (B.35)

and hence, 3 approaches (mgcq + v — 2¢, + /(Taca — v)? + 4cp(1 — 1)) /2 as maa gets large. Now, (mqcq +

v —2¢c, + \/(Wdcd —v)?2 +4cp(1 —v)) /2> mgeq is always satisfied when mgcq + 2¢, — v <0. However, if
Tacd + 2¢, — v>0, then it is satisfied if and only if (y/(macq — V)% + 4ep(1 — v))* > (maca + 2¢p — v)?
which holds whenever mgcq <1 — ¢,. Hence, for sufficiently large moa, p3 > mgcq. Also by (B.17), we have

p=mqca + pci/ (maav(p + ¢,)*), and hence

2
. TdCACy 1
= O(——=) - B.36
P2 =maca+ oo (Tacq + ¢p)3 + ((Waa)2> ( )

As a result, for sufficiently large m,cr, Ps > pa2. By (B.20), By is the larger root of the quadratic equation
p=1—cp+ (p—macqa+ cp — 1)(p — macq + ¢p) / (meav). Thus, we have

_ ﬂdcd(l — 7Tdcd) 1
=1l-c¢,———4+0| —— B.37
Y2 Cp QU + <(7Ta04)2 ) ( )

and hence, maxg, < <3, ILu(p) is given by part (vi) of Lemma B.3. Rearranging (B.24) and writing terms
in orders of 1/m,a, we obtain

(p—l—cp —7Tdcd)2 1
s = e R ) , B.38
vs=p+¢p e (1 ) + ( )

B.5



and by differentiating (5) and substituting (B.14), (B.21), and (B.38) into the resulting expression for the

derivative, we obtain

dll,y,
d; =1l—-c,—2p+

cpmaca(mycq — ¢p) — pﬁdgd(ﬁdcd + ) 10 < 1 2) . (B.39)
Tao(p + ¢p) (Tact)

Equating (B.39) to zero and solving for p, the uconstrained maximizer p satisfies

(B.40)

5o 1—¢  2mgeq(cp(l + ¢p) + maca(l — 3¢p)) L0 (( 1 2) .

2 e (1l + ¢p)3 oY)

By (B.36) and (B.37), for sufficiently large m,cr, p2 < p < py4, and hence, p = argmaxy, <, <p, Ini(p). There-
fore,

(1—¢p)?  maca(l —cp)(1 + ¢p — 2mgcq) 1
max I1 > max II = - + 0 . B.41
pX nl(p) = b <p)§(ﬁ4 nl(p) 4 7TaOé(]. + Cp)2 (ﬂ_aa)g ( )
By (B.33), (B.41), and since m4cq < (1—¢p)/2, there exists w such that for all mqo > w, we have max;, IT,,;(p) >
max,, 1I;(p).

For part (ii), define

lI>

k

2 .
min ((1 —7mgca)(L+¢p)? " (1 —maea(l+¢p))(1+ Cp)> ’ (B.42)

and @2 k/v. By (B.17) and (B.18), m,a <@ implies that pp >1 and p3 > 1. Let vy satisfy (B.22) and
o =k/\/v for 0<k <k/\/v. Then we have

c?,ﬁ

PEPTET E v o

+(p+e —ﬂdcd(l—l—c/p)—i—% 1/—|—O(y3/2). (B.43)
P P k2(p + ¢p)®

Now, applying the implicit function theorem to (B.22) to obtain dv,/dv,, we have

dvy, 2% — Waamcduv;? — p?up(2 + maavy)
dp  p (2p? + 20pp(ma(p + ) — 1) = 3maav} (vmaca + (1 = v)p))

(B.44)

By taking the derivative with respect to p in (5), and substituting (B.43), (B.44), and m,a=k/\/v into

the resulting expression, we have

dHnl -1 C;Z)(p - Cp)\/l7
=] — Cp — 2p -5
dp k(p+ cp)

+ riv +0W%?), (B.45)

where k1 €R is a constant. For p>p,, parts (iv) and (v) of Lemma B.3 apply, and the vendor’s profit
approaches zero when v is sufficiently small. Equating (B.45) to zero, solving for p and writing the terms

in orders of v, we obtain
1—c, 2c:(3c,—1)\v
2 k(14 ¢p)?

P = +O(v). (B.46)

Hence, by (B.9) and (B.46), p¥;, <P,. As v becomes small, by (B.19), D3 converges to the larger root of
the equation (¢ — ¢,(1 + macq — 2p) — p(mgca — p) =0, and hence, py > (1 — ¢,)/2 if and only if mgeq > (1 —
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cp)?/(2(1—cp)). Since (1—cp)?/(2(1—cp)) < (1—cp)/2 is always satisfied, whenever mgcq € ((1—c,)?/(2(1—
¢p)), (1—c¢p)/2), we have p¥, < min(pe, p3). Hence, substituting (B.43) and (B.46) into (5), and by part (7)
of Lemma B.3, we obtain

(1-¢)? 2612)(1 — )V
4 k(14 cp)?

T (phy) = +2v+0 (V?) (B.47)

where z; € R is a constant satisfying

4c3(ca(5¢p — 2) + 5ep — 4) N (1+ ¢p)*(ep + 2mgcqg — 1)

= . B.48
Zl K2(1 + ¢p)° 8¢, (B-48)
Similarly, under policy p=1, it can shown that p; satisfies part (i) of Lemma B.2. Then, by (B.10),
02\/; I TCIC 204 2¢3
v=p+ep— i+ [ - LR —— L )vro(v) . (B9
P k(p+ ¢p)? P+ep P E2(p+cp)®  K2(p+ cp)? (B49)
By the implicit function theorem and (B.10),
dv, 2p(vp — p) + TaQV? (% +(1- I/)p) (B.50)
dp — 2p(vp — p) + maavy (vmacq + (1 — v)p)(vp + 2(vp — p)) — 2¢p) '
By (4) and substituting m,a=k/+/v, (B.49), and (B.50) we have
dIl; cf,(p — )V 3/
e, —2p— 2 P L v+ O , B.51
BT gy TR TOUT B2y
and hence,
(]‘ — Cp)2 20127(1 - cp)\ﬁ 3/2
I, (pf) = 0 ( / ) , B.52
l(pl) 4 + k(1+Cp)2 + zoV + v ( )
where k2, 22 € R are again constants with zo satisfying
4c3(c2(5ep — 2) + Bep — 4 -
Z2 — cp(cp( CP ) cp ) Cp(cp + 47rdcd) 1 . (B53)

k2(1+ ¢p)8 4

Comparing (B.47) and (B.52), I, (p,) >II;(p;) if and only if z; > 2o which, by comparing (B.48) and
(B.53) and carrying out the algebra, is satisfied if and only if 74cq > (1 — ¢2)/(2(1 + 3¢p)). Since

(1_Cp)2< 1-¢ l—¢
2(14¢p)  2(1+ 3cp) 2

(B.54)
there exist v < mqcq <7, where Il (py;) > II;(p;). W

Proof of Proposition 2: We will show that
(i) There exists 7,w,w, 7 >0 such that if 74cq <7, w < T <@, and v <7, then II;(p}) > Iy (p},)-

(ii) There exist 8,7, w,w > 0 such that if mgcy <7, ¢, <0, and w < e <, then II;(p}) > 1Ly (p)-
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For part (i), for sufficiently small v, by the proof of part (ii) of Proposition 1, p¥, <p,, and by (B.19),
P3 < (1 —cp)/2 if and only if mycq < (1 —¢,)?/(2(1 — ¢;)). Hence, v, satisfies (B.23), and when m,a=k/\/v
for 0 < k < k/\/v, where k is given by (B.42), we have

02\5 C 203 204 TICAC
=p+cy— 2 + =2+ E__+ P 2Py 4 0 3/2>. B.55
U S R TP LAl Pewehl Tpm Rl = rw i LA C (B.55)

By (B.23) and the implicit function theorem,

dvy TaQTcqvvy — 2p3 + p?up(2 — meav + meavy(l — 1))
dp p?(mear —2) + 3p7raavg(7rdcdy +p—pv) + 2p?up(1 — mea(cp(l —v) + v+ vmgca +p — pr))
(B.56)
By part (ii) of Lemma B.3, (5), and substituting m,a=k/+/v, (B.55), and (B.56) we have
dTLy cp(p — o) V¥ 3/2
=l—c,—2p— 2P v+ 0%?), (B.57)
dp P k(p+cp)?
and hence ) 2 V7
1—¢p) 2¢(1 —cp)\/v
Moty = L= v " 0 (v*?) B.58
nl(pnl) 4 + ]{3(1 + Cp)2 + 23V + v ) ( )

where k3,23 €R are again constants. Comparing (B.52) and (B.58) we see that II;(p}) > IL;(p};,;) if and
only if 2o > 23, which is always satisfied.

To see part (it), let 1/v <k <4/v and suppose

11—V
in{l—— . B.
0 < mgeqg < min ( i ) (B.59)

Since k> 1 and by (B.59), for mqa = k¢, there exists € > 0 such that when ¢, <e, T, > ¢, and mgeq < (1 —
¢p)(1 —¢p/(mqer)), are satisfied. Then by (B.8),

pep + maaw(mgcqg — p)(p + cp)2 = (p + macqkvp® — kup?’)cp + O(czz,) , (B.60)

and hence, p; approaches (mgcq++/4/(kv) + (T4cq)?)/2, and by (B.9), b, approaches (1—k+mqcakv)/(—k(1—
v)) for sufficiently small ¢,. Since 1 —1/(kv) <1/2+ (k—2)/(2kv), by (B.59), mgcqa <1/2+ (k —2)/(2kv),
which is satisfied if and only if p, > 1/2. Further, p; >1/2 is satisfied if and only if m4cqy >1/2 — 2/(kv),
which is always satisfied since kv <4. By (B.2), p; approaches 1 as ¢, gets small. Thus, by part (iii) of
Lemma B.2, for all 6 >0, there exists an € >0 such that when ¢, <¢, and 0<p<1—4, v <1. Then by
(B.4), (B.10) and (B.14) v, approaches p for sufficiently small c,. It follows that p; = argmax, <, <111;(p)
approaches 1/2. Then, since min(p,,p1) > 1/2, by part (i) of Lemma B.2, when p =pj, v, satisfies (B.10).
By (4),
dIT, duy,

Tl — g —p e 222 B.61
= Kt (B.61)

Substituting (B.50) into (B.61), and by (B.10), vy =p + z1¢, + O(c3), and hence

(82— %+ ka(l- ey
2(k + kv(2mgeq — 1) + 821) +0(%), (B.62)

pr=1/2+ o
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where

1
a=g (\/16k + (k(1 — v) + 2mgcqgkv)? — (k(1 —v) + 27rdcdk:1/)) . (B.63)
By (4), (B.62), and again since v, =p + z1¢, + O(c3), we have

Ty () = - 7 A ;)Zlcf’ +0(c). (B.64)

Finally, mgcq(1 — mgcq) < (1 —v) /4 is satisfied if and only if m4cq < (1 — +/v)/2, which holds by (B.59), and
hence the vendor will not set p < mgcq, which verifies the optimality of (B.62).
Now, by (B.19), p3 =macq + z2¢p + O(c3) where 23 is the larger root of

25+ (24 k(mgeq — V)22 + 1 — k + maeqgk =0, (B.65)

and, by (B.17), po =macq + ¢,/ (kv(mgca)?) + O(c3). Substituting zo =1/(kv(macq)?) into (B.65), it follows
that py < pg if and only if 14 kvmgeq(mgeq—1) > 0, which is satisfied since kv <4. By (B.18), p3 approaches
1/(kv(1 — mgcq)) as ¢p gets small, and by (B.59), ps <p,. Further, for any 6 > 0, there exists a € >0 such
that when 0 < ¢, <e, for p>m4cq+ 0, by parts (ii) and (iii) of Lemma B.3, vy =1 and v, <1.

When v, < v, by (B.23), vy, satisfies

TdCdVp

) ) — g (1 — v)(cp — vy +p) =0, (B.66)

(vp — p)* — Taawpr (v — p) <1

and by the implicit function theorem, dv,/dp satisfies (B.56). By part (ii) of Lemma B.3, vy, =1, and
hence by (5),

gy —p. T (B.67)

Substituting (B.56) into (B.67), and by (B.66), v, =p + z3¢, + O(c3). Substituting again into (B.67), the

unconstrained maximizer of II,,; when v, < v, then satisfies

(k(1 —v)(z3 — 2) — 828)cy

p=1/2+ 2 oo — T o o(c2), (B.68)
where 1
s =g (V16K =) + (5 = 3k + 2hwmaca)? — (k = 3w + Zhvmaca) ) (269
and hence,
ffz < 1 ; v (1- ;)23% n 0(012,) : (B.70)

where I1% is the maximum profit attained when 5 <ps and p3 < p < min(p,, p3). By (B.64) and (B.70),
I (p;) > 17, if 21 < 23 which holds if and only if mycq < 1/2 + (k — 2)/(2kv), which is satisfied by (B.59).
For the case when v, =), by part (iii) of Lemma B.3 and (5), IL;(p) =p(1 — v)(1 — p — ¢p), which has
an unconstrained maximizer at p=(1 — ¢,)/2, and therefore,
1-v (1-v)g

W< - 0. (B.71)
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where where H::ll is the maximum profit attained when p3 <pe, p3 <P, and p3<p<1. By (B.64) and
(B.71), II;(p;) > IT¥ if 24 < 1 which holds if and only if 744 > 1/2 — 2/(kv), which is always satisfied since
kv < 4. Therefore Iy (p?;) < max (II%

nl>’

Hfﬁ), and the proof is complete.

Proof of Proposition 3: We will prove that if mgcq < (1 — \/cp(2 — ¢p))/2, there exist 0 < mpa < T,

such that if v >¢,(2 — ¢), 0 <w < meer and wo > Tear then

1L, (p; = I, (p > I1,(p¥ . B.72
nl(pnl)|7'raa7w2 pg{ll%)fl} P(pp) oo pg{lla,r)fl} P(pp) . ( )

When p <m4cq, by Lemma 1 of August and Tunca 2006, if m,a < ¢, or both mea > ¢, and p > P, then

vp =1 and

1 —m,a 1
= — 1-— 2414 . B.
v o + o \/( Ta)? + dmgap (B.73)

By this fact and Lemma B.1, vg, =1 for sufficiently small m,a, and hence, by (4) and (5), II;(p) =1L, (p).
Further, IT,;(p) >0 if and only if p<p;. Hence, by (B.73) and (B.4), vp=p + O(me«). Since mgcq <

(1—=+ep(2=¢))/2,

max

0<p<mgycq 2 o 4 ’

L) < (1_w/cp(2—cp)> <1+\/cg(2—cp)> (1-c)? B.74)

for sufficiently small mo. By (5) and since vy =p + O(macx), we also have

1—v

max II,(p) < (B.75)

Tacqg <p<1 4

On the other hand, by the proof of Proposition 1, when m,« is sufficiently large, max, IT,;(p) > max, II;(p),
where max,, I1,;;(p) approaches (1 — ¢,)?/4. Then, by (B.74), (B.75), and since (1 — ¢,)?> (1 — v) holds if
and only if v > ¢,(2 — ¢;) is satisfied, the result follows. B

Proof of Proposition 4: We will prove that if ¢, <1/3 and m,a>w,

() dIl,« (p*)

. 1+cp
Araca) < 0 if mgcq < —;%, and

.oy dILx (p*) .¢r l+c 1—c
(i) rcrnad’ if =2 <mgcqa < —<*%.

Let £ 21/(m,a). For sufficiently large m,a, by part (vi) of Lemma B.3, the proof of part (i) of Proposition

1, and (B.24), we obtain

(p+ ¢p — maca)*¢
v(p+cp)?

vs =p+cp— +0(&%), (B.76)

and by (B.21) and (B.76),

maca(p + ¢p — macq)€

ST + 0(£?). (B.77)

Vsp =P+ Cpt
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By part (vi) of Lemma B.3 and (B.14), v =p+¢, for 0<p<1—¢, as mae gets large. Substituting v, and
(B.77) into (5) and differentiating yields

dHnl (p )
dp

Tacd(cp(cp — maca) + p(cp + maca))§ +0(£2). (B.78)

=1—c,—2p+
P P (pJFCp)3

Equating (B.78) to zero yields the first order condition, solving which we obtain the optimal price as

pr = 1t 2l +<Cf)++c;§6d(l =39 o). (B.79)

Hence it follows that

My (p*) = (1 74619)2 . maca(l — Clgi(itpjg — 2m4cq)§ + 0(52) _ (B.80)

By (B.80), we obtain dIl,;(p*)/d(maca) = (1—cp)(1+cp) " 2(4mgca—1—c,)E+O0(£2). Therefore, for sufficiently
large m,a and by Proposition 1, dIl,,;(p*)/d(mgcq) <0 for mgeq < (1 + ¢,)/4 and dIl,,;(p*)/d(mgcq) >0 for
(1+¢p)/4<mgeq < (1 —cp)/2. Since p* = nl, by Proposition 1, the result follows. B

Proof of Proposition 5: Technically, we will first show that there exist threshold values w >0 and
4 < (1 —¢,)/2 such that if meo > w, then

lim Wy(p*) < lim Wy (p"). (B.81)
TdCd—y~ maca—YT
We will then prove that
AW (p*
lim VPl > 0. (B.82)

y=v= d(Tdca) |rye, =~

Let £ £1/(mqa). Suppose that p=mgcq < (1 —¢,)/2. As maa grows large, by (B.28), we have

¢
= —— +0(8). (B.83)

PETIT D T gt )2
P

By (4) and (5), Iy (mgcq) =;(mgcq) and by substituting (B.83), we obtain

My (maca) = maca(l — ¢ *WdCd)+LJC§€+O(§2) (B.84)
" P (maca + cp)? ’ '
Suppose that p > mycq. By (B.24) and part (vi) of Lemma B.3,
(p — macd + ¢p)*¢ 2
=p+cp— + 0 . B.85
Substituting (B.14), (B.21), and (B.85) into (5) gives
T qC — TgCq + C
Mo(p) = p(1 — p— ) — PRAUL T LB, 2y (B.56)

(p+cp)?



and by taking first order conditions yields

« _1—¢ 27 acq(cp(1 + ¢p) 4+ maca(l — 3cp))€ 2
Pni= 2 - (1 + Cp)3 + O(€ ) (B87)

By (B.86) and (B.87), we obtain

(1—cp)? ~ maca(l — ¢p)(1 + ¢p — 2mgca)§

1 (14 ) +OE, (B:55)

Iy (p:ﬂ) =

and by equating (B.84) and (B.88), it follows that 4 £ {mgcy | Dy (maca) = (pk,)} is given by

_ L—¢ ep(l — )€

o) . B.
= 0 (.59)
By (B.84) and (B.88), we have
My (maca) — M (ppy)] 2 dmica(l—¢y) | c(cp — Taca) 2
=1 —¢p,—2mgca+ | —1+ —~ +0(£?),
d(mgcq) p — “Tdcd 1+¢p (14cp)? (¢p + maca)® ¢ ()
(B.90)
and further by evaluating (B.90) at 4, we have
[y (maca) — i (py,)] _ el o)l | 0(6) (B.91)
d(mgca) Tacq =% L+ 7

and therefore d[IL,;(m4cqa) — pi(pf;)]/d(macq) >0 for all 0 <mgcq <4. This implies that at mgcy =74, the
vendor switches price from p; to mgcq. As mgcq — 47, by (7), (B.85), (B.87), and (B.89), we obtain

« 3(1 — ¢,)? T4Cd 7rdcd+c(3+4c +02—7Tdcd(8+c) f
Woa(p) = 2 2 * | maca e a +”C )?f )¢, 0(&*?). (B.92)
P
However, as mgcq — 41, by (7), (B.83), and (B.89), we have
31—cp)? 1-— 1—
Whi(maca) = (1) yo— el = &) +0(6), (B.93)

8 2 1+c¢,
which proves that lim ., _.5- Wy(p*) < limy ., .5+ Wy (p*). By (B.92), we obtain

im AW (pj) _ (A +6p(6+¢p)(2¢p — 1))¢ 3/2
P draca) |y GRS O, (B.54)

which is positive for all 0 < ¢, <1. This completes the proof. Wl

Proof of Proposition 6: We will show that there exist §,w,w > 0 such that if ¢, <0, and w <7, <,
then

(i) there exists >0 that if 0 <mgcq < (1 — /v)/4 and v <1, then Wi(p;) > Wu(p},);

(ii) there exist 0 <A <X that if A <mgcq <A, then Wy (pr;) > Wi(p}).
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For convenience in exposition, define vs ,, vsp, p, vp, , and v, , as the corresponding threshold values under
policy p. Since mgcq < (1 —+/v)/4 and by part (ii) of the proof of Proposition 2, both p} and p}, approach
1/2 for sufficiently small ¢,. Again, by part (i) of the proof of Proposition 2, since min(p,,p1) > 1/2, by
part (i) of Lemma B.2, we have vy,; <1. Now, suppose u; > uy;, where u; and u,; are the sizes of the
unpatched populations under policy I and nl as given by (B.6), respectively. By (A.14), v ;=mqcq/(1 —
o) and v =macq/(1 — Taouy), hence vs | >vs . By (A.15), vsp 1 =c¢p/(meauy), and by (A.19),
Vsp,ni = min(1, (p+ ¢, — mgcq) /(maauy;)), and hence vgp, ni > vsp 1. Now, defining uﬁ and uf,{ as the sizes of
the unpatched populations under policy p in the Type L and Type H consumer populations, respectively, it
follows that u, = u£+uf. Since vgp, ni > Vgp,1 and vg ;> v, pny, We obtain ug > ulH, and since u; > u,;, we have
uk, <ul. By part (i) of Lemma B.2, v}, ; <wv, ;, and by (A.5), (A.8), and (A.9), we have v, ; =p/(1 —ma0u;)
and vy, ;= ¢p/(maouy). Since vy <p + ¢p and u; > Uy, we obtain vy =p/(1 — meau) <wvy; <p+ cp. By
(A.5) and (A.8), vy = min(1, ¢,/ (Teqtuy;)), and hence, v, > v, . It follows that ul, >ul, which is a
contradiction. Therefore, u; < uy;, and hence, v, | < v, py.

Now, by (B.18), we know that for sufficiently small ¢,, ps>1/2 for k<2/v. Then, by part (ii) of
Proposition 2, v, <1 and p}, satisfies (B.68). Comparing with (B.62), it then follows that p!, —p; =vc,/2+
O(v?) and therefore, for sufficiently small v, p%, > p} and hence vy | < vy n. As a result, (v — C(v,6,0%))"
is greater under p=1[ than p=mnl for each consumer and by (7), it follows that W;(p;)> Wy (p};). This
proves (i).

For (i1), first notice that (1 —\/v)/2<1—1/(kv) if and only if k>2/(v(1 + \/v)) and that 2/(v(1 +
V) >1/v for all v € (0,1). Let 2/(v(1 + /v))<k<4/v and 0<mgcqg< (1 —+/v)/2. Then (B.59) is
satisfied and since k> 1, for m,a = ke, there exists € >0 such that when ¢, <e, m,a > ¢, and m4cq < (1 —
cp)(1 —¢p/(maar)). By (B.64), (B.70) and (B.71), we then have II;(p}) > maxy, > r,c, Ini(p). By (4), (5),
and (B.28),

Iy (macq) =y (macq) = maca(l — macq) — zocp + O(CIQ)) , (B.95)

where zo = (mqcq)? (kmgcq — /4k + (kmacq)?)/2. Carrying out the algebra, it follows that zy < z; as given in
(B.63). Therefore, by (B.64), and (B.95), there exists ¢ > 0 such that for any ¢, < ¢, there exists § >0 such
that if (1 —\/v)/2 — 0 <mgcq<(1 —+/v)/2 then IIj(mgcq) =1 (mqcq) > I (pf). Consequently, by (B.64)
and the continuity of II;(m4cy) as in (B.95), there exist A\, A € (0, (1 — y/7)/2) such that when \ < mgcq < A,
maxp > rue, Uni(p) <I(mgcq) =y (macq) <IL(pf). Hence p!, = mqcq and pj is characterized by (B.62). But
by (7), for sufficiently small ¢,, Wy (mqcq) approaches (1 — (mqcq)?)/2 and by (B.62), Wi(p}) approaches
(3+ v(1 —4(mgcq)?))/8. Since macqg < 1/2, it follows that II;(p;) > Iy (pf,) and W > W}, This completes
the proof. B
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